JPH06144983A - Explosive composition and production thereof - Google Patents

Explosive composition and production thereof

Info

Publication number
JPH06144983A
JPH06144983A JP5167303A JP16730393A JPH06144983A JP H06144983 A JPH06144983 A JP H06144983A JP 5167303 A JP5167303 A JP 5167303A JP 16730393 A JP16730393 A JP 16730393A JP H06144983 A JPH06144983 A JP H06144983A
Authority
JP
Japan
Prior art keywords
explosive
organic
composition
water
detonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5167303A
Other languages
Japanese (ja)
Other versions
JP3408837B2 (en
Inventor
Takeisa Arita
武功 有田
Shunichi Sato
俊一 佐藤
Taro Kodama
多朗 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP4178940A external-priority patent/JPH05208885A/en
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP16730393A priority Critical patent/JP3408837B2/en
Publication of JPH06144983A publication Critical patent/JPH06144983A/en
Application granted granted Critical
Publication of JP3408837B2 publication Critical patent/JP3408837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/002Sensitisers or density reducing agents, foam stabilisers, crystal habit modifiers
    • C06B23/003Porous or hollow inert particles
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B47/00Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
    • C06B47/14Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase comprising a solid component and an aqueous phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To enable to maintain stable explosion performances in the low density region and good explosive properties over a long term by making a phase consisting of an oxidizing agent and water adsorbed and retained on the surfaces of organic microballoons and/or in the spaces between the microballoons. CONSTITUTION:The explosive composition contg. no entrained bubbles can be produced by blending 2 to 15wt.% expandable organic particulates having <=1000mum particle diameter, 3 to 20wt.% water and the oxidizing agent. This composition is heated and expanded to make the phase consisting of the oxidizing agent and water adsorbed and retained on the surfaces of the organic microballoons having 0.1 to 5mum film thickness and/or in the spaces between the microballoons.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は産業用爆薬に関するもの
であり、より詳しくは土木建設、採石、採炭、採鉱など
の鉱工業分野;排水、灌漑、開墾、抜根、伐採など農林
分野などにおける発破、破砕、掘削などに利用される爆
薬組成物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to industrial explosives, and more particularly, to the field of mining and industry such as civil engineering, quarrying, mining, mining, etc .; blasting in the fields of agriculture and forestry such as drainage, irrigation, clearing, rooting and felling. It is an explosive composition used for crushing and excavation.

【0002】[0002]

【従来の技術】従来の主要な含爆薬にはスラリー爆薬、
エマルジョン爆薬がある。これらはいずれも酸化剤水溶
液、可燃物、鋭感剤からなる爆薬成分と気泡とを構造付
与剤の存在下に高濃度に安定に構造を保持するものであ
り、主として雷管により起爆される。スラリー爆薬にお
いては爆薬構造中に、気泡はフリー状態の巻き込み気泡
や化学泡を鋭感剤的機能を確保するために用いることが
多く、構造付与剤としてはグアガムなどを用いて水性ゲ
ルを構成している。エマルジョン爆薬においては、酸化
剤水溶液と可燃剤としての油類が構造付与剤としての界
面活性剤の存在下にW/O型エマルジョン構造を形成
し、気泡は巻き込み気泡の他主としてガラスや樹脂性マ
イクロバルーンの形をとっている。
2. Description of the Related Art Slurry explosives are used as the conventional major explosives.
There are emulsion explosives. All of them hold the structure of an explosive component composed of an aqueous solution of an oxidant, a combustible substance, a sensitizer and bubbles in a stable manner at a high concentration in the presence of a structure-imparting agent, and are mainly detonated by a detonator. In slurry explosives, air bubbles are often used in the explosive structure to ensure free function of entrained air bubbles and chemical bubbles, and guar gum is used as a structure-imparting agent to form an aqueous gel. ing. In emulsion explosives, an aqueous oxidant solution and oils as a combustible agent form a W / O type emulsion structure in the presence of a surfactant as a structure-imparting agent, and air bubbles are trapped and mainly glass or resin micro It has the shape of a balloon.

【0003】更にこれらの含水爆薬の起爆性の改良や密
度調整などのために樹脂マイクロバルーンを用いる例
が、スラリー爆薬については米国特許第3,773,5
73号公報、特開昭54−92614号公報に、エマル
ジョン爆薬については特開昭56−100192号公
報、特開昭59−78994号公報に記載されている。
米国特許第3,773,573号公報にはスラリー爆薬
を含む広範囲の爆薬に樹脂マイクロバルーンを適用する
にあたって、爆薬製造工程中で未発泡の樹脂微小粒子の
存在下に該樹脂の発泡温度にほぼ等しい温度に加熱する
方法が記載されているが、スラリー爆薬の製造工程では
通常は加熱を必要としないため、製造工程中における樹
脂発泡は実用性がなかった。さらに製造工程中での加熱
発泡が例え必要であっても、特開昭54−92614号
公報における記載からも理解されるように、安全性の観
点から鋭感剤を含まない段階での加熱発泡を終了した
後、鋭感剤成分と混合する2段階方式を採用せざるを得
なかった。
Further, there is an example in which resin microballoons are used for improving the detonation property of these water-containing explosives and adjusting the density. For slurry explosives, US Pat. No. 3,773,5
73, JP-A-54-92614, and emulsion explosives in JP-A-56-100192 and JP-A-59-78994.
U.S. Pat. No. 3,773,573 discloses that when resin microballoons are applied to a wide range of explosives including slurry explosives, the foaming temperature of the resin is almost constant in the presence of unexpanded resin fine particles during the explosive manufacturing process. Although a method of heating to the same temperature is described, heating is not usually required in the manufacturing process of the slurry explosive, and thus resin foaming during the manufacturing process is not practical. Further, even if heat foaming in the production process is necessary, as understood from the description in JP-A-54-92614, heat foaming at a stage where a sensitizer is not included from the viewpoint of safety. After the above, the two-step method of mixing with the sharpening agent component had to be adopted.

【0004】これらの含水爆薬はダイナマイトにおける
ニトログリセリンのような高度に鋭感性の成分を含まず
して起爆性を維持するために爆薬成分とゲル構造やエマ
ルジョン構造との微妙な調整が必要であり、極めて高度
な製造技術が要求される。即ちこれらの構造の形成前後
を通してこれと接触混在する爆薬成分の品質挙動に左右
されるために、原材料の品質管理や製造条件の管理に多
大の時間と労力を費やさざるを得なかった。その結果し
ばしば実用的な貯蔵に耐えない劣悪な品質の爆薬が製造
されたり、長期の経時において爆発性能が著しく低下す
るなどの問題が発生することがあった。特に爆薬の密度
調整に用いられる化学泡や泡化剤の量が多くなると、目
的とする爆薬の初期性能を得ることが困難であるばかり
でなく、経時的にも爆発性能が低下するという問題が一
層顕著に表れた。
These water-containing explosives do not contain highly sensitive components such as nitroglycerin in dynamite and require delicate adjustment between the explosive components and the gel structure or emulsion structure in order to maintain the detonation property. , Extremely advanced manufacturing technology is required. That is, before and after the formation of these structures, the quality behavior of the explosive component that comes into contact with and mixed with the structure is influenced, so that much time and labor must be spent on the quality control of raw materials and the control of manufacturing conditions. As a result, there are problems in that explosives of inferior quality that cannot withstand practical storage are often produced, or the explosive performance is significantly deteriorated over a long period of time. In particular, when the amount of chemical foam or foaming agent used for adjusting the density of explosive increases, it is not only difficult to obtain the desired initial performance of the explosive, but also the explosive performance deteriorates over time. It appeared more prominently.

【0005】更にスラリー爆薬は特有のゲル弾性を有
し、可塑性に欠け、爆薬薬包とした場合薬包自身が柔ら
かく、腰がないために取り扱いにくく、また爆破孔への
挿入もしにくいので、爆破作業能率が低下したり、爆薬
の成形加工が困難であるために薬包を除いた裸薬の状態
で使用することが難しいなどの問題を惹起することがあ
った。またエマルジョン爆薬は急激に加圧されるとエマ
ルジョン構造が破壊されて爆発機能を喪失すること(死
圧現象と呼ばれる)があり、通常の爆破作業である段発
発破において、しばしば不発残留薬が発生し、その後の
処理に苦慮するという問題を惹起することがあった。
Further, the slurry explosive has a peculiar gel elasticity, lacks plasticity, and when it is made into an explosive charge package, it is difficult to handle because it is not stiff, and it is difficult to insert it into the blast hole. This may cause problems such as reduced work efficiency and difficulty in molding explosives, making it difficult to use them in the state of naked drugs excluding the drug package. In addition, emulsion explosives may lose their explosive function by destroying the emulsion structure when they are rapidly pressurized (called dead pressure phenomenon), and non-residual residual drugs often occur during normal blasting, which is a normal blasting operation. However, it sometimes causes a problem that the subsequent processing is difficult.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は従来の
含水爆薬におけるゲル構造やエマルジョン構造を利用す
ることなく、極めて安定した性能と良好な薬性を長期に
わたって保持しうるもので、基本的には酸化剤/水/有
機微小中空球体からなる爆薬組成物を提供することであ
る。また他の目的は取扱いが安全で、発破後の不発残留
が少なく、かつ発生ガスの有害度を低減し得る爆薬組成
物を提供することである。更に他の目的は従来の爆薬で
は困難であった低密度領域においても安定した爆発性能
を有する、低爆速の爆薬を提供することである。
The object of the present invention is to maintain extremely stable performance and good drug properties for a long period of time without utilizing the gel structure or emulsion structure of conventional water-containing explosives. The purpose is to provide an explosive composition comprising an oxidizer / water / organic micro hollow spheres. Another object of the present invention is to provide an explosive composition which is safe to handle, has less non-residual residue after blasting, and can reduce the harmfulness of generated gas. Still another object is to provide a low explosive charge having a stable explosive performance even in a low density region which has been difficult with conventional explosives.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記の問題
点を解決すべく鋭意研究を行った結果、本発明を完成す
るに至った。即ち、主成分として酸化剤及び水よりなる
実質的に粘稠成分を含まない液相成分を、可燃剤である
有機微小中空体表面及び/または該中空体間に吸着、保
持させてなることを特徴とする新規な爆薬組成物に関す
るものである。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, a liquid phase component composed of an oxidizing agent and water as a main component and substantially not containing a viscous component is adsorbed and retained on the surface of the organic microhollow body which is a combustible agent and / or between the hollow bodies. It relates to a novel explosive composition characterized.

