JP2008107288A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2008107288A
JP2008107288A JP2006292570A JP2006292570A JP2008107288A JP 2008107288 A JP2008107288 A JP 2008107288A JP 2006292570 A JP2006292570 A JP 2006292570A JP 2006292570 A JP2006292570 A JP 2006292570A JP 2008107288 A JP2008107288 A JP 2008107288A
Authority
JP
Japan
Prior art keywords
ultrasonic
wave packet
flow rate
representative
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006292570A
Other languages
Japanese (ja)
Other versions
JP4931550B2 (en
Inventor
Yoshihiro Sekine
良浩 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2006292570A priority Critical patent/JP4931550B2/en
Publication of JP2008107288A publication Critical patent/JP2008107288A/en
Application granted granted Critical
Publication of JP4931550B2 publication Critical patent/JP4931550B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter capable of efficiently increasing the propagation path of ultrasonic beam in the passage, and capable of accurate flow measurement, even if an ultrasonic beam is divided into a plurality of wave packet components, having different reflection orders and propagation lengths in the passage. <P>SOLUTION: In the flowmeter, an ultrasonic beam SW, transmitted from ultrasonic wave tranmitting/receiving parts 2a and 2b of a transmission side, travels being divided into a plurality of wave packet components SW2 and SW4 having different reflection orders and propagation lengths in the passage, depending on the incident angle with respect to a reflecting member 32 by diffusion, in the radial direction from the beam central axis; ultrasonic wave tranmitting/receiving parts 2a and 2b of the receiving side can receive wave packet components SW2 and SW4 having different orders, with two or more number of times with time difference; and a representative flow calculation means 1E calculates the representative flow of measured fluid, based on the information received. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は超音波流量計に関するものである。   The present invention relates to an ultrasonic flowmeter.

特開2004−251653号公報JP 2004-251653 A

従来、都市ガスや水などの流量を計測するための超音波流量計が知られている。その際の測定原理として、一般には「伝搬時間差法」が用いられる。これは、流路の流体流れ方向上流側及び下流側に一対の超音波送受信部を設け、それら超音波送受信部間の超音波送受信方向を交互に切り替えるとともに、上流側超音波送受信部から発信された超音波ビームが下流側超音波送受信部に到達するまでの時間(順方向伝播時間)と、下流側超音波送受信部から発信された超音波ビームが上流側超音波送受信部に到達するまでの時間(逆方向伝播時間)とを計測して、両者の時間差から流路を流れる流体の平均流速度及び流量を求めるものである。   Conventionally, an ultrasonic flowmeter for measuring a flow rate of city gas or water is known. In general, a “propagation time difference method” is used as a measurement principle at that time. This is provided with a pair of ultrasonic transmission / reception units upstream and downstream in the fluid flow direction of the flow path, alternately switching the ultrasonic transmission / reception direction between the ultrasonic transmission / reception units, and transmitted from the upstream ultrasonic transmission / reception unit. The time until the ultrasonic beam reaches the downstream ultrasonic transmission / reception unit (forward propagation time) and the time until the ultrasonic beam transmitted from the downstream ultrasonic transmission / reception unit reaches the upstream ultrasonic transmission / reception unit Time (reverse propagation time) is measured, and the average flow velocity and flow rate of the fluid flowing through the flow path are obtained from the time difference between the two.

特許文献1には、そのような超音波流速計として、対をなす超音波送受信部の間で、一方の超音波送受信部から送出された超音波ビームを管路壁部で1回反射させてから他方の超音波送受信部へ導くようにした超音波流量計が開示されている。この構成によると、受信側となる超音波送受信部が1回反射後の超音波を検出するので、一対の超音波送受信部の設置間隔を縮小しても超音波ビームの伝搬パスが相対的に長くなり、測定精度を向上できることが謳われている。また、特許文献1においては、超音波ビームの伝播経路に対応する位置に絞り孔を形成したビーム絞り板が設けられており、超音波ビームの拡散に起因した、不要な反射波束成分をカットできるので、同様に測定精度を向上できる旨謳われている。   In Patent Document 1, as such an ultrasonic current meter, an ultrasonic beam transmitted from one ultrasonic transmission / reception unit is reflected once by a pipe wall part between a pair of ultrasonic transmission / reception units. An ultrasonic flowmeter that is guided from one to the other ultrasonic transmission / reception unit is disclosed. According to this configuration, since the ultrasonic transmission / reception unit on the receiving side detects the ultrasonic wave after being reflected once, even if the installation interval of the pair of ultrasonic transmission / reception units is reduced, the propagation path of the ultrasonic beam is relatively It is said that the measurement accuracy can be improved by increasing the length. Further, in Patent Document 1, a beam stop plate in which a stop hole is formed at a position corresponding to the propagation path of the ultrasonic beam is provided, and an unnecessary reflected wave packet component due to the diffusion of the ultrasonic beam can be cut. Therefore, it is said that the measurement accuracy can be improved similarly.

しかしながら、特許文献1においては、超音波ビームの反射回数は1回止まりであり、伝搬パスの増加効果は必ずしも十分とはいえない。また、流路内部に設けられたビーム絞り板は、不要な反射波束成分を除去する以上の機能を与えられておらず、伝搬パスの増加には何ら寄与していない。   However, in Patent Document 1, the number of reflections of the ultrasonic beam is only one, and the propagation path increase effect is not necessarily sufficient. Further, the beam stop plate provided inside the flow path is not given a function beyond removing unnecessary reflected wave packet components, and does not contribute to the increase of the propagation path.

伝搬パスを増加するには、超音波ビームを流路内で多重反射させることが有効であるが、超音波ビームは拡散して進行するため、入射角度の違いから反射次数および伝播長の異なる複数の波束成分に分かれるという問題が生じる。その結果、受信側の超音波送受信部に対して、複数の波束成分が時間差をおいて到達することとなり、正確な流量計算を行えなくなる場合がある。   In order to increase the propagation path, it is effective to make multiple reflections of the ultrasonic beam within the flow path. However, since the ultrasonic beam travels in a diffused manner, a plurality of reflection orders and propagation lengths differ depending on the incident angle. There arises a problem of being divided into wave packet components. As a result, a plurality of wave packet components reach the receiving-side ultrasonic transmission / reception unit with a time difference, and accurate flow rate calculation may not be performed.

本発明の課題は、流路上での超音波ビームの伝搬パスをより効率的に増加させることができ、超音波ビームが流路内で反射次数および伝播長の異なる複数の波束成分に分かれた場合であっても、正確な流量測定が可能な超音波流量計を提供することにある。   The problem of the present invention is that the propagation path of the ultrasonic beam on the flow path can be increased more efficiently, and the ultrasonic beam is divided into a plurality of wave packet components having different reflection orders and propagation lengths in the flow path. Even so, it is an object to provide an ultrasonic flowmeter capable of accurate flow measurement.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために本発明は、
被測定流体の流路を形成する流路形成部と、
流路形成部に対し被測定流体の流通方向において互いに異なる位置に設けられ、一方が被測定流体への測定用超音波の送出側となり、他方が測定用超音波の受信側となるように機能するとともに、各々測定用超音波として、予め定められた向きへの指向性を有する超音波ビームを送出可能な対をなす超音波送受信部と、
流路形成部の内部にて流路に沿って配置される板状に形成された、1つ又は板面法線方向に所定の間隔で複数設けられた反射部材とを備え、
送信側となる超音波送受信部から送出される超音波ビームは、ビーム中心軸線からその半径方向への拡散により、反射部材に対する入射角度によって流路内での反射次数及び伝播長の異なる複数の波束成分に分かれて進行するととともに、受信側の超音波送受信部は、次数の互いに異なる波束成分を、時間差をおいて複数回受信可能とされてなり、その受信情報に基づいて被測定流体の代表流量値を算出する代表流量値算出手段を設けてなることを特徴とする。
In order to solve the above problems, the present invention
A flow path forming section for forming a flow path of the fluid to be measured;
Provided at different positions in the flow direction of the fluid to be measured with respect to the flow path forming part, functioning so that one is the sending side of the measuring ultrasonic wave to the measuring fluid and the other is the receiving side of the measuring ultrasonic wave In addition, as each measurement ultrasonic wave, an ultrasonic transmission / reception unit forming a pair capable of transmitting an ultrasonic beam having directivity in a predetermined direction, and
One or a plurality of reflecting members provided at predetermined intervals in the normal direction of the plate surface, formed in a plate shape disposed along the flow path inside the flow path forming portion,
The ultrasonic beam transmitted from the ultrasonic transmission / reception unit on the transmitting side is diffused in the radial direction from the beam center axis, so that a plurality of wave packets having different reflection orders and propagation lengths in the flow path depending on the incident angle with respect to the reflecting member. The ultrasonic transmission / reception unit on the receiving side can receive the wave packet components having different orders a plurality of times with a time difference, and the representative flow rate of the fluid to be measured based on the received information. Representative flow rate value calculating means for calculating the value is provided.

上記本発明においては、特許文献1ではビーム絞り板としてのみ用いられていた、流路内に設けられる板部材を、超音波ビームに対する反射部材として活用する。そして、送信側となる超音波送受信部から送出される超音波ビームを、この反射部材を用いて流路内で多重反射(反射回数2回以上)させつつ受信側となる超音波送受信部へ導くようにした。その結果、超音波送受信部間を超音波ビームが直進により伝播する場合と比較して、反射回数が2回以上に増加する分だけ伝播パス長が折れ線状に大幅に増加するので、流れに寄与する情報量が増加する効果により、流量測定精度の向上あるいは流量測定のレンジアビリティ拡大に寄与できる。そして、同じ伝播パス長であっても、パス形状が折れ線状となることで、対を成す超音波送受信部の距離を近づけることができ、装置の小形化にも貢献する。   In the present invention, the plate member provided in the flow path, which is used only as the beam diaphragm plate in Patent Document 1, is utilized as a reflection member for the ultrasonic beam. The ultrasonic beam transmitted from the ultrasonic transmission / reception unit on the transmission side is guided to the ultrasonic transmission / reception unit on the reception side while being subjected to multiple reflection (two or more reflections) in the flow path using this reflecting member. I did it. As a result, compared to the case where the ultrasonic beam propagates straight between ultrasonic transmission / reception units, the propagation path length is greatly increased in a polygonal line by the number of reflections more than twice, contributing to the flow. The effect of increasing the amount of information to be performed can contribute to the improvement of flow measurement accuracy or the expansion of flow measurement rangeability. And even if it is the same propagation path length, since the path shape becomes a polygonal line, the distance of the ultrasonic transmission / reception part which makes a pair can be brought close, and it contributes also to size reduction of an apparatus.

