JP2008106310A - Vapor deposition system and vapor deposition method - Google Patents

Vapor deposition system and vapor deposition method Download PDF

Info

Publication number
JP2008106310A
JP2008106310A JP2006290635A JP2006290635A JP2008106310A JP 2008106310 A JP2008106310 A JP 2008106310A JP 2006290635 A JP2006290635 A JP 2006290635A JP 2006290635 A JP2006290635 A JP 2006290635A JP 2008106310 A JP2008106310 A JP 2008106310A
Authority
JP
Japan
Prior art keywords
vapor deposition
vapor
planar
organic
deposition source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006290635A
Other languages
Japanese (ja)
Inventor
Shinichi Nakamura
真一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006290635A priority Critical patent/JP2008106310A/en
Publication of JP2008106310A publication Critical patent/JP2008106310A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor deposition system where the using efficiency of an organic material is high, and an organic film can be uniformly formed in the vapor deposition area to be required. <P>SOLUTION: In the vapor deposition system where an organic film is vapor-deposited on a substrate using a planar vapor deposition source 10 having two-dimensionally distributed crucibles 11, regarding the planar vapor deposition source 10, the arrangement density of the crucibles 11 in the peripheral region 10b is made higher than the arrangement density of the crucibles 11 in the inside region 10a. Since the vapor amount of organic matter generated around each crucible 11 is small in the peripheral region 10b, by increasing the arrangement density of the crucibles 11 for covering the same, the non-uniformity in the film thickness of an organic film vapor-deposited on a substrate is prevented. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、特に有機EL、有機TFT、有機太陽電池等に用いられる有機膜を蒸着・形成するための蒸着装置および蒸着方法に関するものである。   The present invention relates to a vapor deposition apparatus and a vapor deposition method for depositing and forming an organic film used particularly for organic EL, organic TFT, organic solar battery and the like.

近年、シリコンデバイスに代わる有機材料を用いた有機エレクトロニクスデバイスの開発が急速に進んでいる。有機エレクトロニクスデバイスを成功させるためには質の良い有機膜(有機薄膜)を得ることが必須の条件となる。例えば有機ELは数十ナノの極薄の膜を数層積層させることで製造されている。有機膜を形成する手法として蒸着法は有効であり、一般的に用いられる製造方法である。然しながら(1)有機材料の使用効率が低い、(2)加熱により有機材料が変性しやすい、(3)大面積化に伴う面内の膜厚均一性が困難である等の問題点から、プロセス安定性を獲得することが困難とされている。   In recent years, organic electronics devices using organic materials instead of silicon devices have been rapidly developed. In order to succeed in organic electronic devices, it is essential to obtain a high-quality organic film (organic thin film). For example, organic EL is manufactured by laminating several layers of ultrathin films of several tens of nanometers. The vapor deposition method is effective as a method for forming the organic film, and is a generally used manufacturing method. However, (1) the use efficiency of the organic material is low, (2) the organic material is easily denatured by heating, and (3) the in-plane film thickness uniformity due to the increase in area is difficult. It is considered difficult to obtain stability.

これらを解決するために、特許文献1〜3に開示されたように、2次元的に配置した複数の蒸気発生スポットを有する平面蒸着源を用いる蒸着方法や蒸着装置が知られている。
特開平11−54275号公報 特開2002−161355号公報 特開2002−302759号公報
In order to solve these problems, as disclosed in Patent Documents 1 to 3, vapor deposition methods and vapor deposition apparatuses using a planar vapor deposition source having a plurality of vapor generation spots arranged two-dimensionally are known.
Japanese Patent Laid-Open No. 11-54275 JP 2002-161355 A JP 2002-302759 A

然しながら、従来の平面蒸着源では、必要とされる蒸着エリアの中心付近では膜厚の均一性は保たれるものの、周辺付近では中心付近に比較して薄くなるという現象が生じてしまう。   However, in the conventional flat deposition source, the uniformity of the film thickness is maintained near the center of the required deposition area, but the phenomenon occurs that the thickness near the center is thinner than that near the center.

本発明は、上記従来の技術の有する未解決の課題に鑑みてなされたものであり、有機材料の使用効率が高く、必要とされる蒸着エリアにおいて均一に有機膜を形成できる蒸着装置および蒸着方法を提供することを目的とするものである。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and has a high use efficiency of an organic material, and a vapor deposition apparatus and a vapor deposition method capable of forming an organic film uniformly in a required vapor deposition area. Is intended to provide.

本発明の蒸着装置は、複数の蒸気発生スポットを2次元的に配置した平面蒸着源を用いて基板上に有機膜を蒸着する蒸着装置であって、前記平面蒸着源の周辺領域に配設された前記蒸気発生スポットの配置密度が、前記平面蒸着源の内部領域に配設された前記蒸気発生スポットの配置密度よりも高いことを特徴とする。   The vapor deposition apparatus of the present invention is a vapor deposition apparatus that deposits an organic film on a substrate using a planar vapor deposition source in which a plurality of vapor generation spots are two-dimensionally arranged, and is disposed in a peripheral region of the planar vapor deposition source. Further, the arrangement density of the vapor generation spots is higher than the arrangement density of the vapor generation spots arranged in an internal region of the planar vapor deposition source.