【0008】本発明の爆薬組成物の微細構造は例えば顕
微鏡写真によって観察することができる。その代表的な
例は図1に示すように、有機微小中空体の周囲に高濃度
の酸化剤水溶液が付着した構造体が集合した形になって
いる。更に、これを概念的に図で説明すると、本発明の
爆薬組成物は図2に示すように、有機微小中空体が爆薬
組成物の構造の中心をなしているのに対し、スラリー爆
薬では図3に示すようにゲル化された酸化剤や鋭感剤の
相の中に巻込み気泡や中空体が分散している。また、エ
マルジョン爆薬では図4に示すようにエマルジョン化さ
れた酸化剤水溶液相の中にガラスマイクロバルーン等の
中空体が分散している。従って本発明の爆薬組成物と従
来のスラリー爆薬及びエマルジョン爆薬を比較すれば気
泡の形態、酸化剤水溶液の形態及び組成物の構造などが
全く異なることが明らかである。更に詳しくは、本発明
の組成物は従来のスラリー爆薬におけるゲル化剤を必要
とせず、気泡も主として可燃剤成分である有機微小中空
体に安定に取り込まれているのでその構成が全く異な
る。またエマルジョン爆薬に較べて、可燃剤としての油
相、エマルジョン形成のための界面活性剤、気泡保持の
ためのガラスマイクロバルーンなどは必要でなくその点
においても全く異なるものである。
The microstructure of the explosive composition of the present invention can be observed, for example, by micrographs. As shown in FIG. 1, a typical example thereof has a structure in which a structure in which a high-concentration oxidant aqueous solution is attached is gathered around an organic micro hollow body. Further conceptually explaining this with a diagram, in the explosive composition of the present invention, as shown in FIG. 2, the organic microhollow body forms the center of the structure of the explosive composition, while in the case of the slurry explosive, As shown in FIG. 3, trapped air bubbles and hollow bodies are dispersed in the gelled oxidizer and sharpening agent phases. Further, in the emulsion explosive, hollow bodies such as glass microballoons are dispersed in the emulsified oxidant aqueous solution phase as shown in FIG. Therefore, when the explosive composition of the present invention is compared with the conventional slurry explosive and emulsion explosive, it is apparent that the bubble morphology, the oxidant aqueous solution morphology, the composition structure and the like are completely different. More specifically, the composition of the present invention does not require a gelling agent in a conventional slurry explosive, and bubbles are mainly incorporated into an organic micro hollow body which is a combustible agent component, so that the composition is completely different. Further, compared with the emulsion explosive, an oil phase as a combustible agent, a surfactant for forming an emulsion, a glass microballoon for retaining air bubbles, etc. are not necessary, and this point is also completely different.

【0009】従来のスラリー爆薬に樹脂マイクロバルー
ンを採用することは前述したように公知であるが、該発
泡体の量は爆薬組成物の安定性や爆発性能の観点から実
用的には高々2%程度であった。本発明において、驚く
べきことには、実質的に酸化剤水溶液と有機微小中空体
からなる組成物において該中空体の割合を高めて行った
場合にゲル化剤やワックス・界面活性剤がなくても安定
な起爆性能を有する組成物が得られることを見いだし
た。更に該中空体が可燃剤の役割も合わせて有するため
に、石炭粉末、アルミニウム粉末のような可燃剤や、有
機硝酸塩及び/又は無機硝酸塩を主体とする鋭感剤等を
必ずしも必要としないで、優れた性能の爆薬を提供する
ことができるようになった。
Although it is known that resin microballoons are used in conventional slurry explosives, the amount of the foam is practically at most 2% from the viewpoint of stability and explosive performance of explosive compositions. It was about. In the present invention, surprisingly, when a composition comprising an aqueous solution of an oxidizing agent and an organic microhollow body is used with a high proportion of the hollow body, a gelling agent, a wax and a surfactant are not present. Also found that a composition having stable detonation performance was obtained. Further, since the hollow body also has a role of a combustible agent, coal powder, a combustible agent such as aluminum powder, or an organic nitrate and / or a sharpening agent mainly composed of an inorganic nitrate is not necessarily required, It is now possible to provide explosives with excellent performance.

【0010】本発明の爆薬組成物は驚くべきことに、主
として酸化剤成分を構成する液相の分離や目視できる酸
化剤の結晶析出も殆どなく、安定な構造を保持すること
ができ、しかも雷管起爆できるものからブースターによ
って起爆できるものまで広範囲の爆薬組成物をカバーす
ることができる。特に有機微小中空体間の距離が計算上
約20μm以下になると一層安定した組成物が得られる
という傾向が認められる。
Surprisingly, the explosive composition of the present invention is capable of maintaining a stable structure with almost no separation of the liquid phase which mainly constitutes the oxidizer component or visible crystallization of the oxidizer, and moreover, the detonator. It can cover a wide range of explosive compositions, from those that can be detonated to those that can be detonated by boosters. In particular, there is a tendency that a more stable composition can be obtained when the distance between the organic micro hollow bodies is calculated to be about 20 μm or less.

【0011】本発明に用いる酸化剤は火薬類の技術分野
で公知のものを用いることができ、例えば硝酸、塩素
酸、過塩素酸などの無機酸のアンモニウム塩、アルカリ
金属塩、アルカリ土類金属塩などであり、それらの単独
または組み合わせを選択することができる。中でも硝酸
アンモニウム(硝安)は、水に対する溶解度が高くしか
も容易に入手できることから優れた酸化剤である。本発
明では酸化剤の量は目的とする爆薬の設計仕様に合わせ
て決められ、通常、全組成に対して50〜90重量%程
度が採用される。この割合が小さ過ぎると可燃剤との酸
素バランスがマイナス側にくずれて発破後ガスの有害性
が増加するので好ましくない。
As the oxidizing agent used in the present invention, those known in the technical field of explosives can be used, and examples thereof include ammonium salts of inorganic acids such as nitric acid, chloric acid and perchloric acid, alkali metal salts and alkaline earth metals. Salts and the like can be selected alone or in combination. Among them, ammonium nitrate (ammonium nitrate) is an excellent oxidizing agent because it has high solubility in water and can be easily obtained. In the present invention, the amount of the oxidizer is determined according to the design specifications of the target explosive, and usually about 50 to 90% by weight is adopted with respect to the total composition. If this ratio is too small, the oxygen balance with the combustible agent will fall to the negative side and the harmfulness of the gas after blasting will increase, which is not preferable.

【0012】本発明に用いる水の量は通常、全組成に対
して3〜20重量%程度である。この割合が小さ過ぎる
と、爆薬組成物の固形成分が増大し、安定な爆発性能が
発揮されない恐れがあり、一方大き過ぎると起爆性が低
下するので好ましくない。
The amount of water used in the present invention is usually about 3 to 20% by weight based on the total composition. If this ratio is too small, the solid content of the explosive composition increases, and stable explosive performance may not be exhibited. On the other hand, if it is too large, the detonation property deteriorates, which is not preferable.

【0013】本発明に用いる有機微小中空体は有機高分
子化合物をベースとするものが好ましく、有機高分子化
合物としては例えば、フェノール樹脂、エポキシ樹脂、
尿素樹脂、不飽和ポリエステル樹脂、ポリイミド、マレ
イン酸樹脂、メラミン樹脂、セルローズ類などの他、塩
化ビニル、塩化ビニリデン、アクリロニトリル、アクリ
ル酸、アクリル酸塩類、アクリル酸エステル類、メタク
リル酸、メタクリル酸塩類、メタクリル酸エステル類、
スチレン、エチレン、プロピレン、ブタジエン、酢酸ビ
ニルなどの単独重合物または2種以上からなる共重合
物、ポリカーボネート、ポリスルフォン、ポリアセター
ル、ポリアミド類、ポリエチレンオキサイド、ポリフェ
ニレンオキサイドなどがあり、それぞれ単独または2種
以上を混合して使用することができる。これら有機高分
子化合物の中で熱可塑性を有するもの、例えば塩化ビニ
リデン−アクリロニトリル共重合体、塩化ビニリデン−
アクリロニトリル−メタアクリル酸化エステル共重合
体、アクリロニトリル−アクリル酸エステル共重合体な
どは本発明の実施に当たってより好ましいものである。
特に、塩化ビニリデン−アクリロニトリル共重合体に低
沸点の炭化水素を内包した未発泡微粒子は加熱により容
易に微小中空体になるので、爆薬成分と混合した後に加
熱発泡して用いることもできる。
The organic micro-hollow body used in the present invention is preferably based on an organic polymer compound, and examples of the organic polymer compound include phenol resin, epoxy resin,
Other than urea resin, unsaturated polyester resin, polyimide, maleic acid resin, melamine resin, celluloses, vinyl chloride, vinylidene chloride, acrylonitrile, acrylic acid, acrylates, acrylates, methacrylic acid, methacrylates, Methacrylic acid esters,
There are homopolymers of styrene, ethylene, propylene, butadiene, vinyl acetate, etc. or copolymers of two or more kinds, polycarbonate, polysulfone, polyacetal, polyamides, polyethylene oxide, polyphenylene oxide, etc. Can be mixed and used. Among these organic polymer compounds, those having thermoplasticity, such as vinylidene chloride-acrylonitrile copolymer, vinylidene chloride-
Acrylonitrile-methacrylic acid ester copolymers, acrylonitrile-acrylic acid ester copolymers and the like are more preferable in the practice of the present invention.
In particular, unfoamed fine particles in which a vinylidene chloride-acrylonitrile copolymer contains a low boiling point hydrocarbon easily become a fine hollow body upon heating, and therefore, it can be used after being heated and foamed after being mixed with an explosive component.

