JP2008108611A - Forming method and forming apparatus of evaporation layer - Google Patents

Forming method and forming apparatus of evaporation layer Download PDF

Info

Publication number
JP2008108611A
JP2008108611A JP2006291259A JP2006291259A JP2008108611A JP 2008108611 A JP2008108611 A JP 2008108611A JP 2006291259 A JP2006291259 A JP 2006291259A JP 2006291259 A JP2006291259 A JP 2006291259A JP 2008108611 A JP2008108611 A JP 2008108611A
Authority
JP
Japan
Prior art keywords
evaporation
organic
substrate
evaporation source
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006291259A
Other languages
Japanese (ja)
Inventor
Noriyuki Matsukaze
紀之 松風
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2006291259A priority Critical patent/JP2008108611A/en
Publication of JP2008108611A publication Critical patent/JP2008108611A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming films capable of improving controllability in low film forming speed at the time of evaporation, and solving problems occurring in organic materials by not exposing the organic materials to a high temperature. <P>SOLUTION: There is provided a forming method of organic layers for an organic EL device which is provided with an anode electrode and a cathode electrode which are arranged opposite to each other, and at least one organic layer formed between both the electrodes and containing two or more kinds of organic compounds wherein the organic layers for the EL device are formed on a substrate by evaporation in a vacuum film forming chamber by using two or more evaporation sources in which distances from a substrate to each of the evaporation sources, or angles formed of a line connecting the center of the surface of the substrate and the center of the evaporation surface of each of the evaporation sources and the surface of the substrate are different and which have different evaporation rates. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蒸着層の製造方法および製造装置に関するものであり、特には、有機EL素子における有機層の製造方法および製造装置に関するものである。   The present invention relates to a method for manufacturing a vapor deposition layer and a manufacturing apparatus, and more particularly to a method for manufacturing an organic layer and a manufacturing apparatus in an organic EL element.

近年、情報通信の高速化と応用範囲の拡大が急速に進んでいる。この中で、表示デバイスには携帯性や動画を表示することなどの要求に対応できるような低消費電力で高速応答が可能な高精細表示デバイスが考案されている。特に有機エレクトロルミネッセンス(以下ELと称する)素子では、1987年にイーストマンコダック社のC.W.Tangにより2層積層構成のデバイスで高い効率の有機EL素子が発表されて以来(非特許文献1)、現在にいたる間に様々な有機EL素子が開発されて一部実用化し始めている。   In recent years, the speed of information communication and the application range have been rapidly increasing. Among these, a high-definition display device capable of high-speed response with low power consumption capable of meeting demands such as portability and displaying moving images has been devised. In particular, for organic electroluminescence (hereinafter referred to as EL) devices, C.E. W. Since Tang announced a highly efficient organic EL device as a device with a two-layer structure (Non-Patent Document 1), various organic EL devices have been developed and are partially put into practical use.

有機EL素子は、発光層を含め、ホール注入層、ホール輸送層、電子輸送層および電子注入層等によって構成されており、これらは有機材料からなる有機層によって構成されている。このような有機層の材料には、低分子材料と高分子材料の2種類があり、低分子材料を用いた有機膜の場合、主に真空蒸着法により形成される。高分子系材料は溶剤に溶解させて溶液として用い、主にスピンコーター法、インクジェット法などにより有機膜が形成される。   The organic EL element is composed of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like including a light emitting layer, and these are composed of an organic layer made of an organic material. There are two types of materials for such an organic layer, a low molecular material and a high molecular material. In the case of an organic film using a low molecular material, it is mainly formed by vacuum deposition. A polymer material is dissolved in a solvent and used as a solution, and an organic film is formed mainly by a spin coater method, an ink jet method or the like.

有機EL素子の高性能化の一つにホスト−ゲスト系複合膜を発光層に用いることがよく知られている。また、最近では、素子の低電圧化を狙って正孔注入層や正孔輸送層、電子輸送層へのアクセプターやアルカリ金属をドープする技術(ドーピング)が注目されている。
C.W.Tang, S.A.VanSlyke, Appl.Phys.Lett.51,913(1987)
It is well known that a host-guest composite film is used for a light emitting layer as one of high performance organic EL elements. Recently, a technique (doping) for doping a hole injection layer, a hole transport layer, an electron transport layer with an acceptor or an alkali metal has been attracting attention in order to lower the voltage of the device.
C. W. Tang, S.M. A. VanSlyke, Appl. Phys. Lett. 51,913 (1987)

このように電極上に有機膜を形成する際、ドーピング濃度や膜厚を制御するために、異なった材料のそれぞれの製膜速度を精密に制御しながら、同時に蒸着する共蒸着技術が非常に重要となる。
ホスト−ゲストを含んだ複合膜や有機膜へのアルカリ金属ドープ層などを形成する場合、以下のような問題点が指摘されている。ホスト材にドープするゲスト材の量は、濃度消光の問題から、0.1〜数vol%が一般的である。この場合、ドープ量はそれぞれの材料の製膜速度によって調整することが可能であり、ゲスト材料の製膜速度はホスト材料の1/100〜1/1000という非常に小さな値を制御する必要がある。例えば、ホスト材料の製膜速度を10Å/sとした場合、ゲスト材料の製膜速度は0.1〜0.01Å/sで製膜することになる。アルカリ金属をドープする場合も有機材料とアルカリ金属の分子量の関係から、製膜速度比で1%〜0.1%を精密に制御する必要がある。
一方で、ホスト材料の製膜速度を上げることによって、ゲスト材料の製膜速度を相対的に増加させることが可能だが、有機材料においてむやみに製膜速度を上げることは、蒸着時の材料への熱劣化の観点から好ましいことではない。
本発明は、上記のような蒸着時の低製膜速度におけるコントロール性を高め、かつ、有機林料を高温に晒すことなく有機材料に発生する問題を解決することが可能である製膜方法を提供するものである。
Thus, when forming an organic film on the electrode, co-evaporation technology that simultaneously deposits while controlling the deposition rate of different materials is very important in order to control the doping concentration and film thickness. It becomes.
When forming a composite film containing a host-guest or an alkali metal doped layer on an organic film, the following problems have been pointed out. The amount of the guest material doped into the host material is generally 0.1 to several vol% because of the problem of concentration quenching. In this case, the doping amount can be adjusted by the deposition rate of each material, and the deposition rate of the guest material needs to be controlled to a very small value of 1/100 to 1/1000 of the host material. . For example, when the deposition rate of the host material is 10 Å / s, the guest material is deposited at a rate of 0.1 to 0.01 Å / s. Even in the case of doping with an alkali metal, it is necessary to precisely control 1% to 0.1% in terms of the film forming speed ratio from the relationship between the molecular weight of the organic material and the alkali metal.
On the other hand, it is possible to relatively increase the film formation speed of the guest material by increasing the film formation speed of the host material. However, increasing the film formation speed in an organic material is an It is not preferable from the viewpoint of thermal degradation.
The present invention provides a film-forming method capable of improving the controllability at a low film-forming rate during vapor deposition as described above and solving the problems that occur in organic materials without exposing organic forest materials to high temperatures. It is to provide.

本発明は、基板からの蒸発源までの距離、または基板表面の中心と蒸発源の蒸発表面の中心とを結ぶ線が該基板表面となす角度が異なる、蒸発速度の異なる二以上の蒸発源を用いて、真空成膜室内で基板上に蒸着層を形成する蒸着層の製造方法を提供する。
また、本発明は、対向する陽極電極と陰極電極と、両電極の間に配され、二種以上の有機化合物を含有する少なくとも1層の有機層とを備える有機EL素子の有機層の製造方法であって、上記有機層が、基板からの蒸発源までの距離、または基板表面の中心と蒸発源の蒸発表面の中心とを結ぶ線が該基板表面となす角度が異なる、蒸発速度の異なる二以上の蒸発源を用いて、真空成膜室内で基板上に蒸着形成される有機EL素子の有機層の製造方法を提供する。
本発明は、基板上に蒸着層を形成するための蒸着層の製造装置であって、該基板を支持するための基板ホルダーと、該基板からの蒸発源までの距離、または基板表面の中心と蒸発源の蒸発表面の中心とを結ぶ線が該基板表面となす角度が異なる、蒸発速度の異なる二以上の蒸発源を収納するための蒸発源ホルダーとを、真空成膜室内に備える蒸着層の製造装置を提供する。
また、本発明は、対向する陽極電極と陰極電極と、両電極の間に配され、二種以上の有機化合物を含有する少なくとも1層の有機層を備える有機EL素子の有機層の製造装置であって、蒸着用の真空成膜室内に、基板を支持するための基板ホルダーと、該基板からの蒸発源までの距離、または基板表面の中心と蒸発源の蒸発表面の中心とを結ぶ線が該基板表面となす角度が異なる、蒸発速度の異なる二以上の蒸発源を収納するための蒸発源ホルダーとを備える有機EL素子の有機層の製造装置を提供する。
The present invention provides two or more evaporation sources having different evaporation rates, wherein the distance from the substrate to the evaporation source or the angle between the line connecting the center of the substrate surface and the center of the evaporation surface of the evaporation source and the substrate surface is different. The present invention provides a method for manufacturing a vapor deposition layer that forms a vapor deposition layer on a substrate in a vacuum film formation chamber.
In addition, the present invention provides a method for producing an organic layer of an organic EL element, comprising: an opposing anode electrode and cathode electrode; and at least one organic layer containing two or more organic compounds disposed between the two electrodes. The organic layer has a different distance from the substrate to the evaporation source, or an angle between a line connecting the center of the substrate surface and the center of the evaporation surface of the evaporation source and the substrate surface, and different evaporation rates. Provided is a method for producing an organic layer of an organic EL element formed by vapor deposition on a substrate in a vacuum film formation chamber using the above evaporation source.
The present invention relates to an apparatus for producing a vapor deposition layer for forming a vapor deposition layer on a substrate, the substrate holder for supporting the substrate, the distance from the substrate to the evaporation source, or the center of the substrate surface An evaporation source holder for accommodating two or more evaporation sources having different evaporation speeds at different angles formed by the line connecting the evaporation surface center of the evaporation source and the substrate surface; Providing manufacturing equipment.
Moreover, this invention is the manufacturing apparatus of the organic layer of an organic EL element provided with the at least 1 layer of organic layer which is distribute | arranged between the opposing anode electrode and cathode electrode, and both electrodes and contains 2 or more types of organic compounds. In the vacuum film formation chamber for vapor deposition, there is a line connecting the substrate holder for supporting the substrate and the distance from the substrate to the evaporation source, or the center of the substrate surface and the center of the evaporation surface of the evaporation source. Provided is an apparatus for producing an organic layer of an organic EL element, comprising an evaporation source holder for accommodating two or more evaporation sources having different evaporation angles with respect to the substrate surface.

本発明によれば、いわゆる共蒸着技術によって形成される有機層を有する有機ELディスプレイを良好な再現性および高い歩留まりで作製することが可能となる。例えば、発光層における微量ドーピング、電荷輸送層におけるドーピングにおけるドーピング制御が大きく改善できる。発光層やドーピング技術に適用できうる高精度で制御性が良好な共蒸着技術を提供することにより、有機ELディスプレイの高性能化や歩留まりの向上が見込まれ、低コスト化が可能となる。   According to the present invention, an organic EL display having an organic layer formed by a so-called co-evaporation technique can be manufactured with good reproducibility and high yield. For example, the doping control in the small amount doping in the light emitting layer and the doping in the charge transport layer can be greatly improved. By providing a co-evaporation technique with high accuracy and good controllability that can be applied to the light emitting layer and the doping technique, it is possible to improve the performance and yield of the organic EL display and to reduce the cost.

一般的に、蒸発源(0,0,0)からの蒸気流密度は任意の点(x,y,z)からLambertのcos則によって次式で規定される。
φ(α)=φ0・cosα
(上式中、αは蒸発表面の法線に対する角度を表し、φ(α)は角度αにおける蒸気流密度の分布を表し、φ0は、角度α=0における蒸気流密度の分布を示す。)
蒸発源と基板面との距離が短いほど、基板面における蒸気流密度は高い。蒸発源と基板面との距離が長くなると、基板面における蒸気流密度は低くなるので、基板上に堆積させる有機膜の製膜速度を固定する場合、蒸発源からの蒸気流量をより多くしなければならない。そのためには、蒸発源の温度を高くすることが必要となる。この場合、基板上に堆積した有機膜に熱ダメージが生じる。したがって、蒸発源と基板面との距離を短くすることで蒸発源の高温化を避け、基板上に堆積した有機膜に掛かる熱ダメージを抑制することができる。しかし、蒸発源と基板面との距離を短くすると、基板面上において上式の角度αが大きく変化するため、基板上での蒸気流密度分布特性が低下し、膜厚分布特性が低下する。そこで、蒸発源を複数配置することによって、膜厚分布特性を低下させることなく、均一な膜厚の有機膜を形成することが可能となる。本発明は、有機膜の主成分であるホスト材料とドーパントとして機能するゲスト材料の共蒸着時の設置方法や配置に関するものである。
In general, the vapor flow density from the evaporation source (0, 0, 0) is defined by the following equation by Lambert's cos rule from an arbitrary point (x, y, z).
φ (α) = φ 0・ cosα
(In the above equation, α represents the angle with respect to the normal of the evaporation surface, φ (α) represents the distribution of vapor flow density at angle α, and φ 0 represents the distribution of vapor flow density at angle α = 0. )
The shorter the distance between the evaporation source and the substrate surface, the higher the vapor flow density on the substrate surface. As the distance between the evaporation source and the substrate surface increases, the vapor flow density on the substrate surface decreases, so when the deposition rate of the organic film deposited on the substrate is fixed, the vapor flow rate from the evaporation source must be increased. I must. For this purpose, it is necessary to increase the temperature of the evaporation source. In this case, the organic film deposited on the substrate is thermally damaged. Therefore, by shortening the distance between the evaporation source and the substrate surface, it is possible to avoid a high temperature of the evaporation source and to suppress thermal damage to the organic film deposited on the substrate. However, when the distance between the evaporation source and the substrate surface is shortened, the angle α in the above equation changes greatly on the substrate surface, so that the vapor flow density distribution characteristic on the substrate is lowered and the film thickness distribution characteristic is lowered. Therefore, by disposing a plurality of evaporation sources, it is possible to form an organic film having a uniform thickness without degrading the film thickness distribution characteristics. The present invention relates to an installation method and arrangement at the time of co-deposition of a host material that is a main component of an organic film and a guest material that functions as a dopant.

本発明に用いる基板としては、好ましくは、ガラス、ポリエチレンテレフタレート、ポリメチルメタクリレート等の樹脂等が挙げられる。ホウケイ酸ガラス又は青板ガラス等が特に好ましいものである。   The substrate used in the present invention is preferably a resin such as glass, polyethylene terephthalate, or polymethyl methacrylate. Borosilicate glass or blue plate glass is particularly preferred.

有機EL層素子は、一対の電極の間に少なくとも有機発光層を扶持し、必要に応じ、正孔注入層や電子注入層を介在させた構造を有している。具体的には、例えば下記のような層構成からなるものが採用される。
(a)陽極/有機発光層/陰極
(b)陽極/正孔注入層/有機発光層/陰極
(c)陽極/有機発光層/電子注入層/陰極
(d)陽極/正孔注入層/有機発光層/電子注入層/陰極
(e)陽極/正孔注入層/正孔輸送層/有機発光層/電子注入層/陰極
上記の層構成において、陽極および陰極の少なくとも一方は、有機発光体の発する光の波長域において透明であることが望ましく、および透明である電極を通して光を発して、好ましくは蛍光色変換膜に光を入射させる。当該技術において、陽極を透明にすることが容易であることが知られており、本発明においても陽極を透明とすることが望ましい。
The organic EL layer element has a structure in which at least an organic light emitting layer is held between a pair of electrodes, and a hole injection layer or an electron injection layer is interposed as required. Specifically, for example, those having the following layer structure are adopted.
(A) Anode / organic light emitting layer / cathode (b) anode / hole injection layer / organic light emitting layer / cathode (c) anode / organic light emitting layer / electron injection layer / cathode (d) anode / hole injection layer / organic Light emitting layer / electron injection layer / cathode (e) Anode / hole injection layer / hole transport layer / organic light emitting layer / electron injection layer / cathode In the above layer structure, at least one of the anode and the cathode is an organic light emitter. It is desirable to be transparent in the wavelength range of the emitted light, and light is emitted through the transparent electrode, and the light is preferably incident on the fluorescent color conversion film. In this technique, it is known that it is easy to make the anode transparent, and it is desirable to make the anode transparent also in the present invention.

陽極は、正孔の注入を効率よく行うために、好ましくは仕事関数が大きい材料が用いられる。特に通常の有機EL素子では、陽極を通して光が放出されるために陽極が透明であることが要求され、ITO、IZO等の導電性金属酸化物が用いられる。
陰極は、好ましくは、仕事関数が小さい材料であるリチウム、ナトリウム等のアルカリ金属、カリウム、カルシウム、マグネシウム、ストロンチウムなどのアルカリ土類金属、又はこれらのフッ化物等からなる電子注入性の金属、その他の金属との合金や化合物が用いられる。
The anode is preferably made of a material having a large work function in order to efficiently inject holes. In particular, in an ordinary organic EL element, since light is emitted through the anode, the anode is required to be transparent, and a conductive metal oxide such as ITO or IZO is used.
The cathode is preferably a material having a low work function, such as an alkali metal such as lithium or sodium, an alkaline earth metal such as potassium, calcium, magnesium or strontium, or an electron injecting metal such as a fluoride thereof, or the like. Alloys and compounds with these metals are used.

有機層は、少なくとも有機発光層を含み、必要に応じて、正孔注入層、正孔輸送層、及び/又は電子注入層を介在させた構造を有する。
有機層の各層の材料としては、公知のものが使用される。例えば、有機発光層として青色から青緑色の発光を得るためには、例えばベンゾチアゾール系、ベンゾイミダゾール系、ベンゾオキサゾール系などの蛍光増白剤、金属キレート化オキソニウム化合物、スチリルベンゼン系化合物、芳香族ジメチリディン系化合物などが好ましく使用される。
The organic layer includes at least an organic light emitting layer, and has a structure in which a hole injection layer, a hole transport layer, and / or an electron injection layer are interposed as required.
Known materials are used as the material of each layer of the organic layer. For example, in order to obtain blue to blue-green light emission as an organic light emitting layer, for example, a fluorescent brightener such as benzothiazole, benzimidazole, benzoxazole, metal chelated oxonium compound, styrylbenzene compound, aromatic Dimethylidin compounds and the like are preferably used.