また、反射部材によって流路がその軸断面内にて複数に分割されるが、反射部材は被測定流体に対する整流素子としても機能するので、流れの安定化と均一化とを図ることができ、この観点からも流量測定精度の向上に寄与する。特に、反射部材による流路の分割方向に流れを十分均一化することができれば、測定対象となる流れを近似的に二次元流として取り扱うことが可能となり、測定精度向上の観点においてさらに有利となる。流路内に整流板を設ける思想は従来から存在しているが、限られた流路内部に整流素子を配置することによる寸法制約の結果、超音波送受信部間に確保できる距離にも限界が生ずる。しかし、本発明の採用により、そのような寸法制約があっても多重反射効果により伝播パス長を十分に拡大することができる。   Further, although the flow path is divided into a plurality of parts in the axial cross section by the reflecting member, the reflecting member also functions as a rectifying element for the fluid to be measured, so that the flow can be stabilized and made uniform, This also contributes to the improvement of flow rate measurement accuracy. In particular, if the flow can be sufficiently uniformed in the direction in which the flow path is divided by the reflecting member, the flow to be measured can be handled approximately as a two-dimensional flow, which is further advantageous in terms of improving measurement accuracy. . The idea of providing a rectifying plate in the flow channel has existed in the past, but the distance that can be secured between the ultrasonic transmitting and receiving units is also limited as a result of dimensional restrictions by arranging the rectifying element inside the limited flow channel. Arise. However, by adopting the present invention, the propagation path length can be sufficiently expanded by the multiple reflection effect even if there are such dimensional constraints.

超音波送受信部から送出される超音波ビームは、完全な指向性を有するものではなく、ビーム中心軸線からその半径方向へ、ある程度拡散する性質を有する。そのため超音波ビームは、反射部材に対する入射角度によって流路内での反射次数及び伝播長の異なる複数の波束成分に分かれて進行する。その結果、受信側の超音波送受信部では、複数の波束成分が時間差をおいて複数回受信されることになる。そのため、従来の超音波流量計では正確な流量算出を行えない場合がある。しかし本発明では、複数の波束成分の受信情報に基づいて、被測定流体の代表流量値を算出するための代表流量値算出手段を設けたので、このような問題を回避できる。   The ultrasonic beam transmitted from the ultrasonic transmission / reception unit does not have complete directivity, but has a property of diffusing to some extent from the beam center axis in the radial direction. Therefore, the ultrasonic beam travels by being divided into a plurality of wave packet components having different reflection orders and propagation lengths in the flow path according to the incident angle with respect to the reflecting member. As a result, the receiving-side ultrasonic transmission / reception unit receives a plurality of wave packet components a plurality of times with a time difference. Therefore, there is a case where the conventional ultrasonic flowmeter cannot perform accurate flow rate calculation. However, in the present invention, since the representative flow rate value calculating means for calculating the representative flow rate value of the fluid to be measured is provided based on the reception information of the plurality of wave packet components, such a problem can be avoided.

より詳しくは、本発明の超音波流量計は、受信側の超音波送受信部によって複数回検知された波束成分のうち、被測定流体の流速または流量の算出に供するための代表となる代表波束成分を選択する波束成分選択手段を備える。そして代表流量値算出手段は、代表波束成分の受信情報に基づいて被測定流体の代表流量値を算出する。この構成によると、複数の波束成分を検出した場合であっても、その中から特定の波束成分(代表波束成分)を選択するため、正確な流量算出を行える。   More specifically, the ultrasonic flowmeter of the present invention is a representative wave packet component that is representative for use in calculation of the flow velocity or flow rate of the fluid to be measured, among wave packet components detected multiple times by the receiving-side ultrasonic transmission / reception unit. A wave packet component selection means for selecting. Then, the representative flow value calculation means calculates a representative flow value of the fluid to be measured based on the reception information of the representative wave packet component. According to this configuration, even when a plurality of wave packet components are detected, a specific wave packet component (representative wave packet component) is selected from them, so that accurate flow rate calculation can be performed.

この場合、波束成分選択手段は、受信側となる超音波送受信部に時間差をおいて複数回到達する波束成分のうち、予め定められた順位にて到達する波束成分を代表波束成分として選択する。例えば、3回到達する波束成分のうち、2回目を選択したり、3回目を選択したりできる。   In this case, the wave packet component selection means selects, as a representative wave packet component, a wave packet component that arrives at a predetermined order from among wave packet components that arrive at the receiving side ultrasonic transmission / reception unit multiple times with a time difference. For example, it is possible to select the second time or the third time among the wave packet components that reach three times.

また、波束成分選択手段は、被測定流体の流量に応じて選択すべき波束成分の順位を変更できることが望ましい。例えば、高流量の場合は2回目の波束成分を選択し、低流量の場合は1回目の波束成分を選択するようにする。これにより、流量測定のために最適な波束成分を選択可能となる。   Further, it is desirable that the wave packet component selection means can change the order of wave packet components to be selected according to the flow rate of the fluid to be measured. For example, the second wave packet component is selected when the flow rate is high, and the first wave packet component is selected when the flow rate is low. This makes it possible to select an optimal wave packet component for flow rate measurement.

さらに本発明の超音波流量計は、受信側の超音波送受信部が代表波束成分以外の不要波束成分の検知を無効化する不要波束成分無効化手段を備えることが望ましい。これにより、不要波束成分の検知を行う必要がなくなる。   Furthermore, in the ultrasonic flowmeter of the present invention, it is desirable that the ultrasonic transmission / reception unit on the reception side includes unnecessary wave packet component invalidating means for invalidating detection of unnecessary wave packet components other than the representative wave packet component. This eliminates the need to detect unnecessary wave packet components.

より詳しくは、不要波束成分無効化手段は、代表流量値算出手段による代表波束成分以外の波束成分を用いた流量の算出処理を禁止する流量算出禁止手段を有することが好ましい。これにより、流量算出のための余計な演算を行う必要がなくなる。   More specifically, it is preferable that the unnecessary wave packet component invalidating unit includes a flow rate calculation prohibiting unit that prohibits a flow rate calculation process using a wave packet component other than the representative wave packet component by the representative flow rate value calculating unit. This eliminates the need for extra computations for calculating the flow rate.

例えば超音波送受信部は、超音波ビームをパルス状の超音波波形を有するものとして送出することができる。そして代表流量値算出手段は、受信側となる超音波送受信部におけるパルス状受信波形のゼロクロスポイントを検出してゼロクロスパルスを発生させるゼロクロスパルス発生手段と、送信側となる超音波送受信部において超音波ビームのパルス出力を励振してからゼロクロスパルスが検出されるまでの時間を超音波伝播時間として測定する時間計測手段とを有し、計測された超音波伝播時間に基づいて代表流量値を算出するものにできる。このようにすると、ゼロクロスパルスを利用して、超音波伝播時間を計測することが可能である。   For example, the ultrasonic transmission / reception unit can transmit an ultrasonic beam having a pulsed ultrasonic waveform. The representative flow rate value calculating means detects zero cross points of the pulse-shaped received waveform in the ultrasonic transmitting / receiving unit on the receiving side and generates zero cross pulses, and ultrasonic waves in the ultrasonic transmitting / receiving unit on the transmitting side. A time measurement unit that measures the time from when the beam pulse output is excited until the zero-cross pulse is detected as the ultrasonic propagation time, and calculates the representative flow rate value based on the measured ultrasonic propagation time Can be a thing. If it does in this way, it is possible to measure ultrasonic propagation time using a zero cross pulse.

この場合、流量算出禁止手段は、ゼロクロスパルス発生手段に対し、代表波束成分に由来したパルス状受信波形についてのみゼロクロスパルスを発生させ、他の波束成分に由来したパルス状受信波形についてのゼロクロスパルスの発生を禁止するものにできる。このようにすると、代表波束成分に由来したゼロクロスパルスのみが発生し、不要波束成分に由来したものは発生しなくなる。そのため、流量の算出処理が簡単なものになる。   In this case, the flow rate calculation prohibiting means causes the zero cross pulse generating means to generate a zero cross pulse only for the pulsed received waveform derived from the representative wave packet component, and for the zero cross pulse for the pulse received waveform derived from the other wave packet component. It can be prohibited from occurring. In this way, only the zero cross pulse derived from the representative wave packet component is generated, and the one derived from the unnecessary wave packet component is not generated. This simplifies the flow rate calculation process.

また、流量算出禁止手段は、ゼロクロスパルス発生手段に対し、複数の波束成分に由来したパルス状受信波形についてのみゼロクロスパルスを順次発生させるとともに、ゼロクロスパルスの検出回数を計測するゼロクロスパルス計測手段を有し、検出回数が予め定められた回数に到達したときのゼロクロスパルスのみ、代表波束成分に由来したゼロクロスパルスとして採用してもよい。   In addition, the flow rate calculation prohibiting means has a zero cross pulse measuring means for causing the zero cross pulse generating means to sequentially generate zero cross pulses only for pulsed received waveforms derived from a plurality of wave packet components and to measure the number of zero cross pulse detections. However, only the zero cross pulse when the number of detection times reaches a predetermined number may be adopted as the zero cross pulse derived from the representative wave packet component.

一方、代表流量値算出手段は、次数の異なる各波束成分の伝播時間から被測定流体の流量を算出し、その算出された流量の平均値を代表流量値として算出するものとしてもよい。この構成によると、複数の波束成分から得られた流量の平均値を算出することができ、より信頼性の高い流量算出結果を得られる。   On the other hand, the representative flow rate calculation means may calculate the flow rate of the fluid to be measured from the propagation times of the wave packet components having different orders, and calculate the average value of the calculated flow rates as the representative flow rate value. According to this configuration, the average value of the flow rates obtained from a plurality of wave packet components can be calculated, and a more reliable flow rate calculation result can be obtained.

例えば、流路の上流側に配置される上流側超音波送受信部は、ビーム中心軸線が反射部材の反射面の法線方向に対し上流側に一定角度傾斜して定められる第一基準方向と一致するよう流路形成部の壁部に傾けて取り付けられ、流路の下流側に配置される下流側超音波送受信部は、ビーム中心軸線が反射部材の反射面の法線方向に対し第一基準方向と同一角度にて下流側に傾斜して定められる第二基準方向と一致するよう流路形成部の壁部に傾けて取り付けられ、
対をなす超音波送受信部は流路形成部に対し、複数の反射部材群を配列方向に挟む形で振り分けて配置されてなり、波束成分を導波空間内で偶数次にて多重反射させた後、受信側の超音波送受信部に導くとともに、
受信側の超音波送受信部は、反射部材群によって2回反射した波束成分と、4回反射した波束成分との双方を検知可能とされ、波束成分選択手段は、波束成分のうち4回反射したものを選択する構成とすることができる。この構成によると、いわゆるZ型の超音波流量計において、2回反射の波束成分と4回反射の波束成分のうち、4回反射したものを選択できる。2回反射と比較すると、4回反射の方が伝播長が長いため、正確な流量を算出しやすい。
For example, the upstream ultrasonic transmission / reception unit arranged on the upstream side of the flow path coincides with the first reference direction in which the beam center axis is inclined at a certain angle upstream with respect to the normal direction of the reflecting surface of the reflecting member. The downstream ultrasonic wave transmitting / receiving unit which is attached to the wall of the flow path forming unit and is disposed on the downstream side of the flow path has a first reference with respect to the normal direction of the reflecting surface of the reflecting member. It is inclined and attached to the wall portion of the flow path forming portion so as to coincide with the second reference direction determined by being inclined to the downstream side at the same angle as the direction,
The pair of ultrasonic transmission / reception units is arranged with respect to the flow path forming unit in such a manner that a plurality of reflecting member groups are sandwiched in the arrangement direction, and the wave packet component is subjected to multiple reflection evenly in the waveguide space. After that, lead to the ultrasonic transmission / reception unit on the receiving side,
The ultrasonic transmission / reception unit on the reception side can detect both the wave packet component reflected twice by the reflecting member group and the wave packet component reflected four times, and the wave packet component selection means reflects four times out of the wave packet components. It can be set as the structure which selects a thing. According to this configuration, in the so-called Z-type ultrasonic flow meter, it is possible to select a wave packet component reflected twice and a wave packet component reflected twice, and a wave packet component reflected four times. Compared to the two-time reflection, the four-time reflection has a longer propagation length, and therefore it is easier to calculate an accurate flow rate.