【0014】次に本発明の有機微小中空体の形状は、内
部が空洞でガスや空気を内包した球状のものや、中空体
の内部に独立または連続した空間を持つもの等特に限定
はされないが、爆薬組成物が起爆を開始するためのホッ
トスポットを効率よく形成するには、中空球体がより好
ましい。有機小中空体の中に保持される気体は空気の
他、低沸点の炭化水素その他の加熱性ガス、及びそれら
の混合物であってもよい。有機微小中空体の好ましい粒
径の例はおよそ1,000μm以下程度であり、それを
超えると起爆を開始するためのホットスポットの数が減
少して安定した爆発性を確保することが困難となる。よ
り好ましくは20〜200μmの有機微小中空体が爆轟
速度を低下させることなく、安定した爆発性能を得るこ
とができる。有機微小中空体を構成する膜の厚みは、爆
発組成物を構成するための空間を与える強度があれば良
く、通常0.1〜5μmのものが用いられる。また、有
機微小中空体を形成する有機高分子化合物が熱可塑性を
有するものは、爆薬組成物中で加熱発泡可能なものが要
求されるため、発泡した状態の膜の厚みが約0.1〜2
μmのものが用いられる。爆薬組成物中の有機微小中空
体は、通常乾燥状態で測定する嵩密度にして約0.01
〜0.3程度である。有機微小中空体の量は全組成に対
して通常おおむね2〜15重量%程度が用いられ、有機
微小中空体量の量によっても爆薬組成物の密度が調整さ
れる。一般的に有機微小中空体の割合が少な過ぎると起
爆性が低下するばかりでなく、長期にわたって安定した
爆発性能を維持することが困難になり、また一方、割合
が大き過ぎると爆発の威力が低下し発破の信頼性が得に
くい傾向がある。
Next, the shape of the organic micro hollow body of the present invention is not particularly limited, such as a spherical shape having a hollow inside and containing gas or air, or a shape having an independent or continuous space inside the hollow body. Hollow spheres are more preferable for efficiently forming hot spots for the explosive composition to initiate detonation. The gas retained in the small organic hollow body may be air, low-boiling point hydrocarbons or other heating gas, or a mixture thereof. An example of a preferable particle size of the organic micro hollow body is about 1,000 μm or less, and if it exceeds that, it becomes difficult to secure stable explosiveness because the number of hot spots for starting detonation decreases. . More preferably, the organic hollow microparticles of 20 to 200 μm can obtain stable explosion performance without reducing the detonation speed. The thickness of the film forming the organic micro hollow body is sufficient as long as it has a strength to provide a space for forming the explosive composition, and a film having a thickness of 0.1 to 5 μm is usually used. In addition, since the organic polymer compound forming the organic micro hollow body having thermoplasticity is required to be capable of being heated and foamed in the explosive composition, the thickness of the film in the foamed state is about 0.1 to 0.1. Two
The one with μm is used. The organic hollow microspheres in the explosive composition usually have a bulk density of about 0.01 when measured in a dry state.
It is about 0.3. The amount of the organic micro hollow body is usually about 2 to 15% by weight based on the whole composition, and the density of the explosive composition is also adjusted by the amount of the organic micro hollow body. Generally, if the proportion of the organic micro hollow bodies is too small, not only the detonation property deteriorates, but also it becomes difficult to maintain stable explosive performance for a long period of time, while if the proportion is too large, the power of the explosion decreases. The blasting reliability tends to be difficult to obtain.

【0015】本発明による爆薬組成物は主として有機微
小中空体の調整により密度0.2〜1.4g/cm3
ものが安定に得られる。爆速としては通常1,500〜
5,500m/sec程度の性能を有している。本発明
の爆薬組成物を製造する方法の一例としては、酸化剤と
水の混合物を殆ど溶解する程度以上に加熱しておいて、
有機微小中空体と均一に混合する方法がとられる。
The explosive composition according to the present invention can be stably obtained with a density of 0.2 to 1.4 g / cm 3 mainly by adjusting the organic micro hollow body. Explosion speed is usually 1,500-
It has a performance of about 5,500 m / sec. As an example of a method for producing the explosive composition of the present invention, a mixture of an oxidant and water is heated to a level at which it is almost dissolved,
A method of uniformly mixing with the organic micro hollow body is adopted.

【0016】次に、発泡性有機微小粒子を用いて加熱発
泡する方法は特に限定されるものではないが、具体的な
例を挙げると、酸化剤と水と発泡性有機微小粒子をほ
ぼ均一に混合できる程度の温度に加熱して混合溶液とし
たのち、該混合溶液の液滴や飛翔を該発泡性有機微小粒
子が発泡を開始する温度以上に温調した加熱板上又は雰
囲気中に滴下又は噴射して該混合溶液に含まれる発泡性
有機微小粒子を発泡させる方法、酸化剤と水と発泡性
有機微小粒子をほぼ均一に混合できる程度の温度に加熱
して混合溶液としたのち、該混合溶液を該発泡性有機微
小粒子が発泡を開始する温度以上に温調した金属管内に
注入し該金属管内で該混合溶液に含まれる該発泡性有機
微小粒子を発泡させる方法、酸化剤と水と発泡性有機
微小粒子の混合溶液を容器に入れ該発泡性有機微小粒子
が発泡を開始する温度以上の外浴にて該容器を加熱し、
該混合溶液に含まれる該発泡性有機微小粒子を発泡させ
る方法、酸化剤と水と発泡性有機微小粒子を均一に混
合してほぼ均一に混合できる程度の温度に加熱して混合
溶液としたのち、該混合溶液の体積膨張を見込んだ量を
耐熱性のフィルムチューブに充填し、該フィルムチュー
ブ内の空気を除去して密閉したのち該発泡性有機微小粒
子が発泡を開始する温度以上に温調した加温バス又は油
浴中にて該混合溶液に含まれる該発泡性有機微小粒子を
発泡させる方法、酸化剤と水の混合物に熱を加え酸化
剤等の固形塩類の大半を溶解した該発泡性有機微小粒子
が発泡を開始する温度以上の高濃度塩溶液と未発泡の有
機微小粒子とを混合する方法などがある。これらの製造
方法の内、組成物より水が蒸発する場合には、予め水の
蒸発量を予測して目的とする爆薬組成物となるように過
剰の水を加えておくこともできる。また、本発明の爆薬
組成物を製造する方法によれば、温度を調整することに
よって任意に発泡状態を変えることができ、ブースター
によって起爆できるものから雷管1本で起爆できるもの
まで目的に応じた爆薬の設計が可能である。未発泡の有
機微小粒子は加熱することによって、内部の圧力が上昇
し有機高分子の膜が軟化し始める温度くらいから発泡を
開始するもので、体積の比率で約20〜100倍の範囲
に膨張される。ただし、必要以上に加熱して有機微小中
空体が破裂すると、爆薬としての性能を得ることが難し
くなるので、好ましくは過発泡になる前の温度に止める
のが良い。
Next, the method of heat-foaming using the expandable organic fine particles is not particularly limited, but a specific example will be given. The oxidizing agent, water and the expandable organic fine particles are made substantially uniform. After being heated to a temperature at which mixing is possible to form a mixed solution, the droplets or flying of the mixed solution are dropped onto a heating plate or in an atmosphere whose temperature is adjusted to a temperature at which the expandable organic fine particles start foaming or A method of spraying to expand the expandable organic fine particles contained in the mixed solution, heating the mixture to a temperature at which the oxidizing agent, water, and the expandable organic fine particles can be mixed almost uniformly to form a mixed solution, and then mixing the mixed solution. A method of injecting a solution into a metal tube whose temperature is controlled to be equal to or higher than the temperature at which the expandable organic microparticles start foaming to foam the expandable organic microparticles contained in the mixed solution in the metal tube, an oxidizing agent and water. Add a mixed solution of expandable organic fine particles. The vessel was heated at a temperature above the outer bath foamable organic microparticles starts foaming put in,
A method of foaming the expandable organic fine particles contained in the mixed solution, heating the oxidizer, water and the expandable organic fine particles uniformly to a temperature at which they can be mixed almost uniformly to form a mixed solution. , A heat-resistant film tube is filled with an amount in which the volume expansion of the mixed solution is expected, and after the air in the film tube is removed and sealed, the temperature is adjusted to a temperature at which the expandable organic fine particles start foaming or higher. A method of foaming the expandable organic fine particles contained in the mixed solution in a heated bath or an oil bath, in which heat is applied to a mixture of an oxidizing agent and water to dissolve most of solid salts such as the oxidizing agent There is a method of mixing a high-concentration salt solution having a temperature equal to or higher than the temperature at which the organic fine organic particles start foaming with the unexpanded organic fine particles. When water evaporates from the composition among these production methods, it is possible to predict the evaporation amount of water in advance and add excess water so as to obtain the desired explosive composition. Further, according to the method for producing the explosive composition of the present invention, the foaming state can be arbitrarily changed by adjusting the temperature, and depending on the purpose, it can be detonated by a booster to one detonated by one detonator. Explosive design is possible. By heating unexpanded organic microparticles, the internal pressure rises and the foaming starts at about the temperature at which the organic polymer film begins to soften, and expands to a range of about 20 to 100 times in volume ratio. To be done. However, if the organic micro-hollow body is ruptured by heating more than necessary, it becomes difficult to obtain the performance as an explosive. Therefore, it is preferable to stop the temperature at the temperature before the over-foaming.

【0017】本発明による爆薬組成物は粉末状、フレー
ク状、ペースト状などの形態をとり、それぞれの形態、
性状、用途分野などを考慮して従来公知の包装材料例え
ば紙、ラミネート紙、プラスチックフィルム、ラミネー
トプラスチックフィルム、紙筒、プラスチック筒などを
用いて包装品とすることができる。
The explosive composition according to the present invention is in the form of powder, flakes, paste or the like.
In consideration of properties, fields of use, and the like, conventionally known packaging materials such as paper, laminated paper, plastic film, laminated plastic film, paper cylinder, and plastic cylinder can be used as a packaged product.

【0018】本発明の爆薬組成物は、爆薬としての要件
を十分に満足しているが、さらに付加的に性能を向上さ
せるために必要に応じて低級飽和脂肪族アミンの如き有
機硝酸塩や硝酸ヒドラジンの如き無機硝酸塩等を鋭感剤
として加え、特に寒い地域での用途に対応することも可
能である。またトンネルや地下鉱山等での発破後のガス
を考慮して、石炭粉末、アルミニウム粉末のような固体
可燃物を補足することもできる。その他リン酸エステル
などの活性剤;尿素などの分解抑制剤などを添加しても
何ら差し支えない。上記の有機硝酸塩の例としては低級
飽和脂肪族アミンの硝酸塩、硝酸エタノールアミン、硝
酸尿素、硝酸グアニジン、二硝酸エチレンジアミンな
ど、無機硝酸塩の例としては硝酸ヒドラジン、二硝酸ヒ
ドラジン、過塩素酸ヒドラジンなどが挙げられ、それぞ
れ単独または2種以上を混合して使用することができ
る。これらは爆薬組成物に対し安定した起爆性を付与す
るのに有効であるが、硝酸モノメチルアミン、硝酸モノ
エタノールアミン、硝酸ヒドラジンなどは爆薬の調整が
容易で好ましいものである。
The explosive composition of the present invention sufficiently satisfies the requirements as an explosive, but in order to additionally improve the performance, an organic nitrate such as a lower saturated aliphatic amine or hydrazine nitrate may be added if necessary. It is also possible to add an inorganic nitrate such as the above as a sensitizer to meet the application especially in a cold area. In addition, solid combustible materials such as coal powder and aluminum powder can be supplemented in consideration of the gas after blasting in a tunnel or an underground mine. Other activators such as phosphoric acid esters; decomposition inhibitors such as urea may be added. Examples of the above organic nitrates include nitrates of lower saturated aliphatic amines, ethanolamine nitrate, urea nitrate, guanidine nitrate, ethylenediamine dinitrate, and the like, and examples of inorganic nitrates include hydrazine nitrate, hydrazine dinitrate, hydrazine perchlorate, and the like. These may be used alone or in admixture of two or more. These are effective in imparting a stable detonation property to the explosive composition, but monomethylamine nitrate, monoethanolamine nitrate, hydrazine nitrate and the like are preferable since explosives can be easily adjusted.