本発明の蒸着方法は、複数の蒸気発生スポットを2次元的に配置した平面蒸着源を用いて基板上に有機膜を蒸着する蒸着工程を有し、前記平面蒸着源の周辺領域に配設された前記蒸気発生スポットによる蒸気発生量が、前記平面蒸着源の内部領域に配設された前記蒸気発生スポットによる蒸気発生量よりも多いことを特徴とする。   The vapor deposition method of the present invention includes a vapor deposition step of depositing an organic film on a substrate using a planar vapor deposition source in which a plurality of vapor generation spots are arranged two-dimensionally, and is disposed in a peripheral region of the planar vapor deposition source. Further, the amount of steam generated by the steam generating spot is larger than the amount of steam generated by the steam generating spot disposed in the internal region of the planar vapor deposition source.

大面積の有機膜を形成する場合の有機材料の使用効率が高く、しかも均一な有機膜を形成することができる。これによって、有機EL、有機TFT等の低コスト化や、製造プロセスの歩留まり向上に大きく貢献できる。   The use efficiency of the organic material when forming a large-area organic film is high, and a uniform organic film can be formed. This can greatly contribute to the cost reduction of organic EL, organic TFT, etc. and the improvement of the manufacturing process yield.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1は一実施の形態による蒸着装置を示すもので、複数の坩堝(蒸気発生スポット)11が2次元的に配置された平面蒸着源10を有し、平面蒸着源10の内部領域10aに比較して、周辺領域10bに分布する坩堝11の配置密度が高くなっている。   FIG. 1 shows a vapor deposition apparatus according to an embodiment, which has a flat vapor deposition source 10 in which a plurality of crucibles (vapor generation spots) 11 are two-dimensionally arranged, and is compared with an internal region 10 a of the flat vapor deposition source 10. Thus, the arrangement density of the crucibles 11 distributed in the peripheral region 10b is high.

平面蒸着源10から隔離された図示しない基板上に有機膜を形成する場合、各坩堝11から蒸気化した有機物は基板の広域に拡散する。従って、あるエリアに堆積する有機物の量は、その近辺にある複数の坩堝11から放出され、そのエリアに堆積した有機物の総量に相当する。有機膜の膜厚は堆積した有機物の量と相関があることから、膜厚の均一性を得るためには堆積する有機物の量を均一にすることが重要である。   When an organic film is formed on a substrate (not shown) that is isolated from the planar vapor deposition source 10, the organic material vaporized from each crucible 11 diffuses over a wide area of the substrate. Therefore, the amount of organic matter deposited in an area corresponds to the total amount of organic matter released from the plurality of crucibles 11 in the vicinity thereof and deposited in the area. Since the thickness of the organic film has a correlation with the amount of organic matter deposited, it is important to make the amount of organic matter deposited uniform in order to obtain uniformity of the film thickness.

然しながら、平面蒸着源10の周端に近くなるにつれて近辺の坩堝の数が少なくなる。このために、坩堝11が均一に分布していると、基板の周辺部に堆積する有機物の量が少なくなってしまい、広域における均一な有機膜は得られない。   However, the number of crucibles in the vicinity decreases with increasing proximity to the peripheral edge of the planar evaporation source 10. For this reason, if the crucible 11 is uniformly distributed, the amount of organic matter deposited on the periphery of the substrate is reduced, and a uniform organic film in a wide area cannot be obtained.

そこで、本実施の形態においては、坩堝11の配置密度を、内部領域10aよりも周辺領域10bが高くなるように分布させることで、基板に堆積する有機物の量を均一にする。あるいは、坩堝11の開口面積、各坩堝11内の有機物設置量、蒸着温度等を調整することで、堆積する有機物の量を制御してもよい。これによって、大面積に渡り膜厚の均一性を得ることができる。   Therefore, in the present embodiment, the distribution density of the crucibles 11 is distributed so that the peripheral region 10b is higher than the inner region 10a, so that the amount of organic matter deposited on the substrate is made uniform. Or you may control the quantity of the organic substance to deposit by adjusting the opening area of the crucible 11, the organic substance installation amount in each crucible 11, and vapor deposition temperature. Thereby, the uniformity of the film thickness can be obtained over a large area.

なお、周辺領域とは実際に膜厚の均一性が得られなくなる領域のことであって、平面蒸着源のサイズにもよるが、概ね平面蒸着源の最外周に配置される蒸気発生スポットから多くとも5番目までの蒸気発生スポットが配置される領域を示す。また、内部領域とは前記周辺領域の内側の領域を示す。配置密度は、基板と蒸気発生スポットの開口部の距離により異なるが、内部領域に比較して周辺領域の配置密度が1.1倍から3.0倍高いことが好ましい。また、配置密度は細分化されていてもよく、中心から周辺に向かって徐々に高くなっていてもよい。   Note that the peripheral region is a region where film thickness uniformity cannot actually be obtained, and depending on the size of the flat deposition source, it is mostly from the vapor generation spot arranged on the outermost periphery of the flat deposition source. Both show the areas where the fifth steam generation spots are arranged. Further, the inner area indicates an area inside the peripheral area. Although the arrangement density varies depending on the distance between the substrate and the opening of the vapor generation spot, it is preferable that the arrangement density in the peripheral region is 1.1 to 3.0 times higher than that in the internal region. Further, the arrangement density may be subdivided, and may gradually increase from the center toward the periphery.

