JPH0735500A - Control blasting method - Google Patents

Control blasting method

Info

Publication number
JPH0735500A
JPH0735500A JP18392193A JP18392193A JPH0735500A JP H0735500 A JPH0735500 A JP H0735500A JP 18392193 A JP18392193 A JP 18392193A JP 18392193 A JP18392193 A JP 18392193A JP H0735500 A JPH0735500 A JP H0735500A
Authority
JP
Japan
Prior art keywords
explosive
water
salt solution
particles
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18392193A
Other languages
Japanese (ja)
Inventor
Takeisa Arita
武功 有田
Shunichi Sato
俊一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP18392193A priority Critical patent/JPH0735500A/en
Publication of JPH0735500A publication Critical patent/JPH0735500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

PURPOSE:To preserve performance quality such as detonatability, boosting properties, etc., for a long period by using high explosive or its cartridge which is formed by adsorbing and holding component containing oxidizer and water as main ingredients and substantially containing no viscous agent on particle surfaces of fine foam and/or between the particles. CONSTITUTION:A mixture of mixed salt solution of 90.5 pts. of ammonium nitrate 9.5 pts. of water and organic powder foam (fine particles containing isobutane in copolymer of vinylidene chloride and acrylonitrile) is dropped to a flat plate heated to 100-150 deg.C. Thus, high explosive obtained by adsorbing and holding the mixed salt solution on particle surfaces of fine organic foam and between the particles generated in the mixture while evaporating to reduce part of the water by 20-60wt.% is obtained. Then, the explosive is pressure-filled in a polyethylene laminated sheet cylinder as an explosive cartridge. Thus, even in the case of a long hole control blasting, interruption of explosion does not occur, and damage of a baserock can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は産業爆薬の消費現場に於
ける安全な制御発破工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a safe control and blasting method for consuming industrial explosives.

【0002】[0002]

【従来の技術】従来より、トンネル周壁や坑内設備の空
間の壁面、さらには掘割りや露天採掘切羽の斜面の保持
を必要とする場合の発破には、制御発破と言われる特殊
な工法が用いられる。この発破工法の目的は、1)壁面
の岩壁にはできるだけ破壊が及ばないようにする、2)
できるだけ平らな壁面を作ることであり、具体的にはラ
インドリリング、プレスプリッティング、クッションプ
ラスティング、及びそれらの変形もしくは組み合わせ等
が挙げられる。(「新・発破ハンドブック」工業火薬協
会編 山海堂)このような制御発破工法の例としては、
特公昭62−45479号公報に示されるように、スラ
リー爆薬の比重を低下させて爆薬のエネルギーをコント
ロールする方法がある。
2. Description of the Related Art Conventionally, a special construction method called control blasting has been used for blasting when it is necessary to hold a peripheral wall of a tunnel, a wall of a space for underground equipment, and even a digging or a slope of an open face mining face. To be The purpose of this blasting method is 1) to prevent the rock wall from being destroyed as much as possible 2)
The goal is to make the wall surface as flat as possible, and specifically, line drilling, press splitting, cushion plasting, and deformation or combination thereof. ("New Blasting Handbook" Industrial Explosives Association, Sankaido) An example of such a controlled blasting method is
As disclosed in Japanese Examined Patent Publication No. 62-45479, there is a method of controlling the energy of the explosive by lowering the specific gravity of the slurry explosive.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、岩盤に
作用する衝撃や圧力をコントロールするため爆薬径を細
くし、穿孔径との隙間を大きくとる場合デカップリング
係数(穿孔径/爆薬径)2.0近傍になると、岩盤に作
用する衝撃や圧力は緩和されるが、先行衝撃波等の影響
が顕著となり伝爆性が阻害され、爆轟が中断し不発残留
が生じるため、消費現場の安全作業を損なうと云った問
題があった。通常42mmの穿孔径に20mm径の爆薬
を用いるとデカップリング係数が2.1となり、爆轟中
断現象が顕著となる。又、42mm穿孔径で30mm径
の通常の爆薬を用いると伝爆性は良くなり、デカップリ
ング係数も1.4となり爆破轟中断は生じにくいが威力
が強すぎて岩盤を傷つけると云った問題が生じる。この
ため、薬径を細くすることなく、岩盤に作用する衝撃や
圧力をコントロールするために、特公昭62−4547
9号公報のように、0.6〜0.9の低比重スラリー爆
薬を用いて爆破エネルギーを減少する方法も試みられた
が、デカップリング係数1.0〜1.5の範囲では岩盤
に作用する衝撃や圧力を十分に緩和するに至らず中程度
の効果しか得られなかった。このため、デカップリング
係数を1.5以上に大きくして岩盤に作用する衝撃や圧
力を緩和する試みもなされたが、爆轟中断現象の発生頻
度が増大すると云った問題を誘発し実用化するに至らな
かった。特に、こうした傾向は発破孔が2m以上に長く
なる近年の制御発破工法では、それに従って爆薬の装薬
長が長くなるために爆轟中断現象の発生頻度が更に増大
すると云った問題があった。一般的な含水爆薬の比重調
整法は発泡体の添加量増減によって行なわれ、比重に下
げる場合は、発泡体の量も多く添加されることになる。
しかし、従来の含水爆薬では岩盤に作用する衝撃や圧力
を十分にコントロールする比重領域である0.6以下ま
でに下げるには、添加する発泡体の量が多くなり、ゲル
構造やエマルジョン構造の緻密性が失われ、起爆性や伝
爆性等の性能が悪化すると云った問題があり、比重0.
6以下の領域において制御発破に使用できる通常の爆薬
径である20〜30φmmでは長期には起爆性や伝爆性
を安定化することは、極めて困難な問題とされていた。
However, when the explosive diameter is made small in order to control the impact and pressure acting on the rock and a large gap is formed between the explosive diameter and the perforation diameter, the decoupling coefficient (perforation diameter / explosive diameter) is 2.0. In the vicinity, the impact and pressure acting on the bedrock will be relieved, but the impact of the preceding shock wave will be significant and the explosive property will be impaired, the detonation will be interrupted and non-residual will occur, impairing safe work at the consumer site. There was a problem called. Usually, when an explosive having a diameter of 20 mm and a hole diameter of 42 mm is used, the decoupling coefficient becomes 2.1, and the detonation interruption phenomenon becomes remarkable. Also, when using a normal explosive with a diameter of 42 mm and a diameter of 30 mm, the explosiveness is improved, the decoupling coefficient is 1.4, and the blasting interruption is unlikely to occur, but it is too powerful and damages the bedrock. Occurs. Therefore, in order to control the impact and pressure acting on the bedrock without reducing the diameter of the drug, the Japanese Patent Publication No. 62-4547 is used.
Although a method of reducing the blast energy by using a low-specific-gravity slurry explosive having a specific gravity of 0.6 to 0.9 has been attempted as disclosed in Japanese Patent Publication No. 9-90, it works on rock in the range of a decoupling coefficient of 1.0 to 1.5. The impact and pressure were not sufficiently relieved and only moderate effects were obtained. For this reason, an attempt was made to increase the decoupling coefficient to 1.5 or more to mitigate the impact and pressure acting on the bedrock, but the problem of increasing the frequency of detonation interruption phenomena was induced and put to practical use. Did not reach In particular, this tendency has a problem that in the recent controlled blasting method in which the blasting hole becomes longer than 2 m, the explosive interruption phenomenon further increases because the length of the explosive charge increases accordingly. A general method for adjusting the specific gravity of a water-containing explosive is performed by increasing / decreasing the amount of foam added, and when reducing the specific gravity, a large amount of foam is also added.
However, in the conventional water-containing explosives, in order to reduce the impact and pressure acting on the rock to a specific gravity region of 0.6 or less, which is sufficient, the amount of foam to be added increases, and the gel structure or emulsion structure of dense However, there is a problem that the performance is deteriorated and the performance such as detonation and transmission is deteriorated.
It has been a very difficult problem to stabilize the explosive property and the explosive property for a long period of time at a normal explosive diameter of 20 to 30 mm which can be used for controlled blasting in a region of 6 or less.