【0019】本発明の爆薬組成物及びその製造方法によ
れば、ブースター起爆の爆薬から雷管起爆の爆薬、また
広い爆薬の密度範囲の爆薬が得られ、従来の爆薬のほと
んどをカバーし得るものである。また、エマルジョン爆
薬等に見られる耐死圧性能も向上しており、不発残留の
減少により消費現場の安全性を更に向上させることがで
きる。製造方法については、従来のスラリー爆薬やエマ
ルジョン爆薬のような高度な製造技術を必要とせず、簡
単でしかも安全に製造することができるものである。
According to the explosive composition of the present invention and the method for producing the same, it is possible to obtain explosives for detonator initiation, explosives for detonator initiation, and explosives in a wide density range of explosives, which can cover most conventional explosives. is there. Further, the dead pressure resistance performance found in emulsion explosives and the like has also been improved, and the reduction of non-residual residue can further improve the safety at the site of consumption. Regarding the manufacturing method, it does not require a high-level manufacturing technology such as the conventional slurry explosive or emulsion explosive, and can be manufactured simply and safely.

【0020】本発明による爆薬組成物は通常、電気雷
管、工業雷管、導火管付き雷管、ガス導火管付き雷管、
電磁起爆方式雷管、レーザー起爆方式雷管、無線起爆方
式雷管、導火線、導爆線などの公知の方法を用いて起爆
することができるが、場合によりブースターを用いて起
爆させることもできる。
The explosive composition according to the invention is usually an electric detonator, an industrial detonator, a detonator with a detonator, a detonator with a gas detonator,
A known method such as an electromagnetic detonator, a laser detonator, a wireless detonator, a squib, or a detonator can be used for detonation, but in some cases, a booster can be used for detonation.

【0021】[0021]

【実施例】以下、実施例において本発明の更に詳細な態
様を述べるが、本発明は特許請求の範囲内においてこれ
らに限定されるものではない。なお、雷管起爆性、ブー
スター起爆性、爆轟速度、鋼管内薬包伝爆性及び砂中死
圧性能の測定は下記の方法で行った。
EXAMPLES The following will describe more detailed aspects of the present invention in examples, but the present invention is not limited to these within the scope of the claims. The following methods were used to measure detonator detonation, booster detonation, detonation velocity, detonation rate in steel pipes, and dead pressure in sand.

【0022】雷管起爆性の測定 予めポリエチレンラミネート紙筒又はナイロン66フィ
ルムチューブ(薬包径20mm又は30mm、薬長約2
00mm)に密充填した爆薬包を約−30℃の冷凍庫に
約15時間貯蔵したのち、爆薬包の温度を調整しながら
6号雷管にて起爆し、爆薬包が完爆するときの温度を測
定した。なお、経時性能評価のため製造1年後を追加測
定した。 ブースター起爆性の測定 予め長手方向の片側を密閉した鋼管(JIS G 34
52 32A;内径約36mmφ、長さ350mm)に
充填した試験爆薬をブースター(6号雷管を装着した2
号榎ダイナマイト50g)にて起爆し、鋼管の破壊状況
より完爆したか否かを目視で測定した。なお、経時性能
評価のため製造1年後を追加測定した。 薬包充填品の爆轟速度の測定 予めポリエチレンラミネート紙筒又はナイロン66フィ
ルムチューブ(薬包径20mm又は30mm、薬長約3
00mm)に充填した爆薬包を6号雷管にて起爆し、イ
オンギャップ法にて爆轟速度を測定した。なお、経時性
能評価のため製造1年後を追加測定した。
Measurement of detonator ignitability Preliminarily polyethylene laminated paper cylinder or nylon 66 film tube (medicine package diameter 20 mm or 30 mm, drug length about 2
After storing the explosive package tightly packed in (00 mm) in a freezer at about -30 ° C for about 15 hours, detonate with No. 6 detonator while adjusting the temperature of the explosive package, and measure the temperature when the explosive package is completely detonated. did. It should be noted that one year after production was additionally measured for performance evaluation with time. Measurement of booster ignitability A steel pipe (JIS G 34
52 32A; test explosive filled in an inner diameter of about 36 mmφ and a length of 350 mm was used as a booster (2 equipped with a No. 6 detonator).
It was detonated with No. Enoki dynamite (50 g), and it was visually determined from the state of destruction of the steel pipe whether or not the explosion was complete. It should be noted that one year after production was additionally measured for performance evaluation with time. Measurement of detonation velocity of medicine package filling product Preliminarily polyethylene laminated paper tube or nylon 66 film tube (medicine package diameter 20 mm or 30 mm, medicine length about 3
(00 mm) was charged with an explosive charge packet using a No. 6 detonator, and the detonation velocity was measured by the ion gap method. It should be noted that one year after production was additionally measured for performance evaluation with time.

【0023】鋼管充填品の爆轟速度の測定 予め鋼管(JIS G 3452 32A;内径約36
mmφ、長さ350mm)に充填した爆薬をブースター
(6号雷管を装着した2号榎ダイナマイト50g)にて
起爆し、イオンギャップ法にて爆轟速度を測定した。な
お、経時性能評価のため製造1年後を追加測定した。 鋼管内薬包伝爆性の測定 予めポリエチレンラミネート紙筒又はナイロン66フィ
ルムチューブ(薬包径約20φmm、薬長150mm)
に充填した爆薬包を鋼管(JIS G 3452 40
A;内径約41.6mmφ、管長3000mm)内の長
手方向に変形しないように約20本並べて装薬したのち
端部の爆薬包を6号雷管にて起爆し、破壊された鋼管長
を測定して鋼管内伝爆性とした。なお、経時性能評価の
ため製造1年後を追加測定した。
Measurement of Detonation Velocity of Steel Tube Filled Product Steel tube (JIS G 3452 32A; inner diameter approx. 36)
An explosive charged in mmφ and a length of 350 mm) was detonated with a booster (No. 2 enoki dynamite 50 g equipped with No. 6 detonator), and the detonation velocity was measured by the ion gap method. It should be noted that one year after production was additionally measured for performance evaluation with time. Measurement of explosive property of drug package in steel pipe Preliminarily polyethylene laminated paper tube or nylon 66 film tube (medicine package diameter of about 20φ mm, drug length of 150 mm)
The explosive package filled in the steel pipe (JIS G 3452 40
A: Inner diameter of about 41.6 mmφ, tube length of 3000 mm) About 20 pieces were arranged side by side so as not to be deformed in the longitudinal direction, and then the explosive bag at the end was detonated with a No. 6 detonator, and the length of the destroyed steel tube was measured. The steel pipe was made to be explosive. It should be noted that one year after production was additionally measured for performance evaluation with time.

【0024】砂中死圧性能の測定 予めポリエチレンラミネート紙筒又はナイロン66フィ
ルムチューブ(薬包径30mm、薬長約150mm)に
充填した爆薬包2本を用意し、片方の爆薬包に瞬発6号
電気雷管を、もう片方の爆薬包には10ms段発電気雷
管を装着して、砂中80cmの深さに平行に並べて埋
め、双方の電気雷管を直列結線し、発破する。この試験
を5回繰り返して行い、10ms段発電気雷管を装着し
た爆薬包が完爆したか否かを測定して砂中死圧性能とし
た。なお、経時性能評価のため製造1年後を追加測定し
た。
Measurement of dead pressure performance in sand Two explosive sachets, which were previously filled in a polyethylene laminated paper cylinder or a nylon 66 film tube (medicine package diameter 30 mm, medicine length about 150 mm), were prepared. The electric detonator is attached to the other explosive package with a 10 ms stepped electric detonator, and the electric detonator is buried in parallel in the sand at a depth of 80 cm. Both electric detonators are connected in series and blasted. This test was repeated 5 times, and it was determined whether or not the explosive package equipped with the 10 ms step-detonated electric detonator was completely detonated to obtain the dead pressure performance in sand. It should be noted that one year after production was additionally measured for performance evaluation with time.

【0025】実施例1 硝酸アンモニウム805gと水135gを混合して約9
0℃加温調整する。一方、有機微小中空体(塩化ビニリ
デン−アクリロニトリル−メタクリル酸エステル共重合
体であるエクスパンセル551DE;ケマノード社商品
名)60gをポリエチレン袋に計量準備する。次いで、
前記の混合物をポリエチレン袋内に投入し、前記の袋の
開口部を閉じたのち、袋の側面より力を加えて約10分
撹拌混合の後に水冷して爆薬密度0.40/cm3の爆
薬組成物を得た。前記の爆薬組成物を、予め長手方向の
片側を密閉した交換(JIS G 3452 32A;
内径約36mmφ、長さ350mm)に充填し、ブース
ター(6号雷管を装着した2号機ダイナマイト50g)
にて起爆したところ完全に爆轟した。更に、製造1年後
にも上記と同様なテストを行ったところ同様な性能を示
した。
Example 1 805 g of ammonium nitrate and 135 g of water were mixed to obtain about 9
Adjust the temperature by 0 ℃. On the other hand, 60 g of an organic micro hollow body (Expandel 551DE, which is a vinylidene chloride-acrylonitrile-methacrylic acid ester copolymer; trade name of Chemanode Corporation) is prepared in a polyethylene bag for weighing. Then
The above mixture was put into a polyethylene bag, the opening of the bag was closed, force was applied from the side of the bag, and the mixture was stirred and mixed for about 10 minutes and then water cooled to form an explosive having a density of 0.40 / cm 3 . A composition was obtained. The above explosive composition was exchanged by previously sealing one side in the longitudinal direction (JIS G 3452 32A;
Inner diameter of about 36 mmφ, length of 350 mm) filled, booster (No. 2 dynamite 50 g equipped with No. 6 detonator)
When I detonated, I was completely detonated. Further, the same test was performed one year after the production, and the same performance was exhibited.

【0026】実施例2 硝酸アンモニウム1608g、水310g及び未発泡有
機微小粒子(塩化ビニリデンとアクリロニトリルとメタ
クリル酸エステルとの共重合物(松本油脂(株)商品
名;ミクロパールF−30)82gを金属容器に入れ、
約80℃外浴にて撹拌を加え混合し、約70℃の混合物
を得る。一方、約100〜150℃に加熱した金属板を
用意する。次いで、前記の金属板の表面上に前記混合物
を少量ずつ滴下し、極めて短時間で粗粒状の爆薬組成物
を得た。
Example 2 1608 g of ammonium nitrate, 310 g of water, and 82 g of unexpanded organic fine particles (a copolymer of vinylidene chloride, acrylonitrile, and methacrylic acid ester (Matsumoto Yushi Co., Ltd. trade name; Micropearl F-30)) were placed in a metal container. put in,
Stirring is performed in an external bath at about 80 ° C and mixing is performed to obtain a mixture at about 70 ° C. On the other hand, a metal plate heated to about 100 to 150 ° C. is prepared. Then, the mixture was dropped little by little onto the surface of the metal plate to obtain a coarse granular explosive composition in an extremely short time.

