JP2008106971A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2008106971A
JP2008106971A JP2006289109A JP2006289109A JP2008106971A JP 2008106971 A JP2008106971 A JP 2008106971A JP 2006289109 A JP2006289109 A JP 2006289109A JP 2006289109 A JP2006289109 A JP 2006289109A JP 2008106971 A JP2008106971 A JP 2008106971A
Authority
JP
Japan
Prior art keywords
plate
heat
tube
heat exchange
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006289109A
Other languages
Japanese (ja)
Other versions
JP4231518B2 (en
Inventor
Kenji Tsubone
賢二 坪根
Seiichi Hata
聖一 端
Masahito Tsukahara
政仁 塚原
Masataka Fukuzawa
正隆 福澤
Koji Narita
浩司 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
T Rad Co Ltd
Original Assignee
Toyota Motor Corp
T Rad Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, T Rad Co Ltd filed Critical Toyota Motor Corp
Priority to JP2006289109A priority Critical patent/JP4231518B2/en
Priority to PCT/IB2007/003168 priority patent/WO2008050210A2/en
Priority to CN2007800393418A priority patent/CN101529194B/en
Priority to US12/445,632 priority patent/US20100319893A1/en
Priority to DE112007002451T priority patent/DE112007002451B4/en
Publication of JP2008106971A publication Critical patent/JP2008106971A/en
Application granted granted Critical
Publication of JP4231518B2 publication Critical patent/JP4231518B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0021Particular heat storage apparatus the heat storage material being enclosed in loose or stacked elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat exchange efficiency by maximizing the contact area between a heating medium and a heat exchange plate, and to prevent deformation of a plate-like tube by dispersing stress concerned with expansion/contraction when another heating medium is solidified/melted in a projecting part of another plate-like tube. <P>SOLUTION: The plate-like tube 4 where a plurality of passages 10 for circulating a first heating medium 2 or a second heating medium 3 are formed is disposed in a heat storage material 5 which performs heat exchange with the first heating medium 2 or the second heating medium 3. The plate-like tube 4 is formed by joining two plate materials to each other in the overlaid state. The respective plate materials have a plurality of projection parts 8A, 9A, which are projected in the opposite direction to the joint surface of the plate materials and hollow, and flat parts 8B, 9B between the respective projection parts, and the opening parts of hollow parts in one plate material are closed by the flat parts 8B, 9B in the other plate material, whereby the hollow parts, which are the interiors of the respective projection parts 8A, 9A, are used as passages 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、板状チューブに設けられている流路を流通している第1熱媒体又は第2熱媒体と、前記流路と接触している蓄熱材との熱交換を行う熱交換装置に関するものである。   The present invention relates to a heat exchange device that performs heat exchange between a first heat medium or a second heat medium flowing through a flow path provided in a plate-like tube and a heat storage material in contact with the flow path. Is.

波板の伝熱プレートを互いに重ね合わせるように積層して熱媒体の流路を形成した熱交換装置として、特許文献1、特許文献2、特許文献3に記載された装置が知られている。すなわち、特許文献1は、正弦波状の凹凸の突起を有する伝熱プレートを銅またはアルミ材で形成し、各伝熱プレートを交互に重ね合わせた構成の発明が記載されている。この特許文献1に記載された発明では、前記凹凸部の内部に流路が形成され、ここに熱媒体が流通するように構成されている。また、特許文献2は、伝熱プレートを交互に重ね合わせ、それらの伝熱プレートの間に熱媒体の流路が形成されている発明が記載されている。そして、伝熱プレートの突起のうち、冷媒流路側の接触する突起同士は互いに接合し、熱媒体流路側の接触する突起同士は互いに接合されない構成としている。このため、熱媒体の体積が膨張した場合に、熱媒体流路側の接触する突起同士は接合されていないので部分的に容易に変形することができる。その結果、熱媒体の体積膨張が吸収され、熱交換装置の変形が防止される。また、特許文献3には、特許文献2と同様に、伝熱プレートが交互に重ね合わせて流路が形成された発明が記載されている。   As a heat exchange device in which corrugated heat transfer plates are stacked so as to overlap each other to form a heat medium flow path, devices described in Patent Document 1, Patent Document 2, and Patent Document 3 are known. That is, Patent Document 1 describes an invention in which a heat transfer plate having sinusoidal projections and depressions is formed of copper or aluminum, and the heat transfer plates are alternately stacked. In the invention described in Patent Document 1, a flow path is formed inside the concavo-convex portion, and a heat medium is circulated therein. Patent Document 2 describes an invention in which heat transfer plates are alternately stacked and a heat medium flow path is formed between the heat transfer plates. And among the protrusions of the heat transfer plate, the protrusions that are in contact with each other on the refrigerant flow path side are bonded to each other, and the protrusions that are in contact with each other on the heat medium flow path side are not bonded to each other. For this reason, when the volume of the heat medium expands, the protrusions on the heat medium flow path side that are in contact with each other are not joined to each other, so that the heat medium can be partially deformed easily. As a result, the volume expansion of the heat medium is absorbed and deformation of the heat exchange device is prevented. Patent Document 3 describes an invention in which, like Patent Document 2, heat transfer plates are alternately stacked to form a flow path.

特開平10−232093号公報JP-A-10-232093 特開平11−173771号公報JP-A-11-173771 特開平10−122770号公報JP-A-10-122770

上記の特許文献1から特許文献3に記載の各発明は、板状の伝熱プレートを多層に重ねて熱搬送媒体(熱媒体)を流す流路を構成した熱交換器・蓄熱器であるが、流路を形成する際に、伝熱プレートの接合を容易に行えるようにするため、プレス成形された凹部を交互に接合した構造にしている。しかしながら、上下の伝熱プレートの凹部を対向させることで一つの流路を形成しているため、上下の伝熱プレートによる2つの凸部について、流路が1つしか形成されず、その結果、一対のプレートで構成できる流路の本数が相対的に少なく、したがって流路を流通する熱媒体と伝熱プレートの周囲の熱媒体との間の熱交換面積が狭くなってしまう。   Each invention described in Patent Document 1 to Patent Document 3 is a heat exchanger / heat accumulator in which a plate-shaped heat transfer plate is stacked in multiple layers to form a flow path for flowing a heat transfer medium (heat medium). In order to make it easy to join the heat transfer plates when forming the flow path, the press-formed recesses are alternately joined. However, since one flow path is formed by opposing the concave portions of the upper and lower heat transfer plates, only one flow path is formed for the two convex portions by the upper and lower heat transfer plates. The number of flow paths that can be constituted by a pair of plates is relatively small, and therefore the heat exchange area between the heat medium flowing through the flow paths and the heat medium around the heat transfer plate is narrowed.