【0004】[0004]

【課題を解決するための手段】本発明者らは、これらの
欠点を解決するために、従来含水爆薬のグァーガム等の
高分子類や油類とその乳化剤等の粘稠化剤で品質を保全
すると云った方法に依らない品質の保全方法を模索し、
鋭意研究を重ねた結果、酸化剤及び水を主成分とする実
質的に粘稠化剤を含まない成分を微小発泡体の粒子表面
及び/又は粒子間に吸着、保持させることにより、従来
含水爆薬の品質保全に不可欠であるが同時に爆轟反応阻
害因子でもあるグァーガム等の高分子類や油類とその乳
化剤等を実質的に必要としないで品質を保全する方法を
確立し、従来含水爆薬では安定した伝爆性を長期に得る
ことが困難とされたデカップリング係数2.0近傍にお
いても安定した起爆性や伝爆性等の性能品質を長期に保
全することを見出し本発明を完成させた。
In order to solve these drawbacks, the inventors of the present invention maintain quality by using polymers such as guar gum, which is a conventional water-containing explosive, and thickeners such as oils and emulsifiers thereof. Then, we are looking for a quality preservation method that does not depend on the said method,
As a result of intensive studies, conventional water-containing explosives are obtained by adsorbing and retaining a component containing an oxidizing agent and water as a main component and substantially not containing a thickening agent on the particle surface of the microfoam and / or between the particles. Established a method to preserve quality without substantially requiring polymers such as guar gum and oils and their emulsifiers, which are indispensable for quality assurance of The present invention has been completed by discovering that stable performance quality such as detonation performance and detonation performance can be maintained for a long time even in the vicinity of a decoupling coefficient of 2.0 where it is difficult to obtain stable detonation performance for a long time. .

【0005】すなわち、本発明は酸化剤及び水を主要成
分とする実質的に粘稠化剤を含まない成分を微小発泡体
の粒子表面及び/又は粒子間に吸着、保持させてなる爆
薬又はその薬包と制御発破工法を組み合わせることによ
り爆轟中断をおこさず、又、岩盤を傷つける事もなく岩
盤を切断できる制御発破工法である。本発明の爆薬は、
酸化剤及び水を主要成分とする高濃度塩溶液を集合する
微小発泡体の粒子表面や粒子間の隙間に吸着、保持する
構造を長期に安定して形成することにより、従来含水爆
薬のゲル構造やエマルジョン構造が有する機能、即ち高
濃度塩溶液から成長しようとする結晶を抑制する働きや
成分の均一分散を長期に安定的に保全する。従って、本
発明の爆薬は、従来の含水爆薬において、性能品質保全
上に不可欠であった増粘剤及びその架橋剤、又は油類及
びその乳化剤を実質的に必要とせずに、性能品質が長期
に保全できるばかりでなく、従来の含水爆薬では、安定
した性能品質の維持が困難であった低比重領域において
も長期に性能品質を保全することができる。こうした本
発明の爆薬の構造は、熱を加えると発泡する有機の未発
泡微粒子と上記の高濃度塩溶液を均一混合して、これを
加熱して上記の未発泡微粒子を発泡することによっても
形成することができ、又、上記の高濃度塩溶液を加熱し
固形塩分を少なくしたのちに、微小発泡体粒子の集合体
と混合する事に依っても形成することができる。
That is, the present invention relates to an explosive or a composition in which a component containing an oxidizing agent and water as a main component and containing substantially no thickening agent is adsorbed and retained on the surface of particles of the fine foam and / or between the particles. This is a controlled blasting method that can cut rock without causing damage to the rock and without damaging the bedrock by combining a medicine package and the controlled blasting method. The explosive of the present invention is
The gel structure of conventional water-containing explosives is formed by stably forming a structure that adsorbs and retains on the surface of particles or in the spaces between particles of a microfoam that collects a high-concentration salt solution containing oxidizer and water as main components. And the function of the emulsion structure, that is, the function of suppressing crystals that grow from a high-concentration salt solution and the uniform dispersion of components are stably maintained for a long period of time. Therefore, the explosive of the present invention does not substantially require a thickener and its cross-linking agent or oils and its emulsifier, which were indispensable for maintaining performance and quality in conventional hydrous explosives, and has a long-term performance quality. It is possible to maintain the performance quality for a long period of time even in the low specific gravity region where it was difficult to maintain stable performance quality with the conventional water-containing explosive. The structure of the explosive of the present invention is also formed by uniformly mixing the organic unfoamed fine particles that foam when heated and the high-concentration salt solution, and heating the mixture to foam the unexpanded fine particles. Alternatively, it can also be formed by heating the above-mentioned high-concentration salt solution to reduce the solid salt content and then mixing with the aggregate of the fine foam particles.

【0006】本発明で使用される微小発泡体としては、
例えば、ガラス、シラス、アルミナ、ケイ酸ナトリウ
ム、真珠岩、黒曜石等から得られる1000ミクロン以
下の無機発泡体やフェノール樹脂、エポキシ樹脂、尿素
樹脂、ポリ塩化ビニリデン、塩化ビニリデン−アクリロ
ニトリル共重合体、塩化ビニリデン−メタクリル酸メチ
ル共重合体等塩化ビニリデン系の共重合体、ポリスチレ
ン、ポリメタクリル酸メチル、ポリ塩化ビニル等ビニル
系重合体等から得られる500ミクロン以下の有機発泡
体がある。好ましくは有機発泡体であり、特に塩化ビニ
リデン−アクリロニトリル共重合体、アクリロニトリル
とメチルメタクリレート共重合物〔エクスパンセル社
製;053WU(登録商標)〕の未発泡微粒子の発泡体
や発泡微粒子〔エクスパンセル社製;エクスパンセル
(登録商標)〕は安定した伝爆性を維持する好適な微小
発泡体である。
The fine foam used in the present invention includes:
For example, glass, shirasu, alumina, sodium silicate, pearlite, obsidian, and other inorganic foams of 1000 microns or less, phenolic resins, epoxy resins, urea resins, polyvinylidene chloride, vinylidene chloride-acrylonitrile copolymer, chloride Vinylidene chloride-based copolymers such as vinylidene-methyl methacrylate copolymers, and organic foams of 500 μm or less obtained from vinyl polymers such as polystyrene, polymethylmethacrylate, and polyvinyl chloride. Organic foams are preferable, and in particular, vinylidene chloride-acrylonitrile copolymer, acrylonitrile / methyl methacrylate copolymer [Expansel Co., Ltd .; 053WU (registered trademark)] unexpanded fine particle foam or expanded fine particles [Expand Cell Exp; Expancel (registered trademark)] is a suitable fine foam that maintains a stable explosive property.

【0007】微小発泡体の粒径は、1000ミクロン以
下であれば十分使用できるが、より好適な粒径は150
ミクロン以下である。又、高濃度塩溶液からの結晶成長
を抑制し、性能を長期に安定するためには、実質的に球
状で球の表面が親水性で滑らかなものが望ましい。本発
明で使用される、微小発泡体は全組成に対して1〜20
重量%が使用され、1重量%未満では、微小発泡体の吸
着、保持する高濃度塩溶液量が少ないために、性能の経
時劣化を助長する。又、20重量%を越えると伝爆性が
低下する。有機微小発泡体は無機微小発泡体に比べて少
量にて比重調整が出来るばかりでなく、可燃剤の機能を
有する優れた比重調整剤である。又、本発明で精緻な制
御発破を実現を可能にする最良の爆薬密度は0.2〜
0.6の領域である。
If the particle size of the fine foam is 1000 microns or less, it can be sufficiently used, but a more preferred particle size is 150.
It is less than micron. Further, in order to suppress the crystal growth from the high-concentration salt solution and stabilize the performance for a long period of time, it is preferable that the spherical surface is substantially spherical and the surface of the sphere is hydrophilic and smooth. The microfoam used in the present invention has a total composition of 1 to 20.
% Is used, and if it is less than 1% by weight, the amount of high-concentration salt solution adsorbed and retained by the microfoam is small, which promotes deterioration of performance over time. On the other hand, if it exceeds 20% by weight, the explosive property is deteriorated. The organic microfoam is not only capable of adjusting the specific gravity with a small amount as compared with the inorganic microfoam, but is also an excellent specific gravity adjusting agent having a function of a combustible agent. In addition, the optimum explosive density that enables precise control blasting in the present invention is 0.2 to
The area is 0.6.

【0008】本発明で使用される酸化剤としては、硝
酸、塩素酸、過塩素酸等無機酸のアンモニウム、アルカ
リ金属、アルカリ土類金属等の塩であり、単独又は組合
せにより構成される。これらのうち、硝酸アンモニウム
や硝酸ソーダは安価で反応性に富む好適な酸化剤であ
る。本発明では酸化剤は全組成に対して45〜95重量
%使用される。45重量%未満では酸素バランスが負と
なって発破後ガスが悪くなり、95重量%を越えると爆
薬成分中に固形成分が過剰となって伝爆性が阻害され
る。好ましくは55〜90重量%である。本発明に使用
される水は全組成に対して、2〜20重量%が使用され
る。2重量%未満では固形成分が多くなり殉爆性能が低
下する。又、20重量%を越えると薬性が軟くなり、取
扱性が悪くなる。
The oxidizing agent used in the present invention is a salt of an inorganic acid such as nitric acid, chloric acid or perchloric acid such as ammonium, alkali metal or alkaline earth metal, which may be used alone or in combination. Among these, ammonium nitrate and sodium nitrate are suitable oxidizing agents that are inexpensive and highly reactive. In the present invention, the oxidizing agent is used in an amount of 45 to 95% by weight based on the total composition. If it is less than 45% by weight, the oxygen balance will be negative and the gas after blasting will be poor, and if it exceeds 95% by weight, the solid component will be excessive in the explosive component and the explosive property will be impaired. It is preferably 55 to 90% by weight. The water used in the present invention is used in an amount of 2 to 20% by weight based on the total composition. If it is less than 2% by weight, the solid content increases and the detonation performance deteriorates. On the other hand, if it exceeds 20% by weight, the medicinal property becomes soft and the handleability becomes poor.

【0009】本発明では鋭感剤は必ずしも必要でない
が、一般的なスラリー爆薬に用いられる硝酸モノメチル
アミン、硝酸モノエチルアミン等の硝酸アルキルアミ
ン、硝酸ヒドラジン又はエチレングリコールモノナイト
レート等が使用できる。これらのうち、硝酸モノメチル
アミンは爆薬の調整が容易で且つ長期に安定した伝爆性
を得るのに特に好ましいものである。又、補助的に用い
られる鋭感剤としては、通常のスラリー爆薬に用いられ
るもので良く、例えば、ペイント級アルミニウム粉を補
助鋭感剤として用いると、更に良好な伝爆性が得られ
る。本発明では必ずしも鋭感剤を必要としないが、安定
した性能を容易に得るための鋭感剤は、全組成に対して
10〜40重量%使用される。10重量%未満では冬期
の低温下での爆轟性が低下し、40重量%を越えると感
度が高くなり、製造時の安全性に支障をきたす。好まし
くは15〜30重量%とするのが望ましい。
In the present invention, a sensitizer is not always necessary, but alkylamine nitrates such as monomethylamine nitrate and monoethylamine nitrate, hydrazine nitrate or ethylene glycol mononitrate, which are used in general slurry explosives, can be used. Of these, monomethylamine nitrate is particularly preferable because it is easy to adjust the explosive and to obtain stable explosive properties for a long period of time. The auxiliary sensitizer used may be one used in ordinary slurry explosives. For example, if paint-grade aluminum powder is used as the auxiliary sensitizer, a better explosive property can be obtained. Although the present invention does not necessarily require a sharpening agent, the sharpening agent for easily obtaining stable performance is used in an amount of 10 to 40% by weight based on the whole composition. If it is less than 10% by weight, the detonation property at low temperatures in winter will be deteriorated, and if it exceeds 40% by weight, the sensitivity will be high and the safety during production will be impaired. It is desirable to set it to 15 to 30% by weight.

【0010】本発明で使用されるその他の成分として、
リン酸エステル等の界面活性剤、尿素等の分解抑制剤及
び石炭粉末、澱粉等の酸素バランス調整剤がある。又、
増粘剤は製造粘度を高め微小中空粒子間に不要の空隙を
作る等で性能低下の原因となるので、実質的に必要とし
ないが何等使用を制限するものではない。本発明の爆薬
の製造方法は、例えば硝安、硝酸ソーダ、水及び必要に
応じて硝酸モノメチルアミン等の硝安の分解を助けるも
のの各々を規定量混合した塩溶液を50〜70℃に加温
混合して塩類固形物の多くを溶解した混合塩溶液を作
る。次いで規定量の微小発泡体に前記混合塩溶液を添加
混合し、微小発泡体の粒子表面及び粒子間に前記混合塩
溶液を吸着、保持(付着)させた構造とする方法、硝
安、水及び必要に応じて硝酸モノメチルアミン等の硝安
の分解を助けるアミン類の各々を規定量混合した混合塩
溶液と発泡性の有機未発泡粒子との混合物を80〜15
0℃に加熱し、前記の有機未発泡粒子を発泡させ、該発
泡体の粒子表面及び粒子間に前記の混合塩溶液を吸着、
保持(付着)させた構造とする方法により爆薬組成物を
得る方法である。加熱発泡により得られる爆薬組成物
は、その発泡条件により組成物に含まれる水分が蒸発等
で減少方向で変動したり、発泡体の一部が破壊され融着
状態を呈することで雷管起爆性や耐水性が改善される優
れた製造方法である。
As other components used in the present invention,
There are surfactants such as phosphates, decomposition inhibitors such as urea, and oxygen balance regulators such as coal powder and starch. or,
The thickener is not necessary in principle, but does not limit its use, because it increases the production viscosity and causes unnecessary voids between the fine hollow particles to cause performance deterioration. The method for producing an explosive of the present invention comprises, for example, heating and mixing a salt solution in which a predetermined amount of ammonium nitrate, sodium nitrate, water and, if necessary, each of ammonium nitrate, such as monomethylamine, which aids the decomposition of ammonium nitrate is mixed at a temperature of 50 to 70 ° C. To produce a mixed salt solution in which most of the salt solids are dissolved. Then, the mixed salt solution is added to and mixed with a specified amount of the microfoam, and the mixed salt solution is adsorbed and retained (adhered) between the surfaces of the microfoam particles and particles, ammonium nitrate, water, and a necessary method. According to the above, a mixture of a mixed salt solution in which a predetermined amount of each of amines such as monomethylamine nitrate which assists decomposition of ammonium nitrate is mixed and expandable organic unexpanded particles are added in an amount of 80 to 15
Heating to 0 ° C. to foam the organic unexpanded particles, and adsorb the mixed salt solution to the particle surfaces of the foam and between the particles,
This is a method for obtaining an explosive composition by a method of holding (adhering) the structure. The explosive composition obtained by heating foaming varies in a decreasing direction due to evaporation of water contained in the composition depending on its foaming condition, or a part of the foam is broken to present a fused state by detonation or detonation. It is an excellent manufacturing method with improved water resistance.

【0011】[0011]

【実施例】次の実施例により本発明を説明する。なお、
裸爆速、雷管起爆性、伝爆長及び鉄管の割れ具合の測定
は下記の方法によって行った。 (裸爆速)予めポリエチレンラミネート紙筒又はナイロ
ン66フィルムチューブに充填した爆薬包(薬径25m
m、薬長300mm)を6号雷管にて起爆し、イオンギ
ャップ法にて爆速を測定した。尚、経時性能評価のため
製造1年後を追加測定した。
The present invention will be described with reference to the following examples. In addition,
The following methods were used to measure the naked explosion velocity, detonator ignitability, blast length, and degree of cracking of the iron pipe. (Nude explosive speed) Explosive package (25m diameter) filled in a polyethylene laminated paper tube or nylon 66 film tube in advance.
m, drug length 300 mm) was detonated with a No. 6 detonator, and the detonation speed was measured by the ion gap method. In addition, one year after the production was additionally measured to evaluate the performance over time.

【0012】(雷管起爆性)予め、ポリエチレンラミネ
ート紙筒又はナイロン66フィルムチューブに充填した
爆薬包(薬径25mm、薬長100mm)を約−5〜−
20℃の冷凍庫に約10時間貯蔵したのち、6号雷管に
て起爆し、爆薬包が完爆する時の薬温を測定した。尚、
経時性能評価のため製造1年後を追加測定した。 (伝爆長及び鉄管の割れ具合)予め、ポリエチレンラミ
ネート紙筒又はナイロン66フィルムチューブに充填し
た爆薬包(薬径25〜30mm、薬長150〜300m
m)を鉄管(管径約28〜68mm、管長300cm)
に装薬(装薬長約300cm)し、装薬した爆薬包の一
端を6号雷管にて起爆し、爆薬包の完爆する長さを伝爆
長として測定し、爆薬包の完爆による鉄管の破壊状態の
良否を鋼管の割れ具合として測定した。尚、経時性能評
価のため製造1年後を追加測定した。
(Detonator detonation property) An explosive bag (25 mm diameter, 100 mm length) charged in advance in a polyethylene laminated paper cylinder or nylon 66 film tube is used for about -5 to-
After storing it in a freezer at 20 ° C. for about 10 hours, it was detonated with a No. 6 detonator, and the temperature of the medicine when the explosive package was completely detonated was measured. still,
One year after production was additionally measured for performance evaluation with time. (Explosion length and degree of cracking of iron pipe) Explosive package filled in polyethylene laminated paper cylinder or nylon 66 film tube in advance (drug diameter 25 to 30 mm, drug length 150 to 300 m)
m) is an iron pipe (tube diameter 28-68 mm, pipe length 300 cm)
Charged (a charge length of about 300 cm), detonated one end of the charged explosive packet with a No. 6 detonator, and measured the length of the explosive packet complete explosion as the transmission length. The quality of the broken state of the steel pipe was measured as the degree of cracking of the steel pipe. In addition, one year after the production was additionally measured to evaluate the performance over time.

【0013】(実施例1〜3)硝安90.5部、水9.
5部の混合塩溶液と表1に示す量の有機未発泡体(塩化
ビニリデンとアクリルニトリルの共重合体にイソブタン
を内包した微粒子)との混合物を、100〜150℃に
加熱した平板の上に滴下することにより、前記の水の一
部を約20〜60重量%蒸発減少させながら前記の混合
物内に生じる有機微小発泡体の粒子表面及び粒子間に前
記の混合塩溶液を吸着・保持させてなる表1記載密度の
爆薬を得た。ついで、前記の爆薬をポリエチレンラミネ
ート紙筒(表1記載の薬包径)に加圧充填して爆薬包と
した。その後、5日経時後の爆薬の裸爆速、雷管起爆
性、伝爆性及び鉄管の割れ具合を測定した。その結果を
表1に示す。
Examples 1 to 3 90.5 parts of ammonium nitrate, water 9.
A mixture of 5 parts of the mixed salt solution and the amount of the organic unfoamed product (fine particles of vinylidene chloride-acrylonitrile copolymer-containing isobutane) shown in Table 1 was placed on a flat plate heated to 100 to 150 ° C. By dripping, the mixed salt solution is adsorbed and retained between the particles on the particle surfaces of the organic microfoam produced in the mixture while evaporating and reducing a part of the water by about 20 to 60% by weight. An explosive having the density shown in Table 1 below was obtained. Then, the above explosive was charged under pressure into a polyethylene laminated paper cylinder (the diameter of the medicine package shown in Table 1) to form an explosive package. Then, after 5 days, the naked explosive velocity of the explosive, the detonation initiation property, the explosive property, and the cracking condition of the iron pipe were measured. The results are shown in Table 1.

【0014】(実施例4〜5)硝安45部、硝酸モノメ
チルアミンナイトレート30部、水9部、硝酸ナトリウ
ム16部の混合塩溶液と表1に示す量の有機未発泡体
(塩化ビニリデンとアクリルニトリルの共重合体にイソ
ブタンを内包した微粒子)との混合物をナイロン66フ
ィルムチューブの薬包(表1記載の薬径)に堆積膨張を
見込んだ量を充填し、容器空間部の空気を実質的に抜気
し、該薬包を80〜150℃にて加熱して、前記の混合
塩溶液を発泡した粒子の表面や粒子間の隙間に吸着・保
持させる。これにより、薬包内部の爆薬表面に有機樹脂
層を形成した表1記載密度の爆薬を得る。その後、5日
経時後の爆薬の裸爆速、雷管起爆性、伝爆性及び鉄管の
割れ具合を測定した。その結果を表1に示す。
(Examples 4 to 5) A mixed salt solution of 45 parts of ammonium nitrate, 30 parts of monomethylamine nitrate nitrate, 9 parts of water and 16 parts of sodium nitrate and the organic unfoamed materials (vinylidene chloride and acryl) in the amounts shown in Table 1 were used. A mixture of a nitrile copolymer and fine particles in which isobutane was included) was filled in a medicine package of nylon 66 film tube (the diameter of the medicine shown in Table 1) to allow for the expansion, and the air in the container space was substantially filled. After degassing, the medicine package is heated at 80 to 150 ° C. to adsorb and hold the mixed salt solution on the surface of foamed particles or in the spaces between particles. As a result, an explosive having the density shown in Table 1 in which the organic resin layer is formed on the surface of the explosive inside the medicine package is obtained. Then, after 5 days, the naked explosive velocity of the explosive, the detonation initiation property, the explosive property, and the cracking condition of the iron pipe were measured. The results are shown in Table 1.

【0015】(実施例6)硝安45部、硝酸モノメチル
アミンナイトレート30部、水9部、硝酸ナトリウム1
6部の混合塩溶液と表1に示す量の有機未発泡体(塩化
ビニリデンとアクリルニトリルの共重合体にイソブタン
を内包した微粒子)との混合物を、100〜150℃に
加熱した平板の上に滴下することにより、前記の水の一
部を約20〜60重量%蒸発減少させながら前記の混合
物内に生じる有機微小発泡体の粒子表面及び粒子間に前
記の混合塩溶液を吸着・保持させてなる表1記載密度の
爆薬を得た。ついで、前記の爆薬をポリエチレンラミネ
ート紙筒(表1記載の薬包径)に加圧充填して爆薬包と
した。その後、5日経時後の爆薬の裸爆速、雷管起爆
性、伝爆性及び鉄管の割れ具合を測定した。その結果を
表1に示す。
(Example 6) Ammonium nitrate 45 parts, monomethylamine nitrate nitrate 30 parts, water 9 parts, sodium nitrate 1
A mixture of 6 parts of the mixed salt solution and the amount of the organic unfoamed product (fine particles of vinylidene chloride-acrylonitrile copolymer-containing isobutane) shown in Table 1 was placed on a flat plate heated to 100 to 150 ° C. By dripping, the mixed salt solution is adsorbed and retained between the particles on the particle surfaces of the organic microfoam produced in the mixture while evaporating and reducing a part of the water by about 20 to 60% by weight. An explosive having the density shown in Table 1 below was obtained. Then, the above explosive was charged under pressure into a polyethylene laminated paper cylinder (the diameter of the medicine package shown in Table 1) to form an explosive package. Then, after 5 days, the naked explosive velocity of the explosive, the detonation initiation property, the explosive property, and the cracking condition of the iron pipe were measured. The results are shown in Table 1.

【0016】(実施例7〜8)硝安45部、硝酸モノメ
チルアミンナイトレート30部、水9部、硝酸ナトリウ
ム16部の混合塩溶液と表1に示す量の有機微小発泡体
〔エクスパンセル551DE(登録商標);エクスパン
セル社製〕を混合し、前記の混合塩溶液を前記有機微小
発泡体の粒子表面及び粒子間に吸着・保持させてなる表
1記載密度の爆薬を得た。ついで前記の爆薬をポリエチ
レンラミネート紙筒(表1記載の薬包径)に加圧充填し
爆薬包とした。その後、5日経時後の爆薬の裸爆速、雷
管起爆性、伝爆性及び鉄管の割れ具合を測定した。その
結果を表1に示す。
(Examples 7 to 8) A mixed salt solution of 45 parts of ammonium nitrate, 30 parts of monomethylamine nitrate nitrate, 9 parts of water, and 16 parts of sodium nitrate and the organic microfoam in the amount shown in Table 1 [Expansel 551DE (Registered trademark; manufactured by Expancel Co., Ltd.) was mixed to obtain an explosive having a density shown in Table 1 obtained by adsorbing and retaining the mixed salt solution on the particle surfaces of the organic microfoam and between the particles. Then, the above explosive was charged under pressure into a polyethylene laminated paper cylinder (the diameter of the medicine package shown in Table 1) to form an explosive package. Then, after 5 days, the naked explosive velocity of the explosive, the detonation initiation property, the explosive property, and the cracking condition of the iron pipe were measured. The results are shown in Table 1.

【0017】(実施例9)硝安45部、硝酸モノメチル
アミンナイトレート30部、水9部、硝酸ナトリウム1
6部の混合塩溶液と表1に示す量の有機微小発泡体〔エ
クスパンセル551DE(登録商標);エクスパンセル
社製〕と微小発泡体〔スコッチライト(登録商標);B
28/750;スリーエム社製〕を混合し、前記の混合
塩溶液を前記微小発泡体の粒子表面及び粒子間に吸着・
保持させてなる表1記載密度の爆薬を得た。ついで前記
の爆薬をポリエチレンラミネート紙筒(表1記載の薬包
径)に加圧充填し爆薬包とした。その後、5日経時後の
爆薬の裸爆速、雷管起爆性、伝爆性及び鉄管の割れ具合
を測定した。その結果を表1に示す。
Example 9 45 parts of ammonium nitrate, 30 parts of monomethylamine nitrate nitrate, 9 parts of water, 1 part of sodium nitrate
6 parts of the mixed salt solution and the amount of organic microfoam [Expansel 551DE (registered trademark); manufactured by Expancel Co.] and microfoam [Scotchlite (registered trademark); B
28/750; manufactured by 3M Co., Ltd.], and the mixed salt solution is adsorbed on the surface of particles of the fine foam and between the particles.
An explosive having a density described in Table 1 was obtained. Then, the above explosive was charged under pressure into a polyethylene laminated paper cylinder (the diameter of the medicine package shown in Table 1) to form an explosive package. Then, after 5 days, the naked explosive velocity of the explosive, the detonation initiation property, the explosive property, and the cracking condition of the iron pipe were measured. The results are shown in Table 1.

【0018】(実施例10)硝安45部、硝酸モノメチ
ルアミンナイトレート30部、水9部、硝酸ナトリウム
16部の混合塩溶液と表1に示す量の有機微小発泡体
〔エクスパンセル551DE(登録商標);エクスパン
セル社製〕と無機微小発泡体〔ウィンライト(登録商
標);MSB5011;イヂチ化成製〕を混合し、前記
混合溶液を前記微小発泡体の粒子表面及び粒子間に吸着
・保持させてなる表1記載密度の爆薬を得た。ついで前
記の爆薬をポリエチレンラミネート紙筒(表1記載の薬
包径)に加圧充填し爆薬包とした。その後、5日経時後
の爆薬の裸爆速、雷管起爆性、伝爆性及び鉄管の割れ具
合を測定した。その結果を表1に示す。
Example 10 A mixed salt solution of 45 parts of ammonium nitrate, 30 parts of monomethylamine nitrate nitrate, 9 parts of water and 16 parts of sodium nitrate and the amount of organic microfoam shown in Table 1 [Expansel 551DE (registered) Trademark); manufactured by Expancel Co., Ltd.] and inorganic fine foam [Winlite (registered trademark); MSB5011; manufactured by Idiji Kasei] are mixed, and the mixed solution is adsorbed and retained between the particle surfaces of the fine foam and between the particles. Thus obtained explosive having a density shown in Table 1 was obtained. Then, the above explosive was charged under pressure into a polyethylene laminated paper cylinder (the diameter of the medicine package shown in Table 1) to form an explosive package. Then, after 5 days, the naked explosive velocity of the explosive, the detonation initiation property, the explosive property, and the cracking condition of the iron pipe were measured. The results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】比較例を以下に示す。 (比較例1〜3)硝安50部、硝酸モノメチルアミンナ
イトレート28部、水12部の高濃度塩溶液をつくる。
ついで前記の高濃度塩溶液へ表2に示す量の有機微小発
泡体〔エクスパン551DE(登録商標);エクスパン
セル社製〕と無機微小発泡体〔スコッチライト(登録商
標);B28/750;スリーエム社製〕を添加混合し
たのち、グァーガム1部と硝酸ナトリウム7部を添加し
均一混合する。ついでアルミ粉2部を添加し、更に微量
の架橋剤〔ライオックス;三晶(株)〕を均一混合して
表2記載密度のスラリー爆薬を得た。ついで前記のスラ
リー爆薬をポリエチレンラミネート紙筒(表2記載の薬
包径)に加圧充填し爆薬包とした。その後、5日経時後
のスラリー爆薬の裸爆速、雷管起爆性、伝爆性及び鉄管
の割れ具合を測定した。その結果を表1に示す。
A comparative example is shown below. (Comparative Examples 1 to 3) A high-concentration salt solution containing 50 parts of ammonium nitrate, 28 parts of monomethylamine nitrate nitrate, and 12 parts of water is prepared.
Then, to the above-mentioned high-concentration salt solution, the amount of organic microfoam [Expan 551DE (registered trademark); manufactured by Expancel Co.] and inorganic microfoam [Scotchlite (registered trademark); B28 / 750; [Manufactured by the company] is added and mixed, and then 1 part of guar gum and 7 parts of sodium nitrate are added and uniformly mixed. Then, 2 parts of aluminum powder was added, and a trace amount of a cross-linking agent [Riox; Sansho Co., Ltd.] was uniformly mixed to obtain a slurry explosive having a density shown in Table 2. Then, the above-mentioned slurry explosive was charged under pressure into a polyethylene laminated paper cylinder (the diameter of the medicine package shown in Table 2) to form an explosive package. Then, after 5 days, the bare explosion speed, detonator detonation property, detonation property and cracking degree of the iron pipe of the slurry explosive were measured. The results are shown in Table 1.

【0021】(比較例4〜6)硝安78.3部、硝酸ナ
トリウム4.7部を水11.6部に加え、90℃で完全
に溶解して高濃度塩溶液を得る。一方、炭素質燃料〔ポ
リワックス(登録商標);655;トーヨー・ペトロラ
イト社製〕2.7部と乳化剤としてソルビタンモノオレ
ート2.7部とを90℃で溶融混合させ可燃剤の混合物
を得る。これに前記高濃度塩溶液をゆっくり添加して、
90℃で加温下で撹拌乳化を行なった。乳化後更に高速
撹拌してエマルジョンを得た。ついで表2に示す量の無
機微小発泡体〔スコッチライト(登録商標)B28/7
50;スリーエム社製〕と前記エマルジョンとを70〜
80℃で混合混和してなる表2記載密度のエマルジョン
爆薬を得た。ついで前記のエマルジョン爆薬をポリエチ
レンラミネート紙筒(表2記載の薬包径)に加圧充填し
爆薬包とした。その後、5日経時後のエマルジョン爆薬
の裸爆速、雷管起爆性、伝爆性及び鉄管の割れ具合を測
定した。その結果を表2に示す。
Comparative Examples 4 to 6 78.3 parts of ammonium nitrate and 4.7 parts of sodium nitrate were added to 11.6 parts of water and completely dissolved at 90 ° C. to obtain a high concentration salt solution. On the other hand, 2.7 parts of carbonaceous fuel [Polywax (registered trademark); 655; manufactured by Toyo Petrolite Co., Ltd.] and 2.7 parts of sorbitan monooleate as an emulsifier are melt-mixed at 90 ° C. to obtain a mixture of combustible agents. . Slowly add the high-concentration salt solution to this,
Stirring emulsification was performed under heating at 90 ° C. After emulsification, the mixture was further stirred at high speed to obtain an emulsion. Then, the amount of the inorganic micro-foam shown in Table 2 [Scotchlite (registered trademark) B28 / 7]
50; manufactured by 3M Co., Ltd.] and the emulsion are 70-
An emulsion explosive having a density shown in Table 2 was obtained by mixing and mixing at 80 ° C. Then, the above-mentioned emulsion explosive was pressure-filled into a polyethylene laminate paper cylinder (the diameter of the medicine package shown in Table 2) to give an explosive package. After that, the naked explosion speed, detonator detonation property, detonation property, and cracking degree of the iron pipe of the emulsion explosive after 5 days were measured. The results are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】本発明の制御発破工法は、従来の制御発
破とは異なり長孔制御発破においても爆轟中断を起こさ
ず、又、岩盤を傷つけることが少ないために発破現場の
作業効率や安全性が著しく改善される。
EFFECTS OF THE INVENTION The controlled blasting method of the present invention, unlike conventional controlled blasting, does not cause detonation interruption even in long hole controlled blasting, and since it does not damage the bedrock, it is efficient and safe at the blasting site. Sex is significantly improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化剤及び水を主要成分とする実質的に
粘稠化剤を含まない成分を微小発泡体の粒子表面及び/
又は粒子間に吸着、保持させてなる爆薬又はその薬包を
使用することを特徴とする制御発破工法。
1. A microfoam particle surface and / or a component containing an oxidizing agent and water as a main component and containing substantially no thickening agent.
Alternatively, a controlled blasting method characterized by using an explosive or a sachet thereof that is adsorbed and held between particles.
JP18392193A 1993-07-26 1993-07-26 Control blasting method Pending JPH0735500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18392193A JPH0735500A (en) 1993-07-26 1993-07-26 Control blasting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18392193A JPH0735500A (en) 1993-07-26 1993-07-26 Control blasting method

Publications (1)

Publication Number Publication Date
JPH0735500A true JPH0735500A (en) 1995-02-07

Family

ID=16144147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18392193A Pending JPH0735500A (en) 1993-07-26 1993-07-26 Control blasting method

Country Status (1)

Country Link
JP (1) JPH0735500A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707193B2 (en) 2000-09-11 2004-03-16 Mabuchi Motor Co., Ltd. Miniature motor with vibrator secured to an irregular portion of the motor shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707193B2 (en) 2000-09-11 2004-03-16 Mabuchi Motor Co., Ltd. Miniature motor with vibrator secured to an irregular portion of the motor shaft

Similar Documents

Publication Publication Date Title
US4543137A (en) Water-in-oil emulsion explosive composition
CA1217057A (en) Water-in-oil emulsion explosive composition
CA1217343A (en) Water-in-oil emulsion explosive composition
US10065899B1 (en) Packaged granulated explosive emulsion
WO2013013272A1 (en) Ιμproved explosive composition
US5472529A (en) Explosive composition and method for producing the same
CA1271335A (en) Water-in-oil emulsion explosive composition
EP0970934A1 (en) Method for forming an emulsion explosive composition
JPH0735500A (en) Control blasting method
JPH0684273B2 (en) Water-in-oil emulsion explosive composition
CA1303858C (en) Foamed nitroparaffin explosive composition
AU738783B2 (en) Cast explosive composition with microballoons
KR100872826B1 (en) Marking method of low shock explosive
KR100449163B1 (en) Emulsion expolsive with improved power
RU2388735C1 (en) Method of making emulsion explosive material and emulsion explosive material made using said method
EP0607449B1 (en) Explosive composition and production thereof
JPH08157291A (en) Water-containing explosive composition and its production
JP4570218B2 (en) Water-in-oil emulsion explosive
JPH08109091A (en) Hydrous donating fuse and its production
JPH06144983A (en) Explosive composition and production thereof
JP2003321292A (en) High energy explosive containing cast particle
JP2004292254A (en) Water-in-oil type emulsion explosive
JPH05339089A (en) Explosive composition
JP2004238255A (en) Explosive
JPH0454639B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031209