【0027】この爆薬組成物を小分けして、20mm
φ、30mmφのポリエチレンラミネート紙筒約30g
〜40gずつ充填し爆薬包とし、爆発性能を調べた。前
記の30mmφ爆薬包の密度は0.35g/cm3であ
り、薬温−10℃において6号雷管で起爆することがで
き、薬温5℃における爆速は1900m/sであった。
又、上記の20mmφの爆薬包を内径41.6mmφの
長さ3mの鋼管に前記の爆薬包を3mの長さにあわせて
装薬し、片方から6号雷管で起爆したところ装薬した全
ての爆薬包が完爆し、破壊された鋼管長は3mであっ
た。更に、前記の30mmφ爆薬包2本を80cmの砂
中に15cmの距離をおいて平行に埋め、片方には瞬発
の6号雷管を、もう片方には10msの段発電気雷管を
装着して起爆する砂中死圧テストを5回実施したとこ
ろ、全てが両方とも完爆した。更に又、製造1年後にも
上記と同様なテストを行ったところ同様な性能を示し
た。これに対し、従来のスラリー爆薬とエマルジョン爆
薬を一般的な製法に従って、爆薬密度を調整し、同様な
テストを実施したところ、いずれも薬温℃以下では6号
雷管で起爆せず、また、鋼管内での爆薬包伝爆テストで
も1.2m近傍で爆轟が中断し、破壊された鋼管長も約
1.2mであった。更に、砂中死圧テストでは10ms
の段発電気雷管を装着した爆薬包が各々2本完爆せずに
回収された。更に又、製造1年後にも同様なテストを行
ったが、いずれも6号雷管で起爆ができないまで性能が
劣化していた。
This explosive composition is subdivided into 20 mm
φ, 30mmφ polyethylene laminated paper cylinder approx. 30g
Explosive performance was examined by filling each of them up to 40 g to form an explosive bag. The density of the 30 mmφ explosive package was 0.35 g / cm 3 , and it was possible to detonate with a No. 6 detonator at a drug temperature of −10 ° C., and the detonation speed at a drug temperature of 5 ° C. was 1900 m / s.
In addition, the above-mentioned 20 mmφ explosive package was charged into a steel pipe with an inner diameter of 41.6 mmφ and a length of 3 m according to the length of 3 m. The explosive bag was completely detonated and the length of the destroyed steel pipe was 3 m. In addition, two of the above 30mmφ explosive packages were buried in 80cm sand at a distance of 15cm in parallel, and one of them was equipped with an explosive No. 6 detonator and the other was equipped with a 10ms stepped electric detonator. When the dead pressure test in sand was performed 5 times, all of them were completely detonated. Furthermore, the same test was performed one year after the production, and the same performance was shown. On the other hand, the conventional slurry explosive and emulsion explosive were adjusted according to the general manufacturing method, and the explosive density was adjusted. In the internal explosive charge transmission test, the detonation was interrupted near 1.2 m and the length of the destroyed steel pipe was about 1.2 m. Furthermore, in the sand dead pressure test, 10 ms
Two explosive packages equipped with the stepped electric detonator were recovered without complete explosion. Further, the same test was conducted one year after the production, but the performance was deteriorated until the detonator No. 6 could not be detonated.

【0028】実施例3,4,5 実施例2と同様にして、次の爆薬組成物を製造し、それ
ぞれ爆発性能を調べた。
Examples 3, 4, 5 The following explosive compositions were produced in the same manner as in Example 2 and their explosive properties were examined.

【表1】 [Table 1]

【0029】なお、未発泡有機微小粒子1は実施例2で
用いたものと同一であり、未発泡有機微小粒子2はアク
リロニトリルとメチルメタクリルレート共重合物(エク
スパンセル社商品名;053WU)であり、未発泡有機
微小粒子3はアクリロニトリルとアクリル酸エステルと
の共重合物(松本油脂(株)商品名;ミクロパールF−
50)である。
The unexpanded organic fine particles 1 are the same as those used in Example 2, and the unexpanded organic fine particles 2 are acrylonitrile and methylmethacrylate copolymer (trade name of Expancel Co .; 053WU). The unexpanded organic fine particles 3 are copolymers of acrylonitrile and acrylic acid ester (trade name of Matsumoto Yushi Co., Ltd .; Micropearl F-
50).

【0030】上記の3つの爆薬組成物の20mmφ、3
0mmφ爆薬包密度は、それぞれ0.23,0.30,
0.40であり、薬温−10℃の30mmφ爆薬包は6
号雷管で起爆することができ、薬温5℃における爆速は
1900m/s、2000m/s,2200m/sであ
った。又、20mmφ爆薬包を内径41.6mmφの長
さ3mの鋼管に前記の爆薬包を3mの長さにあわせて装
薬し、片方から6号雷管で起爆したところ装薬した全て
の爆薬包が完爆し、破壊された鋼管長は3mであった。
更に製造1年後にも上記と同様なテストを行ったところ
同様な性能を示した。これに対し、従来のスラリー爆薬
とエマルジョン爆薬を一般的な製法に従って、爆薬密度
を調整し、同様なテストを実施したところ、いずれも薬
温0℃以下では6号雷管で起爆せず、また、鋼管内での
爆薬包伝爆テストでも0.8〜1.6m近傍で爆轟が中
断し、破壊された鋼管長も約0.8〜1.6mであっ
た。更に製造1年後にも同様なテストを行ったが、いず
れも6号雷管で起爆ができないまで性能が劣化してい
た。
20 mmφ, 3 of the above three explosive compositions
0mmφ explosive packing density is 0.23, 0.30,
It is 0.40, and the 30mmφ explosive package with a drug temperature of -10 ℃ is 6
It was possible to detonate with a No. detonator, and the detonation speed at a chemical temperature of 5 ° C was 1900 m / s, 2000 m / s, 2200 m / s. Also, a 20 mmφ explosive charge was charged into a steel pipe with an inner diameter of 41.6 mmφ and a length of 3 m according to the length of 3 m. The length of the steel pipe that was completely destroyed and destroyed was 3 m.
Further, one year after the production, the same test was performed and the same performance was shown. On the other hand, the conventional explosive explosive and emulsion explosive were adjusted according to the general manufacturing method, and the explosive density was adjusted, and the same test was carried out. In the explosive charge transfer test in the steel pipe, the detonation was interrupted in the vicinity of 0.8 to 1.6 m, and the length of the destroyed steel pipe was about 0.8 to 1.6 m. Further, the same test was conducted one year after the production, but the performance was deteriorated until the detonator No. 6 could not be detonated.

【0031】実施例6 硝酸アンモニウム1608g、水310g及び未発泡有
機微小粒子(塩化ビニリデンとアクリロニトリルとメタ
クリル酸エステルとの共重合物(松本油脂(株)商品
名;ミクロパールF−30)82gを金属容器に入れ、
約70℃水浴中にて撹拌を加え混合し、約70℃の混合
物を得た。前記の混合物を約100〜150℃に加熱し
た20mmφ金属管(管内壁はテフロン加工)の片方よ
り加圧注入し、もう片方より連続発泡した紐状の爆薬組
成物を得た。
Example 6 1608 g of ammonium nitrate, 310 g of water, and 82 g of unexpanded organic fine particles (a copolymer of vinylidene chloride, acrylonitrile, and methacrylic acid ester (trade name of Matsumoto Yushi Co., Ltd .; Micropearl F-30)) in a metal container. put in,
The mixture was stirred and mixed in a water bath at about 70 ° C to obtain a mixture at about 70 ° C. The above mixture was pressure-injected from one side of a 20 mmφ metal tube (inner wall of which was made of Teflon) heated to about 100 to 150 ° C., and a continuous foamed string-like explosive composition was obtained from the other side.

【0032】この爆薬組成物を小分けして爆薬包とし、
爆発性能をしらべた。20mmφ爆薬包の密度は0.4
5g/cm3であり、薬温−5℃において6号雷管で起
爆することができ、薬温5℃における爆速は1900m
/sであった。又、爆薬包を内径41.6mmφの長さ
3mの鋼管に前記の爆薬包を3mの長さにあわせて装薬
し、片方から6号雷管で起爆したところ装薬した全ての
爆薬包が完爆し、破壊された鋼管長は3mであった。更
に前記の30mmφ爆薬包2本を80cmの砂中に15
cmの距離をおいて平行に埋め、片方には6号瞬発の雷
管を、もう片方には10msの段発電気雷管を装着して
起爆する砂中死圧テストを5回実施したところ、全てが
両方とも完爆した。更に又、製造1年後にも上記と同様
なテストを行ったところ同様な性能を示した。
This explosive composition is subdivided into explosive packages,
I investigated the explosive performance. 20mmφ explosive package density is 0.4
It is 5 g / cm 3 and can be detonated by No. 6 detonator at a drug temperature of -5 ° C, and the detonation speed at a drug temperature of 5 ° C is 1900 m.
Was / s. In addition, the explosive package was charged into a steel pipe with an inner diameter of 41.6 mmφ and a length of 3 m according to the length of 3 m, and when one of the detonators was detonated from one side, all the explosive packages were completed. The length of the steel pipe that was exploded and destroyed was 3 m. Furthermore, 2 pieces of the above 30 mmφ explosive bag are placed in 80 cm of sand for 15
It was filled in parallel with a distance of cm, and one was equipped with a No. 6 flashing detonator, and the other was equipped with a 10 ms stepped electric detonator to carry out a detonation test in sand five times. Both were completely detonated. Furthermore, the same test was performed one year after the production, and the same performance was shown.

【0033】実施例7 硝酸アンモニウム1524g、水286g及び未発泡有
機微小粒子(塩化ビニリデンとアクリロニトリルとメタ
クリル酸エステルとの共重合物(松本油脂(株)商品
名;ミクロパールF−30)190gを金属容器に入
れ、約90℃外浴中にて撹拌を加え混合し、約70〜8
0℃の混合物を得る。前記の混合物を約90〜110に
加熱した20mmφ金属管(管内壁はテフロン加工)の
片方の開口部より加圧注入し、もう片方の開口部よりク
リーム状をした密度1.35g/cm3の爆薬組成物を
得た。
Example 7 1524 g of ammonium nitrate, 286 g of water and 190 g of unexpanded organic fine particles (copolymer of vinylidene chloride, acrylonitrile and methacrylic acid ester (Matsumoto Yushi Co., Ltd. trade name: Micropearl F-30)) in a metal container. Approximately 70 ~ 8
A mixture at 0 ° C. is obtained. The mixture was heated to about 90 to 110 and pressure-injected through one opening of a 20 mmφ metal tube (inner wall of which was Teflon processed), and cream-like density of 1.35 g / cm 3 was obtained through the other opening. An explosive composition was obtained.

【0034】前記の爆薬組成物を、予め長手方向の片側
を密閉した鋼管(JIS G3452 32A;内径約
36mmφ、長さ350mm)に充填し、ブースター
(6号雷管を装着した2号榎ダイナマイト50g)にて
起爆したところ完全に爆轟し、この時の爆速は5460
m/sであった。更に製造1年後にも上記と同様なテス
トを行ったところ同程度の性能を示した。 実施例8,9,10 実施例7と同様にして、次の爆薬組成物を製造し、それ
ぞれ爆発性能を調べた。
The above explosive composition was filled in a steel pipe (JIS G3452 32A; inner diameter of about 36 mmφ, length of 350 mm) whose one side in the longitudinal direction was sealed in advance, and a booster (50 g of No. 2 enoki dynamite equipped with No. 6 detonator). At the time of detonation, it completely detonated and the detonation speed at this time was 5460.
It was m / s. Further, one year after the production, the same test was performed and the same performance was shown. Examples 8, 9, and 10 The following explosive compositions were produced in the same manner as in Example 7, and the explosive properties thereof were examined.

【0035】[0035]

【表2】 [Table 2]

【0036】なお、未発泡有機微小粒子1は実施例7で
用いたものと同一であり、未発泡有機微小粒子2はアク
リロニトリルとメチルメタクリレート共重合物(エクス
パンセル社商品名;053WU)であり、未発泡有機微
小粒子3はアクリロニトリルとアクリル酸エステルとの
共重合物(松本油脂(株)商品名;ミクロパールF−5
0)である。
The unexpanded organic fine particles 1 are the same as those used in Example 7, and the unexpanded organic fine particles 2 are acrylonitrile / methyl methacrylate copolymer (Expansell Co., Ltd .; trade name: 053WU). The unexpanded organic fine particles 3 are copolymers of acrylonitrile and acrylic acid ester (trade name of Matsumoto Yushi Co., Ltd .; Micropearl F-5).
0).

【0037】上記の3つの爆薬組成物の密度は、それぞ
れ1.38g/cm3,1.30g/cm3,1.35g
/cm3であった。前記のそれぞれの爆薬組成物を、予
め長手方向の片側を密閉した鋼管(JIS G 345
2 32A;内径約36mmφ,長さ350mm)に充
填し、ブースター(6号雷管を装着した2号機ダイナマ
イト50g)にて起爆したところ、それぞれが完全に爆
轟し、この時の爆速はそれぞれ5500m/g,460
0m/s,5100m/sであった。更に製造1年後に
も上記と同様なテストを行ったところ同程度の性能を示
した。
The densities of the above three explosive compositions are 1.38 g / cm 3 , 1.30 g / cm 3 and 1.35 g, respectively.
/ Cm 3 . Each of the above explosive compositions was formed into a steel pipe (JIS G 345) whose one side in the longitudinal direction was previously sealed.
232A; inner diameter approx. 36 mmφ, length 350 mm), and when detonated by a booster (Unit 2 dynamite 50 g equipped with No. 6 detonator), each detonated completely, and the detonation speed at this time was 5500 m / g, 460
It was 0 m / s and 5100 m / s. Further, one year after the production, the same test was performed and the same performance was shown.

【0038】実施例11 硝酸アンモニウム1608g、水310g及び未発泡有
機微小粒子(塩化ビニリデンとアクリロニトリルとメタ
クリル酸エステルとの共重合物(松本油脂(株)商品
名;ミクロパールF−30)82gをステンレス容器に
入れ、約100℃〜130℃油浴中にてゆっくり撹拌を
加えながら加熱し、クリーム状の爆薬組成物を得た。前
記の爆薬組成物を小分けして、20mmφ,30mmφ
のポリエチレンラミネート紙筒約50gずつ充填し爆薬
包とし、爆発性能を調べた。前記の30mmφ爆薬包の
密度は0.70g/cm3であり、薬温−5℃において
6号雷管で起爆することができ、薬温5℃における爆速
は2500m/sであった。又、上記の20mmφの爆
薬包を内径41.6mmφの長さ3mの鋼管に前記の爆
薬包を3mの長さにあわせて装薬し、片方から6号雷管
で起爆したところ装薬した全ての爆薬包が完爆し、破壊
された鋼管長は3mであった。更に前記の30mmφ爆
薬包2本を80cmの砂中に15cmの距離をおいて平
行に埋め、片方には瞬発の6号雷管を、もう片方には1
0msの段発電気雷管を装着して起爆する砂中死圧テス
トを5回実施したところ、全てが両方とも完爆した。更
に又、製造1年後にも上記と同様なテストを行ったとこ
ろ同様な性能を示した。
Example 11 1608 g of ammonium nitrate, 310 g of water, and 82 g of unexpanded organic fine particles (copolymer of vinylidene chloride, acrylonitrile, and methacrylic acid ester (Matsumoto Yushi Co., Ltd .; Micropearl F-30) 82 g) And heated in an oil bath at about 100 ° C. to 130 ° C. with slow stirring to obtain a cream-like explosive composition.The explosive composition was divided into 20 mmφ and 30 mmφ.
About 50 g of each of the polyethylene laminated paper cylinders described above was filled into an explosive bag, and the explosive performance was examined. The density of the 30 mmφ explosive package was 0.70 g / cm 3 , and it was possible to detonate with a No. 6 detonator at a drug temperature of −5 ° C., and the detonation speed at a drug temperature of 5 ° C. was 2500 m / s. In addition, the above-mentioned 20 mmφ explosive package was charged into a steel pipe with an inner diameter of 41.6 mmφ and a length of 3 m according to the length of 3 m. The explosive bag was completely detonated and the length of the destroyed steel pipe was 3 m. Furthermore, 2 pieces of the above 30mmφ explosive package were buried in 80cm sand at a distance of 15cm in parallel, one of which was an explosive No. 6 detonator, and the other was 1
When a dead pressure test in the sand was started 5 times with a 0 ms stepped electric detonator attached, all of them were completely detonated. Furthermore, the same test was performed one year after the production, and the same performance was shown.

【0039】実施例12 硝酸アンモニウム1250g、水170g、硝酸ソーダ
160g、硝酸モノメチルアミン300g及び未発泡有
機微小粒子;塩化ビニリデンとアクリロニトリルとメタ
クリル酸共重合物(松本油脂(株)商品名;ミクロパー
ルF−30)120gを約70℃に加温しながら均一な
混合溶液とし、該混合溶液を20mmφナイロン66フ
ィルムチューブに体積膨張を見込んで小分けし、空間部
の空気を除いて該ナイロン66フィルムチューブの両端
を結束したのち、100〜150℃の加温バス内に収納
し、該混合液を加熱して該混合物に含まれる該未発泡有
機微小粒子を発泡させ該ナイロン66フィルムチューブ
に充填された爆薬組成物として爆発性能を調べた。前記
の20mmφナイロン66フィルムチューブ爆薬包の密
度は0.35g/cm3であり、薬温−10℃において
6号雷管で起爆することができ、薬温5℃における爆速
は2200m/sであった。又、上記の20mmφナイ
ロン66フィルムチューブ爆薬包を内径41.6mm
φ、長さ3mの鋼管に前記の爆薬包を3mの長さにあわ
せて装薬し、片方から6号雷管で起爆したところ装薬し
た全ての爆薬包が完爆し、破壊された鋼管長は3mであ
った。更に製造1年後にも同様なテストを行ったところ
同様な性能を示した。
Example 12 1250 g of ammonium nitrate, 170 g of water, 160 g of sodium nitrate, 300 g of monomethylamine nitrate and unexpanded organic fine particles; vinylidene chloride / acrylonitrile / methacrylic acid copolymer (trade name of Matsumoto Yushi Co., Ltd .; Micropearl F- 30) 120 g is heated to about 70 ° C. to form a uniform mixed solution, and the mixed solution is divided into 20 mmφ nylon 66 film tubes in consideration of volume expansion, and the air in the space is removed to remove both ends of the nylon 66 film tube. After being bound, the mixture was placed in a heating bath at 100 to 150 ° C., the mixed solution was heated to foam the unexpanded organic fine particles contained in the mixture, and the explosive composition filled in the nylon 66 film tube. I examined the explosive performance as a thing. The density of the 20 mmφ nylon 66 film tube explosive package was 0.35 g / cm 3 , and it was possible to detonate with a No. 6 detonator at a drug temperature of −10 ° C., and the detonation speed at a drug temperature of 5 ° C. was 2200 m / s. . In addition, the 20 mmφ nylon 66 film tube explosive bag described above has an inner diameter of 41.6 mm.
φ, 3m long steel tube was charged with the above explosive package according to the length of 3m, and when one was detonated with No. 6 detonator, all explosive packages charged were completely detonated, and the steel tube length was destroyed Was 3 m. Further, the same test was performed one year after the production, and the same performance was shown.