また、波束成分選択手段は、被測定流体の流量が少ない低流量状態の場合は、受信側の超音波送受信部によって検知される1回目の波束成分を選択し、被測定流体の流量が多い高流量状態の場合は2回目に検知される波束成分を選択するようにしてもよい。このようにすると、高流量状態と低流量状態とで、選択すべき波束成分を切り替えることが可能となり、より正確な流量算出結果を期待できる。   Further, the wave packet component selection means selects the first wave packet component detected by the ultrasonic transmission / reception unit on the receiving side when the flow rate of the fluid to be measured is low and the flow rate of the fluid to be measured is high. In the case of the flow rate state, the wave packet component detected for the second time may be selected. In this way, the wave packet component to be selected can be switched between the high flow rate state and the low flow rate state, and a more accurate flow rate calculation result can be expected.

本発明に係る超音波流量計の実施形態を、図面を参照しながら説明する。
図1は、一般住宅用ガスメータ等として用いられる超音波流量計の一実施例の基本構成である。この超音波流量計1には、被測定流体GFの流路を形成する流路形成部3と、当該流路形成部3に対し被測定流体GFの流通方向において互いに異なる位置に設けられ、一方が被測定流体GFへの測定用超音波の送出側となり、他方が該測定用超音波の受信側となるように機能するとともに、各々測定用超音波として、予め定められた向きへの指向性を有する超音波ビームSWを送出可能な対をなす超音波送受信部2a,2bと、流路形成部3の内部にて流路に沿って配置される各々板状に形成され、かつ板面法線方向に所定の間隔で複数設けられた反射部材31,32とを備えている。そして、送信側となる超音波送受信部2a,2bから送出される超音波ビームSWを、反射部材31,32を利用して流路内で多重反射させつつ受信側となる超音波送受信部2a,2bへ導くようにしてある。流路形成部3は例えば金属製である。
An embodiment of an ultrasonic flowmeter according to the present invention will be described with reference to the drawings.
FIG. 1 shows a basic configuration of an embodiment of an ultrasonic flow meter used as a general residential gas meter or the like. The ultrasonic flowmeter 1 is provided with a flow path forming portion 3 that forms a flow path of the fluid to be measured GF, and a position different from the flow path forming portion 3 in the flow direction of the fluid to be measured GF. Functions as the transmission side of the measurement ultrasonic wave to the fluid GF to be measured and the other as the reception side of the measurement ultrasonic wave, and the directivity in a predetermined direction as each measurement ultrasonic wave A pair of ultrasonic transmission / reception units 2a and 2b capable of transmitting an ultrasonic beam SW having a flow path, and a plate surface method arranged along the flow path inside the flow path forming unit 3 and a plate surface method. And a plurality of reflecting members 31 and 32 provided at predetermined intervals in the line direction. Then, the ultrasonic transmission / reception unit 2a, 2b serving as the reception side while the ultrasonic beam SW transmitted from the ultrasonic transmission / reception unit 2a, 2b serving as the transmission side is subjected to multiple reflection in the flow path using the reflecting members 31, 32, It leads to 2b. The flow path forming unit 3 is made of metal, for example.

反射部材31,32を含む流路形成部3と超音波送受信部2a,2bとが流量計本体1Mを構成し、該流量計本体1Mと制御回路部1E(本発明の代表流量値算出手段)とにより超音波流量計1の全体が構成されている。図2は、流量計本体1Mの断面構造を示す斜視図である。また、図1において、制御回路部1Eは、対をなす超音波送受信部2a,2bを、流路上流側に位置する上流側超音波送受信部2a側が送信側となり、流路下流側に位置する下流側超音波送受信部2b側が受信側となる第一駆動モードと、その逆となる第二駆動モードとの間で切り替え可能に駆動する超音波駆動機構4を有する。   The flow path forming unit 3 including the reflecting members 31 and 32 and the ultrasonic transmission / reception units 2a and 2b constitute a flow meter main body 1M, and the flow meter main body 1M and the control circuit unit 1E (representative flow value calculation means of the present invention). Thus, the entire ultrasonic flowmeter 1 is configured. FIG. 2 is a perspective view showing a cross-sectional structure of the flow meter main body 1M. In FIG. 1, the control circuit unit 1E includes a pair of ultrasonic transmission / reception units 2a and 2b, the upstream ultrasonic transmission / reception unit 2a located on the upstream side of the flow channel serving as the transmission side, and positioned on the downstream side of the flow channel. There is an ultrasonic drive mechanism 4 that is driven to be switchable between a first drive mode in which the downstream ultrasonic transmission / reception unit 2b side is the reception side and a second drive mode that is the opposite.

超音波流量計1の流量測定用の流路3Pには、流量測定用ガス(流体)が図示の流れ方向に流通している。流路3Pには、流れ方向下流側に下流側超音波送受信部2bが設けられ、流れ方向上流側に上流側超音波送受信部2aが設けられている。これらの超音波送受信部2a,2bは圧電振動子などからなる超音波振動子を有した超音波トランスデューサであり、駆動電圧の印加により超音波ビームを送出する超音波送出機能と、超音波ビームの受信により電気信号(受信信号)を出力する超音波受信機能とを複合して備えるものである。測定用の超音波ビームは、流路内にて超音波送受信部2a,2b間に定在波を生じないよう、所定波数以下のパルス状に送出される。   A flow rate measurement gas (fluid) flows in the flow direction shown in the flow rate measurement flow path 3P of the ultrasonic flowmeter 1. In the flow path 3P, a downstream ultrasonic transmission / reception unit 2b is provided on the downstream side in the flow direction, and an upstream ultrasonic transmission / reception unit 2a is provided on the upstream side in the flow direction. These ultrasonic transmission / reception units 2a and 2b are ultrasonic transducers having an ultrasonic transducer such as a piezoelectric transducer, and have an ultrasonic transmission function for transmitting an ultrasonic beam by applying a drive voltage, It is combined with an ultrasonic wave reception function that outputs an electrical signal (reception signal) upon reception. The ultrasonic beam for measurement is sent out in a pulse shape having a predetermined wave number or less so as not to generate a standing wave between the ultrasonic transmission / reception units 2a and 2b in the flow path.

測定対象がガスの場合、流路3Pを形成する流路形成部3の軸断面形状は壁部3Jにより閉鎖された空間を形成するものであればよく、例えば、円形状、楕円形状、正方形状、矩形状等のいずれを採用してもよい。本実施形態では、図1に示すごとく流路形成部3は矩形状に形成され、上壁部3Jaに上流側超音波送受信部2aが、また下壁部3jbに下流側超音波送受信部2bが取り付けられている。つまり、対をなす超音波送受信部2a,2bが、流路形成部3に対し、複数の反射部材31,32群を配列方向に挟む形で振り分けて配置されている。この場合、超音波ビームSWは、導波空間3W内で偶数次にて多重反射することとなる。   When the measurement target is gas, the axial cross-sectional shape of the flow path forming portion 3 that forms the flow path 3P may be any shape that forms a space closed by the wall portion 3J. For example, a circular shape, an elliptical shape, or a square shape Any of a rectangular shape and the like may be adopted. In the present embodiment, as shown in FIG. 1, the flow path forming portion 3 is formed in a rectangular shape, the upstream ultrasonic wave transmitting / receiving unit 2a is formed on the upper wall 3Ja, and the downstream ultrasonic wave transmitting / receiving unit 2b is formed on the lower wall 3jb. It is attached. That is, the ultrasonic transmission / reception units 2 a and 2 b forming a pair are arranged with respect to the flow path forming unit 3 in such a manner that the plurality of reflecting members 31 and 32 are sandwiched in the arrangement direction. In this case, the ultrasonic beam SW undergoes multiple reflections in an even order within the waveguide space 3W.

図3は、流量計本体1Mの内部構造の詳細を示すものである。反射部材31,32は、流路の断面中心軸線Oに関して両側に対をなして、具体的には、流路の断面中心軸線Oに関して対称となる位置関係で配置されている。いずれも、超音波ビームSWの反射面が流路の中心軸線と平行となるように配置されている。また、図1及び図2に示すように、反射面の法線方向と流路の断面中心軸線O方向との双方と直交する向きを流路幅方向としたとき、反射部材31,32の流路幅方向の両縁は、流路形成部3の流路幅方向における両側の壁部3J内面に結合されている。   FIG. 3 shows details of the internal structure of the flow meter main body 1M. The reflecting members 31 and 32 are arranged on both sides with respect to the cross-sectional central axis O of the flow path, and specifically, are disposed in a positional relationship that is symmetric with respect to the cross-sectional central axis O of the flow path. In any case, the reflection surface of the ultrasonic beam SW is disposed so as to be parallel to the central axis of the flow path. Further, as shown in FIGS. 1 and 2, when the direction perpendicular to both the normal direction of the reflecting surface and the direction of the cross-sectional central axis O of the flow path is defined as the flow path width direction, the flow of the reflecting members 31 and 32 is increased. Both edges in the road width direction are coupled to the inner surfaces of the wall portions 3J on both sides in the flow path width direction of the flow path forming portion 3.

反射部材31,32は、被測定流体(媒質)の音響インピーダンスをZ1とした場合、反射部材の音響インピーダンスをZ2とすれば、境界(反射面)が反射部材31,32であるので、Z1/Z2≪1となるような音響インピーダンスZ2を有した材質を選定すればよい。このようにすれば、反射部材31,32の音響インピーダンスZ2媒質の音響インピーダンスZ1に比べて充分に大きいので、境界(反射面)をなす反射部材31,32を超音波ビームSWが透過することを阻止でき、ほぼ全反射となるため、超音波ビームSWの伝播ロスが少なくなり、高感度な送受信が達成できる。具体的には、音響インピーダンス比Z1/Z2の値は1/10以下であればよく、反射部材31,32の具体的な材質としては、金属、セラミックス、プラスチックスを例示できる。   When the acoustic impedance of the fluid to be measured (medium) is Z1 and the acoustic impedance of the reflective member is Z2, the reflecting members 31 and 32 are Z1 /. A material having an acoustic impedance Z2 that satisfies Z2 << 1 may be selected. In this case, the acoustic impedance Z2 of the reflecting members 31 and 32 is sufficiently larger than the acoustic impedance Z1 of the medium, so that the ultrasonic beam SW is transmitted through the reflecting members 31 and 32 forming the boundary (reflecting surface). Since it can be blocked and almost totally reflected, the propagation loss of the ultrasonic beam SW is reduced, and highly sensitive transmission / reception can be achieved. Specifically, the acoustic impedance ratio Z1 / Z2 may be 1/10 or less, and examples of specific materials of the reflecting members 31 and 32 include metals, ceramics, and plastics.

また、反射部材31,32の厚みは、材料の機械的物性や加工性等を考慮して、0.4mm以上確保されていることが望ましい。また、反射部材31,32の厚みが超音波波長λの1/2に一致していると、図19に示すごとく、共振により反射部材の音波透過率が非常に急峻に増大し、反射がほとんど生じなくなるので、厚さはλ/2(約1.25mm)よりも小さいこと、具体的には1mm以下に設定されていることが望ましい。   In addition, it is desirable that the thickness of the reflecting members 31 and 32 is secured to 0.4 mm or more in consideration of the mechanical properties and workability of the material. If the thickness of the reflecting members 31 and 32 is equal to ½ of the ultrasonic wavelength λ, as shown in FIG. 19, the sound wave transmittance of the reflecting member increases very steeply due to resonance, and almost no reflection occurs. Therefore, it is desirable that the thickness is smaller than λ / 2 (about 1.25 mm), specifically, set to 1 mm or less.

さらに、反射部材31,32の反射面の表面粗さ(JIS:B0601(2001)に規定された算術平均高さRaを採用する)は、超音波波長λの1/10以下に仕上げられていることが望ましい。これにより、反射面での乱反射による超音波エネルギーのロスが少なくなり、ほぼ全反射するため、超音波ビームの伝播ロスが抑制され、高感度な送受信を実現できる。   Furthermore, the surface roughness of the reflecting surfaces of the reflecting members 31 and 32 (the arithmetic average height Ra defined in JIS B0601 (2001) is adopted) is finished to 1/10 or less of the ultrasonic wavelength λ. It is desirable. As a result, the loss of ultrasonic energy due to irregular reflection on the reflecting surface is reduced and almost total reflection is performed, so that the propagation loss of the ultrasonic beam is suppressed, and highly sensitive transmission / reception can be realized.

図3に示すように、送信側となる超音波送受信部(第一駆動モードでは上流側超音波送受信部2a、第二駆動モードでは下流側超音波送受信部2b)から送出される超音波ビームSWは、それら1対の反射部材31,32間に形成される導波空間3W内にて多重反射されつつ受信側となる超音波送受信部(第一駆動モードでは下流側超音波送受信部2b、第二駆動モードでは上流側超音波送受信部2a)に導かれる。   As shown in FIG. 3, an ultrasonic beam SW transmitted from an ultrasonic transmission / reception unit on the transmission side (upstream ultrasonic transmission / reception unit 2a in the first drive mode, and downstream ultrasonic transmission / reception unit 2b in the second drive mode). Is an ultrasonic transmission / reception unit on the receiving side while being multiple-reflected in the waveguide space 3W formed between the pair of reflecting members 31 and 32 (in the first drive mode, the ultrasonic transmission / reception unit 2b on the downstream side, In the two-drive mode, it is guided to the upstream ultrasonic transmission / reception unit 2a).

反射部材31,32には、該反射部材31,32と対向する超音波送受信部2a,2bからの超音波ビームSWを導波空間3Wに導入するビーム導入孔31h,32hが貫通形成されている。超音波ビームSWは、ビーム中心軸線からその半径方向への拡散により、反射部材に対する入射角度によって流路内での反射次数及び伝播長の異なる複数の波束成分に分かれて進行する。すなわち、送信側となる超音波送受信部から送出される超音波ビームSWのうち、一部は反射部材31,32間で2回反射する波束成分SW2として進行し、他の一部は4回反射する波束成分SW4として進行する。受信側の超音波送受信部は、次数の互いに異なる波束成分SW2,SW4を、時間差をおいて複数回受信可能とされている。   The reflection members 31 and 32 are formed with beam introduction holes 31h and 32h through which the ultrasonic beam SW from the ultrasonic transmission / reception units 2a and 2b facing the reflection members 31 and 32 is introduced into the waveguide space 3W. . The ultrasonic beam SW is divided into a plurality of wave packet components having different reflection orders and propagation lengths in the flow path depending on the incident angle with respect to the reflecting member due to diffusion in the radial direction from the beam center axis. That is, part of the ultrasonic beam SW transmitted from the ultrasonic transmission / reception unit on the transmission side proceeds as the wave packet component SW2 reflected twice between the reflecting members 31 and 32, and the other part is reflected four times. It proceeds as a wave packet component SW4. The reception-side ultrasonic transmission / reception unit can receive the wave packet components SW2 and SW4 having different orders a plurality of times with a time difference.

図3に示すように、送信側の超音波送受信部2aに駆動信号を送信すると超音波ビームが送出され、受信側の超音波送受信部2bにおいて、2回反射の波束成分SW2と4回反射の波束成分SW4が時間差をおいて検出される。このとき代表流量値算出手段1Eでは、2回反射の波束成分SW2を検知したときにマスク信号をかけ、ゼロクロスパルスVeが発生しないようにしている。また、4回反射の波束成分SW4を検知したときにはマスク信号が遮断され、ゼロクロスパルスVeが発生する。駆動信号が入力されてから、ゼロクロスパルスVeが検出されるまでの時間を計測することにより、波束成分SW4の伝播時間を計測でき、これに基づいて被計測流体の代表流量値を算出する。   As shown in FIG. 3, when a drive signal is transmitted to the transmission / reception ultrasonic transmission / reception unit 2a, an ultrasonic beam is transmitted. In the reception / transmission ultrasonic transmission / reception unit 2b, the two-reflection wave packet component SW2 and the four-reflection reflection Wave packet component SW4 is detected with a time difference. At this time, the representative flow rate value calculating means 1E applies a mask signal when detecting the wave packet component SW2 reflected twice, so that the zero cross pulse Ve is not generated. Further, when the wave packet component SW4 reflected four times is detected, the mask signal is cut off and the zero cross pulse Ve is generated. By measuring the time from when the drive signal is input until the zero cross pulse Ve is detected, the propagation time of the wave packet component SW4 can be measured, and based on this, the representative flow rate value of the fluid to be measured is calculated.

次に、図4に示す回路ブロック図と、図5に示すタイミングチャートとに基づいて、超音波流量計の作動を説明する。図4の回路ブロック図は、超音波流量計の一部であり、本発明の波束成分選択手段1Fを構成する部分である。図示するように、受信側超音波素子出力は、増幅部7(例えばオペアンプ)で電圧増幅(例えば非反転増幅)され、増幅信号Vaがゼロクロスポイント検出部9に入力される。ゼロクロスポイント検出部9において、増幅信号Vaはゼロクロス型コンパレータ91(第一コンパレータ:例えば非反転入力)と、差動型コンパレータ92(第二コンパレータ:例えば反転入力)に入力される。コンパレータ出力Vcは、RSフリップフロップ回路(以下、RSFF回路という)93のポート#Rへ入力される。また、コンパレータ出力Vb1はAND回路94に入力され、ここでマスク信号との論理積をとった後に出力信号Vb2が出力される。この出力信号Vb2はRSFF回路93のポート#Sへ入力される。図5に示すように、2回反射波束成分SW2を受信した際の第一コンパレータ出力Vb1の1回目のパルスをトリガとしてマスク信号(L)が入力され、その入力がされている間は、AND回路出力Vb2がLに保持される。また、4回反射波束成分SW4の第一コンパレータ出力Vb1が出力されるときには、マスク信号が非入力となり、AND回路出力Vb2が出力される。そして図示するように、RSFF回路のポート#Qの出力Vdは、2回反射波束成分SW2が入力された際には出力されず、4回反射波束成分SW4が入力された際に出力される。そして、この出力Vdにより、単安定マルチバイブレータ等で構成されるゼロクロスポイントパルス発生回路94がゼロクロスポイント検出信号Veを時間計測部10に出力する。時間計測部10では、ゼロクロスポイント検出信号Veに基づき、クロックパルス発生回路102(例えば水晶発振子、無安定マルチバイブレータ)からのクロックパルス数をパルスカウンタ回路101(例えばJKフリップフロップ回路)でカウントして到達時間検出信号Vfが出力される。この到達時間検出信号Vfにより、代表流量値が算出される。なお、RSFF回路93のポート#Q出力Vd,ゼロクロスポイント検出信号Veの各出力は、各々1回のみの出力で終了するように制御されている(図5参照)。   Next, the operation of the ultrasonic flowmeter will be described based on the circuit block diagram shown in FIG. 4 and the timing chart shown in FIG. The circuit block diagram of FIG. 4 is a part of the ultrasonic flowmeter and is a part constituting the wave packet component selection means 1F of the present invention. As shown in the figure, the output of the reception-side ultrasonic element is voltage amplified (for example, non-inverted amplification) by an amplifier 7 (for example, an operational amplifier), and the amplified signal Va is input to the zero cross point detector 9. In the zero cross point detector 9, the amplified signal Va is input to a zero cross comparator 91 (first comparator: for example non-inverting input) and a differential comparator 92 (second comparator: for example inverting input). The comparator output Vc is input to port #R of an RS flip-flop circuit (hereinafter referred to as RSFF circuit) 93. Further, the comparator output Vb1 is input to the AND circuit 94, and an output signal Vb2 is output after taking a logical product with the mask signal. The output signal Vb2 is input to the port #S of the RSFF circuit 93. As shown in FIG. 5, the mask signal (L) is input with the first pulse of the first comparator output Vb1 when the reflected wave packet component SW2 is received twice as a trigger. The circuit output Vb2 is held at L. Further, when the first comparator output Vb1 of the four-time reflected wave component SW4 is output, the mask signal is not input and the AND circuit output Vb2 is output. As shown in the figure, the output Vd of the port #Q of the RSFF circuit is not output when the twice reflected wave component SW2 is input, but is output when the four reflected wave component SW4 is input. Then, by this output Vd, the zero cross point pulse generation circuit 94 constituted by a monostable multivibrator or the like outputs the zero cross point detection signal Ve to the time measuring unit 10. Based on the zero cross point detection signal Ve, the time measuring unit 10 counts the number of clock pulses from the clock pulse generation circuit 102 (for example, a crystal oscillator or an astable multivibrator) by a pulse counter circuit 101 (for example, a JK flip-flop circuit). The arrival time detection signal Vf is output. Based on this arrival time detection signal Vf, a representative flow rate value is calculated. Note that the output of the port #Q output Vd and the zero cross point detection signal Ve of the RSFF circuit 93 is controlled so as to end with only one output (see FIG. 5).

