JP2008108983A - Vapor phase growth apparatus and vapor phase growth method - Google Patents

Vapor phase growth apparatus and vapor phase growth method Download PDF

Info

Publication number
JP2008108983A
JP2008108983A JP2006291722A JP2006291722A JP2008108983A JP 2008108983 A JP2008108983 A JP 2008108983A JP 2006291722 A JP2006291722 A JP 2006291722A JP 2006291722 A JP2006291722 A JP 2006291722A JP 2008108983 A JP2008108983 A JP 2008108983A
Authority
JP
Japan
Prior art keywords
vapor phase
phase growth
chamber
heater
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006291722A
Other languages
Japanese (ja)
Other versions
JP5010235B2 (en
Inventor
Kunihiko Suzuki
邦彦 鈴木
Seiichi Nakazawa
誠一 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2006291722A priority Critical patent/JP5010235B2/en
Publication of JP2008108983A publication Critical patent/JP2008108983A/en
Application granted granted Critical
Publication of JP5010235B2 publication Critical patent/JP5010235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor phase growth apparatus which can suppress deposition of a by-product generated from a process gas on an inner wall of a chamber after a vapor phase growth reaction, and also a vapor phase growth method. <P>SOLUTION: The vapor phase growth apparatus comprises a heater 113 for heating a low temperature part of a protection cover 102 provided within a chamber 101 as in the vicinity of an exhaust part 105, a temperature detection means 114 for detecting the temperature of the protection cover 102 or the heater 113, and a controller 115 for controlling the output of the heater 113. Cooling of a process gas after a vapor phase growth reaction causes a by-product to be suppressed from being deposited on an inner wall of the chamber 101. With it, a frequency of maintenance of disassembling the chamber 101 and removing the deposition therefrom and so on can be reduced and the process conditions upon the vapor phase growth reaction can be stabilized. Consequently, there can be provided a novel vapor phase growth method and apparatus which can manufacture a high quality of wafer with a high operating efficiency. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は気相成長(CVD:Chemical Vapor Deposition.この中にVPE:Vapor Phase Epitaxial growsを含む。)装置および方法に係り、特に半導体ウェハを回転させながら成膜する気相成長装置および気相成長方法に関する。   The present invention relates to a vapor phase growth (CVD: Chemical Vapor Deposition, including VPE: Vapor Phase Epitaxial grows), and more particularly, to a vapor phase growth apparatus and a vapor phase growth method for forming a film while rotating a semiconductor wafer. Regarding the method.

図5は、従来の気相成長装置の構造の断面図であり、101はチャンバ、102はチャンバ内壁を被覆する保護カバー、103a、bはチャンバを冷却する冷却水の流路、104はプロセスガスを導入する供給部、105は反応後のプロセスガスの排気部、106は気相成長を行うウェハ、107はウェハ106を支持するサセプタ、108は図示しない支持部に支持されウェハ106を加熱するヒータ、109はチャンバ101の上下部を連結するフランジ部、110はフランジ部109をシールするパッキン、111は排気部105と配管を連結するフランジ部、112はフランジ部111をシールするパッキンである。   FIG. 5 is a cross-sectional view of the structure of a conventional vapor phase growth apparatus, wherein 101 is a chamber, 102 is a protective cover that covers the inner wall of the chamber, 103a and b are cooling water flow paths for cooling the chamber, and 104 is a process gas. 105 is a process gas exhaust unit after reaction, 106 is a wafer for vapor phase growth, 107 is a susceptor that supports the wafer 106, and 108 is a heater that is supported by a support unit (not shown) and heats the wafer 106. 109 is a flange portion for connecting the upper and lower portions of the chamber 101, 110 is a packing for sealing the flange portion 109, 111 is a flange portion for connecting the exhaust portion 105 and the pipe, and 112 is a packing for sealing the flange portion 111.

上述の従来の一般的な気相成長装置において、チャンバ101内でウェハ106を支持し、回転機構(図示せず)を設けたサセプタ107により回転させながら、ヒータ108により1000℃以上に加熱する。この状態でチャンバ101内に反応性ガスを含むプロセスガスを供給部104から供給することでウェハ106表面に結晶膜を形成する。その際気相成長反応に使用されたもの以外のプロセスガスは、チャンバ101下部に設けられた排気部105から逐次排気されている。このとき、保護カバー102のうち、排気部105付近の部分はウェハ106やヒータ108などのチャンバ101内の高温部から距離が離れており、なおかつチャンバ101下部に位置しているため高温部からの熱の輻射を受けにくく、高温にはなりにくい。   In the conventional general vapor phase growth apparatus described above, the wafer 106 is supported in the chamber 101 and heated to 1000 ° C. or more by the heater 108 while being rotated by the susceptor 107 provided with a rotation mechanism (not shown). In this state, a process gas including a reactive gas is supplied from the supply unit 104 into the chamber 101 to form a crystal film on the surface of the wafer 106. At this time, process gases other than those used in the vapor phase growth reaction are sequentially exhausted from an exhaust unit 105 provided in the lower portion of the chamber 101. At this time, a portion of the protective cover 102 in the vicinity of the exhaust portion 105 is away from the high temperature portion in the chamber 101 such as the wafer 106 and the heater 108 and is located at the lower portion of the chamber 101, so Hard to receive heat radiation and high temperature.

また、チャンバ101のフランジ部109と、排気部105のフランジ部111にはシールのためにパッキン110、112を用いている。パッキン110、112はフッ素ゴム製で、耐熱温度は約300℃である。そのため、チャンバ101外周にはパッキン110、112を熱で劣化させないための冷却水を循環させる流路103a、bを設けている。冷却水はパッキン110、112をチャンバ101を介して冷却するが、同時にチャンバ101本体や保護カバー102も冷却してしまうため、チャンバ101内の排気部105の近傍には低温となる部分ができる。   Further, packings 110 and 112 are used for sealing the flange part 109 of the chamber 101 and the flange part 111 of the exhaust part 105. The packings 110 and 112 are made of fluoro rubber, and the heat resistant temperature is about 300 ° C. Therefore, flow paths 103a and 103b for circulating cooling water for preventing the packings 110 and 112 from being deteriorated by heat are provided on the outer periphery of the chamber 101. Although the cooling water cools the packings 110 and 112 through the chamber 101, the chamber 101 main body and the protective cover 102 are also cooled at the same time, so that a portion having a low temperature is formed in the vicinity of the exhaust part 105 in the chamber 101.

ここで問題になるのは、気相成長反応にジクロロシラン(SiHCl)を反応性ガスとして用いたときの反応後のプロセスガスが低温の環境に晒されると副生成物の反応性ポリシロキサン(化学式SixH2x+2-yCl但しy≦2x+2)が発生し堆積することである。副生成物が排気部付近に堆積することにより、気相成長反応に必要なプロセスガスの流量や流速が変化したり、排気部105の排気圧力が上昇したりといった、高品質のウェハの生産に必要なプロセス条件を満たせなくなる様々な問題が発生する。 The problem here is that if the process gas after the reaction when dichlorosilane (SiH 2 Cl 2 ) is used as the reactive gas in the vapor phase growth reaction is exposed to a low temperature environment, the reactive polycrystal of the byproduct is present. Siloxane (chemical formula Si x H 2x + 2-y Cl y where y ≦ 2x + 2) is generated and deposited. For the production of high quality wafers such as the flow rate and flow rate of the process gas required for the vapor phase growth reaction and the exhaust pressure of the exhaust unit 105 increase by depositing by-products near the exhaust unit. Various problems occur that make it impossible to meet the required process conditions.

また、堆積物の発生でチャンバ101内のプロセス条件の設定が困難になったときにはフランジ部109をはずすことによってチャンバ101を分解し、内部の洗浄などのメンテナンスを、稼動する条件によって左右されるが、概ね1ヶ月に1回程度の頻度で行わなければならなくなる。また、このメンテナンス作業を全て完了した後に元のとおりに装置を組み立て直したとしても、生産されるウェハの結晶の膜厚や純度などの品質をメンテナンス作業以前の水準に戻すには、シーズニング(枯らし運転)の時間が必要になる。シーズニングとは、チャンバ内を生産稼動に耐えられる状態になるまで水分や金属汚染をなくすため、ダミーウェハを用いて成膜動作を繰り返す運転のことをいう。
上記のメンテナンス作業の頻度が高いと、これによる気相成長装置の稼働率が低下する。
このように、従来の気相成長装置には、チャンバ101内部への副生成物の堆積によってプロセス条件を満たせなくなり製造するウェハの品質維持が阻害される、チャンバ101内部のメンテナンスおよびメンテナンス後の装置の管理の煩雑さが増す、装置の稼働率が低下するといった問題があった。
Further, when it becomes difficult to set process conditions in the chamber 101 due to the generation of deposits, the chamber 101 is disassembled by removing the flange portion 109, and maintenance such as internal cleaning depends on operating conditions. Approximately once a month. In addition, even if the device is reassembled as it was after completing this maintenance work, seasoning (withering) is necessary to return the quality of the produced wafer crystals, such as the film thickness and purity, to the level before the maintenance work. Driving) time is required. Seasoning refers to an operation of repeating a film forming operation using a dummy wafer in order to eliminate moisture and metal contamination until the chamber is ready for production operation.
When the frequency of the maintenance work is high, the operating rate of the vapor phase growth apparatus due to this decreases.
As described above, in the conventional vapor phase growth apparatus, the maintenance inside the chamber 101 and the apparatus after the maintenance, in which the maintenance of the quality of the wafer to be manufactured is hindered because the by-product deposition inside the chamber 101 cannot satisfy the process conditions. There is a problem that the management of the system increases, and the operating rate of the apparatus decreases.

上述の気相成長装置において副生成物の堆積に起因して、チャンバ101内のプロセス条件が満たされない状態に常に陥らないことが望まれる。   In the above-described vapor phase growth apparatus, it is desired that the process conditions in the chamber 101 are not always satisfied due to deposition of by-products.

また、たとえば特開2001‐226774号公報(特許文献1)のように、チャンバの排気部に接続され、副生成物が堆積しやすい部分である排気管内部の温度制御を行うことや、不活性ガス(たとえばN)の流層を排気管内筒表面付近に作り、反応後のプロセスガスを排気管内筒表面に晒さないことで副生成物の堆積を抑制することによって排気を円滑にしようとすることは一般的である。 Further, for example, as disclosed in Japanese Patent Application Laid-Open No. 2001-226774 (Patent Document 1), the temperature inside the exhaust pipe, which is connected to the exhaust part of the chamber and is easy to deposit by-products, is controlled or inactive. A flow layer of gas (for example, N 2 ) is created near the surface of the inner tube of the exhaust pipe, and the process gas after the reaction is not exposed to the surface of the inner tube of the exhaust pipe so as to suppress the accumulation of by-products and thereby try to smooth the exhaust. That is common.

しかしながら、排気管以後の排気経路を構成する部分をどれだけ清浄にしようとも、チャンバ内での副生成物の堆積は特許文献1の方法においても同様に発生してしまう問題であり、当然チャンバ内に堆積した副生成物を除去するメンテナンスは行わなければならない。
特開2001‐226774
However, no matter how much the portion of the exhaust path after the exhaust pipe is cleaned, deposition of by-products in the chamber is a problem that occurs in the method of Patent Document 1 as well. Maintenance must be performed to remove by-products deposited on the substrate.
JP 2001-226774 A

上述の如く、従来の気相成長装置のようにチャンバ外部の排気管への副生成物の発生を抑制することだけではチャンバ内部に副生成物が堆積するためチャンバ内のプロセス条件を満たせない状態に陥り、装置の稼働率が低下する。よって、製造されるウェハの品質や生産性に影響を及ぼしてしまうという問題点は解決されていない。
本発明は、上述した点に対処して、チャンバ内における気相成長中の副生成物の発生を抑制することで気相成長装置の稼働率を向上させ、気相成長反応時のプロセス条件を安定化するようにして高品質のウェハを高い稼働率で製造できる新規の気相成長装置および気相成長方法を提供するものである。
As described above, as in the conventional vapor phase growth apparatus, by suppressing the generation of by-products in the exhaust pipe outside the chamber, the by-products are deposited inside the chamber, so that the process conditions in the chamber cannot be satisfied. Falls into the system, and the operating rate of the apparatus decreases. Therefore, the problem of affecting the quality and productivity of the manufactured wafer has not been solved.
The present invention addresses the above-mentioned points, improves the operating rate of the vapor phase growth apparatus by suppressing the generation of by-products during vapor phase growth in the chamber, and sets the process conditions during the vapor phase growth reaction. A novel vapor phase growth apparatus and vapor phase growth method capable of manufacturing a high-quality wafer at a high operating rate in a stable manner are provided.

本発明の気相成長装置の特徴は、プロセスガスを導入する供給部と反応後のプロセスガスを排気する排気部を有するチャンバと、チャンバの内壁を被覆する保護カバーと、保護カバーを設定した温度に加熱する第1のヒータと、第1のヒータあるいは保護カバーの温度を検出する温度検出手段と、チャンバの外周に設けられた冷却手段と、チャンバ内に設けられ、気相成長を行うウェハを支持する回転自在なサセプタと、ウェハを加熱する第2のヒータとを備え、第1のヒータおよび温度検出手段は保護カバーの排気部近傍に設けられていることにある。   The feature of the vapor phase growth apparatus of the present invention is that a chamber having a supply part for introducing a process gas and an exhaust part for exhausting the process gas after reaction, a protective cover for covering the inner wall of the chamber, and a temperature at which the protective cover is set A first heater for heating the substrate, a temperature detecting means for detecting the temperature of the first heater or the protective cover, a cooling means provided on the outer periphery of the chamber, and a wafer for vapor phase growth provided in the chamber. A rotatable susceptor for supporting and a second heater for heating the wafer are provided, and the first heater and the temperature detecting means are provided in the vicinity of the exhaust portion of the protective cover.

また、本発明において第1のヒータは、保護カバーに覆われていることを特徴とする。   In the present invention, the first heater is covered with a protective cover.

さらに、本発明において第1のヒータは、温度検出手段により検出された温度に基づき前記ヒータの出力を制御するコントローラが接続されることを特徴とする。   Further, in the present invention, the first heater is connected to a controller for controlling the output of the heater based on the temperature detected by the temperature detecting means.

さらに、本発明において温度検出手段は、保護カバーに覆われていることを特徴とする。   Furthermore, in the present invention, the temperature detecting means is covered with a protective cover.

また、本発明の方法の特徴は、チャンバを冷却しながら、チャンバ内においてプロセスガス雰囲気下でウェハを加熱処理することでウェハ表面に結晶膜を形成し、反応後のプロセスガスをチャンバ内から排気する気相成長方法において、
チャンバ内壁を被覆する保護カバーに覆われた温度検出手段がヒータあるいは保護カバーの温度を検出する第1の工程と、
ヒータに接続されたコントローラが温度検出手段の検出した温度情報をもとにヒータの出力を制御して、保護カバーが設定した温度になるように制御する第2の工程と、
を備えたことにある。
In addition, the method of the present invention is characterized by forming a crystal film on the wafer surface by heat-treating the wafer in a process gas atmosphere in the chamber while cooling the chamber, and exhausting the reacted process gas from the chamber. In the vapor phase growth method,
A first step in which temperature detection means covered with a protective cover covering the inner wall of the chamber detects the temperature of the heater or the protective cover;
A second step in which a controller connected to the heater controls the output of the heater based on the temperature information detected by the temperature detection means so that the temperature of the protective cover is set;
It is in having.

本発明によれば、チャンバ内における気相成長中の副生成物の発生を抑制することで気相成長装置の稼働率の向上と、気相成長反応時のプロセス条件を安定化するようにして高品質のウェハを高い稼働率で製造できる新規の気相成長装置および気相成長方法を提供することが可能である。   According to the present invention, by suppressing the generation of by-products during vapor phase growth in the chamber, the operating rate of the vapor phase growth apparatus is improved and the process conditions during the vapor phase growth reaction are stabilized. It is possible to provide a novel vapor phase growth apparatus and vapor phase growth method capable of producing a high-quality wafer at a high operation rate.

以下、本発明の実施をするための最良の形態について、図面を参照して詳細に説明する。 The best mode for carrying out the present invention will be described below in detail with reference to the drawings.

(実施形態)
この実施形態の気相成長装置および気相成長方法を、図1ないし図3に基づいて順を追って説明する。また、従来例の図5と同一部分は同一符号を付して重複する説明については省略する。
(Embodiment)
The vapor phase growth apparatus and the vapor phase growth method of this embodiment will be described in order with reference to FIGS. Further, the same parts as those of the conventional example shown in FIG.

チャンバ101に供給するプロセスガスの供給流量の設定は、たとえばキャリアガス:Hを20〜100SLM(Standard Liter per Minutes・標準リットル毎分)、反応性ガス:ジクロロシラン(SiHCl)を50sccm(standard
cubic centimeter per minutes・標準cc毎分)〜2SLMと設定し、その他のドーパントガス:ジボラン(BH)またはホスフィン(PH)を微量だけ加えるよう設定する。そのようにジボランを導入すればp型、ホスフィンを導入すればn型の導電性を示す膜が形成される。そしてチャンバ101内の圧力をたとえば1333Pa〜常圧に制御する。以上の条件を満たし、気相成長を開始する。
For example, carrier gas: H 2 is set to 20 to 100 SLM (Standard Liter per Minutes), and reactive gas: dichlorosilane (SiH 2 Cl 2 ) is set to 50 sccm. (Standard
Cubic centimeter per minutes (standard cc per minute) to 2 SLM, and other dopant gases: diborane (B 2 H 6 ) or phosphine (PH 3 ) are set to be added in a very small amount. When diborane is introduced as described above, a p-type conductivity film is formed, and when phosphine is introduced, an n-type conductivity film is formed. Then, the pressure in the chamber 101 is controlled to 1333 Pa to normal pressure, for example. The above conditions are satisfied and vapor phase growth is started.

一般に、気相成長装置のチャンバ101内壁は、ステンレス製の筐体を露出させないように保護カバー102で全面を被覆している。これは、ウェハ106表面の結晶膜形成時のパーティクルや金属汚染、あるいはチャンバ101のステンレス製の筐体の侵食を防ぐためである。
また、ウェハ106を支持するサセプタ107はサセプタ支持部107aを介して回転機構に接続されている。
In general, the inner wall of the chamber 101 of the vapor phase growth apparatus is entirely covered with a protective cover 102 so as not to expose a stainless steel casing. This is to prevent particles and metal contamination at the time of forming a crystal film on the surface of the wafer 106 or erosion of the stainless steel casing of the chamber 101.
The susceptor 107 that supports the wafer 106 is connected to a rotation mechanism via a susceptor support 107a.

上述のプロセス条件でウェハ106が気相成長反応を行う間、ヒータ108はウェハ106を常に1000℃以上に加熱するため、チャンバ101内の温度は輻射熱によって全体的に高くなり、ヒータ108に接近した箇所や、熱の輻射を受けやすいチャンバ101上部において特に顕著になる。   During the vapor phase growth reaction of the wafer 106 under the above-described process conditions, the heater 108 always heats the wafer 106 to 1000 ° C. or higher, so that the temperature in the chamber 101 is entirely increased by the radiant heat and approaches the heater 108. This is particularly noticeable at the location and the upper portion of the chamber 101 that is susceptible to heat radiation.

チャンバ101全体の温度があまりに高くなってしまうと、チャンバ101のフランジ部109をシールしているパッキン110や、排気部105と排気配管を連結しているフランジ部111のシールをしているパッキン112を劣化させる。ここで用いるパッキン類(Oリングなどを含む)は、フッ素ゴム製のもので、耐熱温度は約300℃である。   If the temperature of the entire chamber 101 becomes too high, a packing 110 that seals the flange portion 109 of the chamber 101 and a packing 112 that seals the flange portion 111 that connects the exhaust portion 105 and the exhaust pipe. Deteriorate. The packings (including O-rings and the like) used here are made of fluororubber and the heat resistant temperature is about 300 ° C.

このときパッキン110、112の劣化を抑制するため、チャンバ101外周および下部に設けた冷却水の流路103a、bに水温約20℃の冷却水を循環させることで、熱の輻射を受けやすいチャンバ101上部、パッキン110、112などは冷却水の循環により冷却され、装置の稼動に良好な温度に保たれる。また、このときの冷却手段は水以外でも良く、空気など、装置から効果的に熱を奪うことが出来るものであれば良い。   At this time, in order to suppress the deterioration of the packings 110 and 112, the cooling water having the water temperature of about 20 ° C. is circulated through the cooling water flow paths 103a and 103b provided on the outer periphery and the lower portion of the chamber 101, thereby easily receiving heat radiation. 101 upper part, packing 110,112, etc. are cooled by the circulation of a cooling water, and are maintained at the temperature favorable for operation | movement of an apparatus. In addition, the cooling means at this time may be other than water and may be any means such as air that can effectively remove heat from the apparatus.

しかしながら保護カバー102は、たとえば石英ガラスあるいはセラミックスなどの加熱されにくい材質で構成されており、さらに保護カバー102のうちヒータ108などの高温部から距離が離れている、チャンバ101の下部に位置しているなど、ヒータ108の輻射熱の影響を受けにくい部分では冷却水からの影響をより強く受け低温部になり、問題となる副生成物が発生する。具体的にはチャンバ101下部の排気部105付近の壁面を覆う保護カバー102aや、その下部102b、図2および図3に示すチャンバ101内下面を被覆している円形の保護カバー102cなどの部分が冷却されることで、気相成長反応後のプロセスガスによる副生成物が発生し、堆積する。気相成長反応後のプロセスガスから生じる副生成物は、反応性ポリシロキサン(SixH2x+2-yCl但しy≦2x+2)であり、その性質は、概ね100℃以下の環境に気相成長後のプロセスガスが晒されると発生、堆積するものであるとされている。 However, the protective cover 102 is made of a material that is difficult to be heated, such as quartz glass or ceramics, and is located at a lower portion of the chamber 101 that is further away from a high-temperature portion such as the heater 108 in the protective cover 102. For example, a part that is not easily affected by the radiant heat of the heater 108 is more strongly affected by the cooling water and becomes a low temperature part, and a by-product that causes a problem is generated. Specifically, a protective cover 102a that covers the wall near the exhaust portion 105 at the bottom of the chamber 101, a lower portion 102b, and a circular protective cover 102c that covers the inner and lower surfaces of the chamber 101 shown in FIGS. By cooling, a by-product due to the process gas after the vapor phase growth reaction is generated and deposited. By-products resulting from the process gas after the vapor phase growth reaction, the reactive a polysiloxane (Si x H 2x + 2- y Cl y where y ≦ 2x + 2), their nature is generally 100 ° C. or less of the environment It is said that it is generated and deposited when the process gas after vapor phase growth is exposed to.

このような状態になると排気部105の近傍の保護カバー102a、bとサセプタ107の外周との間に形成される排気経路の断面積が減少するとともに、排気部105の排気口の断面積が減少し、チャンバ101内に導入する気相成長反応に必要なプロセスガスの流量、流速の変化、排気部105の排気圧力の上昇などが起こり、高品質のウェハの生産に必要なプロセス条件を満たせなくなる。   In such a state, the cross-sectional area of the exhaust path formed between the protective covers 102a and 102b near the exhaust part 105 and the outer periphery of the susceptor 107 decreases, and the cross-sectional area of the exhaust port of the exhaust part 105 decreases. However, the flow rate and flow rate of the process gas necessary for the vapor phase growth reaction introduced into the chamber 101 change, the exhaust pressure of the exhaust unit 105 increases, and the process conditions necessary for the production of a high-quality wafer cannot be satisfied. .

また、堆積する反応性ポリシロキサンは発火、爆発などの危険性があり、外気に触れると硬化する性質も持つ。このためメンテナンス時に除去するのにも慎重な作業が必要になり、かつ時間も要する。よって、この装置自体の稼働率低下の原因として問題になる。   Moreover, the deposited reactive polysiloxane has a risk of ignition, explosion, and the like, and has a property of curing when exposed to the outside air. For this reason, careful work is required for removal during maintenance, and time is required. Therefore, it becomes a problem as a cause of a decrease in the operating rate of the device itself.

この問題を解決するため、保護カバー102a、b、cに覆われているヒータ113a、b、cで保護カバー102a、b、cを加熱する。またこの保護カバー102a、b、cには熱電対114a、b、cがそれぞれヒータ113a、b、cと同様に保護カバー102a、b、cに覆われており、保護カバー102a、b、cあるいはヒータ113a、b、cの温度を検出する。
なお、このときの温度の検出には熱電対を設けたが、熱電対に限らず正確に温度を検出できるものであれば、サーミスタ、サーモスタットなどを採用しても良い。
In order to solve this problem, the protective covers 102a, b, c are heated by the heaters 113a, b, c covered by the protective covers 102a, b, c. Further, the thermocouples 114a, b, and c are covered with the protective covers 102a, b, and c similarly to the heaters 113a, b, and c, respectively. The temperature of the heaters 113a, b, c is detected.
In addition, although the thermocouple was provided in the detection of the temperature at this time, you may employ | adopt a thermistor, a thermostat, etc. as long as it can detect temperature not only with a thermocouple.

また、ヒータ113および熱電対114はチャンバ101内に露出させないように、保護カバー102によって覆われているため、チャンバ内部の金属汚染やパーティクルの発生源にはならず、さらにプロセスガスに晒されることもなく、温度の検出を正確に行うことが出来る。   Further, since the heater 113 and the thermocouple 114 are covered with the protective cover 102 so as not to be exposed in the chamber 101, the heater 113 and the thermocouple 114 do not become a source of metal contamination or particles inside the chamber but are exposed to the process gas. Therefore, the temperature can be detected accurately.

このとき、保護カバー102への副生成物の堆積を抑制し、かつパッキン110、112を劣化させない範囲に保護カバー102の温度を調整するため、コントローラ115が稼動する。コントローラ115は保護カバー102に設けられているヒータ113と熱電対114に接続されており、熱電対114の検出する温度情報をもとにヒータ113を設定した温度になるように出力を制御し、保護カバー102を100℃から200℃の範囲に収まるよう調整する。この範囲であれば保護カバー102への副生成物の堆積を抑制することが出来、また近接して設けられているパッキン110、112を劣化させるおそれもない。   At this time, the controller 115 operates in order to suppress the accumulation of by-products on the protective cover 102 and to adjust the temperature of the protective cover 102 within a range that does not deteriorate the packings 110 and 112. The controller 115 is connected to a heater 113 and a thermocouple 114 provided on the protective cover 102, and controls the output so that the heater 113 has a set temperature based on temperature information detected by the thermocouple 114. The protective cover 102 is adjusted to fall within the range of 100 ° C to 200 ° C. Within this range, accumulation of by-products on the protective cover 102 can be suppressed, and there is no possibility that the packings 110 and 112 provided in the vicinity will be deteriorated.

図4はこの実施形態の気相成長方法のフローチャートを示す。
チャンバ101を冷却しながら、チャンバ101内において反応ガスを含むプロセスガス雰囲気下でウェハ106を加熱処理することでウェハ106表面に結晶膜を形成し、反応後のプロセスガスをチャンバ101から排気する気相成長方法において、
チャンバ101内を被覆する保護カバー102a、b、cに覆われた温度検出手段114a、b、cが、保護カバー102a、b、cを加熱するヒータ113a、b、cあるいは保護カバー102a、b、cの温度を検出する温度検出工程(S101)、ヒータ113a、b、cに接続されたコントローラ115が温度検出手段114a、b、cの検出した温度情報をもとにヒータ113a、b、cの出力を制御して、保護カバー102a、b、cが設定した温度になるように制御する温度制御工程(S102)という一連の工程を継続的に繰り返して実施する。この方法によれば、チャンバ101内に副生成物が堆積されるのを抑制し、気相成長に用いたプロセスガスの排気を円滑にすることができる。
FIG. 4 shows a flowchart of the vapor phase growth method of this embodiment.
While cooling the chamber 101, the wafer 106 is heated in a process gas atmosphere containing a reaction gas in the chamber 101 to form a crystal film on the surface of the wafer 106, and the process gas after the reaction is exhausted from the chamber 101. In the phase growth method,
The temperature detection means 114a, b, c covered with the protective covers 102a, b, c covering the inside of the chamber 101 is heated by the heaters 113a, b, c or the protective covers 102a, b, c, The temperature detection step (S101) for detecting the temperature of c, the controller 115 connected to the heaters 113a, b, c detects the temperature of the heaters 113a, b, c based on the temperature information detected by the temperature detection means 114a, b, c. A series of steps called a temperature control step (S102) for controlling the output to control the protective covers 102a, 102b, 102c so as to reach the set temperature is continuously repeated. According to this method, it is possible to suppress the deposition of by-products in the chamber 101 and to smoothly exhaust the process gas used for the vapor phase growth.

上述したように、本発明は従来から問題となっていたチャンバ内における反応後のプロセスガスから生じる副生成物の堆積を抑制し、メンテナンスの頻度を低減させることによりメンテナンス作業の労力を軽減させるとともに、装置の稼働率を向上させることが出来る。ひいては、プロセス条件を安定化させることにより高品質のウェハを生産可能にすることにも繋がる。   As described above, the present invention suppresses the accumulation of by-products generated from the process gas after the reaction in the chamber, which has been a problem in the past, and reduces the maintenance work by reducing the frequency of maintenance. The operating rate of the apparatus can be improved. As a result, it is possible to produce high quality wafers by stabilizing the process conditions.

また、本発明の実施形態において気相成長反応のプロセス条件として反応性ガスにジクロロシランを挙げたが、発明者の実施の経験からジクロロシランを使用した場合がシラン(SiH)、トリクロロシラン(SiHCl)を使用した場合に比べ、より多量の副生成物を発生させることが分かっており、最もその効果が顕著に表れる例として取り上げた。 In the embodiment of the present invention, dichlorosilane was cited as a reactive gas as a process condition for the vapor phase growth reaction. However, when dichlorosilane is used from the experience of the inventors, silane (SiH 4 ), trichlorosilane ( Compared to the case of using SiHCl 3 ), it has been found that a larger amount of by-products are generated, and this example was taken up as an example in which the effect is most prominent.

本発明の、チャンバ内の保護カバーの低温部を加熱して副生成物の堆積を抑制する装置を稼動させながら操業したときに必要なメンテナンスの頻度と、図5に示した従来の装置を操業させるのに必要なメンテナンスの頻度を比較すると、稼動条件によっても左右されるが、本発明の装置は概ね3ヶ月に1回程度の実施で済み、従来の装置では概ね1ヶ月に1回程度実施が必要となる。よって、本発明の装置ではメンテナンス作業の頻度を約3分の1程度に低減できる。   The maintenance frequency required when operating the apparatus for suppressing the accumulation of by-products by heating the low temperature part of the protective cover in the chamber of the present invention, and the conventional apparatus shown in FIG. When the frequency of maintenance required for the operation is compared, it depends on the operating conditions, but the device of the present invention needs to be carried out about once every three months, and the conventional device is carried out about once a month. Is required. Therefore, in the apparatus of the present invention, the frequency of maintenance work can be reduced to about one third.

本発明は上述した実施形態に限定されるものではなく、要旨を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the above-described embodiments, and can be variously modified and implemented without departing from the scope of the invention.

本発明の実施形態における気相成長装置の断面模式図。The cross-sectional schematic diagram of the vapor phase growth apparatus in embodiment of this invention. 本発明の実施形態におけるチャンバ内下部を示した平面模式図。The plane schematic diagram which showed the chamber inner lower part in embodiment of this invention. 本発明の実施形態におけるチャンバ内下部の断面模式図。The cross-sectional schematic diagram of the lower part in a chamber in embodiment of this invention. 本発明の気相成長方法を示したフローチャート。The flowchart which showed the vapor phase growth method of this invention. 従来の気相成長装置を模式的に示した断面模式図。The cross-sectional schematic diagram which showed the conventional vapor phase growth apparatus typically.

符号の説明Explanation of symbols

101…チャンバ
102a、b、c…保護カバー
103a、b…冷却水の流路
104…供給部
105…排気部
106…ウェハ
107…サセプタ
108…ヒータ
109…フランジ部
110…パッキン
111…フランジ部
112…パッキン
113a、b、c…ヒータ
114a、b、c…熱電対
115…コントローラ
101 ... chambers 102a, b, c ... protective cover 103a, b ... cooling water flow path 104 ... supply part 105 ... exhaust part 106 ... wafer 107 ... susceptor 108 ... heater 109 ... flange part 110 ... packing 111 ... flange part 112 ... Packing 113a, b, c ... heaters 114a, b, c ... thermocouple 115 ... controller

Claims (5)

プロセスガスを導入する供給部と反応後のプロセスガスを排気する排気部を有するチャンバと、前記チャンバの内壁を被覆する保護カバーと、前記保護カバーを設定した温度に加熱する第1のヒータと、前記第1のヒータあるいは前記保護カバーの温度を検出する温度検出手段と、前記チャンバの外周に設けられた冷却手段と、前記チャンバ内に設けられ、気相成長を行うウェハを支持する回転自在なサセプタと、前記ウェハを加熱する第2のヒータと備え、前記第1のヒータおよび前記温度検出手段は前記保護カバーの前記排気部近傍に設けられていることを特徴とする気相成長装置。   A chamber having a supply section for introducing process gas, an exhaust section for exhausting the process gas after reaction, a protective cover for covering the inner wall of the chamber, and a first heater for heating the protective cover to a set temperature; A temperature detecting means for detecting the temperature of the first heater or the protective cover; a cooling means provided on the outer periphery of the chamber; and a rotatable means provided in the chamber for supporting a wafer for vapor phase growth. A vapor phase growth apparatus comprising: a susceptor; and a second heater for heating the wafer, wherein the first heater and the temperature detecting means are provided in the vicinity of the exhaust portion of the protective cover. 前記第1のヒータは、前記保護カバーに覆われていることを特徴とする請求項1記載の気相成長装置。   The vapor phase growth apparatus according to claim 1, wherein the first heater is covered with the protective cover. 前記第1のヒータは、前記温度検出手段により検出された温度に基づき前記ヒータの出力を制御するコントローラが接続されることを特徴とする請求項1記載の気相成長装置。   2. The vapor phase growth apparatus according to claim 1, wherein the first heater is connected to a controller for controlling the output of the heater based on the temperature detected by the temperature detecting means. 前記温度検出手段は、前記保護カバーに覆われていることを特徴とする請求項1記載の気相成長装置。   2. The vapor phase growth apparatus according to claim 1, wherein the temperature detecting means is covered with the protective cover. チャンバを冷却しながら、前記チャンバ内においてプロセスガス雰囲気下でウェハを加熱処理することで前記ウェハ表面に結晶膜を形成し、反応後のプロセスガスを前記チャンバ内から排気する気相成長方法において、
チャンバ内壁を被覆する保護カバーに覆われた温度検出手段が前記保護カバーを加熱するヒータあるいは前記保護カバーの温度を検出する第1の工程と、
前記ヒータに接続されたコントローラが前記温度検出手段の検出した温度情報をもとに前記ヒータの出力を制御して、前記保護カバーが設定した温度になるように制御する第2の工程と、
を備えたことを特徴とする気相成長方法。
In the vapor phase growth method of forming a crystal film on the wafer surface by heating the wafer in a process gas atmosphere in the chamber while cooling the chamber, and exhausting the process gas after the reaction from the chamber,
A first step in which a temperature detecting means covered with a protective cover covering the inner wall of the chamber detects a temperature of a heater for heating the protective cover or the protective cover;
A second step in which a controller connected to the heater controls the output of the heater based on temperature information detected by the temperature detecting means so that the temperature of the protective cover is set;
A vapor phase growth method comprising:
JP2006291722A 2006-10-26 2006-10-26 Vapor growth method Active JP5010235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006291722A JP5010235B2 (en) 2006-10-26 2006-10-26 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006291722A JP5010235B2 (en) 2006-10-26 2006-10-26 Vapor growth method

Publications (2)

Publication Number Publication Date
JP2008108983A true JP2008108983A (en) 2008-05-08
JP5010235B2 JP5010235B2 (en) 2012-08-29

Family

ID=39442076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006291722A Active JP5010235B2 (en) 2006-10-26 2006-10-26 Vapor growth method

Country Status (1)

Country Link
JP (1) JP5010235B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164977A (en) * 2011-01-18 2012-08-30 Nuflare Technology Inc Semiconductor manufacturing apparatus and semiconductor manufacturing method
US8334214B2 (en) 2010-07-30 2012-12-18 Nuflare Technology, Inc. Susceptor treatment method and a method for treating a semiconductor manufacturing apparatus
JP2013045799A (en) * 2011-08-22 2013-03-04 Nuflare Technology Inc Film formation device and film formation method
JP2013074213A (en) * 2011-09-28 2013-04-22 Nuflare Technology Inc Deposition device and deposition method
KR101330677B1 (en) * 2011-12-22 2013-11-18 (주)우리에어텍코리아 Device for maintaining temperature of chamber
WO2014103728A1 (en) * 2012-12-27 2014-07-03 昭和電工株式会社 Film-forming device
US9139933B2 (en) 2010-08-04 2015-09-22 Nuflare Technology, Inc. Semiconductor substrate manufacturing apparatus
US9194056B2 (en) 2011-08-08 2015-11-24 Nuflare Technology, Inc. Film-forming apparatus and method
US9194044B2 (en) * 2010-02-19 2015-11-24 Nuflare Technology, Inc. Deposition apparatus and method
US20160194753A1 (en) * 2012-12-27 2016-07-07 Showa Denko K.K. SiC-FILM FORMATION DEVICE AND METHOD FOR PRODUCING SiC FILM
US9873941B2 (en) 2010-08-27 2018-01-23 Nuflare Technology, Inc. Film-forming manufacturing apparatus and method
CN111890218A (en) * 2020-07-04 2020-11-06 刘永 Chemical mechanical polishing splash guard capable of rotating and lifting
US11424147B2 (en) 2017-06-23 2022-08-23 Showa Denko K.K. Deposition apparatus having particular arrangement of raw material supply port, partition plate, and opening for measuring a temperature

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491426A (en) * 1990-08-02 1992-03-24 Fujitsu Ltd Vapor growth method
JPH04355922A (en) * 1991-03-18 1992-12-09 Matsushita Electron Corp Polyimide hardening device
JPH07230960A (en) * 1993-12-24 1995-08-29 Sharp Corp Plasma cvd device
JPH08213360A (en) * 1995-02-06 1996-08-20 Mitsubishi Electric Corp Manufacturing equipment and manufacturing method for manufacturing semiconductor device
JP2001035799A (en) * 1999-07-22 2001-02-09 Tokyo Electron Ltd Single-wafer processing heat treatment apparatus
JP2001140054A (en) * 1999-11-15 2001-05-22 Nec Kagoshima Ltd Cleaning method for vacuum film depositing system, and vacuum film depositing system
JP2002256436A (en) * 2001-03-06 2002-09-11 Canon Inc Apparatus and method for forming deposition film with plasma cvd method
JP2006237277A (en) * 2005-02-25 2006-09-07 Matsushita Electric Ind Co Ltd Substrate processing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491426A (en) * 1990-08-02 1992-03-24 Fujitsu Ltd Vapor growth method
JPH04355922A (en) * 1991-03-18 1992-12-09 Matsushita Electron Corp Polyimide hardening device
JPH07230960A (en) * 1993-12-24 1995-08-29 Sharp Corp Plasma cvd device
JPH08213360A (en) * 1995-02-06 1996-08-20 Mitsubishi Electric Corp Manufacturing equipment and manufacturing method for manufacturing semiconductor device
JP2001035799A (en) * 1999-07-22 2001-02-09 Tokyo Electron Ltd Single-wafer processing heat treatment apparatus
JP2001140054A (en) * 1999-11-15 2001-05-22 Nec Kagoshima Ltd Cleaning method for vacuum film depositing system, and vacuum film depositing system
JP2002256436A (en) * 2001-03-06 2002-09-11 Canon Inc Apparatus and method for forming deposition film with plasma cvd method
JP2006237277A (en) * 2005-02-25 2006-09-07 Matsushita Electric Ind Co Ltd Substrate processing apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194044B2 (en) * 2010-02-19 2015-11-24 Nuflare Technology, Inc. Deposition apparatus and method
US8334214B2 (en) 2010-07-30 2012-12-18 Nuflare Technology, Inc. Susceptor treatment method and a method for treating a semiconductor manufacturing apparatus
US9139933B2 (en) 2010-08-04 2015-09-22 Nuflare Technology, Inc. Semiconductor substrate manufacturing apparatus
US9873941B2 (en) 2010-08-27 2018-01-23 Nuflare Technology, Inc. Film-forming manufacturing apparatus and method
JP2012164977A (en) * 2011-01-18 2012-08-30 Nuflare Technology Inc Semiconductor manufacturing apparatus and semiconductor manufacturing method
US9194056B2 (en) 2011-08-08 2015-11-24 Nuflare Technology, Inc. Film-forming apparatus and method
JP2013045799A (en) * 2011-08-22 2013-03-04 Nuflare Technology Inc Film formation device and film formation method
JP2013074213A (en) * 2011-09-28 2013-04-22 Nuflare Technology Inc Deposition device and deposition method
KR101330677B1 (en) * 2011-12-22 2013-11-18 (주)우리에어텍코리아 Device for maintaining temperature of chamber
WO2014103728A1 (en) * 2012-12-27 2014-07-03 昭和電工株式会社 Film-forming device
US20150345046A1 (en) * 2012-12-27 2015-12-03 Showa Denko K.K. Film-forming device
US20160194753A1 (en) * 2012-12-27 2016-07-07 Showa Denko K.K. SiC-FILM FORMATION DEVICE AND METHOD FOR PRODUCING SiC FILM
US11424147B2 (en) 2017-06-23 2022-08-23 Showa Denko K.K. Deposition apparatus having particular arrangement of raw material supply port, partition plate, and opening for measuring a temperature
CN111890218A (en) * 2020-07-04 2020-11-06 刘永 Chemical mechanical polishing splash guard capable of rotating and lifting
CN111890218B (en) * 2020-07-04 2021-09-03 林燕 Chemical mechanical polishing splash guard capable of rotating and lifting

Also Published As

Publication number Publication date
JP5010235B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5010235B2 (en) Vapor growth method
JP7093185B2 (en) Reactor systems and methods for reducing residue accumulation during the membrane deposition process
JP4994724B2 (en) Film forming apparatus and film forming method
KR100752682B1 (en) Barrier coating for vitreous materials
JP5732284B2 (en) Film forming apparatus and film forming method
JP2011171450A (en) Film deposition apparatus and method
JP5125095B2 (en) Manufacturing method of substrate with SiC epitaxial film and manufacturing apparatus of substrate with SiC epitaxial film
JP5158068B2 (en) Vertical heat treatment apparatus and heat treatment method
JP2008028270A (en) Method and device for growing crystal
KR20130014488A (en) Semiconductor thin-film manufacturing method, semiconductor thin-film manufacturing apparatus, susceptor, and susceptor holding tool
JP2009135228A (en) Vapor phase growth apparatus and vapor phase growth method
TWI415170B (en) Method for maintaining semiconductor manufacturing apparatus, semiconductor manufacturing apparatus, and method for manufacturing semiconductor
JP5496721B2 (en) Film forming apparatus and film forming method
WO2002020881A2 (en) Apparatus and method for cleaning a bell jar in a barrel epitaxial reactor
JP2005183514A (en) Method of manufacturing semiconductor device
JP2010153483A (en) Film deposition apparatus and film deposition method
JP7221187B2 (en) Film forming method and film forming apparatus
JP4802977B2 (en) Operation method of heat treatment apparatus, heat treatment apparatus and storage medium
US10249493B2 (en) Method for depositing a layer on a semiconductor wafer by vapor deposition in a process chamber
JP7190894B2 (en) SiC chemical vapor deposition equipment
JP2008066652A (en) Vapor deposition system, and vapor deposition method
JP2011038149A (en) Film deposition apparatus and film deposition method
JP4976111B2 (en) Vapor growth method
JP2007042671A (en) Substrate treatment device
JP2008235584A (en) Method of controlling temperature in vapor-phase growth device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

R150 Certificate of patent or registration of utility model

Ref document number: 5010235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250