また、上記の伝熱プレートを積層に重ねて熱搬送流体を流す流路を形成した板状チューブの間に、蓄冷材・蓄熱材を介在させた構造の蓄熱器が知られている。しかしながら、この種の蓄熱器にあっては、板状チューブの間に介在する蓄冷材・蓄熱材が凝固・融解を繰り返すときに生じる膨張・収縮による応力を板状チューブが受け、板状チューブが変形する場合がある。   In addition, a heat accumulator having a structure in which a cold accumulating material / heat accumulating material is interposed between plate-like tubes in which the heat transfer plates are stacked to form a flow path for flowing a heat transfer fluid is known. However, in this type of heat accumulator, the plate tube receives the stress due to expansion / contraction that occurs when the cold storage material / heat storage material interposed between the plate tubes repeats solidification / melting. It may be deformed.

この発明は、上記の技術的課題に着目してなされたものであり、板材を接合して熱媒体用流路を形成した伝熱プレートの熱交換面積を容易に拡大できる熱交換装置を提供することを目的としたものである。   The present invention has been made paying attention to the above technical problem, and provides a heat exchange device capable of easily expanding the heat exchange area of a heat transfer plate in which plates are joined to form a heat medium flow path. It is for the purpose.

上記の目的を達成するために、請求項1の発明は、第1熱媒体又は第2熱媒体を流通させる複数本の流路が形成された板状チューブが、前記第1熱媒体又は第2熱媒体との間で熱交換を行う蓄熱材中に配置された熱交換装置において、前記板状チューブは、二枚の板材を重ね合わせた状態に接合して形成されるとともに、各板材は該板材の接合面とは反対方向に凸となりかつ内部が空洞とされた複数本の突条部と各突条部の間の平坦部とを有し、一方の板材における前記空洞の開口部が他方の板材における平坦部で閉じられて各突条部の内部である前記空洞が前記流路とされていることを特徴とするものである。   In order to achieve the above object, the invention according to claim 1 is directed to a plate-like tube in which a plurality of flow paths through which the first heat medium or the second heat medium is circulated is the first heat medium or the second heat medium. In the heat exchange device arranged in the heat storage material that exchanges heat with the heat medium, the plate-like tube is formed by joining two plate materials in a stacked state, and each plate material is It has a plurality of ridges that are convex in the opposite direction to the joint surface of the plate material and are hollow inside, and a flat portion between each ridge portion, and the opening of the cavity in one plate material is the other It is characterized in that the cavity that is closed by a flat portion in the plate material and that is inside each ridge portion is used as the flow path.

また、請求項2の発明は、請求項1の発明において、複数の前記板状チューブが相互に所定の間隔をあけて対向して配列され、かつこれらの板状チューブの間に充填された前記蓄熱材は加熱されて融解するとともに冷却されて凝固する蓄熱材からなり、前記板状チューブは、一方の板状チューブにおける前記突条部が、該一方の板状チューブに隣接する他方の板状チューブにおける前記平坦部に対向するように配列されていることを特徴とするものである。   The invention according to claim 2 is the invention according to claim 1, wherein the plurality of plate-like tubes are arranged to face each other at a predetermined interval, and are filled between these plate-like tubes. The heat storage material is composed of a heat storage material that is heated and melted and is cooled and solidified, and the plate-like tube has the protruding portion in one plate-like tube and the other plate-like shape adjacent to the one plate-like tube. It arranges so that the said flat part in a tube may be opposed.

また、請求項3の発明は、請求項2の発明において、前記突条部は、前記平坦部に対して傾斜した外側面を備えていることを特徴とするものである。   According to a third aspect of the present invention, in the second aspect of the present invention, the protrusion is provided with an outer surface inclined with respect to the flat portion.

また、請求項4の発明は、請求項2または3の発明において、前記突条部は、断面形状が前記平坦部側を底辺とした三角形状をなすように構成されていることを特徴とするものである。   According to a fourth aspect of the present invention, in the second or third aspect of the present invention, the protruding portion is configured so that a cross-sectional shape forms a triangular shape with the flat portion side as a base. Is.

請求項1の発明によれば、突条部と平坦部とで閉じられている流路が蓄熱材中に配置されているため、上下の伝熱プレートによる1つの凸部について、1つの流路が形成される。このため、上下の伝熱プレートの凹部を対向させることで1つの流路を形成している場合と比較して、流路と蓄熱材との表面積が大きくなる。したがって、蓄熱材と流路を流れる第1熱媒体又は第2熱媒体との熱交換効率が向上する。   According to invention of Claim 1, since the flow path closed by the protrusion part and the flat part is arrange | positioned in the thermal storage material, about one convex part by an up-and-down heat-transfer plate, one flow path Is formed. For this reason, the surface area of a flow path and a thermal storage material becomes large compared with the case where one flow path is formed by making the recessed part of the upper and lower heat-transfer plates oppose. Therefore, the heat exchange efficiency between the heat storage material and the first heat medium or the second heat medium flowing through the flow path is improved.

また、請求項2の発明によれば、請求項1の発明で得られる効果に加えて、第1熱媒体又は第2熱媒体と蓄熱材との熱交換が突条部及び平坦部で行われるため、第2熱媒体に冷媒が流通している場合は蓄熱材が突条部及び平坦部に沿って凝固され、第1熱媒体にブラインが流通していて蓄熱材が凝固している場合は蓄熱材が突条部及び平坦部に沿って融解される。ここで、一方の板状チューブにおける前記突条部が、該一方の板状チューブに隣接する他方の板状チューブにおける前記平坦部に対向するように配列されている。このため、一方の板状チューブの平坦部において、平坦部に沿って凝固・融解されることにより生じる応力は、他方の板状チューブの突条部にかかるため、突条部で他方の板状チューブにかかる応力を緩和することができる。   According to the invention of claim 2, in addition to the effect obtained by the invention of claim 1, heat exchange between the first heat medium or the second heat medium and the heat storage material is performed at the protrusion and the flat part. Therefore, when the refrigerant is circulating in the second heat medium, the heat storage material is solidified along the ridge and the flat portion, and when the brine is flowing through the first heat medium and the heat storage material is solidified. The heat storage material is melted along the protrusion and the flat portion. Here, the protruding portion in one plate-like tube is arranged to face the flat portion in the other plate-like tube adjacent to the one plate-like tube. For this reason, in the flat part of one plate-like tube, the stress generated by being solidified and melted along the flat part is applied to the ridge part of the other plate-like tube. Stress applied to the tube can be relaxed.