上述のように構成することで、波束成分選択手段1Fは、受信側の超音波送受信部によって複数回検知された波束成分(SW2,SW4)のうち、被測定流体の流速または流量の算出に供するための代表となる代表波束成分(SW4)を選択することが可能となる。   By configuring as described above, the wave packet component selection unit 1F is used to calculate the flow velocity or flow rate of the fluid to be measured among the wave packet components (SW2, SW4) detected a plurality of times by the ultrasonic transmission / reception unit on the reception side. Therefore, it is possible to select a representative wave packet component (SW4) as a representative for the purpose.

また、換言すると、上記構成により、受信側の超音波送受信部が代表波束成分SW4以外の不要波束成分(SW2)の検知を無効化する不要波束成分無効化手段が実現されている。さらに、代表波束成分(SW4)以外の波束成分(SW2)を用いた流量の算出処理を禁止する流量算出禁止手段が実現されているとも言える。   In other words, with the above configuration, an unnecessary wave packet component invalidating unit is realized in which the ultrasonic transmission / reception unit on the reception side invalidates detection of unnecessary wave packet components (SW2) other than the representative wave packet component SW4. Furthermore, it can be said that the flow rate calculation prohibiting means for prohibiting the flow rate calculation process using the wave packet component (SW2) other than the representative wave packet component (SW4) is realized.

より詳しくは、流量算出禁止手段は、ゼロクロスパルス発生回路94に対し、代表波束成分SW4に由来したパルス状受信波形についてのみゼロクロスパルスを発生させ、他の波束成分に由来したパルス状受信波形についてのゼロクロスパルスの発生を禁止することにより、不要波束成分の流量算出処理を禁止している。   More specifically, the flow rate calculation prohibiting unit causes the zero-cross pulse generation circuit 94 to generate a zero-cross pulse only for the pulse-shaped received waveform derived from the representative wave packet component SW4, and for the pulse-shaped received waveform derived from other wave packet components. By prohibiting the generation of the zero cross pulse, the flow calculation process of the unnecessary wave packet component is prohibited.

図1に戻る。超音波駆動機構4は、送信部5、受信部6及び切替部4sを有する。送信部5は、超音波送受信部2a,2bに対して駆動信号を入力するための回路である。受信部6はスイッチ等から構成され、このスイッチを切り替えることにより、前述の駆動モードの切替がなされる。この受信部6の切替制御は切替部4sにより行われる。時間計測部10は、第一駆動モードでの、上流側超音波送受信部2aから発信された超音波ビームSWが下流側超音波送受信部2bに到達するまで(代表波束成分SW4を検知するまで)の順方向伝播時間と、第二駆動モードにおける下流側超音波送受信部2bから発信された超音波ビームSWが上流側超音波送受信部2aに到達するまで(代表波束成分SW4を検知するまで)の逆方向伝播時間とを計測する。また、演算部11は、上記の順方向伝播時間と逆方向伝播時間との時間差から、流路3Pを流れる流体の代表流速度及び代表流量値を計算する。   Returning to FIG. The ultrasonic drive mechanism 4 includes a transmission unit 5, a reception unit 6, and a switching unit 4s. The transmission unit 5 is a circuit for inputting drive signals to the ultrasonic transmission / reception units 2a and 2b. The receiving unit 6 includes a switch or the like, and the drive mode is switched by switching the switch. The switching control of the receiving unit 6 is performed by the switching unit 4s. The time measurement unit 10 in the first drive mode until the ultrasonic beam SW transmitted from the upstream ultrasonic transmission / reception unit 2a reaches the downstream ultrasonic transmission / reception unit 2b (until the representative wave packet component SW4 is detected). Forward propagation time and until the ultrasonic beam SW transmitted from the downstream ultrasonic transmission / reception unit 2b in the second drive mode reaches the upstream ultrasonic transmission / reception unit 2a (until the representative wave packet component SW4 is detected). Measure backward propagation time. Moreover, the calculating part 11 calculates the representative flow velocity and representative flow value of the fluid which flows through the flow path 3P from the time difference between said forward propagation time and reverse propagation time.

本発明では、伝播パスが多重反射による折れ線状となるので、図3の構成の場合、流量Qの計算を以下のようにして行なうことができる(各部の寸法は図6に示す記号にて説明する)。まず、反射部材31,32により仕切られる各空間のうち、上壁部側空間3C、導波空間3W及び下壁部側空間3C’の各高さをh1、h2、h3、断面積をS1、S2、S3とする。また、反射部材31,32の厚みをt、淀み空間2dのオフセット長をL0、超音波送受信部2a,2bの取付角度をθとすると、伝播パス長Lは下式により計算される。   In the present invention, since the propagation path is a polygonal line due to multiple reflection, in the case of the configuration of FIG. 3, the flow rate Q can be calculated as follows (the dimensions of each part are described with symbols shown in FIG. 6). To do). First, among the spaces partitioned by the reflecting members 31 and 32, the heights of the upper wall side space 3C, the waveguide space 3W, and the lower wall side space 3C ′ are h1, h2, h3, and the cross-sectional area is S1, S2 and S3. Further, when the thickness of the reflecting members 31 and 32 is t, the offset length of the stagnation space 2d is L0, and the attachment angle of the ultrasonic transmitting / receiving units 2a and 2b is θ, the propagation path length L is calculated by the following equation.

L={(h1−t/2)/SINθ
+5・(h2−t)/SINθ+(h3−t/2)/SINθ}+2L0 ‥(1)
また、反射部材31,32は流路中心軸線Oに関して上下対象に設けられているので、
h1=h3=h’ ‥(2)
S1=S3=S’ ‥(3)
L = {(h1-t / 2) / SINθ
+ 5 · (h2−t) / SINθ + (h3−t / 2) / SINθ} + 2L0 (1)
Moreover, since the reflecting members 31 and 32 are provided in the vertical direction with respect to the flow path center axis O,
h1 = h3 = h ′ (2)
S1 = S3 = S '(3)

次に、導波空間3W以外の三角部を含む流路断面、つまり、上壁部側空間3C及び下壁部側空間3C’における流速V’と瞬時流量Q’とを算出する。まず、伝播パスのうち、上壁部側空間3C及び下壁部側空間3C’に属する部分の長さL’は、
L’=2・{h’−t/2)/SINθ+L0} ‥(4)
である。すると、順方向伝播時間T1’は、
T1’=L’/(K+V’COSθ)‥(5)
(ただし、Kは被測定ガス中の音速)
同様に、逆方向伝播時間T2’は、
T2’=L’/(K−V’COSθ)‥(5)’
従って、上壁部側空間3C及び下壁部側空間3C’における流速V’は、
V’=(L’/COSθ)(1/T1’−1/T2’) ‥(6)
同じく瞬時流量Q’は、
Q’=V’・2S’‥(7)
Next, the flow rate cross section including the triangular portion other than the waveguide space 3W, that is, the flow velocity V ′ and the instantaneous flow rate Q ′ in the upper wall portion side space 3C and the lower wall portion side space 3C ′ are calculated. First, in the propagation path, the length L ′ of the portion belonging to the upper wall side space 3C and the lower wall side space 3C ′ is:
L ′ = 2 · {h′−t / 2) / SINθ + L0} (4)
It is. Then, the forward propagation time T1 ′ is
T1 ′ = L ′ / (K + V′COSθ) (5)
(However, K is the speed of sound in the measured gas)
Similarly, the backward propagation time T2 ′ is
T2 ′ = L ′ / (K−V′COSθ) (5) ′
Therefore, the flow velocity V ′ in the upper wall side space 3C and the lower wall side space 3C ′ is
V ′ = (L ′ / COSθ) (1 / T1′−1 / T2 ′) (6)
Similarly, the instantaneous flow rate Q ′ is
Q '= V' · 2S '(7)

次に、導波空間3Wでの流速:V”と瞬時流量Q”とを同様に算出すると、伝播パスのうち、導波空間3Wに属する部分の長さL”は、
L”=N・{(h2−t)/SINθ}‥(7)’
(ただし、Nは反射次数(反射回数))
である。すると、順方向伝播時間T1”は、
T1”=L”/(K+V”COSθ)‥(8)
同様に、逆方向伝播時間T2”は、
T2”=L”/(K−V”COSθ)‥(9)
従って、導波空間3Wにおける流速V”は、
V”=(L”/COSθ)(1/T1”−1/T2”) ‥(10)
同じく瞬時流量Q”は、
Q”=V”・S2 ‥(11)
Next, when the flow velocity: V ″ and the instantaneous flow rate Q ″ in the waveguide space 3W are similarly calculated, the length L ″ of the portion belonging to the waveguide space 3W in the propagation path is
L ″ = N · {(h2−t) / SINθ} (7) ′
(However, N is the reflection order (number of reflections))
It is. Then, the forward propagation time T1 ″ is
T1 ″ = L ″ / (K + V ″ COSθ) (8)
Similarly, the backward propagation time T2 ″ is
T2 ″ = L ″ / (K−V ″ COSθ) (9)
Therefore, the flow velocity V ″ in the waveguide space 3W is
V ″ = (L ″ / COSθ) (1 / T1 ″ −1 / T2 ″) (10)
Similarly, the instantaneous flow rate Q "
Q ”= V” · S2 (11)

以上から、全流量値Qは、導波空間3W(S2)と上壁部側空間3C及び下壁部側空間3C’(S’+S’=2S’)の各流量の和となるから、
Q=Q’+Q”(V’・2S’+V”・S2) ‥(12)
として算出することができる。
From the above, the total flow value Q is the sum of the flow rates of the waveguide space 3W (S2), the upper wall side space 3C, and the lower wall side space 3C ′ (S ′ + S ′ = 2S ′).
Q = Q ′ + Q ″ (V ′ · 2S ′ + V ″ · S2) (12)
Can be calculated as

上記構成によると、超音波送受信部2a,2b間を超音波ビームSWが直進により伝播する場合と比較して、図3に示すように、反射回数が2回以上に増加する分だけ伝播パス長が折れ線状に増加し、流量測定精度の向上あるいは流量測定のレンジアビリティ拡大に寄与できる。また、同じ伝播パス長であっても、パス形状が折れ線状となることで、対を成す超音波送受信部2a,2bの距離を近づけることができ、装置の小形化にも貢献する。また、反射部材31,32によって流路3Pがその軸断面内にて複数に分割されるが、反射部材31,32は被測定流体GFに対する整流素子としても機能するので、流れの安定化と均一化とを図ることができ、この観点からも流量測定精度の向上に寄与する。特に、反射部材31,32による流路の分割方向に流れを十分均一化することができれば、測定対象となる流れを近似的に二次元流として取り扱うことが可能となり、測定精度向上の観点においてさらに有利となる。   According to the above configuration, as shown in FIG. 3, the propagation path length is increased by the number of times of reflection more than twice as compared with the case where the ultrasonic beam SW propagates straight between the ultrasonic transmission / reception units 2a and 2b. Increases in a polygonal line, which can contribute to the improvement of flow measurement accuracy or the rangeability of flow measurement. Further, even if the propagation path length is the same, the path shape becomes a polygonal line, so that the distance between the paired ultrasonic transmission / reception units 2a and 2b can be reduced, contributing to the miniaturization of the apparatus. Moreover, although the flow path 3P is divided into a plurality of parts within the axial cross section by the reflecting members 31 and 32, the reflecting members 31 and 32 also function as a rectifying element for the fluid GF to be measured. From this point of view, it contributes to the improvement of the flow rate measurement accuracy. In particular, if the flow can be sufficiently uniform in the direction of dividing the flow path by the reflecting members 31 and 32, the flow to be measured can be handled as a two-dimensional flow approximately, and further in terms of improving measurement accuracy. It will be advantageous.

また、受信側の超音波送受信部には、反射次数の異なる波束成分が時間差をおいて複数回受信されることになるが、本発明においては、その複数の波束成分の中から代表波束成分を選択することができる。すなわち、流量算出のために最適となる波束成分を選択することが可能である。   In addition, in the ultrasonic transmission / reception unit on the reception side, wave packet components having different reflection orders are received a plurality of times with a time difference. In the present invention, representative wave packet components are selected from the plurality of wave packet components. You can choose. That is, it is possible to select a wave packet component that is optimal for the flow rate calculation.

次に、超音波流量計1別の回路構成例を図12に示す。この実施例では、第一コンパレータ91の出力VbはAND回路94に入力されず、RSFF回路93のポート#Sに直接入力される。その結果、タイミングチャートは図13に示すものとなる。図示するように、2回反射波束成分SW2と4回反射波束成分SW4の各々に対応してゼロクロスポイント検出信号Veが出力され、駆動信号が入力されてから各ゼロクロスポイント検出信号Veが出力されるまでの時間が計測される。この計測結果は、演算部11に各々入力される。   Next, FIG. 12 shows a circuit configuration example for each ultrasonic flow meter 1. In this embodiment, the output Vb of the first comparator 91 is not input to the AND circuit 94 but is directly input to the port #S of the RSFF circuit 93. As a result, the timing chart is as shown in FIG. As shown in the figure, the zero cross point detection signal Ve is output corresponding to each of the two-time reflected wave component SW2 and the four-time reflected wave component SW4, and each zero cross point detection signal Ve is output after the drive signal is input. Time until is measured. Each measurement result is input to the calculation unit 11.

図14に、演算部11のブロック図を示す。演算部11は通常のコンピュータとして構成されており、CPU111と、制御プログラム112aが記憶されたROM112と、RAM113と、入出力部(I/O)114と、これらの構成を繋ぐライン115とを備える。CPU111が制御プログラム112aを読み出して実行することにより、本発明の波束成分選択手段、不要波束成分無効化手段、流量算出禁止手段、ゼロクロスパルス計測手段がそれぞれ実現される。   FIG. 14 shows a block diagram of the calculation unit 11. The calculation unit 11 is configured as a normal computer, and includes a CPU 111, a ROM 112 that stores a control program 112a, a RAM 113, an input / output unit (I / O) 114, and a line 115 that connects these configurations. . When the CPU 111 reads and executes the control program 112a, the wave packet component selection unit, the unnecessary wave packet component invalidation unit, the flow rate calculation prohibition unit, and the zero cross pulse measurement unit of the present invention are realized.

次に、図15〜図18のフローチャートを用いて、制御プログラム112aの動作について説明する。まずステップS1で、後述するカウンタに用いる変数nをリセットする処理を行う。その後S2に進み、第一方向へ(すなわち、上流側超音波送受信部2aへ)駆動信号を出力する。その後、S3で時間計測を行い、S4に移ってゼロクロスパルスが発生したか否を判断する。ゼロクロスパルスが発生した場合、S5に移ってパルスカウンタnを1つ増やす。そしてS6に移り、nが予め定められた値na(例えば2)より大きいか否かを判断する。n=1の場合はNoと判定されるので、S3に戻って再び時間計測を行う。また、S4において2回目のゼロクロスパルスを検知すると、S5でn=2となり、S6でYesとなってS7に進む。これらの処理を行うことにより、2回目のゼロクロスパルスを検知するまでの時間T1(順方向伝播時間)が求められる。S7では、この値を記憶する。   Next, the operation of the control program 112a will be described using the flowcharts of FIGS. First, in step S1, a process of resetting a variable n used for a counter described later is performed. Thereafter, the process proceeds to S2, and a drive signal is output in the first direction (that is, to the upstream ultrasonic transmitting / receiving unit 2a). Thereafter, time measurement is performed in S3, and the process proceeds to S4 to determine whether or not a zero cross pulse has occurred. When the zero cross pulse is generated, the process proceeds to S5 and the pulse counter n is incremented by one. Then, the process proceeds to S6, where it is determined whether n is larger than a predetermined value na (for example, 2). When n = 1, it is determined No, so the process returns to S3 and time measurement is performed again. When the second zero cross pulse is detected in S4, n = 2 in S5, Yes in S6, and the process proceeds to S7. By performing these processes, a time T1 (forward propagation time) until the second zero cross pulse is detected is obtained. In S7, this value is stored.

その後、S8〜S14の処理を行う。ここでは、第二方向へ(すなわち、下流側超音波送受信部2bへ)駆動信号を出力し、上流側の超音波送受信部2aにて超音波ビームを受信する。ここでも、S1〜S7と同様の処理を行うことにより、2回目のゼロクロスパルスを検知するまでの時間T2(逆方向伝播時間)を求め、S14においてこの値を記憶する。次にS15に進み、上述の式12に基づいて流量Qを算出する。   Then, the process of S8-S14 is performed. Here, a drive signal is output in the second direction (that is, to the downstream ultrasonic transmission / reception unit 2b), and the ultrasonic transmission / reception unit 2a receives the ultrasonic beam. Again, by performing the same processing as S1 to S7, a time T2 (reverse propagation time) until the second zero cross pulse is detected is obtained, and this value is stored in S14. Next, the process proceeds to S15, and the flow rate Q is calculated based on the above equation 12.

以上の処理を行うことにより、ゼロクロスパルスの検出回数が予め定められた回数(ここでは2回目)に到達したときのゼロクロスパルスのみ、代表波束成分に由来したゼロクロスパルスとして採用することが可能となる。   By performing the above processing, only the zero cross pulse when the number of zero cross pulse detection times reaches a predetermined number (here, the second time) can be adopted as the zero cross pulse derived from the representative wave packet component. .

なお図16に示すように、naを変更することが可能である。このフローチャートでは、図15のS1〜S15までの処理をS18として定義している。S17にて例えばna=4を代入すれば、4回目のゼロクロスパルスを使って流量Qを測定することが可能となる。   As shown in FIG. 16, na can be changed. In this flowchart, the processes from S1 to S15 in FIG. 15 are defined as S18. For example, if na = 4 is substituted in S17, the flow rate Q can be measured using the fourth zero cross pulse.

次に、図17に示すように、1回目のゼロクロスパルスを利用して流量Q(1)を測定し、同様に2回目のゼロクロスパルスを利用して流量Q(2)を測定し、これらの平均値を算出することもできる。まず、S16にて変数nをリセットし、S17にてna=1を代入する。そしてS18を処理することにより、1回目のゼロクロスパルスを利用して流量Q(1)を測定し、これをS19にて記憶する。次に、S20〜S23を処理する。ここでは、S21でna=2とすることにより、2回目のゼロクロスパルスを利用して流量Q(2)を測定し、S23にてこの値を記憶する。これらの処理が終了した後、S24にてQ(1)とQ(2)の平均値を算出する。   Next, as shown in FIG. 17, the flow rate Q (1) is measured using the first zero cross pulse, and the flow rate Q (2) is measured similarly using the second zero cross pulse. An average value can also be calculated. First, the variable n is reset in S16, and na = 1 is substituted in S17. Then, by processing S18, the flow rate Q (1) is measured using the first zero cross pulse, and this is stored in S19. Next, S20 to S23 are processed. Here, by setting na = 2 in S21, the flow rate Q (2) is measured using the second zero cross pulse, and this value is stored in S23. After these processes are completed, an average value of Q (1) and Q (2) is calculated in S24.

また、図18に示すフローチャートを採用することもできる。この実施例では、S16〜S24の処理を行った後(図17と同じなので説明は省略する)、S25に進み、流量の平均値Qが予め定められた流量Qaよりも大きいか否かを判定する。ここでYes(高流量状態)と判定された場合はS27に進み、代表流量値としてQ(2)を採用する。また、No(低流量状態)の場合はS26に進み、代表流量値としてQ(1)を採用する。   Further, the flowchart shown in FIG. 18 may be employed. In this embodiment, after the processing of S16 to S24 is performed (the description is omitted because it is the same as FIG. 17), the process proceeds to S25 and it is determined whether or not the average value Q of the flow rate is larger than the predetermined flow rate Qa. To do. If it is determined Yes (high flow rate state), the process proceeds to S27, and Q (2) is adopted as the representative flow rate value. In the case of No (low flow rate state), the process proceeds to S26, and Q (1) is adopted as the representative flow rate value.

次に、図7を用いて本発明の別の実施例について説明をする。この実施例では、対をなす反射部材31,32が形成する導波空間3W内において、超音波ビームSWの多重反射区間の前後に隣接する位置に、それら対をなす反射部材31,32の間に整流用仕切り板33’A,33’Bを介挿した例である。整流用仕切り板33’A,33’B間の大きな空隙33gは、4次の波束成分SW4とともに2次の波束成分SW2の通過も許容し、受信側の超音波送受信部に異なるタイミングで受信される。これらの波束成分のうち、代表波束成分(SW2又はSW4)の受信情報に基づいて、代表流量値が算出される。   Next, another embodiment of the present invention will be described with reference to FIG. In this embodiment, in the waveguide space 3W formed by the pair of reflecting members 31 and 32, between the pair of reflecting members 31 and 32 at positions adjacent to the front and rear of the multiple reflection section of the ultrasonic beam SW. In this example, rectifying partition plates 33′A and 33′B are inserted. The large gap 33g between the rectifying partition plates 33'A and 33'B allows passage of the secondary wave packet component SW2 together with the fourth wave packet component SW4, and is received at different timings by the ultrasonic transmission / reception unit on the receiving side. The Of these wave packet components, the representative flow rate value is calculated based on the reception information of the representative wave packet component (SW2 or SW4).

また、図8の構成では、反射部材31,32の間に、それら反射部材31,32が形成する導波空間3Wを分割する中間反射部材33が介挿されている。また、分割された各導波空間3Wの一方の側から他方の側に向う超音波ビームSW4を通過させるためのビーム通過孔33hが中間反射部材33に形成されている。この構成では、4次の波束成分SW4と、8次の波束成分SW8とが受信される。これらの波束成分SW4,SW8は、第一反射部材31と中間反射部材33との間に形成される第一導波空間3W1に導入されて第一の多重反射を生じた後、ビーム通過孔33hを経て、中間反射部材33と対をなす反射部材31,32の他方をなす第二反射部材31,32との間に形成される第二導波空間3W2に導入されて第二の多重反射を生じるようになっている(第一駆動モード;第二駆動モードでは、その逆順となる)。これらの波束成分SW4,SW8のうち、例えば8次の波束成分SW8を代表波束成分として採用することができる。   In the configuration of FIG. 8, an intermediate reflection member 33 that divides the waveguide space 3 </ b> W formed by the reflection members 31 and 32 is interposed between the reflection members 31 and 32. Further, a beam passing hole 33h for allowing the ultrasonic beam SW4 from one side to the other side of each divided waveguide space 3W to pass therethrough is formed in the intermediate reflecting member 33. In this configuration, the fourth-order wave packet component SW4 and the eighth-order wave packet component SW8 are received. These wave packet components SW4 and SW8 are introduced into the first waveguide space 3W1 formed between the first reflecting member 31 and the intermediate reflecting member 33 to cause the first multiple reflection, and then the beam passage hole 33h. After that, the second multiple reflection is introduced into the second waveguide space 3W2 formed between the second reflecting members 31, 32 forming the other of the reflecting members 31, 32 paired with the intermediate reflecting member 33. (The first drive mode; in the second drive mode, the reverse is true). Of these wave packet components SW4 and SW8, for example, an eighth-order wave packet component SW8 can be adopted as the representative wave packet component.

次に、図9の構成では、超音波送受信部2a,2bは、反射部材31,32の反射面の法線方向において流路形成部3の片側に集めて配置されており、下壁部3Jbの内壁面も反射面として利用する形でV字形状の伝播パスが形成される。図示するように、5次および9次の波束成分SW5,SW9が、受信側の超音波送受信部に到達可能とされている。第二反射部材32には、下壁部3Jbの内壁面にてV字反射される波束成分SW5,SW9の、下壁部側空間3C’と導波空間3Wとの間の往路パスと復路パスとの双方の透過を許容する透過孔32hが形成されている。波束成分SW5,SW9は、導波空間3Wで第一回の多重反射をした後、透過孔32hを通過して下壁部3Jbにて1回反射し、再び透過孔32hを通って導波空間3Wで第二回の多重反射をする。これらの波束成分SW5,SW9のうち、例えば9次の波束成分SW9が代表波束成分として選択される。   Next, in the configuration of FIG. 9, the ultrasonic transmission / reception units 2a and 2b are gathered and arranged on one side of the flow path forming unit 3 in the normal direction of the reflection surfaces of the reflection members 31 and 32, and the lower wall 3Jb. A V-shaped propagation path is formed in such a manner that the inner wall surface is also used as a reflecting surface. As shown in the figure, the fifth-order and ninth-order wave packet components SW5 and SW9 can reach the reception-side ultrasonic transmission / reception unit. The second reflecting member 32 includes an outward path and a return path between the lower wall portion side space 3C ′ and the waveguide space 3W of the wave packet components SW5 and SW9 reflected by the V shape on the inner wall surface of the lower wall portion 3Jb. And a through hole 32h that allows both of the light to pass therethrough. The wave packet components SW5 and SW9 are subjected to the first multiple reflection in the waveguide space 3W, then pass through the transmission hole 32h, are reflected once by the lower wall portion 3Jb, and pass through the transmission hole 32h again to guide the wave space. Second multiple reflection at 3W. Of these wave packet components SW5 and SW9, for example, the ninth-order wave packet component SW9 is selected as the representative wave packet component.

図10の構成では、反射部材31,32の上流側ないし下流側の縁を回り込ませる形で2次および4次の波束成分SW2,SW4が導波空間3Wに導入されるようになっており、ビーム導入孔の反射部材31,32への形成が省略されている。また、図11の構成では、反射部材31,32の上流側ないし下流側の縁に、切欠き状の(つまり、孔ではない)ビーム導入部31c,32cが形成されている。   In the configuration of FIG. 10, the secondary and quaternary wave packet components SW2 and SW4 are introduced into the waveguide space 3W so as to wrap around the upstream or downstream edges of the reflecting members 31 and 32. Formation of the beam introduction hole on the reflecting members 31 and 32 is omitted. Further, in the configuration of FIG. 11, notched (that is, not hole) beam introducing portions 31 c and 32 c are formed at the upstream or downstream edge of the reflecting members 31 and 32.

本発明の超音波流量計の第1実施例に係る全体構造を示す模式図。The schematic diagram which shows the whole structure which concerns on 1st Example of the ultrasonic flowmeter of this invention. 図1の超音波流量計の、流量計本体の内部構造を示す断面斜視図。The cross-sectional perspective view which shows the internal structure of the flowmeter main body of the ultrasonic flowmeter of FIG. 図1の超音波流量計の、全体の動作を示す図。The figure which shows the whole operation | movement of the ultrasonic flowmeter of FIG. 超音波流量計のブロック図の一部。Part of the block diagram of the ultrasonic flowmeter. タイミングチャートの一例。An example of a timing chart. 流路の高さ、断面積等を説明するための図。The figure for demonstrating the height, cross-sectional area, etc. of a flow path. 第2実施例の基本構成を示す説明図。Explanatory drawing which shows the basic composition of 2nd Example. 第3実施例の基本構成を示す説明図。Explanatory drawing which shows the basic composition of 3rd Example. 第4実施例の基本構成を示す説明図。Explanatory drawing which shows the basic composition of 4th Example. 第5実施例の基本構成を示す説明図。Explanatory drawing which shows the basic composition of 5th Example. 第6実施例の基本構成を示す説明図。Explanatory drawing which shows the basic composition of 6th Example. 第7実施例のブロック図の一部。A part of block diagram of the seventh embodiment. 図12のタイミングチャート。The timing chart of FIG. 演算部のブロック図。The block diagram of a calculating part. フローチャートの第1実施例。The 1st Example of a flowchart. フローチャートの第2実施例。The 2nd Example of a flowchart. フローチャートの第3実施例。The 3rd Example of a flowchart. フローチャートの第4実施例。The 4th Example of a flowchart. 反射部材の厚みと超音波透過率との関係をシミュレーションした結果を示すグラフ。The graph which shows the result of having simulated the relationship between the thickness of a reflection member, and ultrasonic transmittance.

符号の説明Explanation of symbols

1 超音波流量計
1E 代表流量値算出手段
1F 波束成分選択手段
GF 被測定流体
2a,2b 超音波送受信部
3 流路形成部
3P 流路
31,32 反射部材
9 ゼロクロスポイント検出部
10 時間計測部
DESCRIPTION OF SYMBOLS 1 Ultrasonic flowmeter 1E Representative flow value calculation means 1F Wave packet component selection means GF Fluid to be measured 2a, 2b Ultrasonic transmission / reception part 3 Flow path formation part 3P Flow path 31, 32 Reflective member 9 Zero cross point detection part 10 Time measurement part

Claims (12)

被測定流体の流路を形成する流路形成部と、
前記流路形成部に対し前記被測定流体の流通方向において互いに異なる位置に設けられ、一方が前記被測定流体への測定用超音波の送出側となり、他方が該測定用超音波の受信側となるように機能するとともに、各々前記測定用超音波として、予め定められた向きへの指向性を有する超音波ビームを送出可能な対をなす超音波送受信部と、
前記流路形成部の内部にて前記流路に沿って配置される板状に形成された、1つ又は板面法線方向に所定の間隔で複数設けられた反射部材とを備え、
前記送信側となる超音波送受信部から送出される前記超音波ビームは、ビーム中心軸線からその半径方向への拡散により、前記反射部材に対する入射角度によって前記流路内での反射次数及び伝播長の異なる複数の波束成分に分かれて進行するととともに、前記受信側の前記超音波送受信部は、次数の互いに異なる波束成分を、時間差をおいて複数回受信可能とされてなり、その受信情報に基づいて前記被測定流体の代表流量値を算出する代表流量値算出手段を設けてなることを特徴とする超音波流量計。
A flow path forming section for forming a flow path of the fluid to be measured;
Provided at positions different from each other in the flow direction of the fluid to be measured with respect to the flow path forming portion, one side is a transmission side of the ultrasonic waves for measurement to the fluid to be measured, and the other side is a reception side of the ultrasonic waves for measurement And a pair of ultrasonic transmission / reception units capable of transmitting an ultrasonic beam having directivity in a predetermined direction as the measurement ultrasonic waves,
One or a plurality of reflective members provided at a predetermined interval in the normal direction of the plate surface, formed in a plate shape disposed along the flow path inside the flow path forming portion,
The ultrasonic beam transmitted from the ultrasonic transmission / reception unit on the transmission side has a reflection order and a propagation length in the flow path depending on an incident angle with respect to the reflection member due to diffusion in a radial direction from a beam center axis. The ultrasonic transmission / reception unit on the receiving side is capable of receiving a plurality of wave packet components of different orders a plurality of times with a time difference based on the reception information. An ultrasonic flowmeter comprising a representative flow value calculation means for calculating a representative flow value of the fluid to be measured.
受信側の前記超音波送受信部によって複数回検知された前記波束成分のうち、前記被測定流体の流速または流量の算出に供するための代表となる代表波束成分を選択する波束成分選択手段を備え、
前記代表流量値算出手段は、該代表波束成分の受信情報に基づいて前記被測定流体の代表流量値を算出するものである請求項1記載の超音波流量計。
Of the wave packet components detected a plurality of times by the ultrasonic transmission / reception unit on the receiving side, comprising: a wave packet component selection means for selecting a representative wave packet component to be used for calculation of the flow velocity or flow rate of the fluid to be measured;
The ultrasonic flowmeter according to claim 1, wherein the representative flow value calculation means calculates a representative flow value of the fluid to be measured based on reception information of the representative wave packet component.
前記波束成分選択手段は、受信側となる前記超音波送受信部に時間差をおいて複数回到達する前記波束成分のうち、予め定められた順位にて到達する波束成分を前記代表波束成分として選択する請求項1記載の超音波流量計。   The wave packet component selection means selects, as the representative wave packet component, a wave packet component that arrives at a predetermined order among the wave packet components that arrive at the ultrasonic transmission / reception unit on the receiving side multiple times with a time difference. The ultrasonic flowmeter according to claim 1. 前記波束成分選択手段は、前記被測定流体の流量に応じて選択すべき前記波束成分の順位を変更するものである請求項3記載の超音波流量計。   4. The ultrasonic flowmeter according to claim 3, wherein the wave packet component selection means changes the order of the wave packet components to be selected according to the flow rate of the fluid to be measured. 前記受信側の超音波送受信部が前記代表波束成分以外の不要波束成分の検知を無効化する不要波束成分無効化手段を備える請求項2ないし請求項4のいずれか1項に記載の超音波流量計。   The ultrasonic flow rate according to any one of claims 2 to 4, wherein the reception-side ultrasonic transmission / reception unit includes unnecessary wave packet component invalidation means for invalidating detection of unnecessary wave packet components other than the representative wave packet component. Total. 前記不要波束成分無効化手段は、前記代表流量値算出手段による前記代表波束成分以外の波束成分を用いた前記流量の算出処理を禁止する流量算出禁止手段を有する請求項5記載の超音波流量計。   6. The ultrasonic flowmeter according to claim 5, wherein the unnecessary wave packet component invalidating unit includes a flow rate calculation prohibiting unit that prohibits the flow rate calculation process using a wave packet component other than the representative wave packet component by the representative flow rate value calculating unit. . 前記超音波送受信部は、前記超音波ビームをパルス状の超音波波形を有するものとして送出するものであり、
前記代表流量値算出手段は、
受信側となる前記超音波送受信部におけるパルス状受信波形のゼロクロスポイントを検出してゼロクロスパルスを発生させるゼロクロスパルス発生手段と、送信側となる前記超音波送受信部において前記超音波ビームのパルス出力を励振してから前記ゼロクロスパルスが検出されるまでの時間を超音波伝播時間として測定する時間計測手段とを有し、計測された超音波伝播時間に基づいて前記代表流量値を算出するものである請求項6記載の超音波流量計。
The ultrasonic transmission / reception unit transmits the ultrasonic beam as having a pulsed ultrasonic waveform,
The representative flow rate value calculating means includes:
Zero-cross pulse generating means for generating a zero-cross pulse by detecting a zero-cross point of a pulse-like reception waveform in the ultrasonic transmission / reception unit on the reception side, and pulse output of the ultrasonic beam in the ultrasonic transmission / reception unit on the transmission side And a time measuring unit that measures the time from the excitation until the zero cross pulse is detected as an ultrasonic propagation time, and calculates the representative flow rate value based on the measured ultrasonic propagation time. The ultrasonic flowmeter according to claim 6.
前記流量算出禁止手段は、前記ゼロクロスパルス発生手段に対し、代表波束成分に由来したパルス状受信波形についてのみ前記ゼロクロスパルスを発生させ、他の波束成分に由来したパルス状受信波形についてのゼロクロスパルスの発生を禁止するものである請求項7記載の超音波流量計。   The flow rate calculation prohibiting means causes the zero-cross pulse generating means to generate the zero-cross pulse only for the pulse-shaped received waveform derived from the representative wave packet component, and for the zero-cross pulse for the pulse-shaped received waveform derived from the other wave packet components. The ultrasonic flowmeter according to claim 7, wherein the generation is prohibited. 前記流量算出禁止手段は、前記ゼロクロスパルス発生手段に対し、複数の波束成分に由来したパルス状受信波形についてのみ前記ゼロクロスパルスを順次発生させるとともに、該ゼロクロスパルスの検出回数を計測するゼロクロスパルス計測手段を有し、当該検出回数が予め定められた回数に到達したときのゼロクロスパルスのみ、前記代表波束成分に由来したゼロクロスパルスとして採用するものである請求項7記載の超音波流量計。   The flow rate calculation prohibiting unit causes the zero cross pulse generating unit to sequentially generate the zero cross pulse only for a pulse-shaped received waveform derived from a plurality of wave packet components, and to measure the number of detections of the zero cross pulse. The ultrasonic flowmeter according to claim 7, wherein only the zero cross pulse when the number of detection times reaches a predetermined number is adopted as a zero cross pulse derived from the representative wave packet component. 前記代表流量値算出手段は、次数の異なる各波束成分の伝播時間から前記被測定流体の流量を算出し、その算出された流量の平均値を前記代表流量値として算出する請求項1記載の超音波流量計。   2. The super flow rate calculation unit according to claim 1, wherein the representative flow rate value calculation unit calculates a flow rate of the fluid to be measured from propagation times of wave packet components having different orders, and calculates an average value of the calculated flow rates as the representative flow rate value. Sonic flow meter. 前記流路の上流側に配置される上流側超音波送受信部は、ビーム中心軸線が前記反射部材の反射面の法線方向に対し上流側に一定角度傾斜して定められる第一基準方向と一致するよう前記流路形成部の壁部に傾けて取り付けられ、前記流路の下流側に配置される下流側超音波送受信部は、ビーム中心軸線が前記反射部材の反射面の法線方向に対し前記第一基準方向と同一角度にて下流側に傾斜して定められる第二基準方向と一致するよう前記流路形成部の壁部に傾けて取り付けられ、
対をなす前記超音波送受信部は前記流路形成部に対し、複数の前記反射部材群を配列方向に挟む形で振り分けて配置されてなり、前記波束成分を前記導波空間内で偶数次にて多重反射させた後、前記受信側の超音波送受信部に導くとともに、
前記受信側の超音波送受信部は、前記反射部材群によって2回反射した波束成分と、4回反射した波束成分との双方を検知可能とされ、前記波束成分選択手段は、前記波束成分のうち4回反射したものを選択する請求項1ないし請求項10のいずれか1項に記載の超音波流量計。
The upstream ultrasonic transmission / reception unit arranged on the upstream side of the flow path coincides with a first reference direction in which the beam center axis is determined by being inclined at a certain angle upstream with respect to the normal direction of the reflection surface of the reflection member. The downstream ultrasonic wave transmitting / receiving unit that is attached to the wall portion of the flow path forming unit and is disposed on the downstream side of the flow path is configured such that the beam center axis is relative to the normal direction of the reflective surface of the reflective member. It is attached to the wall portion of the flow path forming portion so as to coincide with the second reference direction that is determined by inclining downstream at the same angle as the first reference direction,
The ultrasonic transmitting / receiving units forming a pair are arranged with respect to the flow path forming unit in such a manner that a plurality of the reflecting member groups are sandwiched in the arrangement direction, and the wave packet components are even-ordered in the waveguide space. And then reflected to the ultrasonic transmission / reception unit on the receiving side,
The reception-side ultrasonic transmission / reception unit is capable of detecting both the wave packet component reflected twice by the reflecting member group and the wave packet component reflected four times, and the wave packet component selection means includes the wave packet component The ultrasonic flowmeter according to any one of claims 1 to 10, wherein the one reflected four times is selected.
前記波束成分選択手段は、前記被測定流体の流量が少ない低流量状態の場合は、前記受信側の超音波送受信部によって検知される1回目の波束成分を選択し、前記被測定流体の流量が多い高流量状態の場合は2回目に検知される波束成分を選択する請求項11記載の超音波流量計。   When the flow rate of the fluid under measurement is low and the flow rate is low, the wave packet component selection unit selects the first wave packet component detected by the ultrasonic transmission / reception unit on the reception side, and the flow rate of the fluid under measurement is The ultrasonic flowmeter according to claim 11, wherein the wave packet component detected at the second time is selected in the case of many high flow rates.
JP2006292570A 2006-10-27 2006-10-27 Ultrasonic flow meter Expired - Fee Related JP4931550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006292570A JP4931550B2 (en) 2006-10-27 2006-10-27 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006292570A JP4931550B2 (en) 2006-10-27 2006-10-27 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2008107288A true JP2008107288A (en) 2008-05-08
JP4931550B2 JP4931550B2 (en) 2012-05-16

Family

ID=39440743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006292570A Expired - Fee Related JP4931550B2 (en) 2006-10-27 2006-10-27 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP4931550B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040038A1 (en) * 2009-10-01 2011-04-07 パナソニック株式会社 Ultrasonic flowmeter
GB2595224A (en) * 2020-05-18 2021-11-24 Univ Warwick Ultrasonic flow measurement
CN116754032A (en) * 2023-08-22 2023-09-15 青岛鼎信通讯科技有限公司 Ultrasonic water meter and self-calibration method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100616A (en) * 1984-10-23 1986-05-19 Toshiba Corp Apparatus for measuring flow amount
JP2001021398A (en) * 1999-07-09 2001-01-26 Murata Mfg Co Ltd Ultrasonic flowmeter
JP2002372445A (en) * 2001-06-13 2002-12-26 Fuji Electric Co Ltd Ultrasonic flowmeter
JP2004004115A (en) * 1997-04-18 2004-01-08 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100616A (en) * 1984-10-23 1986-05-19 Toshiba Corp Apparatus for measuring flow amount
JP2004004115A (en) * 1997-04-18 2004-01-08 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2001021398A (en) * 1999-07-09 2001-01-26 Murata Mfg Co Ltd Ultrasonic flowmeter
JP2002372445A (en) * 2001-06-13 2002-12-26 Fuji Electric Co Ltd Ultrasonic flowmeter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040038A1 (en) * 2009-10-01 2011-04-07 パナソニック株式会社 Ultrasonic flowmeter
CN102549395A (en) * 2009-10-01 2012-07-04 松下电器产业株式会社 Ultrasonic flowmeter
GB2595224A (en) * 2020-05-18 2021-11-24 Univ Warwick Ultrasonic flow measurement
CN116754032A (en) * 2023-08-22 2023-09-15 青岛鼎信通讯科技有限公司 Ultrasonic water meter and self-calibration method thereof
CN116754032B (en) * 2023-08-22 2023-11-10 青岛鼎信通讯科技有限公司 Ultrasonic water meter and self-calibration method thereof

Also Published As

Publication number Publication date
JP4931550B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
RU2354938C2 (en) Device for defining and/or control of volume and/or weight flow rate for measured medium
EP2351994A1 (en) Ultrasonic flowmeter
US20070220995A1 (en) Ultrasonic Flowmeter and Ultrasonic Flow Rate Measurement Method
JP2004271496A (en) Ultrasonic flow measuring method
US8505391B1 (en) Flange mounted ultrasonic flowmeter
RU2694791C1 (en) Ultrasonic flowmeter and method of determining flow rate
US20230243683A1 (en) Flowmeter and method for meausuring the flow of a fluid
RU2637381C2 (en) Ultrasonic waveguide
JP4535065B2 (en) Doppler ultrasonic flow meter
JP4931550B2 (en) Ultrasonic flow meter
RU154441U1 (en) SENSOR FOR ULTRASONIC FLOW METER
RU2708904C1 (en) Method and system for ultrasonic overhead flow measurement and body for measurement
JP2001304931A (en) Clamping-on ultrasonic flow rate measuring method and multipath ultrasonic flow rate measuring method as well as clamping-on ultrasonic flowmeter and multipath ultrasonic flowmeter
RU2692824C1 (en) Ultrasonic flow rate measuring device and method of determining flow rate
RU2649421C1 (en) Ultrasonic flowmeter with metal sensor
US20230243682A1 (en) Ultrasonic flow measurement
JP4688253B2 (en) Ultrasonic flow meter
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
JP7151311B2 (en) ultrasonic flow meter
RU2576551C1 (en) Sensor of ultrasonic flowmeter
EP3676573B1 (en) Acoustic measurement of a fluid flow
JP2013217780A (en) Ultrasonic flowmeter
JP2008107287A (en) Ultrasonic flowmeter
RU172103U1 (en) ULTRASONIC FLOW METER WITH METAL SENSOR
JP2008128727A (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees