JP2008108578A - Splice structure of flexible flat cable - Google Patents

Splice structure of flexible flat cable Download PDF

Info

Publication number
JP2008108578A
JP2008108578A JP2006290449A JP2006290449A JP2008108578A JP 2008108578 A JP2008108578 A JP 2008108578A JP 2006290449 A JP2006290449 A JP 2006290449A JP 2006290449 A JP2006290449 A JP 2006290449A JP 2008108578 A JP2008108578 A JP 2008108578A
Authority
JP
Japan
Prior art keywords
ffc
conductors
conductive adhesive
conductor
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006290449A
Other languages
Japanese (ja)
Inventor
Tatsuro Sakai
達郎 堺
Shigeto Kato
重人 加藤
Nobutaka Hamanishi
信隆 浜西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2006290449A priority Critical patent/JP2008108578A/en
Publication of JP2008108578A publication Critical patent/JP2008108578A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To branch and connect FFCs with a simple working process and without taking a space and causing a limit to current-carrying capacity. <P>SOLUTION: This is a connection structure to branch and connect FFCs 20, 30 covering a conductor with an insulating film at a prescribed position. In the FFCs, only the insulating film covering connecting portions 21a, 31a of the conductors 21, 31 is peeled off in a hole shape, and the FFCs 20, 30 are arranged so that the exposed conductors may face each other, and an anisotropic conductive adhesive film 40 having conductivity in the thickness direction and insulation property in surface direction is interposed between these conductors 21, 31. The conductors of the FFCs are contacted with both faces 40a, 40b in the thickness direction of the anisotropic conductive adhesive film and adhered. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フレキシブルフラットケーブル(以下、FFCと略称する)のスプライス構造に関し、幹線のFFCに支線のFFCを重ねて所要の導体同士をスプライス接続するものである。   The present invention relates to a splice structure of a flexible flat cable (hereinafter abbreviated as FFC), in which a branch line FFC is overlapped with a main line FFC to connect required conductors with each other.

従来より車載に搭載される電装品間を接続するため電線群を集束したワイヤハーネスが車両に配索されている。
しかし、電装品の増加に伴い各ワイヤハーネスの電線が増加し、ワイヤハーネス径が肥大化し、広い配索スペースが必要になると共に、その重量が車両の重量に対して無視できないものとなっている。
そこで、近時、銅箔からなる複数の導体を平行配置し、絶縁樹脂フィルムでラミネートして一体的したFFCが、前記電線群を集束したワイヤハーネスよりも偏平化および軽量化できる点より、信号回路用等として汎用されている。
2. Description of the Related Art Conventionally, a wire harness in which electric wires are converged has been routed in a vehicle in order to connect electrical components mounted on a vehicle.
However, as the number of electrical components increases, the number of wires in each wire harness increases, the wire harness diameter is enlarged, a wide wiring space is required, and the weight is not negligible relative to the weight of the vehicle. .
Therefore, recently, the FFC in which a plurality of conductors made of copper foil are arranged in parallel and laminated with an insulating resin film can be made flatter and lighter than a wire harness in which the electric wire group is converged. It is widely used for circuits.

車両用の電装品は信号回路とアース回路の位置が別々であったり、複数の電装品が同一のヒューズに接続されることが多く、幹線回路から支線回路を分岐して接続する必要がある。このため、幹線用FFCに支線用FFCをスプライス接続する種々の接続方法が提案されている。   In vehicle electrical components, the positions of the signal circuit and the ground circuit are different, or a plurality of electrical components are often connected to the same fuse, and it is necessary to branch the branch circuit from the main circuit and connect them. For this reason, various connection methods for splicing the branch line FFC to the main line FFC have been proposed.

例えば、特開2003−134630号公報(特許文献1)においては、図8に示すように、雌型端子1に端子板2を連接し端子板2の両側にクランプ片3を突設したピアス端子4を用い、FFC5の導体6に対応した箇所でピアス端子4のクランプ片3を突き刺し、クランプ片3の先端部を加締めている。ピアス端子4の雌型端子1に分岐する導体6を接続することで、FFC5の分岐接続が可能となる。   For example, in Japanese Patent Application Laid-Open No. 2003-134630 (Patent Document 1), as shown in FIG. 8, a pierce terminal in which a terminal plate 2 is connected to a female terminal 1 and clamp pieces 3 project from both sides of the terminal plate 2. 4, the clamp piece 3 of the piercing terminal 4 is pierced at a location corresponding to the conductor 6 of the FFC 5, and the tip of the clamp piece 3 is crimped. By connecting the branching conductor 6 to the female terminal 1 of the piercing terminal 4, the FFC 5 can be branched.

特開2003−134630号公報JP 2003-134630 A

しかし、前記ピアス端子はFFCの導体毎に取り付けなくてはならないため、接続回路数が多くなるとピアス端子の取付工程が多くなり、コスト高になる。さらに、導体同士を位置合わせして行う接続作業自体もカメラ等による位置検出が必要である程に高精度が要求され、設備も高価になる。また、ピアス端子のクランプ片と導体との接触面のみで導電するため、通電容量に制限が生じる問題がある。   However, since the pierce terminal must be attached to each conductor of the FFC, if the number of connection circuits is increased, the process of attaching the pierce terminal is increased and the cost is increased. Furthermore, the connection work itself performed by aligning the conductors is required to have a high degree of accuracy so that the position detection by a camera or the like is required, and the equipment becomes expensive. In addition, since conduction is performed only on the contact surface between the clamp piece of the pierce terminal and the conductor, there is a problem that the energization capacity is limited.

本発明は、前記問題に鑑みてなされたもので、一度に複数の導体同士の接続を可能し、かつ、通電容量に制限を生じさせずにFFCのスプライス接続ができるようにすることを課題としている。   SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to enable connection of a plurality of conductors at a time, and to enable splicing of FFC without causing a restriction on current carrying capacity. Yes.

前記課題を解決するため、本発明は、
複数の導体を絶縁フィルムで被覆したフレキブルフラットケーブル(FFC)のスプライス接続構造であって、
前記FFCの各導体のスプライス接続部を被覆する絶縁フィルムのみを穴空き状に剥離して前記スプライス接続部の導体を露出させ、
一組または複数組の前記露出させた導体同士を互いに向き合うように前記FFC同士を重ね合わせ、これら導体間に、厚さ方向に導電性を有すると共に面方向に絶縁性を有する異方性導電接着フィルムを介在させ、該異方性導電接着フィルムの厚さ方向の両面に前記FFCの導体を接着して接続していることを特徴とするフレキシブルフラットケーブルのスプライス構造を提供している。
In order to solve the above problems, the present invention provides:
A flexible flat cable (FFC) splice connection structure in which a plurality of conductors are covered with an insulating film,
Only the insulating film covering the splice connection portion of each conductor of the FFC is peeled off in a perforated form to expose the conductor of the splice connection portion,
The FFCs are overlapped so that one or a plurality of exposed conductors face each other, and an anisotropic conductive adhesive having conductivity in the thickness direction and insulation in the surface direction between these conductors A flexible flat cable splice structure is provided, wherein a film is interposed and the FFC conductor is bonded and connected to both surfaces of the anisotropic conductive adhesive film in the thickness direction.

本発明では、前記のように、スプライス接続用の導電材として、前記従来例の導体毎にピアス端子等の端子金具を用いた接続ではなく、一方向にのみ導電性を有する異方性導電接着フィルムを導電材として用いている。
前記異方性導電接着フィルムは、導電性金属繊維を粘着性を有する絶縁樹脂中に厚さ方向に配向させたフィルムからなり、前記導電性金属繊維の両端が接触する厚さ方向の導体同士のみを導電するものである。
即ち、異方性導電接着フィルムでは、各導電性金属繊維の両端が接着する導体同士を導通する機能だけを有り、導電性金属繊維間では導通せず、金属繊維が接触する導体が相違すれば、これら導体間での導通は発生しない。
よって、1枚の異方性導電接着フィルムを用い、その複数箇所において、異なる導体間に介在させた場合、それぞれ導体間を導通できると共に、他の導体間とは絶縁することができる。
In the present invention, as described above, the conductive material for splice connection is not a connection using a terminal fitting such as a pierce terminal for each conductor of the conventional example, but an anisotropic conductive adhesive having conductivity only in one direction. A film is used as a conductive material.
The anisotropic conductive adhesive film is a film in which conductive metal fibers are oriented in the thickness direction in an insulating resin having adhesiveness, and only the conductors in the thickness direction where both ends of the conductive metal fibers are in contact with each other. Are electrically conductive.
That is, the anisotropic conductive adhesive film only has a function of conducting the conductors bonded at both ends of each conductive metal fiber, and does not conduct between the conductive metal fibers, and the conductors in contact with the metal fibers are different. No conduction occurs between these conductors.
Therefore, when one anisotropic conductive adhesive film is used and interposed between different conductors at a plurality of locations, the conductors can be electrically connected to each other and insulated from other conductors.

前記機能を有する異方性導電接着フィルムを用いることで、本発明では、FFC同士の複数組の導体同士の間に1枚の異方性導電接着フィルムを介在させるだけで同時に複数組の導体間の接続を行っている。なお、回路構成に応じて、1枚の異方性導電接着フィルムで1組の導体同士の接続を行ってもよい。
このように、各導体毎ではなく、複数の導体同時を同時に接続できると共に、粘着性を有する異方性導電接着フィルムの両面にFFCを配置して押し付けるだけで固着できるため、FFC同士のスプライス接続を簡単に形成することができ、スプライス接続部における導電材の取付工程を大幅に低減することができる。かつ、絶縁フィルムを剥離して露出させたスプライス接続部同士の位置が若干ずれても異方性導電接着フィルムで接着することで導通を確実に図ることができるため、前記従来例の端子金具を用いて導通する場合に必要であった高精度の位置合わせが不要となり、高価なカメラによる位置検出を不要とでき、設備費の低減も図ることができる。
しかも、各FFCの絶縁フィルムを剥離して露出させるスプライス接続部の面積を広くし、該面積全体に前記異方性導電接着フィルムを介して導通することで、スプライス接続部での許容通電量を増大することもできる。
さらに、異方性導電接着フィルムはFFCの間に介在されるだけで、突き刺し端子金具を用いた場合に発生するFFCの外面への露出はないため、外面露出部を絶縁する必要もない。さらに、異方性導電接着フィルムは薄い偏平なフィルムであるため、FFCの利点である偏平化を阻害しない。
By using the anisotropic conductive adhesive film having the above function, in the present invention, only a single anisotropic conductive adhesive film is interposed between a plurality of sets of conductors of FFCs. Are connected. In addition, according to a circuit structure, you may connect one set of conductors with one anisotropic conductive adhesive film.
In this way, not only for each conductor, but also for simultaneous connection of a plurality of conductors, and because it can be fixed simply by placing and pressing FFCs on both sides of an anisotropic conductive adhesive film having adhesive properties, splice connection between FFCs Can be easily formed, and the process of attaching the conductive material at the splice connection can be greatly reduced. In addition, even if the positions of the splice connecting portions exposed by peeling off the insulating film are slightly shifted, it is possible to ensure conduction by bonding with an anisotropic conductive adhesive film. This eliminates the need for high-accuracy alignment that is necessary when conducting the operation, makes it unnecessary to detect the position with an expensive camera, and reduces the equipment cost.
In addition, by increasing the area of the splice connection part that peels off and exposes the insulating film of each FFC and conducts the entire area through the anisotropic conductive adhesive film, the allowable energization amount at the splice connection part is increased. It can also be increased.
Furthermore, since the anisotropic conductive adhesive film is merely interposed between the FFCs, and there is no exposure of the FFC to the outer surface that occurs when the piercing terminal fitting is used, it is not necessary to insulate the outer surface exposed portion. Furthermore, since the anisotropic conductive adhesive film is a thin flat film, it does not hinder flattening, which is an advantage of FFC.

具体的には、各FFCは、断面平角状の前記導体を帯状に連続させると共に、複数本の前記導体を間隔をあけて平行に配置して前記絶縁フィルムでラミネートしたものを用い、前記重ね合わせる一方の前記FFCは幹線用、他方の前記FFCは支線用とし、
前記幹線用FFCでは長さ方向の中間位置で複数の前記スプライス接続部の導体を夫々個別に露出させる一方、前記支線用FFCでは長さ方向の一端位置で所要の導体を夫々個別に露出させ、
前記幹線用FFCの前記導体を露出させた中間位置に対して、前記支線用FFCの一端を直交方向あるいは傾斜方向に位置させ、前記露出させた導体同士を対向させて、その間に前記異方性導電接着フィルムを介在させて接続している。
Specifically, each FFC uses the one in which the conductor having a rectangular cross section is continuous in a strip shape, and a plurality of the conductors are arranged in parallel at intervals and laminated with the insulating film, and the superposition is performed. One FFC is for the main line, the other FFC is for the branch line,
In the trunk FFC, the conductors of the plurality of splice connection portions are individually exposed at intermediate positions in the length direction, whereas in the branch FFC, required conductors are individually exposed at one end position in the length direction.
With respect to the intermediate position where the conductor of the main line FFC is exposed, one end of the branch line FFC is positioned in an orthogonal direction or an inclined direction, the exposed conductors are opposed to each other, and the anisotropy is interposed therebetween. They are connected via a conductive adhesive film.

前記のように、幹線となるFFCに対して支線となるFFCを、その配線方向に対応して直交方向あるいは傾斜方向に配置しても、導体同士を重ね合わせて、その間に異方性導電接着フィルムを介在させることができれば、スプライス接続することができる。   As described above, even if an FFC serving as a branch line with respect to an FFC serving as a trunk line is disposed in an orthogonal direction or an inclination direction corresponding to the wiring direction, the conductors are overlapped with each other and anisotropic conductive bonding is performed therebetween. If a film can be interposed, splice connection can be achieved.

前記絶縁フィルムを穴空き状に剥離して露出させる接続部の導体は、隣接位置の導体間では長さ方向に位置をずらせていることが好ましい。
即ち、平行配線する導体同士を接続する場合、FFCの長さ方向と直交する幅方向において、同一線上に絶縁フィルムの穴あき部を形成して、露出させた導体同士を対向させて前記異方性導電接着フィルムで接続しても良いが、通常、FFCの隣接する導体間の隙間は狭いため、より確実に絶縁を図るためには、前記のように、長さ方向に位置をずらせることが好ましい。
It is preferable that the conductor of the connection part which peels and exposes the said insulating film in the shape of a hole has shifted the position in the length direction between the conductors of an adjacent position.
That is, when connecting parallel conductors, the anisotropic direction is formed by forming a perforated portion of an insulating film on the same line in the width direction orthogonal to the length direction of the FFC, and exposing the exposed conductors to each other. However, since the gap between adjacent conductors of the FFC is narrow, it is necessary to shift the position in the length direction as described above for more reliable insulation. Is preferred.

前述したように、本発明のFFCのスプライス接続構造によれば、FFCの導体同士の接続を異方性導電接着フィルムを介在して行っているため、複数組の導体間の接続を1枚の異方性導電接着フィルムを介在させるだけで同時に行うことができる。このように、スプライス接続部を簡単に形成できるため、製造コストを低下することができる。
また、導体の露出面積を大きくして異方性導電接着フィルムと接触する面積を大きくすると、導体同士が導電する面積が大きくなるため、通電容量を大きくすることができる。
さらに、FFCの間に薄い異方性導電接着フィルムを介在させるだけであるため、FFCの平面性を阻害せず、偏平な配索スペースへのFFCの配索に、スプライス接続部が阻害要因とならない。
As described above, according to the FFC splice connection structure of the present invention, the FFC conductors are connected to each other through the anisotropic conductive adhesive film. It can be carried out simultaneously only by interposing an anisotropic conductive adhesive film. Thus, since the splice connection portion can be easily formed, the manufacturing cost can be reduced.
Further, when the exposed area of the conductor is increased to increase the area in contact with the anisotropic conductive adhesive film, the area where the conductors conduct is increased, so that the current carrying capacity can be increased.
Furthermore, since only a thin anisotropic conductive adhesive film is interposed between the FFCs, the flatness of the FFC is not hindered, and the splicing connection part is an obstructive factor in the FFC routing in a flat routing space. Don't be.

本発明の実施形態を図面を参照して説明する。
図1乃至図3に本発明の第1実施形態を示す。
第1実施形態では、幹線用FFC20の中間位置の上面に、支線用FFC30の長さ方向の一端を、異方性導電接着フィルム40を介在させて直角方向に重ねて載置し、幹線用FFCの導体21A、21Bと支線用FFC30の導体31A、31Bを異方性導電接着フィルム40で夫々導通している。
Embodiments of the present invention will be described with reference to the drawings.
1 to 3 show a first embodiment of the present invention.
In the first embodiment, one end in the length direction of the branch line FFC 30 is placed on the upper surface of the intermediate position of the main line FFC 20 in a perpendicular direction with the anisotropic conductive adhesive film 40 interposed therebetween. The conductors 21A and 21B and the conductors 31A and 31B of the branch line FFC 30 are electrically connected by the anisotropic conductive adhesive film 40, respectively.

幹線用FFC20は、帯状に連続させた断面平角状の複数の導体21(本実施形態では2本の導体21A、21Bのみを示している)を間隔をあけて平行に配置し、導体21の両面を第1絶縁フィルム22と第2絶縁フィルム23でラミネートしている。長さ方向Xの中間位置で、上面側の第1絶縁フィルム22のみを正方形状にレーザーで切除して穴空き部分24A,24Bとし、所要の導体21を夫々個別に露出させ、支線用FFC30とのスプライス接続部21A−a、21B−aとしている。スプライス接続部21aは、隣接位置の導体21間では長さ方向Xに位置をずらせている。   The main line FFC 20 includes a plurality of conductors 21 having a rectangular cross-section that are continuous in a strip shape (in the present embodiment, only two conductors 21A and 21B are shown) arranged in parallel with an interval between them. Are laminated with the first insulating film 22 and the second insulating film 23. At the middle position in the length direction X, only the first insulating film 22 on the upper surface side is cut into a square shape with a laser to form hole portions 24A and 24B, and the necessary conductors 21 are individually exposed, and the branch line FFC 30 and Splice connection portions 21A-a and 21B-a. The splice connecting portion 21a is displaced in the length direction X between the conductors 21 at adjacent positions.

支線用FFC30は幹線用FFC20と同様の形状で、平行に配置された導体31A、31Bを第1絶縁フィルム32と第2絶縁フィルム33でラミネートし、所要の導体31を夫々個別に露出させて幹線用FFC20との接続部31A−a、31B−aとしている。 支線用FFC30の長さ方向Yの一端位置に、下面側の第2絶縁フィルム33を切除して接続部31aを設けている点が幹線用FFC20と異なっている。   The branch line FFC 30 has the same shape as the main line FFC 20, the conductors 31 A and 31 B arranged in parallel are laminated with the first insulating film 32 and the second insulating film 33, and the required conductors 31 are individually exposed to the main line. Connection portions 31A-a and 31B-a with the FFC 20 are used. It differs from the main FFC 20 in that the connecting portion 31a is provided by cutting off the second insulating film 33 on the lower surface side at one end position in the length direction Y of the branch FFC 30.

幹線用FFC20の長さ方向Xの中間位置に対して、支線用FFC30の一端を、幹線用FFC20の長さ方向Xと支線用FFC30の長さ方向Yが直交するように位置させ、幹線用FFC20の各接続部21aと支線用FFC30の各接続部31aが互いに向き合うように対向させている。   One end of the branch line FFC 30 is positioned so that the length direction X of the main line FFC 20 and the length direction Y of the branch line FFC 30 are orthogonal to the intermediate position in the length direction X of the main line FFC 20. Each of the connecting portions 21a and each connecting portion 31a of the branch line FFC 30 are opposed to each other.

前記接続部21a、31aの間に、前記異方性導電接着フィルム40を介在させている。異方性導電接着フィルム40は、図1(B)に示すように、導電性金属繊維Fを厚さ方向Zに配向させ、粘着性を有する絶縁樹脂P中に埋設したフィルムからなり、導電性金属繊維Fの両端を厚さ方向Zの上下端面40a、40bに露出させている。
前記導電性金属繊維Fはニッケル繊維等、絶縁樹脂はエポキシ樹脂、ポリアミド樹脂等からなり、厚さは100μm程度である。
The anisotropic conductive adhesive film 40 is interposed between the connecting portions 21a and 31a. As shown in FIG. 1 (B), the anisotropic conductive adhesive film 40 is made of a film in which conductive metal fibers F are oriented in the thickness direction Z and embedded in an insulating resin P having adhesive properties. Both ends of the metal fiber F are exposed on the upper and lower end surfaces 40a, 40b in the thickness direction Z.
The conductive metal fiber F is made of nickel fiber or the like, the insulating resin is made of epoxy resin, polyamide resin, or the like, and the thickness is about 100 μm.

前記異方性導電接着フィルム40の厚さ方向Zの両端面40a、40bが各FFCの導体21、31のスプライス接続部21a、31aと接触すると、各導電性金属繊維Fの両端と導電して、導体21と31とを導通する。其の際、他の導電性金属繊維Fとは絶縁樹脂Pで絶縁されているため、厚さ方向Zと直交する面方向には導電せず、導体21Aと21B、31Aと31Bは導通せず、絶縁性を保持するものである。   When both end faces 40a, 40b in the thickness direction Z of the anisotropic conductive adhesive film 40 come into contact with the splice connecting portions 21a, 31a of the conductors 21, 31 of each FFC, they are electrically connected to both ends of each conductive metal fiber F. Conductors 21 and 31 are electrically connected. At that time, since the other conductive metal fibers F are insulated by the insulating resin P, they do not conduct in the plane direction orthogonal to the thickness direction Z, and the conductors 21A and 21B and 31A and 31B do not conduct. Insulating properties are maintained.

前記異方性導電接着フィルム40の絶縁樹脂Pは粘着性を有するものとしていることで、異方性導電接着フィルム40を介在させた幹線用FFC20と支線用FFC30の上下両面から所要の圧力をかけることで、異方性導電接着フィルム40の両面を幹線用FFC20と支線用FFC30に固着する。即ち、異方性導電接着フィルム40をFFC20、30の絶縁フィルムを剥離した穴空き部分では導体21、31と固着し、絶縁フィルムを剥離していない部分では絶縁フィルムの表面に固着している。   Since the insulating resin P of the anisotropic conductive adhesive film 40 is tacky, a required pressure is applied from both the upper and lower surfaces of the trunk FFC 20 and the branch FFC 30 with the anisotropic conductive adhesive film 40 interposed therebetween. Thus, both surfaces of the anisotropic conductive adhesive film 40 are fixed to the main line FFC 20 and the branch line FFC 30. That is, the anisotropic conductive adhesive film 40 is fixed to the conductors 21 and 31 at the perforated portions where the insulating films of the FFCs 20 and 30 are peeled off, and is fixed to the surface of the insulating film at the portions where the insulating films are not peeled off.

前記構成によれば、幹線用FFC20と支線用FFC30の導体21、31を露出させてスプライス接続部21a、31aを異方性導電接着フィルム40を介在させるだけで導体21Aと導体31A,導体21Bと導体31B間がそれぞれ個別に導電することができる。
このように、幹線用FFC20と支線用FFC30の複数組の導体同士を1枚の異方性導電接着フィルム40で同士にスプライス接続することができるため、スプライス接続部の製造工程を従来と比較して非常に簡単とすることができる。
According to the above-described configuration, the conductors 21 and 31 of the main line FFC 20 and the branch line FFC 30 are exposed, and the conductor 21A, the conductor 31A, and the conductor 21B are simply connected to the splice connection portions 21a and 31a via the anisotropic conductive adhesive film 40. The conductors 31B can be individually conducted.
Thus, since a plurality of conductors of the main line FFC 20 and the branch line FFC 30 can be spliced to each other with a single anisotropic conductive adhesive film 40, the manufacturing process of the splice connection part is compared with the conventional one. And can be very simple.

図4に本発明の第2実施形態を示す。
第2実施形態では、幹線用FFC20の長さ方向の中間位置に対して、支線用FFC30の一端を傾斜方向に位置させている点が第1実施形態とは異なっている。
幹線用FFC20と支線用FFC30の接続部21a、31a同士が異方性導電接着フィルム40を介して導電していれば、傾斜方向の角度は自由に設定することができる。幹線用FFC20の長さ方向Xと、支線用FFC30の長さ方向Yの角度を直交方向だけでなく傾斜方向に分岐接続することができるので、車両内のFFCの配索の自由度を増すことができる。
なお、他の構成および作用効果は第1実施形態と同様のため、同一の符号を付して説明を省略する。
FIG. 4 shows a second embodiment of the present invention.
The second embodiment is different from the first embodiment in that one end of the branch line FFC 30 is positioned in the inclined direction with respect to the intermediate position in the length direction of the main line FFC 20.
If the connecting portions 21a and 31a of the main line FFC 20 and the branch line FFC 30 are electrically connected to each other through the anisotropic conductive adhesive film 40, the angle in the inclination direction can be freely set. Since the angle between the length direction X of the main line FFC 20 and the length direction Y of the branch line FFC 30 can be branched and connected not only in the orthogonal direction but also in the inclined direction, the degree of freedom of FFC routing in the vehicle is increased. Can do.
In addition, since another structure and an effect are the same as that of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図5乃至図7に本発明の第3実施形態を示す。
第3実施形態では、幹線用FFC20の第1絶縁フィルム22の穴空き部分24および支線用FFC30の第2絶縁フィルム33の穴空き部分34は同じ正方形状とし、異方性導電接着フィルム40も該穴空き部分24、34と同じ形状としている。
異方性導電接着フィルム40の厚さは、幹線用FFC20の第1絶縁フィルム22と支線用FFC30の第2絶縁フィルム33の厚さの和とし、かつ、断面形状は前記穴空き部分24、34と同一の正方形状とした分割体40ー1、40ー2を設けている。
5 to 7 show a third embodiment of the present invention.
In the third embodiment, the perforated portion 24 of the first insulating film 22 of the main line FFC 20 and the perforated portion 34 of the second insulating film 33 of the branch line FFC 30 have the same square shape, and the anisotropic conductive adhesive film 40 is It has the same shape as the perforated portions 24 and 34.
The thickness of the anisotropic conductive adhesive film 40 is the sum of the thicknesses of the first insulating film 22 of the main line FFC 20 and the second insulating film 33 of the branch line FFC 30, and the cross-sectional shape is the perforated portions 24, 34. The divided bodies 40-1 and 40-2 having the same square shape are provided.

第3実施形態のスプライス接続部の形成方法は、幹線用FFC20のスプライス接続部21A−a、21Baに夫々異方性導電接着フィルムの分割体40ー1、40ー2をはめ込んた後に、支線用FFC30を被せ、穴空き部34を分割体40ー1、40ー2に嵌合させ、分割体40ー1、40ー2の上面にプライス接続部31A−a、31B−aを接触させる。この状態で、幹線用FFC20と支線用FFC30の上下両面から圧力をかけることで、異方性導電接着フィルムの分割体40ー1、40−2の厚さ方向Zの両端面と各FFCのスプライス接続部21a、31aとを接触させて導通している。   The method of forming the splice connection part of the third embodiment is that for the branch line after the anisotropic conductive adhesive film segments 40-1 and 40-2 are fitted into the splice connection parts 21A-a and 21Ba of the main line FFC 20, respectively. The FFC 30 is put on, the perforated portion 34 is fitted into the divided bodies 40-1 and 40-2, and the price connecting portions 31A-a and 31B-a are brought into contact with the upper surfaces of the divided bodies 40-1 and 40-2. In this state, by applying pressure from the upper and lower surfaces of the main line FFC 20 and the branch line FFC 30, both end surfaces in the thickness direction Z of the split bodies 40-1 and 40-2 of the anisotropic conductive adhesive film and the splices of the respective FFCs The connection portions 21a and 31a are brought into contact with each other to be conducted.

前記構成によれば、異方性導電接着フィルム40を分割体40−1、40−2として、スプライス接続部21a、31aの部分にのみ使用しているので、異方性導電接着フィルム40の使用量を少なくして、コストを削減することができる。
また、異方性導電接着フィルム40は幹線用FFC20と支線用FFC30の穴空き部分24、34で構成されるスペースに配置するので、幹線用FFC20と支線用FFC30の分岐部分の厚さをより薄くすることができる。
なお、他の構成および作用効果は第1実施形態と同様のため、同一の符号を付して説明を省略する。
According to the above configuration, since the anisotropic conductive adhesive film 40 is used only as the split bodies 40-1 and 40-2 for the splice connection portions 21a and 31a, the anisotropic conductive adhesive film 40 is used. The amount can be reduced and the cost can be reduced.
Further, since the anisotropic conductive adhesive film 40 is disposed in a space formed by the perforated portions 24 and 34 of the main line FFC 20 and the branch line FFC 30, the thickness of the branch part between the main line FFC 20 and the branch line FFC 30 is made thinner. can do.
In addition, since another structure and an effect are the same as that of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

本発明の第1実施形態を示し、(A)は分解斜視図、(B)は異方性導電接着フイルムの拡大断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a first embodiment of the present invention, where (A) is an exploded perspective view and (B) is an enlarged sectional view of an anisotropic conductive adhesive film. 第1実施形態のFFCのスプライス接続構造を示す斜視図である。It is a perspective view which shows the splice connection structure of FFC of 1st Embodiment. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 第2実施形態のFFCのスプライス接続構造を示す斜視図である。It is a perspective view which shows the splice connection structure of FFC of 2nd Embodiment. 第3実施形態の分解斜視図である。It is a disassembled perspective view of 3rd Embodiment. 第3実施形態のFFCのスプライス接続構造を示す斜視図である。It is a perspective view which shows the splice connection structure of FFC of 3rd Embodiment. 図6のB−B線断面図である。It is the BB sectional view taken on the line of FIG. 従来例を示す図面である。It is drawing which shows a prior art example.

符号の説明Explanation of symbols

20 幹線用FFC
30 支線用FFC
21、31 導体
21a、31a 接続部
22、32 第1絶縁フィルム
23、33 第2絶縁フィルム
24、34 穴空き部分
40 異方性導電接着フィルム
40a、40b 両端面
40−1、40−2 分割体
20 FFC for main line
30 FFC for branch line
21, 31 Conductors 21a, 31a Connection portions 22, 32 First insulating film 23, 33 Second insulating film 24, 34 Perforated portion 40 Anisotropic conductive adhesive films 40a, 40b Both end surfaces 40-1, 40-2 Split body

Claims (4)

複数の導体を絶縁フィルムで被覆したフレキブルフラットケーブル(FFC)のスプライス接続構造であって、
前記FFCの各導体のスプライス接続部を被覆する絶縁フィルムのみを穴空き状に剥離して前記スプライス接続部の導体を露出させ、
一組または複数組の前記露出させた導体同士を互いに向き合うように前記FFC同士を重ね合わせ、これら導体間に、厚さ方向に導電性を有すると共に面方向に絶縁性を有する異方性導電接着フィルムを介在させ、該異方性導電接着フィルムの厚さ方向の両面に前記FFCの導体を接着して接続していることを特徴とするフレキシブルフラットケーブルのスプライス構造。
A flexible flat cable (FFC) splice connection structure in which a plurality of conductors are covered with an insulating film,
Only the insulating film covering the splice connection portion of each conductor of the FFC is peeled off in a perforated form to expose the conductor of the splice connection portion,
The FFCs are overlapped so that one or a plurality of exposed conductors face each other, and an anisotropic conductive adhesive having conductivity in the thickness direction and insulation in the surface direction between these conductors A splice structure of a flexible flat cable, wherein a film is interposed and the FFC conductor is bonded and connected to both surfaces of the anisotropic conductive adhesive film in the thickness direction.
各FFCは、断面平角状の前記導体を帯状に連続させると共に、複数本の前記導体を間隔をあけて平行に配置して前記絶縁フィルムでラミネートしており、
前記重ね合わせる一方の前記FFCは幹線用、他方の前記FFCは支線用とし、
前記幹線用FFCでは長さ方向の中間位置で複数の前記スプライス接続部の導体を夫々個別に露出させる一方、前記支線用FFCでは長さ方向の一端位置で所要の導体を夫々個別に露出させ、
前記幹線用FFCの前記導体を露出させた中間位置に対して、前記支線用FFCの一端を直交方向あるいは傾斜方向に位置させ、前記露出させた導体同士を対向させて、その間に前記異方性導電接着フィルムを介在させて接続している請求項1に記載のフレキシブルフラットケーブルのスプライス構造。
Each FFC has the conductor having a rectangular cross section continuous in a strip shape, and a plurality of the conductors are arranged in parallel with a gap and laminated with the insulating film,
The one FFC to be overlapped is for the main line, the other FFC is for the branch line,
In the trunk FFC, the conductors of the plurality of splice connection portions are individually exposed at intermediate positions in the length direction, whereas in the branch FFC, required conductors are individually exposed at one end position in the length direction.
With respect to the intermediate position where the conductor of the main line FFC is exposed, one end of the branch line FFC is positioned in an orthogonal direction or an inclined direction, the exposed conductors are opposed to each other, and the anisotropy is interposed therebetween. The splice structure of the flexible flat cable according to claim 1, wherein the splice structure is connected via a conductive adhesive film.
前記絶縁フィルムを穴空き状に剥離して露出させる接続部の導体は、隣接位置の導体間では長さ方向に位置をずらせている請求項1または請求項2に記載のフラットケーブルのスプライス構造。   The flat cable splice structure according to claim 1 or 2, wherein the conductor of the connecting portion that peels and exposes the insulating film in the form of a hole is displaced in the length direction between conductors at adjacent positions. 前記異方性導電接着フィルムは、導電性金属繊維を粘着性を有する絶縁樹脂中に厚さ方向に配向させたフィルムからなり、前記導電性金属繊維の両端が接触する厚さ方向の導体同士のみを導電するものである請求項1乃至請求項3のいずれか1項に記載のフラットケーブルのスプライス構造。   The anisotropic conductive adhesive film is a film in which conductive metal fibers are oriented in the thickness direction in an insulating resin having adhesiveness, and only the conductors in the thickness direction where both ends of the conductive metal fibers are in contact with each other. The flat cable splice structure according to any one of claims 1 to 3, wherein the flat cable splice structure is electrically conductive.
JP2006290449A 2006-10-25 2006-10-25 Splice structure of flexible flat cable Withdrawn JP2008108578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290449A JP2008108578A (en) 2006-10-25 2006-10-25 Splice structure of flexible flat cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290449A JP2008108578A (en) 2006-10-25 2006-10-25 Splice structure of flexible flat cable

Publications (1)

Publication Number Publication Date
JP2008108578A true JP2008108578A (en) 2008-05-08

Family

ID=39441754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290449A Withdrawn JP2008108578A (en) 2006-10-25 2006-10-25 Splice structure of flexible flat cable

Country Status (1)

Country Link
JP (1) JP2008108578A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101345732B1 (en) * 2012-04-26 2014-01-16 남경 주식회사 Connect instrument using lighting equipment
JP2014008689A (en) * 2012-06-29 2014-01-20 Brother Ind Ltd Liquid discharge device, connection structure of wiring, and manufacturing method for the same
WO2014123117A1 (en) * 2013-02-05 2014-08-14 古河電気工業株式会社 Electrical wiring structure, electrical connection structure, and method for manufacturing electrical wiring structure
EP3722157A1 (en) * 2019-04-12 2020-10-14 Aptiv Technologies Limited Wiring harness assembly

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101345732B1 (en) * 2012-04-26 2014-01-16 남경 주식회사 Connect instrument using lighting equipment
JP2014008689A (en) * 2012-06-29 2014-01-20 Brother Ind Ltd Liquid discharge device, connection structure of wiring, and manufacturing method for the same
WO2014123117A1 (en) * 2013-02-05 2014-08-14 古河電気工業株式会社 Electrical wiring structure, electrical connection structure, and method for manufacturing electrical wiring structure
US9722338B2 (en) 2013-02-05 2017-08-01 Furukawa Electric Co., Ltd. Electric cable structural body, electric connection structure, and method for producing electric cable structural body
EP3722157A1 (en) * 2019-04-12 2020-10-14 Aptiv Technologies Limited Wiring harness assembly
CN111816351A (en) * 2019-04-12 2020-10-23 安波福技术有限公司 Wire harness assembly
US11225206B2 (en) 2019-04-12 2022-01-18 Aptiv Technologies Limited Wiring harness assembly
CN111816351B (en) * 2019-04-12 2022-09-16 安波福技术有限公司 Wire harness assembly
US11654842B2 (en) 2019-04-12 2023-05-23 Aptiv Technologies Limited Wiring harness assembly
EP4322180A3 (en) * 2019-04-12 2024-05-01 Aptiv Technologies Limited Wiring harness assembly

Similar Documents

Publication Publication Date Title
JP4506818B2 (en) Manufacturing method of shielded flat cable
US7772496B2 (en) Flat cable
JP5213629B2 (en) Wire connection structure for substrate, method for manufacturing relay connection body, and method for fixing relay connection body
US20090133898A1 (en) Flexible flat cable with carrier tape and manufacturing method thereof
TW201306059A (en) Flat cable and method for manufacturing same
JP4825075B2 (en) Connection structure between flexible wiring boards and connection method between flexible wiring boards
JP2008108578A (en) Splice structure of flexible flat cable
JP2008108475A (en) Multi-core coaxial cable and its manufacturing method
JP2017512373A (en) Wiring member and manufacturing method thereof
JP6252694B2 (en) Wiring member and manufacturing method thereof
JP4910721B2 (en) Connection structure of multi-core cable, multi-core cable with connector and multi-core cable
US7770290B2 (en) Electrical connection method for plural coaxial wires
JP2005063878A (en) Connection structure
JP4258674B2 (en) Coaxial flat cable and manufacturing method thereof
EP1311025A2 (en) Electronic-part mounting structure and mounting method therefor
JP2648552B2 (en) How to connect metal wiring
JP5018564B2 (en) Multi-layer FFC connection structure
JP5239133B2 (en) Shielded flat cable and manufacturing method thereof
JP2015050206A (en) Wiring member
JP5110003B2 (en) Coaxial flat cable manufacturing method
JP5482734B2 (en) Flat cable
JP2017536681A (en) Flat cable
JP6617505B2 (en) Flat cable connection structure
JP2005135823A (en) Branching structure of flat harness, and manufacturing method of the same
JP2001319714A (en) Terminal treatment method of flat type electric wire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105