有機EL素子は、例えば、以下のように作成される。
まず、スパッタ法にて基板上に透明電極を全面成膜する。
次いで、前記陽極を形成した基板を抵抗加熱蒸着装置内に装着し、正孔注入層、正孔輸送層、有機発光層、電子注入層を、真空を破らずに順次成膜する。具体的には、複数の真空槽を備えた真空蒸着装置を用いた。基板を真空中で搬送し、各層の個別の真空槽にて成膜した。各層の成膜に際して真空槽内圧は1×10-4Paまで減圧した。有機層各層の厚さはその特性に応じて適宜選択することができるが、好ましくは1μm以下、より好ましくは、数百nm以下である。
この後、真空を破らずに、陰極をマスクを用いてパターン形成した。陰極が金属材料の場合は蒸着法にて陰極を形成する。陰極が透明電極の場合は、スパッタ法にて形成する。
こうして得られた有機EL素子をグローブボックス内乾燥窒素雰囲気下(酸素および水分濃度ともに10ppm以下)において、封止ガラスとUV硬化接着剤を用いて封止した。
基板上に多数の画素を形成する場合は、スパッタ法にて基板上に透明電極を全面成膜した後、透明電極上にレジスト剤を塗布した後、フォトリソグラフィー法にてパターニングを行い、ストライプパターンからなる陽極を得る。有機膜形成は上記と同じ手順で行う。
また、陰極形成は、上記陽極のラインと垂直のストライプパターンが得られるマスクを用いて、真空を破らずに、パターン形成する。
An organic EL element is produced as follows, for example.
First, a transparent electrode is formed on the entire surface by sputtering.
Next, the substrate on which the anode is formed is mounted in a resistance heating vapor deposition apparatus, and a hole injection layer, a hole transport layer, an organic light emitting layer, and an electron injection layer are sequentially formed without breaking the vacuum. Specifically, a vacuum deposition apparatus provided with a plurality of vacuum chambers was used. The substrate was transported in a vacuum and deposited in a separate vacuum chamber for each layer. In forming each layer, the internal pressure of the vacuum chamber was reduced to 1 × 10 −4 Pa. Although the thickness of each layer of the organic layer can be appropriately selected according to the characteristics, it is preferably 1 μm or less, more preferably several hundred nm or less.
Thereafter, the cathode was patterned using a mask without breaking the vacuum. When the cathode is a metal material, the cathode is formed by vapor deposition. When the cathode is a transparent electrode, it is formed by sputtering.
The organic EL device thus obtained was sealed with a sealing glass and a UV curable adhesive in a dry nitrogen atmosphere in the glove box (both oxygen and moisture concentrations were 10 ppm or less).
When forming a large number of pixels on a substrate, a transparent electrode is formed on the entire surface by sputtering, then a resist agent is applied on the transparent electrode, and then patterned by a photolithography method to form a stripe pattern. An anode consisting of The organic film is formed by the same procedure as described above.
The cathode is formed by using a mask that can obtain a stripe pattern perpendicular to the anode line without breaking the vacuum.

上記有機層としては、好ましくは、アルカリ金属をドープした有機材料の膜、ホスト−ゲストを含んだ複合膜が挙げられる。
上記有機層がアルカリ金属をドープした有機材料の膜の場合、有機材料の蒸発源とアルカリ金属の蒸発源を用いるが、アルカリ金属の蒸発速度が、有機材料の蒸発速度の1/100〜1/1000の範囲にあるものが好ましい。具体的には、有機材料として、電子輸送層に適したものの例は、トリス(8−キノリノラト)アルミニウム(Alq3)、トリス(4−メチル−8−ヒドロキシキノリナート)アルミニウム(Almq3)あるいはその誘導体を配位子として少なくとも一つ有する金属錯体、2−(4−ビフェニイル)−5(4−タート−ブチルフェニル)−1,3,4−オキサジアゾール(PBD)等のオキサジアゾール誘導体、3−(ビフェニル−4−イル)−4−フェニル−5−(4−タート−ブチルフェニル)−1,2,4−トリアゾール(TAZ)、3,5−ジフェニル−4−ナフト−1−イル−1,2,4−トリアゾール等が挙げられる。
アルカリ金属として、Li、Na、K、Cs等が挙げられる。
The organic layer is preferably a film of an organic material doped with an alkali metal or a composite film containing a host-guest.
When the organic layer is an organic material film doped with an alkali metal, an organic material evaporation source and an alkali metal evaporation source are used, and the evaporation rate of the alkali metal is 1/100 to 1/1 of the evaporation rate of the organic material. Those in the range of 1000 are preferred. Specifically, examples of organic materials suitable for the electron transport layer include tris (8-quinolinolato) aluminum (Alq3), tris (4-methyl-8-hydroxyquinolinato) aluminum (Almq3), and derivatives thereof. A metal complex having at least one as a ligand, oxadiazole derivatives such as 2- (4-biphenyl) -5 (4-tert-butylphenyl) -1,3,4-oxadiazole (PBD), 3 -(Biphenyl-4-yl) -4-phenyl-5- (4-tert-butylphenyl) -1,2,4-triazole (TAZ), 3,5-diphenyl-4-naphth-1-yl-1 2,4-triazole and the like.
Examples of the alkali metal include Li, Na, K, and Cs.

上記有機層が、ホスト−ゲストを含んだ複合膜の場合、ホスト材料の蒸発源とゲスト材料の蒸発源を用いるが、ゲスト材料の蒸発速度が、ホスト材料の1/100〜1/1000の範囲にあるものが好ましい。具体的には、ホスト材料として、4,4'−ビス(2,2'−ジフェニルビニル)ビフェニル(DPVBi)等のジメチリディン誘導体、トリス(8−キノリノラト)アルミニウム(Alq3)あるいはその誘電体を配位子として少なくとも一つ有する金属錯体、2−タート−ブチル−9,10−ジ(2−ナフチル)アントラセン(TBADN)等のアントラセン化合物等が挙げられる。ゲスト材料として、4,4'−ビス[2−{4−(N,N−ジフェニルアミノ)フェニル}ビニル]ビフェニル(DPAVBi)等のジスチリルベンゼン系化合物、3−(2−ベンゾチアゾリル)−7−ジエチルアミノクマリン(クマリン6)等のクマリン誘導体、4−ジシアノメチレン−2−メチル−6−(p−ジメチルアミノスチリル)−4H−ピラン(DCM)等が挙げられる。   In the case where the organic layer is a composite film containing a host-guest, the evaporation source of the host material and the evaporation source of the guest material are used, but the evaporation rate of the guest material is in the range of 1/100 to 1/1000 of the host material. Are preferred. Specifically, dimethylidin derivatives such as 4,4′-bis (2,2′-diphenylvinyl) biphenyl (DPVBi), tris (8-quinolinolato) aluminum (Alq3) or a dielectric thereof is coordinated as a host material. Examples thereof include metal complexes having at least one as a child and anthracene compounds such as 2-tert-butyl-9,10-di (2-naphthyl) anthracene (TBADN). Examples of guest materials include distyrylbenzene compounds such as 4,4′-bis [2- {4- (N, N-diphenylamino) phenyl} vinyl] biphenyl (DPAVBi), 3- (2-benzothiazolyl) -7- Examples thereof include coumarin derivatives such as diethylaminocoumarin (coumarin 6), 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran (DCM), and the like.

アルカリ金属の蒸発源またはゲスト材料の蒸発源のように、蒸着量の小さい蒸発原は、二以上設けることが好ましい。   Two or more evaporation sources having a small deposition amount, such as an alkali metal evaporation source or a guest material evaporation source, are preferably provided.

本発明によれば、被蒸着基板からの距離が近接化されることにより、蒸着時のゲスト材料のフラックス量を低減することが可能となる。
有機層としてホスト−ゲストを含んだ複合膜を形成する場合を例にとり、図面を参照して本発明を説明するが、アルカリ金属をドープした有機材料の膜等でも同様である。
図1は、本発明を実施態様の一例として蒸着装置を示す。
この蒸着装置は、真空チャンバー10内に、ホスト材料を収容する蒸発源6、ゲスト材料を収容する蒸発源5aと5bおよびそれぞれを加熱するための電源16、15aと15b、基板(例えばガラス基板)1を支持する基板ホルダー2、膜厚センサー3、蒸着材料の蒸着容器壁を汚染することを防ぐ防着板4、真空ポンプ7を備えている。このとき、蒸着容器内は、蒸着に際し、真空ポンプ7によって真空に保たれる。それぞれの蒸発源は蒸着容器外に加熱用電源を備え、それぞれ個別に温度制御を行うことができる。
According to the present invention, it is possible to reduce the amount of the guest material flux during vapor deposition by making the distance from the deposition substrate closer.
The present invention will be described with reference to the drawings, taking as an example the case of forming a composite film containing a host-guest as the organic layer, but the same applies to an organic material film doped with an alkali metal.
FIG. 1 shows a vapor deposition apparatus according to an embodiment of the present invention.
In this vacuum deposition apparatus, an evaporation source 6 that accommodates a host material, evaporation sources 5a and 5b that accommodate a guest material, and power sources 16, 15a and 15b for heating each, a substrate (for example, a glass substrate) 1 is provided with a substrate holder 2 that supports 1, a film thickness sensor 3, a deposition preventing plate 4 that prevents the deposition container wall of the deposition material from being contaminated, and a vacuum pump 7. At this time, the inside of the vapor deposition container is kept in vacuum by the vacuum pump 7 during vapor deposition. Each evaporation source has a heating power source outside the vapor deposition container, and can individually control the temperature.

ホスト用蒸発源は、図1に示すように、蒸着容器の下部に材料を仕込んで、設置する。
本発明においては、蒸着する有機化合物は、昇華性材料や、融解しながら気化する(溶融性材料)などを用いることができる。ゲスト用蒸発源には、ホスト用蒸発源と同様に蒸着する有機材料を収容し、図1に示すように、基板近傍の位置に設置する。すなわち、本発明基板とゲスト用蒸発源の距離は、基板とホスト用蒸発源の距離よりも短くする。なお、基板と各蒸発源との距離は、基板表面の中心と蒸発源の蒸発表面の中心を結ぶ距離とする。
本発明基板とゲスト用蒸発源の距離と、基板とホスト用蒸発源の距離は、使用される材料の蒸着速度、すなわち物性(沸点等)により変えることができる。
As shown in FIG. 1, the host evaporation source is prepared by charging the material in the lower part of the vapor deposition container.
In the present invention, as the organic compound to be deposited, a sublimable material, a gasified while melting (meltable material), or the like can be used. The guest evaporation source contains an organic material to be deposited in the same manner as the host evaporation source, and is installed at a position near the substrate as shown in FIG. That is, the distance between the substrate of the present invention and the guest evaporation source is shorter than the distance between the substrate and the host evaporation source. The distance between the substrate and each evaporation source is a distance connecting the center of the substrate surface and the center of the evaporation surface of the evaporation source.
The distance between the substrate of the present invention and the guest evaporation source and the distance between the substrate and the host evaporation source can be changed depending on the deposition rate of the material used, that is, the physical properties (boiling point, etc.).

図1では、基板からの蒸発源までの距離を変化させているが、基板表面の中心と蒸発源の蒸発表面の中心とを結ぶ線が基板表面となす角度を換えてもよい。基板からの蒸発源までの距離を同一にして角度を変えると、基板表面の中心を円の中心とする同心円上に二以上の蒸発源を配置することになる。基板からの蒸発源までの距離を異ならせて角度を変えてもよい。
本発明基板とゲスト用蒸発源の角度、基板とホスト用蒸発源の角度は、使用される材料の蒸着速度、すなわち物性(沸点等)により変えることができる。
In FIG. 1, the distance from the substrate to the evaporation source is changed, but the angle between the line connecting the center of the substrate surface and the center of the evaporation surface of the evaporation source and the substrate surface may be changed. If the distance from the substrate to the evaporation source is the same and the angle is changed, two or more evaporation sources are arranged on a concentric circle with the center of the substrate surface being the center of the circle. The angle may be changed by changing the distance from the substrate to the evaporation source.
The angle between the substrate and the guest evaporation source of the present invention and the angle between the substrate and the host evaporation source can be changed depending on the deposition rate of the material used, that is, the physical properties (boiling point, etc.).

基板1に有機化合物を蒸着するには、まず、真空ポンプ7を稼動して真空チャンバー10内部を真空に保ち、それぞれの蒸発源を加熱する。それぞれの蒸発源を加熱すると内部の有機材料は内壁部から熱が伝搬して加熱される。有機材料が一定温度に達すると、有機化合物粉体は昇華(気化)し、蒸気が上部の開口部より蒸気流が発生し、基板1に付着し有機材料の薄膜が形成される。この場合、ホスト用蒸発源とゲスト用蒸発源は個別に制御可能であり、ゲスト用蒸発源においては、複数個を容器内に設置しているために、各蒸発源から発生する蒸気流は単独で設置した場合と比較して、少ない量で規定の蒸気流に達することができる。
また、基板と蒸発源との距離が短いことから、規定の蒸気流に達するための蒸発源の温度を低減することができる。
In order to deposit an organic compound on the substrate 1, first, the vacuum pump 7 is operated to keep the inside of the vacuum chamber 10 in a vacuum, and each evaporation source is heated. When each evaporation source is heated, the internal organic material is heated as heat propagates from the inner wall. When the organic material reaches a certain temperature, the organic compound powder sublimates (vaporizes), and a vapor flow is generated from the upper opening and adheres to the substrate 1 to form a thin film of the organic material. In this case, the host evaporation source and the guest evaporation source can be individually controlled. Since a plurality of guest evaporation sources are installed in the container, the vapor flow generated from each evaporation source is independent. Compared to the case of installing in the, the specified steam flow can be reached with a small amount.
Further, since the distance between the substrate and the evaporation source is short, the temperature of the evaporation source for reaching a prescribed vapor flow can be reduced.

本発明における蒸発源は、2個以上配置することによって任意に変更することが可能である。図2は、蒸発源5a〜5dと6の5つの蒸発源を示す。なお、蒸発源の配置の仕方は、記載したものが単に一例であり、その他の配置も有効であることは言うまでもない。   The evaporation source in the present invention can be arbitrarily changed by arranging two or more evaporation sources. FIG. 2 shows five evaporation sources, evaporation sources 5a to 5d and 6. Needless to say, the arrangement of the evaporation sources is merely an example, and other arrangements are also effective.

本発明によれば、基板を蒸発源に対向しつつ回転させる基板回転機構を備えてもよい。
一例として、図3は、真空容器内に、ガラス基板を回転させる回転機構17を示す。
回転機構は、基板を蒸発源に対向しつつ回転できるものであれば、特に限定されない。
According to the present invention, a substrate rotation mechanism that rotates the substrate while facing the evaporation source may be provided.
As an example, FIG. 3 shows a rotating mechanism 17 that rotates a glass substrate in a vacuum vessel.
The rotation mechanism is not particularly limited as long as the rotation mechanism can rotate while facing the evaporation source.

実施例1
本発明による各蒸発源中に有機材料を搭載し、有機ELデバイスを作製した。
基板は200mm×200mmの範囲に50mm×50mmITO付きガラスを用いた。本実験で供した真空容器内における基板−蒸発源間距離は、ホスト蒸発源間距離が400mm、ゲスト蒸発源間が200mmであった。ゲスト蒸発源は図2のように配置した。作製した素子の構造は、ホール輸送層/発光層/電子輸送層/電子注入層/陰極とした。ホール輸送層には40nmのα−NPD、発光層(電子輸送層も兼ねる)には30nmのAlq3に0.1vol%クマリン6をドープ、電子輸送層にはAlq3を20nmとした。各製膜速度は0.1nm/secとした。
なお、共蒸着時のホストおよびゲストの温度はAlq3が製膜速度1.0Å/sにおいて300℃、各クマリン蒸発源の製膜速度が0.0025Å/sとして180℃であった。次に、電子注入層および陰極としてAg−Mgを100nm積層した。このように作製した素子を評価した結果、素子の平均電流効率は、8cd/Aであり、そのバラツキはΔ5%以内であった。
Example 1
An organic material was mounted in each evaporation source according to the present invention to produce an organic EL device.
As the substrate, glass with 50 mm × 50 mm ITO was used in a range of 200 mm × 200 mm. As for the distance between the substrate and the evaporation source in the vacuum vessel provided in this experiment, the distance between the host evaporation source was 400 mm and the distance between the guest evaporation sources was 200 mm. The guest evaporation source was arranged as shown in FIG. The structure of the fabricated device was hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode. The hole transport layer was 40 nm α-NPD, the light-emitting layer (also serving as the electron transport layer) was 30 nm Alq3 doped with 0.1 vol% coumarin 6, and the electron transport layer was Alq3 20 nm. Each film-forming speed was 0.1 nm / sec.
The temperature of the host and guest during co-evaporation was 180 ° C. when Alq3 was 300 ° C. at a film formation rate of 1.0 Å / s, and the film formation rate of each coumarin evaporation source was 0.0025 Å / s. Next, 100 nm of Ag—Mg was stacked as an electron injection layer and a cathode. As a result of evaluating the device thus fabricated, the average current efficiency of the device was 8 cd / A, and the variation was within Δ5%.

比較例1
比較例として、図4に示す従来の装置を用いて、有機ELデバイスを作製した。この装置は、基板101、基板支持部102、膜厚センサー103、防着板104、ゲスト用蒸発源105とその加熱用電源115、ホスト用蒸発源106とその加熱用電源116および真空ポンプ107を真空チャンバー110内に備えた。基板は200mm×200mmの範囲に50mm×50mmITO付きガラスを用いた。本実験で供した真空容器内における基板−蒸発源間距離は、ホスト蒸発源間距離が400mm、ゲスト蒸発源間が400mmであった。作製した素子の構造は、ホール輸送層/発光層/電子輸送層/電子注入層/陰極とした。ホール輸送層には40nmのα−NPD、発光層(電子輸送層も兼ねる)には30nmのAlq3に0.1vol%クマリン6をドープ、電子輸送層にはAlq3を20nmとした。各製膜速度は0.1nm/secとした。なお、共蒸着時のホストおよびゲストの温度はAlq3が製膜速度1.0Å/sにおいて300℃、各クマリン蒸発源の製膜速度が0.001Å/sとして220℃であった。実施例と比較して、蒸着温度は40℃上昇した。次に、電子注入層および陰極としてAg−Mgを100nm積層した。このように作製した素子を評価した結果、素子の平均電流効率は、7cd/Aであり、そのバラツキはΔ15%以内であった。このように電流効率の低下およびバラツキが増加した要因は、ゲスト材料の制御が困難であったこと、ゲスト材料の膜厚分布の均一性が低下した結果と考えられる。
Comparative Example 1
As a comparative example, an organic EL device was manufactured using the conventional apparatus shown in FIG. This apparatus includes a substrate 101, a substrate support section 102, a film thickness sensor 103, a deposition plate 104, a guest evaporation source 105 and its heating power source 115, a host evaporation source 106, its heating power source 116 and a vacuum pump 107. It was provided in the vacuum chamber 110. As the substrate, glass with 50 mm × 50 mm ITO was used in a range of 200 mm × 200 mm. The distance between the substrate and the evaporation source in the vacuum container provided in this experiment was 400 mm between the host evaporation source and 400 mm between the guest evaporation sources. The structure of the fabricated device was hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode. The hole transport layer was 40 nm α-NPD, the light-emitting layer (also serving as the electron transport layer) was 30 nm Alq3 doped with 0.1 vol% coumarin 6, and the electron transport layer was Alq3 20 nm. Each film-forming speed was 0.1 nm / sec. The temperature of the host and guest during co-deposition was 300 ° C. at a film formation rate of 1.0 Å / s for Alq3, and 220 ° C. at a film formation rate of each coumarin evaporation source of 0.001 Å / s. Compared with the Examples, the deposition temperature increased by 40 ° C. Next, 100 nm of Ag—Mg was stacked as an electron injection layer and a cathode. As a result of evaluating the device thus fabricated, the average current efficiency of the device was 7 cd / A, and the variation was within Δ15%. The reasons for the decrease in current efficiency and the increase in the variation are considered to be the result of the difficulty in controlling the guest material and the decrease in the uniformity of the film thickness distribution of the guest material.

実施例2
本発明による各蒸発源中に有機材料を搭載し、有機ELデバイスを作製した。
基板は200mm×200mmの範囲に50mm×50mmITO付きガラスを用いた。本実験で供した真空容器内には、ガラス基板を回転させる機構が具備されている。基板−蒸発源間距離は、ホスト蒸発源間距離が400mm、ゲスト蒸発源間が100mmであった。ゲスト蒸発源は図3のように配置した。作製した素子の構造は、ホール輸送層/発光層/電子輸送層/電子注入層/陰極とした。ホール輸送層には40nmのα−NPD、発光層(電子輸送層も兼ねる)には30nmのAlq3に0.1vol%クマリン6をドープ、電子輸送層にはAlq3を20nmとした。各製膜速度は0.1nm/secとした。なお、基板回転は30rpmとした。共蒸着時のホストおよびゲストの温度はAlq3が製膜速度1.0Å/sにおいて330℃、各クマリン蒸発源の製膜速度が0.01Å/sとして200℃であった。次に、電子注入層および陰極としてAg−Mgを100nm積層した。このように作製した素子を評価した結果、素子の平均電流効率は、8cd/Aであり、そのバラツキはΔ5%以内であった。
Example 2
An organic material was mounted in each evaporation source according to the present invention to produce an organic EL device.
As the substrate, glass with 50 mm × 50 mm ITO was used in a range of 200 mm × 200 mm. In the vacuum vessel provided in this experiment, a mechanism for rotating the glass substrate is provided. The distance between the substrate and the evaporation source was 400 mm between the host evaporation source and 100 mm between the guest evaporation sources. The guest evaporation source was arranged as shown in FIG. The structure of the fabricated device was hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode. The hole transport layer was 40 nm α-NPD, the light-emitting layer (also serving as the electron transport layer) was 30 nm Alq3 doped with 0.1 vol% coumarin 6, and the electron transport layer was Alq3 20 nm. Each film-forming speed was 0.1 nm / sec. The substrate rotation was 30 rpm. The temperature of the host and guest during co-deposition was 330 ° C. at a film formation rate of 1.0 Å / s for Alq3, and 200 ° C. with a film formation rate of each coumarin evaporation source of 0.01 Å / s. Next, 100 nm of Ag—Mg was stacked as an electron injection layer and a cathode. As a result of evaluating the device thus fabricated, the average current efficiency of the device was 8 cd / A, and the variation was within Δ5%.

本発明による蒸着装置の例である。It is an example of the vapor deposition apparatus by this invention. 本発明の蒸発源配置の一例である。It is an example of the evaporation source arrangement | positioning of this invention. 本発明による回転機構を具備した蒸発装置の一例である。It is an example of the evaporation apparatus provided with the rotation mechanism by this invention. 従来技術の蒸着装置の一例である。It is an example of the vapor deposition apparatus of a prior art.

符号の説明Explanation of symbols

1 基板
2 基板ホルダー
3 膜厚センサー
4 防着板
5,5a,5b,5c,5d ゲスト用蒸発源
6 ホスト用蒸発源
7 真空ポンプ
10 真空チャンバー
15a,15b 加熱用電源
16 加熱用電源
17 回転機構
101 基板
102 基板ホルダー
103 膜厚センサー
104 防着板
105 ゲスト用蒸発源
106 ホスト用蒸発源
107 真空ポンプ
110 真空チャンバー
115 加熱用電源
116 加熱用電源
DESCRIPTION OF SYMBOLS 1 Substrate 2 Substrate holder 3 Film thickness sensor 4 Deposition plate 5, 5a, 5b, 5c, 5d Evaporation source for guest 6 Evaporation source for host 7 Vacuum pump 10 Vacuum chamber 15a, 15b Power supply for heating 16 Power supply for heating 17 Rotation mechanism DESCRIPTION OF SYMBOLS 101 Substrate 102 Substrate holder 103 Film thickness sensor 104 Attachment plate 105 Guest evaporation source 106 Host evaporation source 107 Vacuum pump 110 Vacuum chamber 115 Power supply for heating 116 Power supply for heating

Claims (9)

基板からの蒸発源までの距離、または基板表面の中心と蒸発源の蒸発表面の中心とを結ぶ線が該基板表面となす角度が異なる、蒸発速度の異なる二以上の蒸発源を用いて、真空成膜室内で基板上に蒸着層を形成する蒸着層の製造方法。   Using two or more evaporation sources with different evaporation rates, the distance from the substrate to the evaporation source, or the angle between the substrate surface center and the evaporation surface center of the evaporation source is different from the substrate surface, A method for manufacturing a vapor deposition layer, wherein a vapor deposition layer is formed on a substrate in a deposition chamber. 対向する陽極電極と陰極電極と、両電極の間に配され、二種以上の有機化合物を含有する少なくとも1層の有機層とを備える有機EL素子の有機層の製造方法であって、上記有機層が、基板からの蒸発源までの距離、または基板表面の中心と蒸発源の蒸発表面の中心とを結ぶ線が該基板表面となす角度が異なる、蒸発速度の異なる二以上の蒸発源を用いて、真空成膜室内で基板上に蒸着形成される有機EL素子の有機層の製造方法。   A method for producing an organic layer of an organic EL device comprising: an opposing anode electrode; a cathode electrode; and at least one organic layer containing two or more organic compounds disposed between the two electrodes. Use two or more evaporation sources with different evaporation speeds, where the layer has a different distance from the substrate to the evaporation source, or the angle between the line connecting the center of the substrate surface and the center of the evaporation surface of the evaporation source and the substrate surface A method for producing an organic layer of an organic EL element formed by vapor deposition on a substrate in a vacuum film formation chamber. 上記有機層が、アルカリ金属をドープした有機材料の膜であり、上記蒸発速度の異なる二以上の蒸発源が、該有機材料の蒸発源と該アルカリ金属の蒸発源であり、該アルカリ金属の蒸発速度が、該有機材料の蒸発速度の1/100から1/1000の範囲にある請求項2に記載の有機EL素子の有機層の製造方法。   The organic layer is a film of an organic material doped with an alkali metal, and the two or more evaporation sources having different evaporation rates are the evaporation source of the organic material and the evaporation source of the alkali metal, and the evaporation of the alkali metal. The method for producing an organic layer of an organic EL element according to claim 2, wherein the speed is in the range of 1/100 to 1/1000 of the evaporation speed of the organic material. 上記有機層が、ホスト−ゲストを含んだ複合膜であり、上記蒸発速度の異なる二以上の蒸発源が、ホスト材料の蒸発源とゲスト材料の蒸発源を含み、該ゲスト材料の蒸発速度が、該ホスト材料の蒸発速度の1/100から1/1000の範囲にある請求項2に記載の有機EL素子の有機層の製造方法。   The organic layer is a composite film containing a host-guest, the two or more evaporation sources having different evaporation rates include a host material evaporation source and a guest material evaporation source, and the guest material evaporation rate is The method for producing an organic layer of an organic EL element according to claim 2, wherein the organic material is in the range of 1/100 to 1/1000 of the evaporation rate of the host material. 上記アルカリ金属の蒸発源または上記ゲスト材料の蒸発源が、二以上設けられる請求項3または請求項4に記載の有機EL素子の有機層の製造方法。   The method for producing an organic layer of an organic EL element according to claim 3, wherein two or more of the alkali metal evaporation source or the guest material evaporation source are provided. 上記有機層が、上記基板を上記蒸発源に対向しつつ回転させて形成される請求項2〜5のいずれかに記載の有機EL素子の有機層の製造方法。   The method for producing an organic layer of an organic EL element according to claim 2, wherein the organic layer is formed by rotating the substrate while facing the evaporation source. 基板上に蒸着層を形成するための蒸着層の製造装置であって、該基板を支持するための基板ホルダーと、該基板からの蒸発源までの距離、または基板表面の中心と蒸発源の蒸発表面の中心とを結ぶ線が該基板表面となす角度が異なる、蒸発速度の異なる二以上の蒸発源を収納するための蒸発源ホルダーとを、真空成膜室内に備える蒸着層の製造装置。   A vapor deposition layer manufacturing apparatus for forming a vapor deposition layer on a substrate, the substrate holder for supporting the substrate, the distance from the substrate to the evaporation source, or the center of the substrate surface and the evaporation of the evaporation source An apparatus for producing a vapor deposition layer, comprising: an evaporation source holder for housing two or more evaporation sources having different evaporation rates, wherein the angle between a line connecting the center of the surface and the substrate surface is different. 対向する陽極電極と陰極電極と、両電極の間に配され、二種以上の有機化合物を含有する少なくとも1層の有機層を備える有機EL素子の有機層の製造装置であって、蒸着用の真空成膜室内に、基板を支持するための基板ホルダーと、該基板からの蒸発源までの距離、または基板表面の中心と蒸発源の蒸発表面の中心とを結ぶ線が該基板表面となす角度が異なる、蒸発速度の異なる二以上の蒸発源を収納するための蒸発源ホルダーとを備える有機EL素子の有機層の製造装置。   An apparatus for producing an organic layer of an organic EL element, comprising an anode and a cathode facing each other, and an organic EL element comprising at least one organic layer containing two or more organic compounds, The angle between the substrate holder for supporting the substrate and the distance from the substrate to the evaporation source, or the line connecting the center of the substrate surface and the center of the evaporation surface of the evaporation source, with the substrate surface in the vacuum film formation chamber And an evaporation source holder for storing two or more evaporation sources with different evaporation rates. 上記基板を上記蒸発源に対向しつつ回転させる基板回転機構を備える請求項8に記載の有機EL素子の有機層の製造装置。   The apparatus for producing an organic layer of an organic EL element according to claim 8, further comprising a substrate rotating mechanism that rotates the substrate while facing the evaporation source.
JP2006291259A 2006-10-26 2006-10-26 Forming method and forming apparatus of evaporation layer Withdrawn JP2008108611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006291259A JP2008108611A (en) 2006-10-26 2006-10-26 Forming method and forming apparatus of evaporation layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006291259A JP2008108611A (en) 2006-10-26 2006-10-26 Forming method and forming apparatus of evaporation layer

Publications (1)

Publication Number Publication Date
JP2008108611A true JP2008108611A (en) 2008-05-08

Family

ID=39441778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006291259A Withdrawn JP2008108611A (en) 2006-10-26 2006-10-26 Forming method and forming apparatus of evaporation layer

Country Status (1)

Country Link
JP (1) JP2008108611A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248629A (en) * 2009-03-27 2010-11-04 Semiconductor Energy Lab Co Ltd Film-forming apparatus, film-forming method and method for manufacturing illuminator
CN102251218A (en) * 2010-05-18 2011-11-23 鸿富锦精密工业(深圳)有限公司 Film plating apparatus
JP2013108137A (en) * 2011-11-21 2013-06-06 Panasonic Corp Inline vapor-deposition apparatus
US8623143B2 (en) 2010-05-18 2014-01-07 Hon Hai Precision Industry Co., Ltd. Vapor deposition apparatus
US8632635B2 (en) 2008-12-08 2014-01-21 Samsung Display Co., Ltd. Vapor deposition apparatus and vapor deposition method
JP2017082341A (en) * 2011-12-22 2017-05-18 株式会社半導体エネルギー研究所 Film formation method
US11286553B2 (en) * 2015-03-11 2022-03-29 Essilor International Method for vapor deposition of optical substrate
WO2024101670A1 (en) * 2022-11-11 2024-05-16 주식회사 야스 Deposition system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8632635B2 (en) 2008-12-08 2014-01-21 Samsung Display Co., Ltd. Vapor deposition apparatus and vapor deposition method
JP2010248629A (en) * 2009-03-27 2010-11-04 Semiconductor Energy Lab Co Ltd Film-forming apparatus, film-forming method and method for manufacturing illuminator
CN102251218A (en) * 2010-05-18 2011-11-23 鸿富锦精密工业(深圳)有限公司 Film plating apparatus
US8623143B2 (en) 2010-05-18 2014-01-07 Hon Hai Precision Industry Co., Ltd. Vapor deposition apparatus
JP2013108137A (en) * 2011-11-21 2013-06-06 Panasonic Corp Inline vapor-deposition apparatus
JP2017082341A (en) * 2011-12-22 2017-05-18 株式会社半導体エネルギー研究所 Film formation method
US11286553B2 (en) * 2015-03-11 2022-03-29 Essilor International Method for vapor deposition of optical substrate
WO2024101670A1 (en) * 2022-11-11 2024-05-16 주식회사 야스 Deposition system

Similar Documents

Publication Publication Date Title
JP3852509B2 (en) Electroluminescent device and manufacturing method thereof
JP4013859B2 (en) Organic thin film manufacturing equipment
JP3924648B2 (en) Organic electroluminescence device
TWI445445B (en) Organic light emitting device and manufacturing method thereof
JP2008108611A (en) Forming method and forming apparatus of evaporation layer
JP4736890B2 (en) Organic electroluminescence device
EP0929104B1 (en) Electroluminescence device and process for producing the same
GB2416919A (en) Liquid electrodes for organic semiconductor devices
US20110073846A1 (en) Organic electroluminescent element, method for manufacturing the organic electroluminescent element, and light emitting display device
JP2000160328A (en) Method and device for vapor-depositing thin film layer for element, and organic electroluminescence element
JP5102533B2 (en) Organic light emitting device
JP2008084701A (en) Transfer material for electronic device, method of forming insulating layer and barrier rib of electronic device, and light-emitting element
WO2016019277A1 (en) Photolithographic patterning of organic electronic devices
JP2004022176A (en) Electroluminescent element
JP2007042315A (en) Manufacturing method of organic electroluminescent element, and organic electroluminescent element
JPH09256142A (en) Film forming device
TW201123970A (en) Organic electroluminescent devices and process for production of same
JP4210872B2 (en) Electroluminescent device and manufacturing method thereof
JP2002180040A (en) Luminescent device
JP2002246184A (en) Light-emitting element
JP2009288476A (en) Method of manufacturing color conversion substrate, method of manufacturing color conversion filter substrate, and method of manufacturing organic electroluminescent device
JP2011040437A (en) Organic electroluminescence element
JP2006245011A (en) Electroluminescent element and manufacturing method of the same
Saikia A study on the performance of Organic Light Emitting Diode Using bilayer anode
JP4525303B2 (en) Organic EL device and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110819