さらに、請求項3、4の発明によれば、請求項2の発明で得られる効果に加えて、一方の板状チューブの突条部において、突条部に沿って凝固・融解されることにより生じる応力は、応力の一部が他方の板状チューブに対して水平方向にかかるため、他方の板状チューブにかかる応力を緩和することができる。   Further, according to the inventions of claims 3 and 4, in addition to the effects obtained by the invention of claim 2, the protrusions of one plate-like tube are solidified and melted along the protrusions. Since a part of the stress is applied in the horizontal direction with respect to the other plate tube, the stress applied to the other plate tube can be relieved.

以下、本発明を実施した最良の形態について説明する。この発明の熱交換装置は、エネルギーを増大させる正の熱(温熱)の蓄熱と、エネルギーを低下させる負の熱(冷熱)の蓄熱とのいずれも可能である。以下の説明では、後者のいわゆる冷熱の蓄熱を行うように構成した具体例を示す。図1は、この発明に係る第1実施形態における熱交換装置1の概略的な斜視図である。図1に記載されている熱交換装置1では、第1熱媒体2又は第2熱媒体3を流通させる複数本の流路が形成された板状チューブ4が、前記第1熱媒体2又は前記第2熱媒体3との間で熱交換を行う蓄熱材5中に配置されている。板状チューブ4は、熱交換装置1の内部に設けられ、この熱交換装置1の横方向α、縦方向β、高さ方向γのいずれかの方向に、板状チューブ4を介在させ、ある一定間隔で交互に配置して構成されている。   The best mode for carrying out the present invention will be described below. The heat exchanging device of the present invention is capable of storing positive heat (hot heat) that increases energy and negative heat (cold heat) that reduces energy. In the following description, a specific example in which the latter so-called cold heat storage is performed will be shown. FIG. 1 is a schematic perspective view of a heat exchange device 1 according to a first embodiment of the present invention. In the heat exchange device 1 illustrated in FIG. 1, the plate-like tube 4 formed with a plurality of flow paths through which the first heat medium 2 or the second heat medium 3 is circulated is the first heat medium 2 or the It arrange | positions in the thermal storage material 5 which heat-exchanges with the 2nd heat medium 3. FIG. The plate-like tube 4 is provided inside the heat exchange device 1, and the plate-like tube 4 is interposed in any one of the horizontal direction α, the vertical direction β, and the height direction γ of the heat exchange device 1. They are arranged alternately at regular intervals.

図1において、熱交換装置1の外側には、板状チューブ4の一端部に設けられている図示しない空間と連通するように、第1熱媒体2に該当する冷媒の導入管6aが熱交換装置1を貫通して設けられている。また、熱交換装置1の外側で、板状チューブ4の前記一端部と対向する板状チューブ4の他端部に設けられている図示しない空間と連通するように、第1熱媒体2に該当する冷媒の導出管7aが熱交換装置1を貫通して設けられている。さらに、熱交換装置1の外側で、板状チューブ4の前記他端部に設けられ、前記導出管7aと連通されていない図示しない空間と連通するように、第2熱媒体3に該当するブラインの導入管6bが熱交換装置1を貫通して設けられている。さらにまた、熱交換装置1の外側で、板状チューブ4の前記一端部に設けられ、前記導入管6aと連通されていない図示しない空間と連通するように、ブラインの導出管7bが熱交換装置1を貫通して設けられている。   In FIG. 1, a refrigerant introduction pipe 6 a corresponding to the first heat medium 2 is heat exchanged outside the heat exchange device 1 so as to communicate with a space (not shown) provided at one end of the plate-like tube 4. It is provided through the device 1. Moreover, it corresponds to the 1st heat medium 2 so that it may connect with the space which is not shown in the other end part of the plate-shaped tube 4 which opposes the said one end part of the plate-shaped tube 4 on the outer side of the heat exchange apparatus 1. A refrigerant outlet pipe 7 a is provided so as to penetrate the heat exchange device 1. Further, the brine corresponding to the second heat medium 3 is provided outside the heat exchange device 1 at the other end of the plate-like tube 4 and communicates with a space (not shown) that is not communicated with the outlet tube 7a. The introduction pipe 6b is provided through the heat exchange device 1. Furthermore, a brine outlet pipe 7b is provided at the one end portion of the plate-like tube 4 outside the heat exchange apparatus 1 and communicates with a space (not shown) that is not communicated with the introduction pipe 6a. 1 is provided.

図2に、上記の熱交換装置1の内部に配置される板状チューブ4の一例を断面図で示してある。ここに示す板状チューブ4は、この発明における板材に相当する二枚の伝熱プレート8,9を互いに対向させて接合することにより構成されている。各伝熱プレート8,9には、内部が空洞部となるように曲げ加工して形成された突条部8A,9Aが所定の間隔をあけてほぼ平行に形成されている。そして、これらの突条部8A,9A同士の間の部分が平坦部8B,9Bとなっている。その突条部8A,9Aの形状は、図7、図8に記すように三角形断面、四角形断面、半円状断面などの任意の形状であってもよく、図2には断面形状が前記平坦部8B,9B側を底辺とした三角形をなす例を記載している。各突条部8A,9Aは、内部の空洞部が、各伝熱プレート8,9同士の接合面側に開口するように構成され、したがって各空洞部が溝状をなしている。そして、一方の伝熱プレート8,9における突条部8A,9Aに、他方の伝熱プレート9,8における平坦部9B,8Bが対向するように各伝熱プレート8,9が接合されている。したがって、各突条部8A,9Aによってその内側に形成されている空洞部の開口部は相手側の伝熱プレート8,9の平坦部8B,9Bによって閉じられている。こうして、各突条部8A,9Aの内部に流路10が形成されている。   FIG. 2 is a cross-sectional view showing an example of the plate tube 4 disposed inside the heat exchange device 1. The plate-like tube 4 shown here is configured by joining two heat transfer plates 8 and 9 corresponding to the plate material in the present invention so as to face each other. The heat transfer plates 8 and 9 are formed with ridge portions 8A and 9A formed by bending so that the inside becomes a hollow portion, and substantially parallel with a predetermined interval. And the part between these protrusion part 8A, 9A is flat part 8B, 9B. The shape of the protrusions 8A, 9A may be any shape such as a triangular cross section, a quadrangular cross section, a semicircular cross section as shown in FIGS. 7 and 8, and the cross sectional shape is flat in FIG. The example which makes the triangle which made the part 8B and 9B side the base is described. Each of the protrusions 8A and 9A is configured such that the internal cavity opens to the joint surface side between the heat transfer plates 8 and 9, and thus each cavity has a groove shape. And each heat-transfer plate 8 and 9 is joined so that the flat parts 9B and 8B in the other heat-transfer plates 9 and 8 may oppose the protrusion part 8A and 9A in one heat-transfer plates 8 and 9. FIG. . Therefore, the opening part of the cavity part formed in the inner side by each protrusion part 8A, 9A is closed by the flat part 8B, 9B of the heat exchanger plate 8, 9 of the other party. In this way, the flow path 10 is formed inside each protrusion 8A, 9A.

この板状チューブ4に設けられている流路10は、板状チューブ4の他端部で導出管7aと連通されている図示しない空間と連通し、前記板状チューブ4の一端部で導入管6aと連通されている図示しない空間と連通している。または、前記流路10は、板状チューブ4の他端部で導入管6bと連通されている図示しない空間と連通し、前記板状チューブ4の一端部で導出管7bと連通されている図示しない空間と連通している。これにより、導入管6aから流入した冷媒は、各突条部8A,9Aの内部に形成された流路10を経由して導出管7aへと流通する。また、導入管6bから流入したブラインは、各突条部8A,9Aの内部に形成された流路10を経由して導出管7bへと流通する。   A flow path 10 provided in the plate-like tube 4 communicates with a space (not shown) communicated with the outlet tube 7 a at the other end of the plate-like tube 4, and an introduction tube at one end of the plate-like tube 4. It communicates with a space (not shown) communicated with 6a. Alternatively, the flow path 10 communicates with a space (not shown) communicated with the introduction pipe 6 b at the other end of the plate-like tube 4 and communicates with the outlet pipe 7 b at one end of the plate-like tube 4. It communicates with the space that does not. Thereby, the refrigerant flowing in from the introduction pipe 6a flows to the outlet pipe 7a via the flow path 10 formed in each of the protrusions 8A and 9A. Further, the brine that has flowed in from the introduction pipe 6b circulates to the outlet pipe 7b via the flow path 10 formed in each of the protrusions 8A and 9A.

図3は、上記の板状チューブ4を組み込んで形成された熱交換装置1の内部構造を拡大して示した横断面図である。ここに示す複数の板状チューブ4は、相互に所定の間隔をあけて対向して配列されている。より具体的には、冷媒やブラインとは異なる別の熱媒体としての蓄熱材5が板状チューブ4に接するようにサンドイッチ状に介在され、各板状チューブ4が所定間隔に重なるように配列されている。各板状チューブ4の流路10には、冷媒、もしくはブラインが流入しているため、蓄熱材5を介して冷媒とブラインとの間で熱交換が行われるようになっている。ここで、任意の板状チューブ4の流路10に冷媒が流入し、任意の板状チューブに隣接する板状チューブ4の流路10にブラインが流入している場合は、蓄熱材5を介して冷媒とブラインとの間で熱交換が行われるようになっている。   FIG. 3 is an enlarged cross-sectional view showing the internal structure of the heat exchange device 1 formed by incorporating the plate tube 4 described above. The plurality of plate-like tubes 4 shown here are arranged facing each other at a predetermined interval. More specifically, the heat storage material 5 as another heat medium different from the refrigerant or brine is interposed in a sandwich shape so as to contact the plate-like tube 4, and the plate-like tubes 4 are arranged so as to overlap each other at a predetermined interval. ing. Since refrigerant or brine flows into the flow path 10 of each plate-like tube 4, heat exchange is performed between the refrigerant and brine via the heat storage material 5. Here, when the refrigerant flows into the flow path 10 of the arbitrary plate-shaped tube 4 and the brine flows into the flow path 10 of the plate-shaped tube 4 adjacent to the arbitrary plate-shaped tube, the heat storage material 5 is interposed. Thus, heat exchange is performed between the refrigerant and the brine.

また、図3に示す板状チューブ4は、一方の板状チューブ4における突条部8A,9Aが、該一方の板状チューブ4に隣接する他方の板状チューブ4における平坦部9B,8Bに対向するように配列されている。具体的には、伝熱プレート8に設けられている突条部8Aは、伝熱プレート8,9同士の接合面側に開口するように構成され、一方の伝熱プレート8,9における突条部8A,9Aに、他方の伝熱プレート9,8における平坦部9B,8Bが対向するように各伝熱プレート8,9が接合されている。そのため、板状チューブ4は、任意の伝熱プレート8に設けられている突条部8Aと隣接する板状チューブ4の伝熱プレート9に設けられている平坦部9Bとが対向するように配列されている。   Further, in the plate-like tube 4 shown in FIG. 3, the protruding portions 8A and 9A in one plate-like tube 4 are formed on the flat portions 9B and 8B in the other plate-like tube 4 adjacent to the one plate-like tube 4. They are arranged to face each other. Specifically, the ridge 8A provided on the heat transfer plate 8 is configured to open to the joint surface side between the heat transfer plates 8 and 9, and the ridge on one of the heat transfer plates 8 and 9 is formed. The heat transfer plates 8 and 9 are joined to the portions 8A and 9A so that the flat portions 9B and 8B of the other heat transfer plates 9 and 8 face each other. Therefore, the plate-like tube 4 is arranged so that the protruding portion 8A provided on an arbitrary heat transfer plate 8 and the flat portion 9B provided on the heat transfer plate 9 of the adjacent plate-like tube 4 face each other. Has been.

図4,図5は、蓄冷時における熱交換装置1の内部構造を拡大して示す横断面図である。熱交換装置の構造は図3と同一であるため、図3と同じ符号を付して説明を省略する。図4に示される蓄熱材5は、加熱されて融解するとともに冷却されて凝固する蓄熱材からなり、具体的には、この蓄熱材5は水やエチルグリコール水溶液、塩化アンモニウム水溶液など融点が低く、融解熱が比較的大きい潜熱蓄熱材からなる。図4に示す具体例では、突条部8A,9Aが互い違いに配置されるため、流路10に冷媒が流通している場合は、凝固物11が突条部8A,9A及び平坦部8B,9Bの周辺の蓄熱材中に生成される。突条部8A,9Aに生成された凝固物11は、突条部8A,9Aの面に沿って成長するため、対向する伝熱プレート9,8にかかる応力が緩和される。また、平坦部8B,9Bに生成された凝固物11は、平坦面8B,9Bの面に沿って成長するが、対向する突条部9A,8Aが凸となっているため、伝熱プレート9,8にかかる応力が緩和される。   4 and 5 are enlarged cross-sectional views showing the internal structure of the heat exchange device 1 during cold storage. Since the structure of the heat exchange device is the same as in FIG. 3, the same reference numerals as those in FIG. The heat storage material 5 shown in FIG. 4 is composed of a heat storage material that is heated and melted and is cooled and solidified. Specifically, the heat storage material 5 has a low melting point such as water, an aqueous solution of ethyl glycol, an aqueous solution of ammonium chloride, It consists of a latent heat storage material with a relatively large heat of fusion. In the specific example shown in FIG. 4, the protrusions 8 </ b> A and 9 </ b> A are alternately arranged. Therefore, when the refrigerant is circulating in the flow path 10, the solidified product 11 is formed in the protrusions 8 </ b> A and 9 </ b> A and the flat portions 8 </ b> B, It is generated in the heat storage material around 9B. Since the solidified material 11 generated in the ridges 8A and 9A grows along the surfaces of the ridges 8A and 9A, the stress applied to the opposing heat transfer plates 9 and 8 is relieved. Further, the solidified material 11 generated in the flat portions 8B and 9B grows along the flat surfaces 8B and 9B. However, since the opposing protruding portions 9A and 8A are convex, the heat transfer plate 9 is formed. , 8 is relieved.

流路10に冷媒が流通されているときは、突条部8A,9A及び平端部8B,9Bから蓄熱材5への熱伝導により、突条部8A,9A及び平端部8B,9B付近から蓄熱材5が冷却され、凝固物11が生成される。平坦部8B,9B付近に生成された凝固物11は、蓄熱材5を挟んて対向する突条部9A,8Aの突起部に向かって成長する。また、突条部8A,9Aの突起部付近で生成された凝固物11が蓄熱材5を挟んで対向する平坦部9B,8Bに向かってそれぞれ成長する。   When refrigerant is flowing through the flow path 10, heat is stored from the vicinity of the protrusions 8 </ b> A, 9 </ b> A and the flat ends 8 </ b> B, 9 </ b> B by heat conduction from the protrusions 8 </ b> A, 9 </ b> A and the flat ends 8 </ b> B, 9 </ b> B to the heat storage material 5. The material 5 is cooled and a solidified product 11 is generated. The solidified material 11 generated in the vicinity of the flat portions 8B and 9B grows toward the protruding portions of the protruding ridge portions 9A and 8A that face each other with the heat storage material 5 interposed therebetween. Further, the solidified material 11 generated in the vicinity of the protruding portions of the protruding portions 8A and 9A grows toward the flat portions 9B and 8B facing each other with the heat storage material 5 interposed therebetween.

その結果、隣接する板状チューブ4の流路10にブラインが流通しているときは、突条部8A,9A付近に生成された凝固物11は、凝固物11の成長に伴い蓄熱材5を挟んで対向する平坦部9B,8Bに接近する。その結果、突条部8A,9A付近で生成された凝固物11の冷熱は対面側の伝熱プレート9,8へ奪われ、凝固物11が突条部8A,9Aの先端付近で切断される。また、平坦部8B,9B付近で生成された凝固物11の冷熱は対面側の伝熱プレート9,8の突条部9A,8Aへ奪われ、凝固物11が突条部9A,8Aの先端付近で切断される。   As a result, when the brine is flowing through the flow path 10 of the adjacent plate-like tube 4, the solidified material 11 generated in the vicinity of the protrusions 8 </ b> A and 9 </ b> A causes the heat storage material 5 to move along with the growth of the solidified material 11. It approaches the flat portions 9B and 8B facing each other. As a result, the cold heat of the solidified product 11 generated in the vicinity of the protrusions 8A and 9A is taken away by the heat transfer plates 9 and 8 on the facing side, and the solidified material 11 is cut near the tips of the protrusions 8A and 9A. . Further, the cold heat of the solidified product 11 generated in the vicinity of the flat portions 8B and 9B is taken away by the protrusions 9A and 8A of the heat transfer plates 9 and 8 on the facing side, and the solidified material 11 is removed from the tips of the protrusions 9A and 8A. Disconnected nearby.

これにより、凝固物11が液上の蓄熱材5で剥離され、前記凝固物11は蓄熱材5の温度差により誘発される自然対流によって伝熱プレート8,9の表面付近から離れるようになる。このため、伝熱プレート8,9の表面に凝固物11が形成し、冷媒が搬入する冷熱が蓄熱材5へ伝わりにくくなるのを防止することができる。そしてまた、新たに板状チューブ4の表面に蓄熱材5の凝固物11が生成し、蓄冷材全体へ効率よく冷媒が搬入する冷熱が伝えられることとなる。   Thereby, the solidified material 11 is peeled off by the heat storage material 5 on the liquid, and the solidified material 11 is separated from the vicinity of the surface of the heat transfer plates 8 and 9 by natural convection induced by the temperature difference of the heat storage material 5. For this reason, the solidified material 11 is formed on the surfaces of the heat transfer plates 8 and 9, and it is possible to prevent the cold heat carried in by the refrigerant from being easily transmitted to the heat storage material 5. And the solidified material 11 of the thermal storage material 5 newly produces | generates on the surface of the plate-shaped tube 4, and the cold heat which a refrigerant | coolant carries in efficiently to the whole cold storage material will be transmitted.

図6は、蓄冷時における他の熱交換装置1の内部構造を拡大して示す横断面図である。ここに示す板状チューブ4は、この発明における板材に相当する二枚の伝熱プレート8,9を互いに対向させて接合することにより構成されている。各伝熱プレート8,9には、内部が空洞部となるように曲げ加工して形成された突条部8A,9Aが所定の間隔をあけてほぼ平行に形成されている。そして、これらの突条部8A,9A同士の間の部分が平坦部8B,9Bとなっている。その突条部8A,9Aの形状は、三角形断面、四角形断面、半円状断面などの任意の形状であってもよい。各突条部8A,9Aは、内部の空洞部が、各伝熱プレート8,9同士の接合面側に開口するように構成され、したがって各空洞部が溝状をなしている。そして、一方の伝熱プレート8,9における突条部8A,9Aに、他方の伝熱プレート9,8における突条部9A,8Aが対向するように各伝熱プレート8,9が接合されている。したがって、各突条部8A,9Aによってその内側に形成されている空洞部の開口部は相手側の伝熱プレート8,9の突条部8A,9Aによって閉じられている。こうして、各突条部8A,9Aの内部に流路12が形成されている。   FIG. 6 is an enlarged cross-sectional view showing the internal structure of another heat exchange device 1 during cold storage. The plate-like tube 4 shown here is configured by joining two heat transfer plates 8 and 9 corresponding to the plate material in the present invention so as to face each other. The heat transfer plates 8 and 9 are formed with ridge portions 8A and 9A formed by bending so that the inside becomes a hollow portion, and substantially parallel with a predetermined interval. And the part between these protrusion part 8A, 9A is flat part 8B, 9B. The shape of the protrusions 8A and 9A may be any shape such as a triangular cross section, a quadrangular cross section, or a semicircular cross section. Each of the protrusions 8A and 9A is configured such that the internal cavity opens to the joint surface side between the heat transfer plates 8 and 9, and thus each cavity has a groove shape. And each heat-transfer plate 8 and 9 is joined so that the protrusion 9A and 8A in the other heat-transfer plate 9 and 8 may oppose the protrusion 8A and 9A in one heat-transfer plate 8 and 9. Yes. Therefore, the opening part of the cavity part formed in the inner side by each protrusion part 8A, 9A is closed by protrusion part 8A, 9A of the heat-transfer plate 8, 9 of the other party. In this way, the flow path 12 is formed inside each protrusion 8A, 9A.

この板状チューブ4に設けられている流路12は、図2に示す板状チューブ4と同様に板状チューブ4の他端部で導出管7aと連通されている図示しない空間と連通し、前記板状チューブ4の一端部で導入管6aと連通されている図示しない空間と連通している。または、板状チューブ4の他端部で導入管6bと連通されている図示しない空間と連通し、前記板状チューブ4の一端部で導出管7bと連通されている図示しない空間と連通している。これにより、導入管6aから流入した冷媒は、各突条部8A,9Aの内部に形成された流路12を経由して導出管7aへと流通する。また、導入管6bから流入したブラインは、各突条部8A,9Aの内部に形成された流路12を経由して導出管7bへと流通する。   The flow path 12 provided in the plate-like tube 4 communicates with a space (not shown) communicated with the outlet tube 7a at the other end of the plate-like tube 4 like the plate-like tube 4 shown in FIG. One end of the plate-like tube 4 communicates with a space (not shown) communicated with the introduction pipe 6a. Alternatively, the other end of the plate-like tube 4 communicates with a space (not shown) that communicates with the introduction tube 6b, and the one end of the plate-like tube 4 communicates with a space (not shown) that communicates with the outlet tube 7b. Yes. Thereby, the refrigerant flowing in from the introduction pipe 6a flows to the outlet pipe 7a via the flow path 12 formed in each of the protrusions 8A and 9A. Further, the brine that has flowed in from the introduction pipe 6b flows to the lead-out pipe 7b via the flow path 12 formed in each of the protrusions 8A and 9A.

ここで、流路12に流通している第2熱媒体3が冷媒の場合、熱交換が突条部8A,9Aと蓄熱材5との間でなされ、凝固物11が突条部8A,9Aの周辺で生成される。また、凝固物11は平坦部8B,9Bでも生成される。凝固物11は蓄熱材5を挟んだ対面にある伝熱プレート9,8の突条部9A,8Aに向かって成長し続けるが、このとき、凝固物11の成長による体積膨張に起因して対向して配置された伝熱プレート9,8に応力が作用する。ところが、突条部8A,9Aは横断面三角形状に形成されているため、対面の伝熱プレート9,8にかかる応力は矢印で示すように左右に分散される。そのため、伝熱プレート9,8にかかる応力が緩和される。   Here, when the 2nd heat carrier 3 currently distribute | circulating to the flow path 12 is a refrigerant | coolant, heat exchange is made between the protrusion part 8A, 9A and the thermal storage material 5, and the solidified material 11 is the protrusion part 8A, 9A. Generated around Further, the solidified product 11 is also generated in the flat portions 8B and 9B. The solidified material 11 continues to grow toward the ridges 9A and 8A of the heat transfer plates 9 and 8 facing each other with the heat storage material 5 interposed therebetween. At this time, the solidified material 11 opposes due to the volume expansion due to the growth of the solidified material 11. Thus, stress acts on the heat transfer plates 9 and 8 arranged in this manner. However, since the protrusions 8A and 9A are formed in a triangular shape in cross section, the stress applied to the facing heat transfer plates 9 and 8 is distributed to the left and right as indicated by arrows. Therefore, the stress applied to the heat transfer plates 9 and 8 is relaxed.

本発明の熱交換装置の外観斜視図である。It is an external appearance perspective view of the heat exchange apparatus of this invention. その熱交換装置に使用される板状チューブの要部を拡大して示した部分横断面図である。It is the fragmentary cross-sectional view which expanded and showed the principal part of the plate-shaped tube used for the heat exchange apparatus. 熱交換装置本体の要部を拡大して示した部分横断面図である。It is the partial cross-sectional view which expanded and showed the principal part of the heat exchange apparatus main body. 蓄冷時における熱交換器の状態の一例を表す部分横断面図である。It is a partial cross section showing an example of the state of the heat exchanger at the time of cold storage. 蓄冷時における熱交換器の状態の他の例を表す部分横断面図である。It is a partial cross-sectional view showing the other example of the state of the heat exchanger at the time of cold storage. 蓄冷時における熱交換器の状態の他の例を表す部分横断面図である。It is a partial cross-sectional view showing the other example of the state of the heat exchanger at the time of cold storage. 板状チューブの変形例における部分横断面図である。It is a fragmentary cross-sectional view in the modification of a plate-shaped tube. 板状チューブの別の変形例における部分横断面図である。It is a partial cross section in another modification of a plate-shaped tube.

符号の説明Explanation of symbols

1…熱交換装置、 2…第1熱媒体、 3…第2熱媒体、 4…板状チューブ、 5…蓄熱材、 6a,6b…導入管、 7a,7b…導出管、 8,9…伝熱プレート、 8A,9A…突条部、 8B,9B…平坦部、 10、12…流路、 11…凝固物。 DESCRIPTION OF SYMBOLS 1 ... Heat exchange apparatus, 2 ... 1st heat medium, 3 ... 2nd heat medium, 4 ... Plate-shaped tube, 5 ... Thermal storage material, 6a, 6b ... Introducing pipe, 7a, 7b ... Outlet pipe, 8, 9 ... Transmission Heat plate, 8A, 9A ... ridge, 8B, 9B ... flat part, 10, 12 ... flow path, 11 ... solidified product.

Claims (4)

第1熱媒体又は第2熱媒体を流通させる複数本の流路が形成された板状チューブが、前記第1熱媒体又は第2熱媒体との間で熱交換を行う蓄熱材中に配置された熱交換装置において、
前記板状チューブは、二枚の板材を重ね合わせた状態に接合して形成されるとともに、各板材は該板材の接合面とは反対方向に凸となりかつ内部が空洞とされた複数本の突条部と各突条部の間の平坦部とを有し、一方の板材における前記空洞の開口部が他方の板材における平坦部で閉じられて各突条部の内部である前記空洞が前記流路とされていることを特徴とする熱交換装置。
A plate-like tube in which a plurality of flow paths for circulating the first heat medium or the second heat medium is formed is disposed in a heat storage material that performs heat exchange with the first heat medium or the second heat medium. In the heat exchange device
The plate-like tube is formed by joining two plate members in a stacked state, and each plate member is projected in a direction opposite to the bonding surface of the plate members, and a plurality of protrusions having a hollow inside. Each of the plate members is closed by a flat portion of the other plate member, and the cavity that is inside each of the protrusion portions is formed in the flow direction. A heat exchanging device characterized by being a passage.
複数の前記板状チューブが相互に所定の間隔をあけて対向して配列され、かつこれらの板状チューブの間に充填された前記蓄熱材は加熱されて融解するとともに冷却されて凝固する蓄熱材からなり、
前記板状チューブは、一方の板状チューブにおける前記突条部が、該一方の板状チューブに隣接する他方の板状チューブにおける前記平坦部に対向するように配列されていることを特徴とする請求項1に記載の熱交換装置。
A plurality of the plate-like tubes are arranged facing each other at a predetermined interval, and the heat storage material filled between the plate-like tubes is heated and melted, and is cooled and solidified. Consists of
The plate-like tube is arranged such that the protruding portion in one plate-like tube is opposed to the flat portion in the other plate-like tube adjacent to the one plate-like tube. The heat exchange apparatus according to claim 1.
前記突条部は、前記平坦部に対して傾斜した外側面を備えていることを特徴とする請求項2に記載の熱交換装置。   The heat exchanging apparatus according to claim 2, wherein the protruding portion includes an outer surface inclined with respect to the flat portion. 前記突条部は、断面形状が前記平坦部側を底辺とした三角形状をなすように構成されていることを特徴とする請求項2または3に記載の熱交換装置。   4. The heat exchange device according to claim 2, wherein the protruding portion is configured so that a cross-sectional shape is a triangular shape with the flat portion side as a base. 5.
JP2006289109A 2006-10-24 2006-10-24 Heat exchanger Expired - Fee Related JP4231518B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006289109A JP4231518B2 (en) 2006-10-24 2006-10-24 Heat exchanger
PCT/IB2007/003168 WO2008050210A2 (en) 2006-10-24 2007-10-23 Heat exchange device
CN2007800393418A CN101529194B (en) 2006-10-24 2007-10-23 Heat exchange device
US12/445,632 US20100319893A1 (en) 2006-10-24 2007-10-23 Heat exchange device
DE112007002451T DE112007002451B4 (en) 2006-10-24 2007-10-23 heat exchanger device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006289109A JP4231518B2 (en) 2006-10-24 2006-10-24 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2008106971A true JP2008106971A (en) 2008-05-08
JP4231518B2 JP4231518B2 (en) 2009-03-04

Family

ID=39186972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006289109A Expired - Fee Related JP4231518B2 (en) 2006-10-24 2006-10-24 Heat exchanger

Country Status (5)

Country Link
US (1) US20100319893A1 (en)
JP (1) JP4231518B2 (en)
CN (1) CN101529194B (en)
DE (1) DE112007002451B4 (en)
WO (1) WO2008050210A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200445A (en) * 2014-04-07 2015-11-12 古河電気工業株式会社 Heat exchanger and method of manufacturing heat exchanger
JP2016114337A (en) * 2014-12-18 2016-06-23 パナソニックIpマネジメント株式会社 Thermal storage device
WO2020100847A1 (en) * 2018-11-13 2020-05-22 Nok株式会社 Heat exchanger
JP2020128869A (en) * 2015-07-27 2020-08-27 エスピーエクス フロー テクノロジー コリア カンパニー リミテッドSpx Flow Technology Korea Co., Ltd. Module unit for heat exchanger and air dryer

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9873305B2 (en) 2008-02-22 2018-01-23 Dow Global Technologies Inc. Heater module including thermal energy storage material
BRPI0905987A2 (en) 2008-02-22 2015-06-30 Dow Global Technologies Inc Thermal energy storage material system, method for manufacturing a thermal energy storage material system and use of a thermal energy storage material system
KR20100116633A (en) 2008-02-22 2010-11-01 다우 글로벌 테크놀로지스 인크. Heat storage devices
US9038709B2 (en) 2008-02-22 2015-05-26 Dow Global Technologies Llc Thermal energy storage materials
FR2943731A1 (en) * 2009-03-25 2010-10-01 Faurecia Sys Echappement EXHAUST LINE OF A MOTOR VEHICLE WITH A CLOSED CYCLE FOR RECOVERING THE THERMAL ENERGY OF THE EXHAUST GAS, AND METHOD OF CONTROLLING THE SAME
DE102009034655A1 (en) * 2009-07-24 2011-01-27 J. Eberspächer GmbH & Co. KG Latent heat storage
ITMI20110465A1 (en) * 2011-03-24 2012-09-25 Rosella Rizzonelli HEAT EXCHANGER DEVICE.
FR3021734B1 (en) * 2014-05-27 2019-03-22 Valeo Systemes Thermiques HEAT EXCHANGER COMPRISING A COMPONENT ADAPTED TO STORE AND RELEASE A DETERMINED HEAT AMOUNT
JP6409465B2 (en) * 2014-09-30 2018-10-24 株式会社デンソー Heat storage system
DE102015006132A1 (en) * 2015-05-12 2016-11-17 Labetherm Limited Zweigniederlassung Deutschland Cooking appliance heat storage with infinitely controllable heat flow
JP6504367B2 (en) * 2016-03-28 2019-04-24 パナソニックIpマネジメント株式会社 Heat exchanger
US20180073811A1 (en) * 2016-09-12 2018-03-15 Climate Master, Inc. Double-wall heat exchanger
CN106918258B (en) * 2017-04-17 2022-09-09 杭州沈氏节能科技股份有限公司 Heat storage heat exchanger

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2911552A1 (en) * 1979-03-23 1980-10-02 Friderichs Peter Latent heat storage brick - is hollow and of impermele material and filled with heat storage material
DE3108420A1 (en) * 1981-03-06 1982-10-07 Wiedemann, Martin, 7095 Rainau Ice latent heat accumulator
FR2586091B1 (en) * 1985-08-07 1989-03-31 Federation Nale Batiment HEAT EXCHANGE DEVICE TRAVELED BY TWO FLUIDS WITH INDEPENDENT CIRCUITS
JPH10122770A (en) 1996-10-14 1998-05-15 Daikin Ind Ltd Plate type heat exchanger
SE509081C2 (en) * 1997-02-14 1998-11-30 Aga Ab Method and apparatus for cooling a product using condensed gas
JPH10232093A (en) 1997-02-19 1998-09-02 Daikin Ind Ltd Heat storage device
JP3147065B2 (en) 1997-12-10 2001-03-19 ダイキン工業株式会社 Plate heat exchanger
US6216469B1 (en) * 1998-06-15 2001-04-17 Bruce Miller Device and process for chilling goods
JP2000088297A (en) * 1998-09-17 2000-03-31 Hitachi Ltd Ice heat storage type air-conditioning device and ice heat storage tank
DE10124757A1 (en) * 2000-05-26 2001-11-29 Denso Corp Vehicle air conditioning system has cold storage device between cold heat exchanger downstream side, flap upstream aide cooled by cold air after passing through cold heat exchanger
US7406998B2 (en) * 2005-02-17 2008-08-05 Honda Motor Co., Ltd. Heat storing device
JP4725164B2 (en) * 2005-03-31 2011-07-13 パナソニック株式会社 Heat storage device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200445A (en) * 2014-04-07 2015-11-12 古河電気工業株式会社 Heat exchanger and method of manufacturing heat exchanger
JP2016114337A (en) * 2014-12-18 2016-06-23 パナソニックIpマネジメント株式会社 Thermal storage device
JP2020128869A (en) * 2015-07-27 2020-08-27 エスピーエクス フロー テクノロジー コリア カンパニー リミテッドSpx Flow Technology Korea Co., Ltd. Module unit for heat exchanger and air dryer
US10900717B2 (en) 2015-07-27 2021-01-26 Spx Flow Technology Korea Co., Ltd. Heat exchanger module unit
WO2020100847A1 (en) * 2018-11-13 2020-05-22 Nok株式会社 Heat exchanger

Also Published As

Publication number Publication date
WO2008050210A3 (en) 2008-06-19
CN101529194A (en) 2009-09-09
JP4231518B2 (en) 2009-03-04
WO2008050210A2 (en) 2008-05-02
CN101529194B (en) 2011-01-26
DE112007002451T5 (en) 2009-08-27
DE112007002451B4 (en) 2012-01-12
US20100319893A1 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
JP4231518B2 (en) Heat exchanger
US9513059B2 (en) Radial-flow heat exchanger with foam heat exchange fins
KR101298703B1 (en) Method for joining the tube and the tube sheet in shell
WO2000052411A1 (en) Plate type heat exchanger
WO2000022364A1 (en) Plate type heat exchanger
JP2009174841A (en) Plate type heat exchanger
JP6148066B2 (en) Heat exchanger
JP5849883B2 (en) Cold storage heat exchanger
JP4633708B2 (en) Plate heat exchanger and method of manufacturing plate heat exchanger
JP2014169851A (en) Heat exchanger
JP2009264686A (en) Heat exchanger and heat pump type heating device
JP4857074B2 (en) Plate type heat exchanger
JP2005106385A (en) Plate type heat exchanger
TWI470181B (en) Heat exchanger
JP6414504B2 (en) Heat exchanger
JP2009074772A (en) Heat exchanger
JP2008121956A (en) Plate type heat exchanger
JP6082629B2 (en) Heat exchanger
JP2006064281A (en) Plate type heat exchanger
JP2012225521A (en) Heat exchanger in which corrugate fin is attached to flat tube
JP2005106412A (en) Junction-type plate heat exchanger
JP2014153006A (en) Heat exchanger and method of manufacturing the same
JP2005061778A (en) Evaporator
JP2007178100A (en) Plate-type heat exchanger
JP2017089927A (en) Aluminum heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081205

R151 Written notification of patent or utility model registration

Ref document number: 4231518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees