JP2008111656A - Explosive loading method - Google Patents

Explosive loading method Download PDF

Info

Publication number
JP2008111656A
JP2008111656A JP2007298897A JP2007298897A JP2008111656A JP 2008111656 A JP2008111656 A JP 2008111656A JP 2007298897 A JP2007298897 A JP 2007298897A JP 2007298897 A JP2007298897 A JP 2007298897A JP 2008111656 A JP2008111656 A JP 2008111656A
Authority
JP
Japan
Prior art keywords
explosive
loading
water
granular
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007298897A
Other languages
Japanese (ja)
Inventor
Tomohiro Ogata
智博 緒方
Takuya Taguchi
琢也 田口
Shigeyuki Sasaki
重幸 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2007298897A priority Critical patent/JP2008111656A/en
Publication of JP2008111656A publication Critical patent/JP2008111656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten a loading time of an explosive and to enhance working efficiency, in a blasting work. <P>SOLUTION: In this explosive loading method of the present invention, an explosive loading specific gravity in a blasting hole is changed by regulating a loading speed of an explosive, when loading a water-in-oil type emulsion explosive containing an oxidant, water, an emulsifier, a micro hollow spherical body, and oils (with the provision that all or one part thereof is replaced with a resin), and formed into granular particles, into the blasting hole, using an explosive loading machine. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は爆薬装填方法に関する。更に詳しくは隧道掘進、採石、採鉱等の産業用爆破作業に利用される油中水滴型エマルション爆薬の装填方法に関するものである。 The present invention relates to an explosive loading method. More particularly, the present invention relates to a method of loading a water-in-oil emulsion explosive used for industrial blasting operations such as tunnel excavation, quarrying, mining and the like.

爆破作業に用いられる産業用爆薬として、ダイナマイト、含水爆薬、硝安爆薬、硝安油剤爆薬(以下ANFO爆薬と呼ぶ)等が良く知られている。これらの爆薬のうち含水爆薬は、組成物中に危険度の高い火薬成分が含まれてないことから従来のダイナマイトよりも比較的安全であり、産業用爆薬として広く用いられるようになっている。この含水爆薬はスラリー爆薬として特許文献1にて公開されて以来、さまざまな改良が行われてきており、現在では耐水性、安全性の点で、従来の爆薬より優れた性能を有しているものが得られている。 As industrial explosives used for blasting work, dynamite, hydrous explosives, ammonium nitrate explosives, nitrate oil explosives (hereinafter referred to as ANFO explosives) and the like are well known. Among these explosives, hydrous explosives are relatively safer than conventional dynamite because they do not contain explosive components with a high degree of danger in the composition, and are widely used as industrial explosives. Since this hydrous explosive has been disclosed as a slurry explosive in Patent Document 1, various improvements have been made, and now it has performance superior to conventional explosives in terms of water resistance and safety. Things have been obtained.

他方、発破現場においては、爆薬の装填時間の短縮や装填作業中、切羽付近の落石等からの危険を回避する安全性確保という観点から、爆薬の装薬作業の機械化が要望されるようになってきている。爆薬の機械装填を行うためには、使用される爆薬がより安全である必要があり、ANFO爆薬を装填機等によって機械装填する方法が鉱山や採石場等で実用化されている。 On the other hand, at the blasting site, mechanization of explosive charging work is required from the viewpoint of shortening the loading time of explosives and ensuring safety to avoid the danger from falling rocks near the face during loading work. It is coming. In order to load the explosives mechanically, the explosive used must be safer, and a method of mechanically loading the ANFO explosive with a loading machine or the like has been put into practical use in mines and quarries.

ところがANFO爆薬は、油中水滴型エマルション爆薬と比較すると、発破後の残留ガス組成が悪いため十分な排気装置を設ける必要がある。また、発破孔中に水が存在する場合、ANFO爆薬が水に溶解して所定の爆薬性能が得られなくなるために、使用することが困難になる。このため水が存在する発破孔や湧水孔においては、あらかじめ発破孔中の水を排出してからポリチューブ等を挿入した後、そのポリチューブ内にANFO爆薬を装填するといった煩雑な方法が行われる場合がある。また油中水滴型エマルション爆薬については、例えば諸外国において、非特許文献1にあるように、バルクエマルション爆薬と呼ばれる油中水滴型エマルション爆薬を、エア駆動のモノポンプ等を利用して、直接発破孔に自動装填するバルクエマルション爆薬システムと呼ばれる方法がすでに実用化されている。しかしバルクエマルション爆薬システムにおいては、高粘度の油中水滴型エマルション爆薬を使用するために、装薬作業後の清掃作業や残留爆薬の管理がきわめて煩雑になるため高コスト化を招く恐れがある。また、バルクエマルション爆薬を装填するためには、安全性の確保のためにも高価な装填用機械が必要となる。 However, the ANFO explosive has a poor residual gas composition after blasting as compared with the water-in-oil emulsion explosive, so that it is necessary to provide a sufficient exhaust device. In addition, when water is present in the blast hole, the ANFO explosive dissolves in water and a predetermined explosive performance cannot be obtained, making it difficult to use. For this reason, in blast holes and spring holes where water exists, a complicated method is adopted in which after the water in the blast hole has been discharged in advance, a polytube or the like is inserted, and then an ANFO explosive is loaded into the polytube. May be. For water-in-oil emulsion explosives, for example, as described in Non-Patent Document 1, in foreign countries, a water-in-oil emulsion explosive called a bulk emulsion explosive is directly blasted using an air-driven monopump or the like. A method called a bulk emulsion explosive system that automatically loads a battery is already in practical use. However, in a bulk emulsion explosive system, since a high-viscosity water-in-oil emulsion explosive is used, the cleaning work after the charge operation and the management of the residual explosive become extremely complicated, which may increase the cost. Moreover, in order to load a bulk emulsion explosive, an expensive loading machine is required to ensure safety.

また、現在トンネルなどでは周辺孔の余掘りを防ぐために、スムースブラスティング工法などの様々な制御発破が行われているが、これらの制御発破はトンネル中心部に威力のある爆薬、周辺孔に威力を抑えた爆薬というように、異なる爆薬種を使用したり、直径を通常のものより細くしたサイズのものを使用したりしており、爆薬装填時の作業効率はあまり良いとは言えない。機械装填が可能なANFO爆薬を用いても威力の調整は不可能であり、スムースブラスティング等の制御発破を行う場合は数種の爆薬種を使用する必要があり、作業が非常に煩雑になるのが現状である。 In addition, various control blasts such as the smooth blasting method are currently being carried out in tunnels and the like in order to prevent excessive digging of the peripheral holes, but these controlled blasts are powerful explosives in the center of the tunnel and powerful in the peripheral holes. Different explosive types are used, such as explosives with reduced pressure, or those with a diameter smaller than the normal one, so the work efficiency when loading explosives is not very good. It is impossible to adjust the power even with machine-loadable ANFO explosives, and it is necessary to use several kinds of explosives when performing control blasting such as smooth blasting, which makes the work very complicated. is the current situation.

このため、空気装填機のように比較的簡単な機械で装薬が可能で、比較的多くの水が存在する発破孔でも使用可能で、安全性の高い爆薬が要望されている。これらの問題を解決する爆薬として、例えば特許文献2、特許文献3、特許文献4、特許文献5に記載された、顆粒あるいは粒状の油中水滴型エマルション爆薬の開発が進められているが未だ充分とは言えない。 For this reason, there is a demand for a highly safe explosive that can be charged with a relatively simple machine such as an air loading machine, can be used even in a blast hole where a relatively large amount of water exists, and is highly safe. As explosives for solving these problems, for example, granular or granular water-in-oil emulsion explosives described in Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5 have been developed, but are still sufficient. It can not be said.

米国特許第3,161,551号公報U.S. Pat. No. 3,161,551 特開平7−223888号公報(特許請求の範囲)JP-A-7-223888 (Claims) 特開平11−278975号公報(特許請求の範囲)Japanese Patent Laid-Open No. 11-278975 (Claims) 特開2001−172096号公報(特許請求の範囲)JP 2001-172096 A (Claims) 特開2001−206797号公報(特許請求の範囲)JP 2001-206797 A (Claims) 「効果的なトンネル技術に関する検討報告書」(社)日本トンネル技術協会発行"Study report on effective tunnel technology" published by Japan Tunnel Technology Association

本発明は、発破作業における爆薬の装填時間の短縮、装填作業の自動化、作業効率の向上が可能な爆薬装填方法を提供することを目的とする。 An object of the present invention is to provide an explosive loading method capable of shortening the loading time of explosives in blasting work, automating the loading work, and improving work efficiency.

本発明者等は、このような課題を解決するために鋭意研究を重ねた結果、粒状に成型された特定の成分からなる油中水滴型エマルション爆薬を、爆薬装填機を用いて装薬する際の装薬速度を変化させ、発破孔内の爆薬装填比重を所望の範囲に変化させることで、爆薬の威力を調整でき、同一種の爆薬を使用しながら、例えばトンネル掘進での周辺孔のスムースブラスティングが可能となることを見出し、本発明を完成させたものである。 As a result of intensive studies to solve such problems, the present inventors have charged a water-in-oil emulsion explosive consisting of specific components molded into granules using an explosive loading machine. By changing the charge speed of the explosive and changing the specific gravity of the explosive loading in the blasting hole to the desired range, the power of the explosive can be adjusted, and while using the same kind of explosive, for example, smoothing the peripheral hole in tunnel excavation The present invention has been completed by finding that blasting is possible.

すなわち本発明は、
(1)酸化剤、水、乳化剤、微小中空球体及び油類(ただし、全部または一部が樹脂に置換されている)を含有し、粒状に成型された油中水滴型エマルション爆薬を、爆薬装填機を用いて発破孔内に装填する際に、爆薬の装薬速度を調整することで発破孔内の爆薬装填比重を変化させることを特徴とする爆薬装填方法
(2)爆薬装填機が、圧力容器、装薬ホース、空気圧送装置及び圧力容器からの圧縮空気とは別に、装薬ホースに圧縮空気を送るための装置から構成されている空気装填機であって、圧力容器内の圧力を0.1〜0.5MPaに、また、圧力容器とは別に装薬ホース内に送られる圧縮空気を0.05〜0.7MPaにそれぞれ調整し、爆薬を装填する上記(1)記載の装填方法
(3)爆薬の成型体一粒当たりの平均重量が0.03〜5.0gであ上記(1)または(2)記載の装填方法
That is, the present invention
(1) Explosive loading with water-in-oil type emulsion explosive containing granular material and containing oxidant, water, emulsifier, micro hollow sphere and oil (however, all or part is replaced by resin) Explosive loading method characterized by changing the specific gravity of explosive loading in the blasting hole by adjusting the charge speed of the explosive when loading into the blasting hole using a machine (2) Explosive loading machine is pressure In addition to the compressed air from the container, the charge hose, the pneumatic feeder, and the pressure vessel, the air loader is composed of a device for sending the compressed air to the charge hose. The charging method according to the above (1), wherein the compressed air sent into the charging hose separately from the pressure vessel is adjusted to 0.05 to 0.7 MPa, and the explosive is loaded ( 3) The average weight per grain of explosives is 0. 3~5.0g der above (1) or (2) The method of loading, wherein

本発明の爆薬装填方法は、油中水滴型エマルション爆薬を、爆薬装填機を用いて装薬する際の装薬時間の短縮及び作業効率を向上させることができ、スムースブラスティング工法などの様々な発破パターンを一つの爆薬で実施することが可能である。 The explosive loading method of the present invention can shorten the charging time and improve the work efficiency when charging a water-in-oil type emulsion explosive using an explosive loading machine, and various methods such as a smooth blasting method can be used. Blast patterns can be implemented with a single explosive.

以下、本発明を詳細に説明する。
本発明に使用される爆薬装填機は、爆薬を入れる容器、装薬ホース、爆薬供給装置から構成されていれば、どのような形態のものでも構わない。例えば、ANFO装填機のような爆薬を入れる圧力容器、装薬ホース、空気圧送装置から構成されている空気装填機が好ましい具体例として挙げられる。
The present invention will be described in detail below.
The explosive loading machine used in the present invention may have any form as long as it is composed of a container for storing explosives, a charge hose, and an explosive supply device. For example, a preferable example is an air loader configured of a pressure vessel for charging an explosive, such as an ANFO loader, a charge hose, and a pneumatic feeder.

空気装填機は圧力容器と装薬ホースの接続部付近に、圧力容器からの圧縮空気とは別に、装薬ホースに圧縮空気を送るための装置を備えたものが好ましい。例えば、圧力容器と装薬ホースの接続部に2重管を使用し、2重管の内側には圧力容器からの爆薬、外側には圧縮空気を同時に送るような構造を有するものが挙げられる。圧力容器からの圧縮空気のみでの爆薬の輸送では、装薬ホース内で爆薬が閉塞するという問題が生じる場合がある。しかし、圧力容器とは別に圧縮空気のみを装薬ホース内に送ることで、装薬ホース内の爆薬の占有比率を下げて爆薬を輸送することが可能であり、爆薬の閉塞という問題を解消できる。 The air loading machine is preferably provided with a device for sending compressed air to the charging hose separately from the compressed air from the pressure vessel in the vicinity of the connection between the pressure vessel and the charging hose. For example, a double pipe is used for the connection part of a pressure vessel and a charge hose, and what has a structure which sends an explosive from a pressure vessel inside a double pipe, and compressed air to the outside simultaneously is mentioned. In the transport of explosives only with compressed air from the pressure vessel, there may be a problem that the explosives are blocked in the charge hose. However, by sending only compressed air into the charge hose separately from the pressure vessel, it is possible to transport the explosive by reducing the occupation ratio of the explosive in the charge hose, which can solve the problem of explosive blockage .

装薬ホースは内径が15〜40mmのものが使用される。装薬ホースは、発破孔の径に合わせて適宜異なる外径のものを接続してもよいが、装薬中の詰まりを防ぐために装薬ホースの先端のみ外径を小さくするのが好ましい。 A charge hose having an inner diameter of 15 to 40 mm is used. The charging hose may be connected with a different outer diameter depending on the diameter of the blast hole, but it is preferable to reduce the outer diameter only at the tip of the charging hose in order to prevent clogging during charging.

本発明においては、装薬速度を変化させ、粒状に成型された油中水滴型エマルション爆薬(以下、単に粒状爆薬という場合もある)を発破孔壁に衝突させる衝撃力を調整することにより、粒状爆薬を変形させ充填密度、即ち装薬比重を所望の程度に変化させる。装薬速度の方法に特に制限はないが、本発明の好ましい実施態様である空気装填機を使用した場合、装填圧力を適度に調整すればよい。この場合、上記したように装薬ホース内で爆薬が閉塞するという問題をさけるために、好ましくは圧力容器からの圧縮空気とは別に、装薬ホースに圧縮空気を送る装置を備えた装置を使用する。 In the present invention, by changing the charge speed and adjusting the impact force that causes the water-in-oil emulsion explosive (hereinafter sometimes referred to simply as a granular explosive) formed into a granular shape to collide with the blast hole wall, The explosive is deformed to change the packing density, that is, the charge specific gravity, to a desired level. Although there is no restriction | limiting in particular in the method of a charging speed, When using the air loading machine which is a preferable embodiment of this invention, what is necessary is just to adjust a loading pressure moderately. In this case, in order to avoid the problem of the explosive clogging in the charging hose as described above, a device having a device for sending compressed air to the charging hose is preferably used separately from the compressed air from the pressure vessel. To do.

本発明における装薬速度は、爆薬の1分当りの供給量を指し、通常約10〜40kg/分程度の範囲で変化させるのが好ましい。この範囲の爆薬供給速度に調整するには、例えば前記本発明における好ましい装填機を使用した場合、圧力容器内の圧力が0.1〜0.5MPa、好ましくは0.2〜0.4MPaに、また、圧力容器とは別に装薬ホース内に送られる圧縮空気が0.05〜0.7MPa、好ましくは0.2〜0.5MPaにそれぞれ設定される。 The charge rate in the present invention refers to the amount of explosive supplied per minute, and it is usually preferable to change the charge rate within a range of about 10 to 40 kg / min. In order to adjust the explosive supply speed within this range, for example, when the preferred loading machine in the present invention is used, the pressure in the pressure vessel is 0.1 to 0.5 MPa, preferably 0.2 to 0.4 MPa, Moreover, the compressed air sent into the charging hose separately from the pressure vessel is set to 0.05 to 0.7 MPa, preferably 0.2 to 0.5 MPa.

本発明に使用される粒状爆薬は、油中水滴型エマルション爆薬であって、酸化剤、水、乳化剤、微小中空球体及び油類を含有する爆薬の油類の全部または一部を樹脂に置換したものを使用する。 The granular explosive used in the present invention is a water-in-oil emulsion explosive in which all or part of explosive oils containing an oxidizing agent, water, an emulsifier, a fine hollow sphere, and oils are replaced with a resin. Use things.

以下、本発明に使用する粒状爆薬につき説明する。
粒状爆薬の酸化剤はその水溶液として用いるのが好ましく、使用しうる酸化剤の具体例としては、硝酸アンモニウム、硝酸ナトリウムのようなアルカリ金属硝酸塩類、硝酸カルシウムのようなアルカリ土類金属硝酸塩類、塩素酸ナトリウムのようなアルカリ金属塩素酸塩類、塩素酸カルシウムのようなアルカリ土類金属塩素酸塩類、過塩素酸カリウムのようなアルカリ金属過塩素酸塩類、過塩素酸カルシウムのようなアルカリ土類金属過塩素酸塩類、過塩素酸アンモニウム等が挙げられ、これらは単独または混合して使用することができる。これらの酸化剤のうち特に好ましいものは硝酸アンモニウム及び硝酸ナトリウムである。
Hereinafter, the granular explosive used in the present invention will be described.
The granular explosive oxidizer is preferably used as an aqueous solution. Specific examples of oxidants that can be used include alkali metal nitrates such as ammonium nitrate and sodium nitrate, alkaline earth metal nitrates such as calcium nitrate, and chlorine. Alkali metal chlorates such as sodium phosphate, alkaline earth metal chlorates such as calcium chlorate, alkali metal perchlorates such as potassium perchlorate, alkaline earth metals such as calcium perchlorate Examples include perchlorates and ammonium perchlorate, and these can be used alone or in combination. Particularly preferred among these oxidants are ammonium nitrate and sodium nitrate.

粒状爆薬の酸化剤水溶液には、所望により硝酸モノメチルアミン、硝酸モノエチルアミン、硝酸ヒドラジン、二硝酸ジメチルアミン等の水溶性アミン硝酸塩類、硝酸メタノールアミン、硝酸エタノールアミン等の水溶性アルカノールアミン硝酸塩類及び水溶性の一硝酸エチレングリコール等を補助鋭感剤として添加することが可能である。 Oxidant aqueous solutions of granular explosives include water-soluble amine nitrates such as monomethylamine nitrate, monoethylamine nitrate, hydrazine nitrate, dimethylamine dinitrate, water-soluble alkanolamine nitrates such as methanolamine nitrate, ethanolamine nitrate and the like. Water-soluble ethylene glycol mononitrate or the like can be added as an auxiliary sharpening agent.

粒状爆薬の酸化剤水溶液中における水の含有量は、酸化剤水溶液の結晶析出温度が30〜90℃になるような量だけ使用されることが好ましく、通常酸化剤水溶液に対して5〜40重量%、好ましくは7〜30重量%の範囲で使用される。
酸化剤水溶液中には結晶析出温度を下げるためにメチルアルコール、エチルアルコール、ホルムアマイド、エチレングリコール、グリセリン等の水溶性有機溶剤が補助溶媒として使用可能である。酸化剤水溶液は爆薬中に50〜95重量%の範囲で含有される。
The content of water in the aqueous oxidizing agent solution of the granular explosive is preferably used in such an amount that the crystal precipitation temperature of the oxidizing agent aqueous solution is 30 to 90 ° C., and is usually 5 to 40 wt. %, Preferably in the range of 7 to 30% by weight.
In the oxidizing agent aqueous solution, a water-soluble organic solvent such as methyl alcohol, ethyl alcohol, formamide, ethylene glycol or glycerin can be used as an auxiliary solvent in order to lower the crystal precipitation temperature. The oxidizing agent aqueous solution is contained in the explosive in the range of 50 to 95% by weight.

粒状爆薬の乳化剤としては、通常油中水滴型エマルション爆薬に使用される乳化剤、例えば、ステアリン酸アルカリ金属塩、ステアリン酸アンモニウム塩、ステアリン酸カルシウム塩、ポリオキシエチレンエーテル塩、ソルビタン脂肪酸エステル、ソルビトール脂肪酸エステル類等が挙げられ、これらは1種または2種以上の混合物として使用される。乳化剤は爆薬中に0.1〜10重量%、好ましくは0.5〜5重量%の範囲で含有される。 As an emulsifier for a granular explosive, an emulsifier usually used in a water-in-oil emulsion explosive, such as an alkali metal stearate, ammonium stearate, calcium stearate, polyoxyethylene ether salt, sorbitan fatty acid ester, sorbitol fatty acid ester These are used as one kind or a mixture of two or more kinds. The emulsifier is contained in the explosive in the range of 0.1 to 10% by weight, preferably 0.5 to 5% by weight.

粒状爆薬に含有される油類の具体例としては、軽油、灯油、ミネラルオイル、潤滑油、重油等の石油系油類、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス類、その他疎水性の植物油、植物性ワックス、動物油、動物性ワックス類が挙げられ、これらは単独または2種類以上混合して用いることができる。油類は爆薬中に0.1〜20重量%好ましくは1〜10重量%の範囲で含有される。 Specific examples of oils contained in granular explosives include petroleum oils such as light oil, kerosene, mineral oil, lubricating oil and heavy oil, petroleum waxes such as paraffin wax and microcrystalline wax, and other hydrophobic vegetable oils. , Vegetable waxes, animal oils, and animal waxes, which can be used alone or in combination of two or more. Oils are contained in the explosive in the range of 0.1 to 20% by weight, preferably 1 to 10% by weight.

本発明における粒状爆薬は、前記油類の一部または全部を油溶性または油類と相溶性を示す樹脂に置換して使用する。用いる樹脂の特性としては、油中水滴型エマルション爆薬を射出成型でき、油中水滴型エマルションの安定性を保つためにエマルション基材と反応しないような樹脂であれば良い。常温で液体または低融点の熱硬化性樹脂や常温では固体で加熱すると流動性を示す熱可塑性樹脂や合成ゴムなどが好ましく、具体例としてはフェノール樹脂、石油樹脂、ポリエチレン、エチレン酢酸ビニル共重合体、ポリブタジエン、スチレンブタジエンゴム等が挙げられる。また、爆薬の製造においては溶融させた樹脂を用いるため、JIS K7210に記された「熱可塑性プラスチックの流れ試験法」に基づき測定されたメルトフローレートが10g/10min.以上、好ましくは15g/10min.以上であるものを使用することが好ましい。これらの樹脂は、酸化剤、油類、乳化剤からなる混合物(油中水滴型エマルション基材)中に含まれる油類の一部として混合して用いることもできるし、油中水滴型エマルション爆薬に添加物として混合することもできる。 The granular explosive in the present invention is used by replacing part or all of the oils with a resin that is oil-soluble or compatible with oils. The resin used may be a resin that can be injection-molded with a water-in-oil emulsion explosive and does not react with the emulsion base material in order to maintain the stability of the water-in-oil emulsion. Preferred are thermosetting resins that are liquid or low melting at room temperature, thermoplastic resins that are fluid when heated at room temperature, and synthetic rubbers. Specific examples include phenol resins, petroleum resins, polyethylene, and ethylene vinyl acetate copolymers. , Polybutadiene, styrene butadiene rubber and the like. In addition, since a molten resin is used in the production of explosives, the melt flow rate measured based on the “thermoplastic flow test method” described in JIS K7210 is 10 g / 10 min. Or more, preferably 15 g / 10 min. It is preferable to use the above. These resins can be mixed and used as part of oils contained in a mixture (water-in-oil emulsion base material) composed of an oxidant, oil, and emulsifier, or as a water-in-oil emulsion explosive. It can also be mixed as an additive.

粒状爆薬には、適切な量の微小中空球体を含有せしめることによって雷管起爆性からブースター起爆にいたる広範囲な感度性能が得られる。微小中空球体としては、例えば、ガラスマイクロバルーン、シラスバルーン等の無機質中空球体、発泡スチレン、樹脂バルーン等の有機質中空球体の1種または2種以上の混合物が使用される。微小中空球体の量は、当該爆薬の用途に応じ広い範囲で変化し、また微小中空球体の比重にもよるので一概には言えないが、通常、当該爆薬の比重を1.4g/cc以下、好ましくは1.3g/cc以下になるような量が使用される。 The granular explosive can provide a wide range of sensitivity performance from detonator initiation to booster initiation by including an appropriate amount of hollow microspheres. As the fine hollow spheres, for example, inorganic hollow spheres such as glass microballoons and shirasu balloons, or organic hollow spheres such as foamed styrene and resin balloons, or a mixture of two or more kinds thereof are used. The amount of the fine hollow sphere varies in a wide range according to the use of the explosive, and it cannot be generally described because it depends on the specific gravity of the fine hollow sphere, but usually the specific gravity of the explosive is 1.4 g / cc or less, The amount is preferably 1.3 g / cc or less.

粒状爆薬には、アルミニウム粉、マグネシウム粉等の金属粉末、木粉、澱粉等の有機粉末の添加も可能である。
粒状爆薬の形状については、特に限定されるものではなく、球状、円柱状、円盤状、角柱状等いずれでもよく、成型に使用する成型機によって任意の形に成型される。例えば、一般に良く使われる押出し成型機によって柱状に成型する方法や、造粒機等で球状化する方法等が挙げられる。成型物の大きさとしては、爆薬の成型体一粒当たりの平均重量が0.03〜5gとなる大きさに成型されることが望ましい。爆薬の大きさは、その形状により一概には言えないが、円柱状の場合直径3〜10mm程度、長さ5〜15mm程度が好ましい。
It is possible to add metal powder such as aluminum powder and magnesium powder, and organic powder such as wood powder and starch to the granular explosive.
The shape of the granular explosive is not particularly limited, and may be any of a spherical shape, a cylindrical shape, a disk shape, a prismatic shape, and the like, and is formed into an arbitrary shape by a molding machine used for molding. For example, a method of forming a column with a commonly used extrusion molding machine, a method of spheroidizing with a granulator, or the like can be used. As the size of the molded product, it is desirable that the average weight per one explosive molded product is 0.03 to 5 g. The size of the explosive cannot be generally specified depending on its shape, but in the case of a cylindrical shape, a diameter of about 3 to 10 mm and a length of about 5 to 15 mm are preferable.

粒状爆薬には、成型後に必要に応じて付着防止剤をその表面に付着させこともできる。付着防止剤には平均粒径が500μm以下、好ましくは平均粒径が300μm以下の粉体が使用される。使用しうる粉体の具体例としては、炭酸カルシウム、炭酸マグネシウム等の金属塩類、酸化ケイ素、アルミナ等の金属酸化物類、タルク、カオリン、ベントナイト等の鉱物類、脂肪酸アミド、樹脂中空球体等の有機粉体、ガラス粉体等が挙げられる。使用される付着防止剤の量は、添加量が少なすぎると防止効果が十分でなく、多すぎると爆薬性能を低下させる恐れがある。用いる粉体の比重により変化するため一概には言えないが、粒状爆薬に対して、外割で通常0.03〜5重量%、程度付着させる。 In the granular explosive, an anti-adhesive agent can be attached to the surface as necessary after molding. As the adhesion preventing agent, a powder having an average particle size of 500 μm or less, preferably an average particle size of 300 μm or less is used. Specific examples of usable powders include metal salts such as calcium carbonate and magnesium carbonate, metal oxides such as silicon oxide and alumina, minerals such as talc, kaolin and bentonite, fatty acid amides, resin hollow spheres, etc. Organic powder, glass powder, etc. are mentioned. If the amount of the anti-adhesion agent used is too small, the prevention effect is not sufficient, and if it is too large, the explosive performance may be reduced. Since it varies depending on the specific gravity of the powder to be used, it cannot be generally stated, but it is usually attached to the granular explosive in an amount of about 0.03 to 5% by weight.

粒状爆薬は、例えば次のようにして製造される。前記の酸化剤及び、必要により、前記の補助鋭感剤を約85〜95℃で水に溶解させ酸化剤水溶液を得る。次いで約85〜95℃に加熱された油類と乳化剤の混合物に、十分撹拌しながら前述の酸化剤水溶液を徐々に添加する。できあがった油中水滴型エマルションに微小中空球体、必要に応じて他の添加剤、油溶性または油類との相溶性を示す樹脂を加えて、捏和機で混合し、油中水滴型エマルション爆薬を得る。この油中水滴型エマルション爆薬を押し出し成型機等で成型した後、必要に応じて付着防止剤として粉体を混合し粒状爆薬を得る。油溶性または油類との相溶性を示す樹脂は、油類を混合する工程や、微小中空球体で混合することができる。得られた粒状爆薬は、粒状を呈しているので、爆薬装填機を用いて容易に発破孔に装填することができる。また耐水性が高く、かつ比重が1よりも大きいので、縦穴の水孔に装填された場合でも、乾燥孔と同様に支障なく使用することができる。 A granular explosive is manufactured as follows, for example. The oxidizing agent and, if necessary, the auxiliary sharpening agent are dissolved in water at about 85 to 95 ° C. to obtain an aqueous oxidizing agent solution. Next, the aforementioned aqueous oxidizer solution is gradually added to a mixture of oils and emulsifier heated to about 85 to 95 ° C. with sufficient stirring. The resulting water-in-oil emulsion is added with hollow microspheres, if necessary, other additives, resin that is oil-soluble or compatible with oils, and mixed with a kneader to produce a water-in-oil emulsion explosive. Get. After this water-in-oil type emulsion explosive is molded by an extrusion molding machine or the like, powder is mixed as an anti-adhesion agent as necessary to obtain a granular explosive. Resins exhibiting oil solubility or compatibility with oils can be mixed in a step of mixing oils or in a micro hollow sphere. Since the obtained granular explosive has a granular shape, it can be easily loaded into the blast hole using an explosive loading machine. In addition, since it has high water resistance and a specific gravity greater than 1, it can be used without any trouble even when it is loaded into a vertical hole.

本発明では、粒状爆薬は、貯蔵時や輸送中など爆薬に自重が掛かる場合や爆薬装填機等の装薬タンク内でも静圧下では塊化しにくい特性を持ち、動圧下では容易に変形する可塑性を有しているものを使用する。例えば、爆薬上部10cmの位置から10gの重りを落下させた程度で容易に変形するものが好ましい。このように可塑性を有しているため、同じ粒状形態を呈しているANFO爆薬とは異なり、発破孔内で容易に装填比重を変化させることが可能である。 In the present invention, the granular explosive has a characteristic that it is difficult to agglomerate under static pressure even when it is subjected to its own weight during storage or transportation, or in a charge tank such as an explosive loading machine, and has a plasticity that easily deforms under dynamic pressure. Use what you have. For example, a material that is easily deformed to the extent that a 10 g weight is dropped from the position of 10 cm above the explosive is preferable. Because of this plasticity, unlike the ANFO explosive that exhibits the same granular form, it is possible to easily change the loading specific gravity within the blast hole.

本発明で使用する粒状爆薬は、粒状に成型され上記特性を有するものであるが、装填比重が小さい、例えば0.5〜0.75g/ccの場合は爆轟速度が2500〜3500m/s、装填比重が大きい、例えば0.75〜0.95g/ccの場合は爆轟速度が3500〜4500m/sと変化するものを使用するのが好ましい。 The granular explosive used in the present invention is formed into a granular shape and has the above-mentioned characteristics, but when the specific gravity is small, for example, 0.5 to 0.75 g / cc, the detonation speed is 2500 to 3500 m / s, When the loading specific gravity is large, for example, 0.75 to 0.95 g / cc, it is preferable to use one whose detonation speed changes from 3500 to 4500 m / s.

本発明の装填方法においては、爆薬装填比重が0.6〜1.10g/ccの範囲で調整可能である。なお、発破現場で所望する爆薬装填比重で装填するには、予め発破孔と同じサイズの鋼管に速度を変えて装薬し、装薬速度に対する装填比重をキャリブレーションしておけばよい。 In the loading method of the present invention, the explosive loading specific gravity can be adjusted in the range of 0.6 to 1.10 g / cc. In addition, in order to load with the explosive loading specific gravity desired at the blasting site, it is only necessary to charge the steel pipe having the same size as the blasting hole at a different speed and calibrate the loading specific gravity with respect to the charging speed.

本発明を実施例を挙げて更に詳しく説明するが、本発明がこれらの実施例に限定されるものではない。 The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実施例1
硝酸アンモニウム74.3重量部、硝酸ナトリウム4.8重量部、水10.5重量部からなる90℃の酸化剤水溶液を、マイクロクリスタリンワックス1.9重量部、エチレン酢酸ビニルコポリマー0.8重量部、ソルビタンモノオレエート2.9重量部の混合物に加え、十分撹拌混合して油中水滴型エマルションを得た。これに微小中空粒子としてガラスマイクロバルーン3.8重量部を加えて撹拌混合し、油中水滴型エマルション爆薬を得た。この油中水滴型エマルション爆薬をダイスが5mm径の押出し成型機で成型し、8mmの長さになるようにナイフで切断した後、タルク1.0重量部を加えて混合し、粒状爆薬を得た。この粒状爆薬を、圧力容器と装薬ホース(内径32mm、長さ30m)を備えたANFO装填機(KY−1;(株)カヤテック製)に圧力容器とは別に圧縮空気を送るための空気圧送装置を取り付けた装填機を使用して圧力容器内の圧力を0.5MPa、圧力容器とは別に送る圧縮空気の圧力を0.3MPaに設定し、内径48mm、長さ1m、肉厚5mmの鋼管中に装薬し、その装薬状況の確認及びドートリッシュ法にて爆轟速度の測定を実施した。
Example 1
A 90 ° C. aqueous oxidizing agent solution comprising 74.3 parts by weight of ammonium nitrate, 4.8 parts by weight of sodium nitrate, and 10.5 parts by weight of water, 1.9 parts by weight of microcrystalline wax, 0.8 parts by weight of ethylene vinyl acetate copolymer, In addition to 2.9 parts by weight of sorbitan monooleate, the mixture was sufficiently stirred and mixed to obtain a water-in-oil emulsion. To this, 3.8 parts by weight of glass microballoon as fine hollow particles was added and mixed by stirring to obtain a water-in-oil emulsion explosive. This water-in-oil emulsion explosive is molded by an extrusion molding machine with a 5 mm diameter die, cut with a knife so that the length is 8 mm, and then mixed with 1.0 part by weight of talc to obtain a granular explosive. It was. This granular explosive is supplied to an ANFO loading machine (KY-1; manufactured by Kayatech Co., Ltd.) equipped with a pressure vessel and a charge hose (inner diameter: 32 mm, length: 30 m) for supplying compressed air separately from the pressure vessel. A steel pipe with an inner diameter of 48 mm, a length of 1 m, and a wall thickness of 5 mm, using a loading machine equipped with the apparatus, setting the pressure in the pressure vessel to 0.5 MPa, and the pressure of compressed air sent separately from the pressure vessel to 0.3 MPa. The charge was confirmed and the detonation rate was measured by the Dortrish method.

実施例2
実施例1と同じ粒状爆薬を使用して、実施例1と同様な空気装填機(圧力容器内の圧力を0.3MPa、圧力容器とは別に送る圧縮空気の圧力を0.3MPa、装薬ホースの内径25mm、長さ30m)を用いて、内径48mm、長さ1m、肉厚5mmの鋼管中に装薬し、その装薬状況の確認及びドートリッシュ法にて爆轟速度の測定を実施した。
Example 2
Using the same granular explosive as in Example 1, the same air loading machine as in Example 1 (the pressure inside the pressure vessel is 0.3 MPa, the pressure of the compressed air sent separately from the pressure vessel is 0.3 MPa, the charging hose Was loaded into a steel pipe with an inner diameter of 48 mm, a length of 1 m, and a wall thickness of 5 mm, and the state of the charging was confirmed and the detonation speed was measured by the Dortrish method. .

実施例3
実施例1と同じ粒状爆薬を使用して、実施例1と同様な空気装填機(圧力容器内の圧力を0.2MPa、圧力容器とは別に送る圧縮空気の圧力を0.2MPa、装薬ホースの内径25mm、長さ30m)を用いて、内径48mm、長さ1m、肉厚5mmの鋼管中に装薬し、その装薬状況の確認及びドートリッシュ法にて爆轟速度の測定を実施した。
Example 3
Using the same granular explosive as in Example 1, the same air loading machine as in Example 1 (the pressure in the pressure vessel is 0.2 MPa, the pressure of the compressed air sent separately from the pressure vessel is 0.2 MPa, the charging hose Was loaded into a steel pipe with an inner diameter of 48 mm, a length of 1 m, and a wall thickness of 5 mm, and the state of the charging was confirmed and the detonation speed was measured by the Dortrish method. .

実施例4
実施例1と同じ粒状爆薬を実施例1同様の空気装填機の圧力容器に入れ、容器内に0.7MPaの荷重を掛けた後、圧力容器内の圧力を0.3MPa、圧力容器とは別に送る圧縮空気の圧力を0.3MPaに設定し、内径32mm、長さ30mの装薬ホースを用いて、通常の装薬ができるか確認した。
Example 4
The same granular explosive as in Example 1 is put in the pressure vessel of the same air loading machine as in Example 1, and after applying a load of 0.7 MPa in the vessel, the pressure in the pressure vessel is 0.3 MPa, separately from the pressure vessel The pressure of the compressed air to be sent was set to 0.3 MPa, and it was confirmed whether normal charging could be performed using a charging hose having an inner diameter of 32 mm and a length of 30 m.

表1に実施例1〜4の装填比重、装薬速度、爆轟速度について示す。 Table 1 shows the loading specific gravity, charge speed, and detonation speed of Examples 1 to 4.

Figure 2008111656
Figure 2008111656

Claims (3)

酸化剤、水、乳化剤、微小中空球体及び油類(ただし、全部または一部が樹脂に置換されている)を含有し、粒状に成型された油中水滴型エマルション爆薬を、爆薬装填機を用いて発破孔内に装填する際に、爆薬の装薬速度を調整することで発破孔内の爆薬装填比重を変化させることを特徴とする爆薬装填方法。 Using an explosive loading machine, a water-in-oil emulsion explosive that contains an oxidizing agent, water, an emulsifier, micro hollow spheres, and oils (however, all or part of them are replaced with resin) and is molded into granules An explosive loading method characterized by changing the specific gravity of the explosive loading in the blast hole by adjusting the charging speed of the explosive when loading into the blast hole. 爆薬装填機が、圧力容器、装薬ホース、空気圧送装置及び圧力容器からの圧縮空気とは別に、装薬ホースに圧縮空気を送るための装置から構成されている空気装填機であって、圧力容器内の圧力を0.1〜0.5MPaに、また、圧力容器とは別に装薬ホース内に送られる圧縮空気を0.05〜0.7MPaにそれぞれ調整し、爆薬を装填する請求項1記載の装填方法。 The explosive loading machine is an air loading machine composed of a device for sending compressed air to the charge hose separately from the pressure vessel, charge hose, pneumatic feeder and compressed air from the pressure vessel, The pressure in the container is adjusted to 0.1 to 0.5 MPa, and the compressed air sent into the charge hose separately from the pressure container is adjusted to 0.05 to 0.7 MPa, respectively, and the explosive is loaded. The loading method described. 爆薬の成型体一粒当たりの平均重量が0.03〜5.0gである請求項1または2記載の装填方法。 The loading method according to claim 1 or 2, wherein an average weight per one explosive molded body is 0.03 to 5.0 g.
JP2007298897A 2007-11-19 2007-11-19 Explosive loading method Pending JP2008111656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007298897A JP2008111656A (en) 2007-11-19 2007-11-19 Explosive loading method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007298897A JP2008111656A (en) 2007-11-19 2007-11-19 Explosive loading method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003142664A Division JP2004347182A (en) 2003-05-20 2003-05-20 Explosive loading method

Publications (1)

Publication Number Publication Date
JP2008111656A true JP2008111656A (en) 2008-05-15

Family

ID=39444250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007298897A Pending JP2008111656A (en) 2007-11-19 2007-11-19 Explosive loading method

Country Status (1)

Country Link
JP (1) JP2008111656A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109271708A (en) * 2018-09-19 2019-01-25 西安近代化学研究所 A kind of recombinant type explosive loading head construction optimum design method
CN111780636A (en) * 2019-04-04 2020-10-16 西南科技大学 Device and method for high-temperature blasting of surface mine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3161551A (en) * 1961-04-07 1964-12-15 Commercial Solvents Corp Ammonium nitrate-containing emulsion sensitizers for blasting agents
JPH07223888A (en) * 1993-12-16 1995-08-22 Nitro Nobel Ab Granular explosive, its preparation and use
JPH11278975A (en) * 1998-04-01 1999-10-12 Nof Corp Explosive and its production
JP2001026492A (en) * 1999-07-13 2001-01-30 Asahi Chem Ind Co Ltd Granular explosive
JP2001172096A (en) * 1999-12-17 2001-06-26 Asahi Kasei Corp Solid emulsion explosive composition and method for producing the same
JP2001206797A (en) * 2000-01-19 2001-07-31 Nippon Kayaku Co Ltd Explosive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3161551A (en) * 1961-04-07 1964-12-15 Commercial Solvents Corp Ammonium nitrate-containing emulsion sensitizers for blasting agents
JPH07223888A (en) * 1993-12-16 1995-08-22 Nitro Nobel Ab Granular explosive, its preparation and use
JPH11278975A (en) * 1998-04-01 1999-10-12 Nof Corp Explosive and its production
JP2001026492A (en) * 1999-07-13 2001-01-30 Asahi Chem Ind Co Ltd Granular explosive
JP2001172096A (en) * 1999-12-17 2001-06-26 Asahi Kasei Corp Solid emulsion explosive composition and method for producing the same
JP2001206797A (en) * 2000-01-19 2001-07-31 Nippon Kayaku Co Ltd Explosive

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109271708A (en) * 2018-09-19 2019-01-25 西安近代化学研究所 A kind of recombinant type explosive loading head construction optimum design method
CN109271708B (en) * 2018-09-19 2022-10-25 西安近代化学研究所 Optimization design method for structure of heavy explosive loading head
CN111780636A (en) * 2019-04-04 2020-10-16 西南科技大学 Device and method for high-temperature blasting of surface mine

Similar Documents

Publication Publication Date Title
AU2015337861B2 (en) Explosive composition and method of delivery
TWI289547B (en) Explosive agent
JP2008111656A (en) Explosive loading method
EP3256435B1 (en) Water-based explosive suspension
JP4111436B2 (en) explosive
JP2005145730A (en) Explosive
JP2004347182A (en) Explosive loading method
JP2005030710A (en) Explosive loader and explosive loading method
EP0598115B1 (en) W/o emulsion explosive composition
JP4782599B2 (en) Explosive emulsifier and explosive using the same
JP2005121305A (en) Explosive loader and explosive loading method
JP2001206797A (en) Explosive
JP2004238235A (en) Bursting charge
JP2004238255A (en) Explosive
JP2005147434A (en) Explosive loading method
JP2007284291A (en) Explosive
JP2019031413A (en) Water-in-oil emulsion explosive
JP4570218B2 (en) Water-in-oil emulsion explosive
OA18788A (en) Water-Based Explosive Suspension.
JP2004333080A (en) Explosive loading method and loading machine
JP2001172095A (en) Granular explosive
JP2001221600A (en) Explosive charging method
JP2019031411A (en) Water-in-oil emulsion explosive
JP2003146789A (en) Slurry explosive composition
JPH06144983A (en) Explosive composition and production thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20080619

Free format text: JAPANESE INTERMEDIATE CODE: A712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Effective date: 20100803

Free format text: JAPANESE INTERMEDIATE CODE: A02