【0040】実施例13 硝酸アンモニウム1050g、水170g、硝酸ソーダ
300g及び硝酸モノメチルアミン360gを混合した
のち約70℃加温調整して混合物とする。一方、有機微
小中空体(塩化ビニリデン−アクリロニトリル−メタク
リル酸エステル共重合物であるエクスパンセル551D
E;ケマノード社商品名)120gをポリエチレン袋に
計量準備する。次いで前記の混合物をポリエチレン袋内
に投入し、前記の袋の開口部を閉じたのち、袋の側面よ
り力を加えて約10分撹拌混合の後に冷却して爆薬組成
物を得た。この爆薬組成物を小分けして、20mmφ、
30mmφのポリエチレンラミネート紙筒約30〜40
gずつ充填し爆薬包とし、爆発性能を調べた。前記の3
0mmφ爆薬包の密度は0.35g/cm3であり、薬
温−20℃において6号雷管で起爆することができ、薬
温5℃における爆速は2300m/sであった。又、上
記の20mmφの爆薬包を内径41.6mmφの長さ3
mの鋼管に前記の爆薬包を3mの長さにあわせて装薬
し、片方から6号雷管で起爆したところ装薬した全ての
爆薬包が完爆し、破壊された鋼管長は3mであった。更
に前記の30mmφ爆薬包2本を80cmの砂中に15
cmの距離をおいて平行に埋め、片方には瞬発の6号雷
管を、もう片方には10msの段発電気雷管を装着して
起爆する砂中死圧テストを5回実施したところ、全てが
両方とも完爆した。更に又、製造1年後にも上記と同様
なテストを行ったところ同様な性能を示した。
Example 13 1050 g of ammonium nitrate, 170 g of water, 300 g of sodium nitrate and 360 g of monomethylamine nitrate were mixed and heated at about 70 ° C. to prepare a mixture. On the other hand, an organic micro-hollow body (Expandel 551D which is a vinylidene chloride-acrylonitrile-methacrylic acid ester copolymer)
E: 120 g of the product name of Chemanode Co., Ltd. is prepared for weighing in a polyethylene bag. Next, the mixture was put into a polyethylene bag, the opening of the bag was closed, and after applying force from the side surface of the bag for about 10 minutes with stirring and mixing, the mixture was cooled to obtain an explosive composition. This explosive composition is subdivided into 20 mmφ,
30mmφ polyethylene laminated paper cylinder about 30-40
Explosion performance was examined by filling each g to make an explosive bag. 3 of the above
The density of the 0 mmφ explosive package was 0.35 g / cm 3 , and it was possible to detonate with a No. 6 detonator at a drug temperature of −20 ° C., and the detonation speed at a drug temperature of 5 ° C. was 2300 m / s. In addition, the above-mentioned 20 mmφ explosive package has an inner diameter of 41.6 mmφ and a length of 3
When the above explosive sachet was charged into a 3 m steel pipe to a length of 3 m, and one was detonated with a No. 6 detonator, all explosive sachets that had been explosive were completely detonated, and the destroyed steel pipe length was 3 m. It was Furthermore, 2 pieces of the above 30 mmφ explosive bag are placed in 80 cm of sand for 15
It was buried in parallel at a distance of cm, and one of them was equipped with an explosive No. 6 detonator, and the other was equipped with a 10 ms stepped electric detonator, and a detonation test in sand was carried out five times. Both were completely detonated. Furthermore, the same test was performed one year after the production, and the same performance was shown.

【0041】実施例14,15 実施例13と同様にして、次の爆薬組成物を製造し、そ
れぞれ爆発性能を調べた。
Examples 14 and 15 The following explosive compositions were produced in the same manner as in Example 13 and their explosive properties were examined.

【0042】[0042]

【表3】 [Table 3]

【0043】上記の2つの爆薬組成物の30mmφ爆薬
包密度は、それぞれ0.95,1.02であり、薬温0
℃にて6号雷管で起爆することができ、薬温5℃におけ
る爆速は3200m/s,3700m/sであった。更
に製造1年後にも上記と同様なテストを行ったところ同
様な性能を示した。
The 30 mmφ explosive packing densities of the above two explosive compositions are 0.95 and 1.02, respectively, and the drug temperature is 0.
It was possible to detonate with a No. 6 detonator at ℃, and the detonation speed at the drug temperature of 5 ℃ was 3200 m / s, 3700 m / s. Further, one year after the production, the same test was performed and the same performance was shown.

【0044】実施例16 硝酸アンモニウム1296g、水164g、硝酸モノメ
チルアミン358g及び未発泡有機微小粒子(塩化ビニ
リデンとアクリロニトリルとメタクリル酸エステルとの
共重合物(松本油脂(株)商品名;ミクロパールF−3
0)78gを金属容器に入れ、約70℃水浴中にて撹拌
を加え混合し、約70℃の混合物を得る。一方、約10
0〜150に加熱した金属板(表面をテフロン加工)を
用意する。次いで前記の金属板の表面上に前記混合物を
少量ずつ滴下し、極めて短時間で粗粒状の爆薬組成物を
得た。この爆薬組成物を小分けして、20mmφ,30
mmφのポリエチレンラミネート紙筒約30〜40gず
つ充填し爆薬包とし、爆発性能を調べた。前記の30m
mφ爆薬包の密度は0.80g/cm3であり、薬温−
15℃において6号雷管で起爆することができ、薬温5
℃における爆速は3700m/sであった。又、上記の
20mmφの爆薬包を内径41.6mmφの長さ3mの
鋼管に前記の爆薬包を3mの長さにあわせて装薬し、片
方から6号雷管で起爆したところ装薬した全ての爆薬包
が完爆し、破壊された鋼管長は3mであった。更に前記
の30mmφ爆薬包2本を80cmの砂中に15cmの
距離をおいて平行に埋め、片方には瞬発の6号雷管を、
もう片方には10msの段発電気雷管を装着して起爆す
る砂中死圧テストを5回実施したところ、全てが両方と
も完爆した。更に又、製造1年後にも上記と同様なテス
トを行ったところ同様な性能を示した。
Example 16 Ammonium nitrate 1296 g, water 164 g, monomethylamine nitrate 358 g and unexpanded organic fine particles (copolymer of vinylidene chloride, acrylonitrile and methacrylic acid ester (trade name of Matsumoto Yushi Co., Ltd .; Micropearl F-3)
0) 78 g was placed in a metal container and mixed by stirring in a water bath at about 70 ° C to obtain a mixture at about 70 ° C. On the other hand, about 10
A metal plate (the surface of which is treated with Teflon) heated to 0 to 150 is prepared. Then, the mixture was dropped little by little on the surface of the metal plate to obtain a coarse-grained explosive composition in an extremely short time. This explosive composition is divided into 20 mmφ, 30
About 30 to 40 g of a polyethylene laminated paper cylinder of mmφ was filled to form an explosive bag, and the explosive performance was examined. 30m above
The density of mφ explosive package is 0.80 g / cm 3 ,
Can be detonated by No. 6 detonator at 15 ℃, drug temperature 5
The detonation velocity at ° C was 3700 m / s. In addition, the above-mentioned 20 mmφ explosive package was charged into a steel pipe with an inner diameter of 41.6 mmφ and a length of 3 m according to the length of 3 m. The explosive bag was completely detonated and the length of the destroyed steel pipe was 3 m. Furthermore, two 30 mmφ explosive sacks were buried in 80 cm sand at a distance of 15 cm in parallel, and a flashing No. 6 detonator was used on one side.
The other was subjected to a sand dead pressure test in which a 10 ms stepped electric detonator was attached and a detonation was carried out five times. All of them were completely detonated. Furthermore, the same test was performed one year after the production, and the same performance was shown.

【0045】実施例17,18,19 実施例16と同様にして、次の爆薬組成物を製造し、そ
れぞれ爆発性能を調べた。
Examples 17, 18 and 19 In the same manner as in Example 16, the following explosive compositions were produced, and their explosive properties were examined.

【0046】[0046]

【表4】 なお未発泡有機微小粒子1は実施例16で用いたものと
同一であり、未発泡有機微小粒子2はアクリロニトリル
とメチルメタクリレート共重合物(エクスパンセル社商
品名;053WU)であり、未発泡有機微小粒子3はア
クリロニトリルとアクリル酸エステルとの共重合物(松
本油脂(株)商品名;ミクロパールF−50)である。
[Table 4] The unexpanded organic fine particles 1 were the same as those used in Example 16, and the unexpanded organic fine particles 2 were acrylonitrile / methyl methacrylate copolymer (Expansel Co., Ltd. trade name: 053WU). The fine particles 3 are a copolymer of acrylonitrile and an acrylic acid ester (Matsumoto Yushi Co., Ltd. trade name: Micropearl F-50).

【0047】上記の3つの爆薬組成物の20mmφ,3
0mmφ爆薬包密度は、それぞれ0.20,0.30,
0.45であり、薬温−25℃の30mmφ爆薬包は6
号雷管で起爆することができ、薬温5℃における爆速は
1900m/s,2300m/s,2500m/sであ
った。又、20mmφ爆薬包を内径41.6mmφの長
さ3mの鋼管に前記の爆薬包を3mの長さにあわせて装
薬し、片方から6号雷管で起爆したところ装薬した全て
の爆薬包が完爆し、破壊された鋼管長は3mであった。
更に製造1年後にも上記と同様なテストを行ったところ
同様な性能を示した。
20 mmφ, 3 of the above three explosive compositions
0mmφ explosive packing density is 0.20, 0.30,
It is 0.45, and the 30mmφ explosive package with a drug temperature of -25 ° C is 6
It was possible to detonate with the No. detonator, and the detonation speed at a chemical temperature of 5 ° C was 1900 m / s, 2300 m / s, 2500 m / s. Also, a 20 mmφ explosive charge was charged into a steel pipe with an inner diameter of 41.6 mmφ and a length of 3 m according to the length of 3 m. The length of the steel pipe that was completely destroyed and destroyed was 3 m.
Further, one year after the production, the same test was performed and the same performance was shown.

【0048】実施例20 硝酸アンモニウム1346g、水240g、硝酸ソーダ
80g、硝酸モノメチルアミン174g及び未発泡有機
微小粒子(塩化ビニリデンとアクリロニトリルとメタク
リル酸エステルとの共重合物(松本油脂(株)商品名;
ミクロパールF−30)160gをステンレス容器に入
れ、約80〜90℃油浴中にてゆっくり撹拌を加えなが
ら加熱し、爆薬密度1.38g/cm3の爆薬組成物を
得た。前記の爆薬組成物を予め長手方向の片側を密閉し
た鋼管(JIS G 345232A;内径約36mm
φ、長さ350mm)に充填し、ブースター(6号雷管
を装着した2号機ダイナマイト50g)にて起爆したと
ころ完全に爆轟した。又この時の爆速は5600m/s
であった。更に製造1年後にも上記と同様なテストを行
ったところ同様な性能を示した。
Example 20 Ammonium nitrate 1346 g, water 240 g, sodium nitrate 80 g, monomethylamine nitrate 174 g and unexpanded organic fine particles (copolymer of vinylidene chloride, acrylonitrile and methacrylic acid ester (trade name of Matsumoto Yushi Co., Ltd .;
160 g of Micropearl F-30) was placed in a stainless steel container and heated in an oil bath at about 80 to 90 ° C. with slow stirring to obtain an explosive composition having an explosive density of 1.38 g / cm 3 . A steel pipe (JIS G 345232A; inner diameter of about 36 mm) in which one side in the longitudinal direction is previously sealed with the explosive composition.
(φ, length: 350 mm), and when detonated with a booster (Unit 2 dynamite 50 g equipped with a No. 6 detonator), a complete detonation occurred. The detonation speed at this time is 5600 m / s
Met. Further, one year after the production, the same test was performed and the same performance was shown.

【0049】[0049]

【発明の効果】本発明に係る爆薬組成物は近接する微小
球体の表面及び/又は隙間に実質的に酸化剤と水からな
る相を連続して保持された構造体とすることにより、従
来の含水爆薬組成物の品質保全上に不可欠とされた増粘
剤を実質的に必要とせず、品質を長期に保全できるばか
りでなく、従来の含水爆薬では実用化が困難とされてい
た低比重品の実用化を可能にした。そして、低比重化に
よって爆破の際の騒音、振動を顕著に低減することがで
きる。
EFFECTS OF THE INVENTION The explosive composition according to the present invention has a structure in which a phase substantially consisting of an oxidant and water is continuously retained on the surface and / or gaps of the adjacent microspheres, whereby A low specific gravity product that has been considered difficult to put into practical use with conventional water-containing explosives, as it not only requires a thickener that is essentially indispensable for maintaining the quality of water-containing explosive compositions, but also can maintain the quality for a long time. Enabled the practical application of. Further, by reducing the specific gravity, noise and vibration at the time of blast can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明に係る爆薬組成物の微細構造の顕微鏡
写真を示す。
FIG. 1 shows a micrograph of the microstructure of an explosive composition according to the present invention.

【図2】図1を模式的に示した図面。FIG. 2 is a drawing schematically showing FIG.

【図3】従来技術に係る火薬、組成物を模式的に示した
図面。
FIG. 3 is a drawing schematically showing explosives and compositions according to the prior art.

【図4】同上。FIG. 4 Same as above.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月20日[Submission date] July 20, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】次に、発泡性有機微小粒子を用いて加熱発
泡する方法は特に限定されるものではないが、具体的な
例を挙げると、酸化剤と水と発泡性有機微小粒子をほ
ぼ均一に混合できる程度の温度に加熱して混合溶液とし
たのち、該混合溶液の液滴や飛沫を該発泡性有機微小粒
子が発泡を開始する温度以上に温調した加熱板上又は雰
囲気中に滴下又は噴射して該混合溶液に含まれる発泡性
有機微小粒子を発泡させる方法、酸化剤と水と発泡性
有機微小粒子をほぼ均一に混合できる程度の温度に加熱
して混合溶液としたのち、該混合溶液を該発泡性有機微
小粒子が発泡を開始する温度以上に温調した金属管内に
注入し該金属管内で該混合溶液に含まれる該発泡性有機
微小粒子を発泡させる方法、酸化剤と水と発泡性有機
微小粒子の混合溶液を容器に入れ該発泡性有機微小粒子
が発泡を開始する温度以上の外浴にて該容器を加熱し、
該混合溶液に含まれる該発泡性有機微小粒子を発泡させ
る方法、酸化剤と水と発泡性有機微小粒子を均一に混
合してほぼ均一に混合できる程度の温度に加熱して混合
溶液としたのち、該混合溶液の体積膨張を見込んだ量を
耐熱性のフィルムチューブに充填し、該フィルムチュー
ブ内の空気を除去して密閉したのち該発泡性有機微小粒
子が発泡を開始する温度以上に温調した加温バス又は油
浴中にて該混合溶液に含まれる該発泡性有機微小粒子を
発泡させる方法、酸化剤と水の混合物に熱を加え酸化
剤等の固形塩類の大半を溶解した該発泡性有機微小粒子
が発泡を開始する温度以上の高濃度塩溶液と未発泡の有
機微小粒子とを混合する方法などがある。これらの製造
方法の内、組成物より水が蒸発する場合には、予め水の
蒸発量を予測して目的とする爆薬組成物となるように過
剰の水を加えておくこともできる。また、本発明の爆薬
組成物を製造する方法によれば、温度を調整することに
よって任意に発泡状態を変えることができ、ブースター
によって起爆できるものから雷管1本で起爆できるもの
まで目的に応じた爆薬の設計が可能である。未発泡の有
機微小粒子は加熱することによって、内部の圧力が上昇
し有機高分子の膜が軟化し始める温度くらいから発泡を
開始するもので、体積の比率で約20〜100倍の範囲
に膨張される。ただし、必要以上に加熱して有機微小中
空体が破裂すると、爆薬としての性能を得ることが難し
くなるので、好ましくは過発泡になる前の温度に止める
のが良い。
Next, the method of heat-foaming using the expandable organic fine particles is not particularly limited, but a specific example will be given. The oxidizing agent, water and the expandable organic fine particles are made substantially uniform. After heating to a temperature at which mixing is possible to form a mixed solution, the droplets or droplets of the mixed solution are dropped on a heating plate or in an atmosphere whose temperature is adjusted to a temperature at which the expandable organic microparticles start foaming or A method of spraying to expand the expandable organic fine particles contained in the mixed solution, heating the mixture to a temperature at which the oxidizing agent, water, and the expandable organic fine particles can be mixed almost uniformly to form a mixed solution, and then mixing the mixed solution. A method of injecting a solution into a metal tube whose temperature is controlled to be equal to or higher than the temperature at which the expandable organic microparticles start foaming to foam the expandable organic microparticles contained in the mixed solution in the metal tube, an oxidizing agent and water. Add a mixed solution of expandable organic fine particles. The vessel was heated at a temperature above the outer bath foamable organic microparticles starts foaming put in,
A method of foaming the expandable organic fine particles contained in the mixed solution, heating the oxidizer, water and the expandable organic fine particles uniformly to a temperature at which they can be mixed almost uniformly to form a mixed solution. , A heat-resistant film tube is filled with an amount in which the volume expansion of the mixed solution is expected, and after the air in the film tube is removed and sealed, the temperature is adjusted to a temperature at which the expandable organic fine particles start foaming or higher. A method of foaming the expandable organic fine particles contained in the mixed solution in a heated bath or an oil bath, in which heat is applied to a mixture of an oxidizing agent and water to dissolve most of solid salts such as the oxidizing agent There is a method of mixing a high-concentration salt solution having a temperature equal to or higher than the temperature at which the organic fine organic particles start foaming with the unexpanded organic fine particles. When water evaporates from the composition among these production methods, it is possible to predict the evaporation amount of water in advance and add excess water so as to obtain the desired explosive composition. Further, according to the method for producing the explosive composition of the present invention, the foaming state can be arbitrarily changed by adjusting the temperature, and depending on the purpose, it can be detonated by a booster to one detonated by one detonator. Explosive design is possible. By heating unexpanded organic microparticles, the internal pressure rises and the foaming starts at about the temperature at which the organic polymer film begins to soften, and expands to a range of about 20 to 100 times in volume ratio. To be done. However, if the organic micro-hollow body is ruptured by heating more than necessary, it becomes difficult to obtain the performance as an explosive. Therefore, it is preferable to stop the temperature at the temperature before the over-foaming.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0046[Correction target item name] 0046

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0046】[0046]

【表4】 なお未発泡有機微小粒子1は実施例16で用いたものと
同一であり、未発泡有機微小粒子2はアクリロニトリル
とメチルメタクリレート共重合物(エクスパンセル社商
品名;053WU)であり、未発泡有機微小粒子3はア
クリロニトリルとアクリル酸エステルとの共重合物(松
本油脂(株)商品名;ミクロパールF−50)である。
[Table 4] The unexpanded organic fine particles 1 were the same as those used in Example 16, and the unexpanded organic fine particles 2 were acrylonitrile / methyl methacrylate copolymer (Expansel Co., Ltd. trade name: 053WU). The fine particles 3 are a copolymer of acrylonitrile and an acrylic acid ester (Matsumoto Yushi Co., Ltd. trade name: Micropearl F-50).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化剤と水と有機微小中空体よりなり、
実質的に酸化剤と水からなる相が、有機微小中空体表面
及び/または同中空体間に吸着、保持されてなる爆薬組
成物。
1. An oxidizer, water, and an organic micro hollow body,
An explosive composition in which a phase substantially consisting of an oxidizing agent and water is adsorbed and retained on the surface of the organic micro hollow body and / or between the hollow bodies.
【請求項2】 発泡性有機微小粒子2〜15重量%、水
3〜20重量%、主として酸化剤よりなる残余成分を混
合し、実質的に巻き込み気泡を含まない組成物を調整
し、次いで該組成物を加熱発砲させることよりなる実質
的に酸化剤、水、有機微小中空体からなる該有機微小中
空体を可燃成分とする爆薬組成物の製造方法。
2. An expandable organic fine particle 2 to 15% by weight, water 3 to 20% by weight, and a remaining component mainly consisting of an oxidizing agent are mixed to prepare a composition substantially free from entrained air bubbles, and then the composition is prepared. A method for producing an explosive composition comprising an organic microhollow body, which is substantially composed of an oxidizing agent, water, and an organic microhollow body, as a combustible component, which comprises heating and foaming the composition.
JP16730393A 1992-06-15 1993-06-15 Method for producing explosive composition Expired - Fee Related JP3408837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16730393A JP3408837B2 (en) 1992-06-15 1993-06-15 Method for producing explosive composition

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP4178940A JPH05208885A (en) 1991-06-26 1992-06-15 Slurry explosive composition
JP4-247522 1992-09-17
JP4-178940 1992-09-17
JP24752292 1992-09-17
JP16730393A JP3408837B2 (en) 1992-06-15 1993-06-15 Method for producing explosive composition

Publications (2)

Publication Number Publication Date
JPH06144983A true JPH06144983A (en) 1994-05-24
JP3408837B2 JP3408837B2 (en) 2003-05-19

Family

ID=27322834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16730393A Expired - Fee Related JP3408837B2 (en) 1992-06-15 1993-06-15 Method for producing explosive composition

Country Status (1)

Country Link
JP (1) JP3408837B2 (en)

Also Published As

Publication number Publication date
JP3408837B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
US3770522A (en) Emulsion type explosive composition containing ammonium stearate or alkali metal stearate
CA1217057A (en) Water-in-oil emulsion explosive composition
JPS64360B2 (en)
CA2965705C (en) Explosive composition for soft and wet ground and method of delivery
CA1217343A (en) Water-in-oil emulsion explosive composition
US3249474A (en) Explosive composition containing inorganic salts and coated metal
US5472529A (en) Explosive composition and method for producing the same
JP2673687B2 (en) Cast gunpowder composition and its compounding method
US4693763A (en) Wet loading explosive
US3235425A (en) Slurry-type blasting compositions containing ammonium nitrate and smokeless powder
US3457126A (en) Aqueous explosive composition containing a porous water insoluble synthetic organic polymeric cellular material
JPH06144983A (en) Explosive composition and production thereof
KR100508230B1 (en) Cast explosive composition with microballoons
RU2388735C1 (en) Method of making emulsion explosive material and emulsion explosive material made using said method
RU2226522C2 (en) Gunpowder explosive composition and a method for preparation thereof
KR970004708B1 (en) Explosive composition and production thereof
JP3874739B2 (en) High energy explosives containing particulate additives
JP3342711B2 (en) Explosive composition
JPH08157291A (en) Water-containing explosive composition and its production
JPH0582354B2 (en)
JPH0735500A (en) Control blasting method
JP2001172095A (en) Granular explosive
JPH0454639B2 (en)
JPH0210797B2 (en)
JPH0454638B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030304

LAPS Cancellation because of no payment of annual fees