あるいは、各蒸気発生スポットの開口部の開口面積を、内部領域に比較して周辺領域の方を広くした構成でもよい。この場合は、1.1倍から4.0倍広いことが好ましい。   Alternatively, the opening area of the opening of each vapor generation spot may be configured so that the peripheral area is wider than the internal area. In this case, it is preferably 1.1 times to 4.0 times wider.

なお、平面蒸着源は、ヒーターを備えた基体に蒸着源となる有機物がシート状に配置されていてもよいし、一つの坩堝が配置されていてもよいが、より均一な膜厚を得るためには、前述のように、複数の坩堝からなり、個別の加熱部を有する構成が望ましい。   In addition, in the planar vapor deposition source, an organic substance serving as a vapor deposition source may be arranged in a sheet form on a substrate provided with a heater, or a single crucible may be arranged, in order to obtain a more uniform film thickness. As described above, it is desirable to have a configuration including a plurality of crucibles and having individual heating units.

また、2次元的に配置された複数の蒸気発生スポットから熱により放出される有機物の蒸気量(蒸気発生量)が、内部領域に比較して周辺領域の方が多くなるように温度制御を行ってもよい。すなわち、有機物を放出させる温度が内部領域に比較して周辺領域が高くなるように制御する。この場合の温度差は特に限定はされないが、蒸着する有機物の昇華温度と有機物の分解温度を考慮して、適宜設定されることが好ましい。   In addition, temperature control is performed so that the amount of vapor (steam generation amount) of organic matter released by heat from a plurality of two-dimensionally arranged steam generation spots is larger in the peripheral region than in the internal region. May be. That is, the temperature at which the organic substance is released is controlled so that the peripheral region is higher than the inner region. The temperature difference in this case is not particularly limited, but is preferably set appropriately in consideration of the sublimation temperature of the organic substance to be deposited and the decomposition temperature of the organic substance.

また、各蒸気発生スポットの有機物設置量は数回の蒸着に必要な量の有機物を設置してもよいが、1回の蒸着に必要な有機物量を設置することが好ましい。この場合は、有機物を完全に飛ばしきることで有機膜の形成時の膜厚モニターを必要としないで膜厚を制御することが可能である。   Moreover, although the amount of organic matter required for each vapor generation spot may be an amount of organic matter required for several depositions, it is preferable to install the amount of organic matter necessary for one deposition. In this case, it is possible to control the film thickness without having to monitor the film thickness at the time of forming the organic film by completely removing the organic matter.

あるいは、各蒸気発生スポットの有機物設置量を、内部領域に比較して周辺領域の方が多くなるように調整してもよい。平面蒸着源の複数の蒸気発生スポットは、必要とする蒸着エリアよりも広域に分布していることが好ましい。   Or you may adjust the organic substance installation amount of each vapor | steam generation | occurrence | production spot so that a peripheral area may become larger compared with an internal area | region. The plurality of vapor generation spots of the flat evaporation source are preferably distributed over a wider area than the required evaporation area.

本発明に用いられる有機物は蒸着可能な有機物であれば特に限定はされないが、有機エレクトロニクスデバイスに使用するにふさわしいものとして、以下の化合物が挙げられる。   The organic material used in the present invention is not particularly limited as long as it is an organic material that can be deposited, but the following compounds are suitable for use in organic electronic devices.

トリフェニルジアミン誘導体、オキサジアゾール誘導体、ポリフィリル誘導体、スチルベン誘導体等の低分子化合物、アルミキノリノール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、フェニルキノキサリン誘導体、シロール誘導体等、トリアリールアミン誘導体、スチルベン誘導体、ポリアリーレン誘導体、芳香族縮合多環化合物、芳香族複素環化合物、芳香族複素縮合環化合物、これらのオリゴ体あるいは複合オリゴ体、Al錯体、Mg錯体、亜鉛錯体、Ir錯体、Au錯体、Ru錯体、Re錯体、Os錯体。   Low molecular weight compounds such as triphenyldiamine derivatives, oxadiazole derivatives, polyphyllyl derivatives, stilbene derivatives, aluminum quinolinol derivatives, oxadiazole derivatives, triazole derivatives, phenylquinoxaline derivatives, silole derivatives, triarylamine derivatives, stilbene derivatives, poly Arylene derivatives, aromatic condensed polycyclic compounds, aromatic heterocyclic compounds, aromatic heterocondensed ring compounds, oligo or composite oligos thereof, Al complexes, Mg complexes, zinc complexes, Ir complexes, Au complexes, Ru complexes, Re complex, Os complex.

平面蒸着源に有機物を設置する方法は、有機物の紛体をそのまま設置してもよいが、あらかじめ有機溶剤に溶解させ、スピンコート法、スプレイ法、ディップコート法、ディスペンサ法、インクジェット法等により塗布し、有機溶剤を除去する方法でもよい。正確な分量を設置できるという観点からは、ディスペンサ法およびインクジェット法が特に有効である。   The method of installing the organic substance in the flat evaporation source may be the organic powder as it is, but it is dissolved in an organic solvent in advance and applied by spin coating, spraying, dip coating, dispenser, ink jet or the like. Alternatively, a method of removing the organic solvent may be used. From the viewpoint that an accurate amount can be set, the dispenser method and the ink jet method are particularly effective.

各蒸気発生スポットの加熱部は、設置された有機物の下部あるいは上部、下部と上部の両方、何れに配設されていてもよいが、蒸気発生スポットの開口部の目詰まり等を回避するためには、少なくとも上部に配置され、貫通孔を有していることが好ましい。また、加熱部の上部に輻射熱防止手段を備えていてもよい。   The heating part of each steam generation spot may be arranged at the lower part or upper part of the installed organic matter, both at the lower part and the upper part, but in order to avoid clogging of the opening part of the steam generation spot, etc. Is preferably disposed at least in the upper part and has a through hole. Moreover, you may equip the upper part of a heating part with the radiant heat prevention means.

図2に示す平面蒸着源20を用いる。平面蒸着源20の複数の蒸気発生スポット21は、内部領域20aより周辺領域20bの方が配置密度が高くなるように分布している。本実施例の平面蒸着源20は、図3に示す内部構成を有し、その作製工程は以下の通りである。   A planar evaporation source 20 shown in FIG. 2 is used. The plurality of vapor generation spots 21 of the flat evaporation source 20 are distributed so that the arrangement density is higher in the peripheral region 20b than in the internal region 20a. The planar vapor deposition source 20 of this example has the internal configuration shown in FIG. 3, and the manufacturing process thereof is as follows.

平面蒸着源20のベースとなる石英基板31上に、直径2.0mm、深さ0.2mmの円柱状の窪み31aを、内部領域20aにおいては5.0mmピッチで合計25個、周辺領域20bにおいては4.0mmピッチで合計64個作製する。次に、基板表面にカーボンをスパッタ法にて100nm積層する。次に、トリス(8−ヒドロキシキノリン)アルミニウム(Alq3 ) 0.5g/lのテトラヒドロフラン(THF)溶液1μlをそれぞれの窪み31aに塗布し、減圧加熱によりTHFを完全に除去し、蒸気発生スポットとなる有機物32を得る。次に、直径0.3mmの貫通孔33aをそれぞれの窪み31aの上部に配した厚さ50μmのモリブデンシート33を配置する。 On the quartz substrate 31 serving as the base of the planar vapor deposition source 20, a total of 25 cylindrical depressions 31a having a diameter of 2.0 mm and a depth of 0.2 mm are provided at a pitch of 5.0 mm in the inner region 20a and in the peripheral region 20b. A total of 64 pieces are produced at a pitch of 4.0 mm. Next, carbon is deposited to a thickness of 100 nm on the substrate surface by sputtering. Next, 1 μl of 0.5 g / l tetrahydrofuran (THF) solution of tris (8-hydroxyquinoline) aluminum (Alq 3 ) was applied to each recess 31a, and THF was completely removed by heating under reduced pressure. An organic substance 32 is obtained. Next, a molybdenum sheet 33 having a thickness of 50 μm in which a through hole 33a having a diameter of 0.3 mm is disposed on the upper portion of each recess 31a is disposed.

その上に、漏斗状の開口34a(広口:直径2.0mm、狭口:直径1.0mm)を有する厚さ1.0mmの石英基板34を配置する。次に、有機膜を形成する40mm角の図示しないガラス基板をモリブデンシート33から6.0mm隔離した上部に配置する。   A 1.0 mm thick quartz substrate 34 having a funnel-shaped opening 34a (wide mouth: diameter 2.0 mm, narrow mouth: diameter 1.0 mm) is disposed thereon. Next, a 40 mm square glass substrate (not shown) on which the organic film is to be formed is placed on an upper part separated from the molybdenum sheet 33 by 6.0 mm.

モリブデンシート33に通電し、抵抗加熱により完全に有機物32が飛びきるまで真空蒸着を行う。得られる有機膜の膜厚を4mmピッチで100箇所、干渉膜厚計を用いて測定する。膜厚均一性の指標として均一係数A=(周辺領域64箇所の膜厚平均値)/(内部領域36箇所の膜厚平均値)を算出する。この工程を10回繰り返し、均一係数Aを求めたところ、何れも0.95以上が得られた。   The molybdenum sheet 33 is energized, and vacuum deposition is performed until the organic matter 32 is completely removed by resistance heating. The film thickness of the obtained organic film is measured at 100 locations at a pitch of 4 mm using an interference film thickness meter. As an index of film thickness uniformity, the uniformity coefficient A = (film thickness average value at 64 locations in the peripheral region) / (film thickness average value at 36 locations in the inner region) is calculated. This process was repeated 10 times, and the uniformity coefficient A was determined. As a result, 0.95 or more was obtained.

(比較例1)
石英基板上の窪みのピッチを全て4.0mmで合計100個作製する以外は実施例1と同様の手法により有機膜を形成し、実施例1と同様の手法で膜厚を測定する。この工程を10回繰り返し、均一係数Aを求めると0.80〜0.90であった。
(Comparative Example 1)
An organic film is formed by the same method as in Example 1 except that a total of 100 recesses on the quartz substrate are prepared with a pitch of 4.0 mm, and the film thickness is measured by the same method as in Example 1. This process was repeated 10 times, and the uniformity coefficient A was found to be 0.80 to 0.90.

図2に示した平面蒸着源20を、図4に示す内部構成で以下のように作製した。   The planar vapor deposition source 20 shown in FIG. 2 was produced as follows with the internal configuration shown in FIG.

平面蒸着源20のベースとなるモリブデン基板上41に、直径3.0mm、深さ0.5mmの半球状の窪み41aを、内部領域20aにおいては5.0mmピッチで合計25個、周辺領域20bにおいては4.0mmピッチで合計64個作製する。Alq3 0.5g/lのTHF溶液1μlをそれぞれの窪み41aに塗布し、減圧加熱によりTHFを完全に除去し、有機物42を得る。次に、直径0.3mmの貫通孔43aをそれぞれの窪み41aの上部に配した厚さ50μmのモリブデンシート43を配置する。 A total of 25 hemispherical depressions 41a having a diameter of 3.0 mm and a depth of 0.5 mm are provided on the molybdenum substrate 41 serving as the base of the flat evaporation source 20 in the inner region 20a at a pitch of 5.0 mm, and in the peripheral region 20b. A total of 64 pieces are produced at a pitch of 4.0 mm. 1 μl of a 0.5 g / l THF solution of Alq 3 is applied to each recess 41 a, and THF is completely removed by heating under reduced pressure to obtain an organic substance 42. Next, a molybdenum sheet 43 having a thickness of 50 μm in which a through hole 43a having a diameter of 0.3 mm is arranged on the upper portion of each recess 41a is disposed.

その上に、漏斗状の開口44a(広口:直径2.0mm、狭口:直径1.0mm)を有する厚さ1.0mmの石英基板44を配置する。次に、有機膜を形成する40mm角の図示しないガラス基板をモリブデンシート43から6.0mm隔離した上部に配置する。   A 1.0 mm thick quartz substrate 44 having a funnel-shaped opening 44a (wide mouth: diameter 2.0 mm, narrow mouth: diameter 1.0 mm) is disposed thereon. Next, a 40 mm square glass substrate (not shown) on which the organic film is to be formed is placed on an upper part separated from the molybdenum sheet 43 by 6.0 mm.

モリブデン基板41およびモリブデンシート43に通電し、抵抗加熱により完全に有機物42が飛びきるまで真空蒸着を行う。得られた有機膜の膜厚を実施例1と同様の手法で測定する。この工程を10回繰り返し、均一係数Aを求めたところ、何れも0.95以上が得られた。   The molybdenum substrate 41 and the molybdenum sheet 43 are energized, and vacuum deposition is performed until the organic matter 42 is completely blown off by resistance heating. The thickness of the obtained organic film is measured by the same method as in Example 1. This process was repeated 10 times, and the uniformity coefficient A was determined. As a result, 0.95 or more was obtained.

(比較例2)
モリブデン基板上の窪みのピッチを全て4.0mmで合計100個作製する以外は実施例2と同様の手法により有機膜を形成し、実施例1と同様の手法で膜厚を測定する。この工程を10回繰り返し、均一係数Aを求めると0.80〜0.90であった。
(Comparative Example 2)
An organic film is formed by the same method as in Example 2 except that a total of 100 recesses on the molybdenum substrate are formed at 4.0 mm, and the film thickness is measured by the same method as in Example 1. This process was repeated 10 times, and the uniformity coefficient A was found to be 0.80 to 0.90.

図5に示すように、内部領域50aと周辺領域50bにおいて蒸気発生スポット51が均一に分布している平面蒸着源50を以下の工程で作製する。   As shown in FIG. 5, the planar vapor deposition source 50 in which the vapor generation spots 51 are uniformly distributed in the inner region 50a and the peripheral region 50b is manufactured by the following steps.

石英基板上に直径3.0mm、深さ0.3mmの円柱状の窪みを4.0mmピッチで合計100個作製する。次に、基板表面にカーボンをスパッタ法にて100nm積層する。Alq3 1.0g/lのTHF溶液5μlをそれぞれの窪みに塗布し、減圧加熱によりTHFを完全に除去する。次に、内部領域50aの窪みの上部には直径0.3mmの貫通孔、周辺領域50bの窪みの上部には、内部領域50aの貫通孔より開口面積の大きい直径0.5mmの貫通孔をそれぞれ配した厚さ50μmのモリブデンシートを配置する。 A total of 100 columnar depressions having a diameter of 3.0 mm and a depth of 0.3 mm are formed on a quartz substrate at a pitch of 4.0 mm. Next, carbon is deposited to a thickness of 100 nm on the substrate surface by sputtering. Apply 5 μl of an Alq 3 1.0 g / l THF solution to each recess and remove the THF completely by heating under reduced pressure. Next, a through hole having a diameter of 0.3 mm is formed above the recess of the inner region 50a, and a through hole having a diameter of 0.5 mm having a larger opening area than the through hole of the inner region 50a is formed above the recess of the peripheral region 50b. A molybdenum sheet having a thickness of 50 μm is disposed.

その上に、漏斗状の開口(広口:直径2.0mm、狭口:直径1.0mm)を有する厚さ1.0mmの石英基板を配置する。次に、有機膜を形成する40mm角の図示しないガラス基板をモリブデンシートから6.0mm隔離した上部に配置する。   A quartz substrate having a thickness of 1.0 mm having a funnel-shaped opening (wide mouth: diameter 2.0 mm, narrow mouth: diameter 1.0 mm) is disposed thereon. Next, a 40 mm square glass substrate (not shown) on which the organic film is to be formed is placed on an upper part separated from the molybdenum sheet by 6.0 mm.

モリブデンシートに通電し、抵抗加熱により数分間真空蒸着を行う。得られた有機膜の膜厚を実施例1と同様の手法で測定する。この工程を10回繰り返し、均一係数Aを求めたところ、何れも0.90以上が得られた。   Energize the molybdenum sheet and perform vacuum deposition for several minutes by resistance heating. The thickness of the obtained organic film is measured by the same method as in Example 1. This process was repeated 10 times, and the uniformity coefficient A was determined. As a result, 0.90 or more was obtained.

(比較例3)
窪みの上部に配する全ての貫通孔を直径0.3mmにする以外は実施例3と同様の手法により有機膜を形成し、実施例1と同様の手法で膜厚を測定する。この操作を10回繰り返し、均一係数Aを求めると0.75〜0.85であった。
(Comparative Example 3)
An organic film is formed by the same method as in Example 3 except that all through holes arranged in the upper part of the recess have a diameter of 0.3 mm, and the film thickness is measured by the same method as in Example 1. This operation was repeated 10 times, and the uniformity coefficient A was determined to be 0.75 to 0.85.

図5に示す平面蒸着源50を以下の工程で作製する。   The flat vapor deposition source 50 shown in FIG. 5 is produced by the following steps.

石英基板上に直径3.0mm、深さ0.3mmの円柱状の窪みを4.0mmピッチで合計100個作製する。次に、基板表面にカーボンをスパッタ法にて100nm積層する。Alq3 1.0g/lのTHF溶液5μlをそれぞれの窪みに塗布し、減圧加熱によりTHFを完全に除去する。次に、内部領域50aには、窪みの上部に直径0.3mmの貫通孔を配した厚さ50μmのモリブデンシートを配設する。また、周辺領域50bには、窪みの上部に直径0.3mmの貫通孔を配した厚さ50μmのタングステンシートを配設する。 A total of 100 columnar depressions having a diameter of 3.0 mm and a depth of 0.3 mm are formed on a quartz substrate at a pitch of 4.0 mm. Next, carbon is deposited to a thickness of 100 nm on the substrate surface by sputtering. Apply 5 μl of an Alq 3 1.0 g / l THF solution to each recess and remove the THF completely by heating under reduced pressure. Next, in the inner region 50a, a molybdenum sheet having a thickness of 50 μm in which a through hole having a diameter of 0.3 mm is provided in the upper portion of the recess is disposed. Further, in the peripheral region 50b, a tungsten sheet having a thickness of 50 μm in which a through hole having a diameter of 0.3 mm is provided in the upper part of the recess is disposed.

その上に、漏斗状の開口(広口:直径2.0mm、狭口:直径1.0mm)を有する厚さ1.0mmの石英基板を配置する。次に、有機膜を形成する40mm角の図示しないガラス基板を各金属シートから6.0mm隔離した上部に配置する。次に、モリブデンシートおよびタングステンシートをそれぞれ独立に通電し、抵抗加熱により数分間真空蒸着を行う。この時、タングステンシートの発熱量が多くなるように電流値を設定する。得られた有機膜の膜厚を実施例1と同様の手法で測定する。この工程を10回繰り返し、均一係数Aを求めたところ、何れも0.95以上が得られた。   A quartz substrate having a thickness of 1.0 mm having a funnel-shaped opening (wide mouth: diameter 2.0 mm, narrow mouth: diameter 1.0 mm) is disposed thereon. Next, a 40 mm square glass substrate (not shown) on which the organic film is to be formed is placed on an upper part separated from each metal sheet by 6.0 mm. Next, the molybdenum sheet and the tungsten sheet are energized independently, and vacuum deposition is performed for several minutes by resistance heating. At this time, the current value is set so that the heat generation amount of the tungsten sheet is increased. The thickness of the obtained organic film is measured by the same method as in Example 1. This process was repeated 10 times, and the uniformity coefficient A was determined. As a result, 0.95 or more was obtained.

(比較例4)
真空蒸着時にモリブデンシートおよびタングステンシートの発熱量が等しくなるように通電する以外は実施例3と同様の手法により有機膜を形成し、実施例1と同様の手法で膜厚を測定する。この操作を10回繰り返し、均一係数Aを求めると0.75〜0.85であった。
(Comparative Example 4)
An organic film is formed by the same method as in Example 3 except that energization is performed so that the calorific values of the molybdenum sheet and the tungsten sheet are equal during vacuum deposition, and the film thickness is measured by the same method as in Example 1. This operation was repeated 10 times, and the uniformity coefficient A was determined to be 0.75 to 0.85.

図5に示す平面蒸着源50を以下の工程で作製する。   The flat vapor deposition source 50 shown in FIG. 5 is produced by the following steps.

石英基板上に直径2.0mm、深さ0.2mmの円柱状の窪みを4.0mmピッチで合計100個作製する。次に、基板表面にカーボンをスパッタ法にて100nm積層する。Alq3 0.5g/lのTHF溶液を、内部領域50aの窪みには1μl、周辺領域50bの窪みには1.2μl塗布し、減圧加熱によりTHFを完全に除去する。次に、窪みの上部に直径0.3mmの貫通孔を配した厚さ50μmのタングステンシートを配置する。 A total of 100 cylindrical depressions having a diameter of 2.0 mm and a depth of 0.2 mm are formed on a quartz substrate at a pitch of 4.0 mm. Next, carbon is deposited to a thickness of 100 nm on the substrate surface by sputtering. 1 μl of Alq 3 0.5 g / l THF solution is applied to the recess in the inner region 50a and 1.2 μl in the recess in the peripheral region 50b, and the THF is completely removed by heating under reduced pressure. Next, a 50 μm thick tungsten sheet having a through hole having a diameter of 0.3 mm is disposed on the upper part of the recess.

その上に、漏斗状の開口(広口:直径2.0mm、狭口:直径1.0mm)を有する厚さ1.0mmの石英基板を配置する。次に、有機膜を形成する40mm角の図示しないガラス基板をタングステンシートから6.0mmの上部に配置する。次に、タングステンシートに通電し、抵抗加熱により完全に有機物が飛びきるまで真空蒸着を行う。得られた有機膜の膜厚を実施例1と同様の手法で測定する。この工程を10回繰り返し、均一係数Aを求めたところ、何れも0.95以上が得られた。   A quartz substrate having a thickness of 1.0 mm having a funnel-shaped opening (wide mouth: diameter 2.0 mm, narrow mouth: diameter 1.0 mm) is disposed thereon. Next, a 40 mm square glass substrate (not shown) on which the organic film is to be formed is disposed on the upper portion of 6.0 mm from the tungsten sheet. Next, the tungsten sheet is energized, and vacuum deposition is performed until the organic matter is completely removed by resistance heating. The thickness of the obtained organic film is measured by the same method as in Example 1. This process was repeated 10 times, and the uniformity coefficient A was determined. As a result, 0.95 or more was obtained.

(比較例5)
窪みに配置するAlq3 0.5g/lのTHF溶液を全て1μlにする以外は実施例5と同様の手法により有機膜を形成し、実施例1と同様の手法で膜厚を測定する。この操作を10回繰り返し、均一係数Aを求めると0.80〜0.90であった。
(Comparative Example 5)
An organic film is formed by the same method as in Example 5 except that 1 μl of all THF solutions of Alq 3 0.5 g / l placed in the depression is formed, and the film thickness is measured by the same method as in Example 1. This operation was repeated 10 times, and the uniformity coefficient A was found to be 0.80 to 0.90.

一実施の形態による平面蒸着源を示す斜視図である。It is a perspective view which shows the plane vapor deposition source by one embodiment. 実施例1および実施例2による平面蒸着源を示す平面図である。It is a top view which shows the planar vapor deposition source by Example 1 and Example 2. FIG. 実施例1による平面蒸着源の作製工程を説明する図である。5 is a diagram illustrating a production process of a planar vapor deposition source according to Example 1. FIG. 実施例2による平面蒸着源の作製工程を説明する図である。6 is a diagram for explaining a production process of a planar vapor deposition source according to Example 2. FIG. 実施例3ないし実施例5による平面蒸着源を示す平面図である。It is a top view which shows the planar vapor deposition source by Example 3 thru | or Example 5. FIG.

符号の説明Explanation of symbols

10、20、50 平面蒸着源
10a、20a、50a 内部領域
10b、20b、50b 周辺領域
11 坩堝
21、51 蒸気発生スポット
10, 20, 50 Planar deposition source 10a, 20a, 50a Internal region 10b, 20b, 50b Peripheral region 11 Crucible 21, 51 Steam generation spot

Claims (6)

複数の蒸気発生スポットを2次元的に配置した平面蒸着源を用いて基板上に有機膜を蒸着する蒸着装置であって、前記平面蒸着源の周辺領域に配設された前記蒸気発生スポットの配置密度が、前記平面蒸着源の内部領域に配設された前記蒸気発生スポットの配置密度よりも高いことを特徴とする蒸着装置。   A vapor deposition apparatus for depositing an organic film on a substrate using a planar vapor deposition source in which a plurality of vapor generation spots are two-dimensionally arranged, and the arrangement of the vapor generation spots disposed in a peripheral region of the planar vapor deposition source The vapor deposition apparatus, wherein a density is higher than an arrangement density of the vapor generation spots arranged in an internal region of the planar vapor deposition source. 複数の蒸気発生スポットを2次元的に配置した平面蒸着源を用いて基板上に有機膜を蒸着する蒸着装置であって、前記平面蒸着源の周辺領域に配設された前記蒸気発生スポットの開口面積が、前記平面蒸着源の内部領域に配設された前記蒸気発生スポットの開口面積よりも広いことを特徴とする蒸着装置。   A vapor deposition apparatus for depositing an organic film on a substrate using a planar vapor deposition source in which a plurality of vapor generation spots are two-dimensionally arranged, wherein an opening of the vapor generation spot disposed in a peripheral region of the planar vapor deposition source The vapor deposition apparatus characterized in that an area is larger than an opening area of the vapor generation spot disposed in an internal region of the planar vapor deposition source. 前記複数の蒸気発生スポットが複数の坩堝であることを特徴とする請求項1または2記載の蒸着装置。   The vapor deposition apparatus according to claim 1, wherein the plurality of vapor generation spots are a plurality of crucibles. 複数の蒸気発生スポットを2次元的に配置した平面蒸着源を用いて基板上に有機膜を蒸着する蒸着工程を有し、
前記平面蒸着源の周辺領域に配設された前記蒸気発生スポットによる蒸気発生量が、前記平面蒸着源の内部領域に配設された前記蒸気発生スポットによる蒸気発生量よりも多いことを特徴とする蒸着方法。
A vapor deposition step of depositing an organic film on a substrate using a planar vapor deposition source in which a plurality of vapor generation spots are two-dimensionally arranged;
The amount of steam generated by the steam generation spot disposed in the peripheral region of the planar deposition source is greater than the amount of steam generated by the steam generation spot disposed in the inner region of the planar deposition source. Deposition method.
前記周辺領域に配設された前記蒸気発生スポットを、前記内部領域に配設された前記蒸気発生スポットより高温に制御することを特徴とする請求項4記載の蒸着方法。   The vapor deposition method according to claim 4, wherein the vapor generation spot disposed in the peripheral region is controlled to a temperature higher than that of the vapor generation spot disposed in the internal region. 前記周辺領域に配設された前記蒸気発生スポットの有機物設置量が、前記内部領域に配設された前記蒸気発生スポットの有機物設置量よりも多いことを特徴とする請求項4記載の蒸着方法。   The vapor deposition method according to claim 4, wherein an installation amount of the organic substance in the vapor generation spot arranged in the peripheral region is larger than an installation amount of the organic substance in the vapor generation spot arranged in the internal region.
JP2006290635A 2006-10-26 2006-10-26 Vapor deposition system and vapor deposition method Pending JP2008106310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290635A JP2008106310A (en) 2006-10-26 2006-10-26 Vapor deposition system and vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290635A JP2008106310A (en) 2006-10-26 2006-10-26 Vapor deposition system and vapor deposition method

Publications (1)

Publication Number Publication Date
JP2008106310A true JP2008106310A (en) 2008-05-08

Family

ID=39439921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290635A Pending JP2008106310A (en) 2006-10-26 2006-10-26 Vapor deposition system and vapor deposition method

Country Status (1)

Country Link
JP (1) JP2008106310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126958A (en) * 2010-12-15 2012-07-05 Ulvac Japan Ltd Vapor deposition apparatus and vapor deposition method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126958A (en) * 2010-12-15 2012-07-05 Ulvac Japan Ltd Vapor deposition apparatus and vapor deposition method

Similar Documents

Publication Publication Date Title
JP2023153359A (en) Method for patterning coating on surface and device including patterned coating
JP3187417U (en) Encapsulated graphite heater and method
JP3924751B2 (en) Deposition source for organic electroluminescent film deposition
US7359630B2 (en) Evaporation source for evaporating an organic electroluminescent layer
CN101041891B (en) Vapor deposition source and vapor deposition apparatus
JP4444906B2 (en) Heating container and vapor deposition apparatus equipped with the same
KR20070080635A (en) Organic boat
JP2004052113A (en) Heating vessel and vapor deposition system using the same
KR20070118917A (en) Evaporation source
JP4478113B2 (en) Heating vessel support and vapor deposition apparatus equipped with the same
JP2008024998A (en) Vacuum deposition source and vacuum deposition device
WO2015180210A1 (en) Evaporation source heating device
JP4584105B2 (en) Vapor deposition method and vapor deposition apparatus therefor
JP2008106310A (en) Vapor deposition system and vapor deposition method
WO2016165553A1 (en) Evaporation method and evaporation device
JP4445497B2 (en) Thin film deposition apparatus and thin film deposition method using the same
KR100762698B1 (en) Apparatus of thin film evaporation
KR101239808B1 (en) Method for manufacturing an organic light emitting display device
KR100658731B1 (en) Evaporation source and organic matter sputtering apparatus with the same
KR20040103726A (en) Large size organic electro luminescence evaporation source application
TW201924112A (en) Method for producing a luminous pixel arrangement
KR100592238B1 (en) Thin film deposition method and device therefor
KR20080036427A (en) Sputtering apparatus
JP2004162108A (en) Molecular beam source cell for thin film deposition
KR100786840B1 (en) Evaporation source and organic matter sputtering apparatus with the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090527