JP2008103565A - Adjustment pattern structure for ladder resistance and electronic component having the same - Google Patents

Adjustment pattern structure for ladder resistance and electronic component having the same Download PDF

Info

Publication number
JP2008103565A
JP2008103565A JP2006285325A JP2006285325A JP2008103565A JP 2008103565 A JP2008103565 A JP 2008103565A JP 2006285325 A JP2006285325 A JP 2006285325A JP 2006285325 A JP2006285325 A JP 2006285325A JP 2008103565 A JP2008103565 A JP 2008103565A
Authority
JP
Japan
Prior art keywords
ladder
adjustment
resistor
resistance
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006285325A
Other languages
Japanese (ja)
Inventor
Masahito Tomita
仁人 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Original Assignee
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd filed Critical Tokai Rika Co Ltd
Priority to JP2006285325A priority Critical patent/JP2008103565A/en
Publication of JP2008103565A publication Critical patent/JP2008103565A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adjustment pattern structure for a ladder resistance that allows high-accuracy resistance-value adjustment by a trimming operation in one step without requiring two steps of coarse adjustment and fine adjustment, and an electronic component having the same. <P>SOLUTION: The adjustment pattern structure for a ladder resistance has first/second column parts formed on a substrate and a plurality of ladder parts formed between the first/second column parts in parallel. It comprises a first input/output part provided at one end of the first column part and a second input/output part provided at the opposite end of the second column part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ラダー抵抗の調整パターン構造及びこれを有する電子部品に関し、特に、調整量を細かく設定できるラダー抵抗の調整パターン構造及びこれを有する電子部品に関する。   The present invention relates to a ladder resistor adjustment pattern structure and an electronic component having the same, and more particularly to a ladder resistor adjustment pattern structure capable of finely setting an adjustment amount and an electronic component having the same.

ラダー抵抗を有する電子部品では、半導体基板上に形成されたラダー抵抗領域において、調整パターン構造の一部をトリミングすることにより抵抗値調整を行なう方法がある。   In an electronic component having a ladder resistance, there is a method of adjusting a resistance value by trimming a part of an adjustment pattern structure in a ladder resistance region formed on a semiconductor substrate.

従来の薄膜抵抗の調整パターン構造として、薄膜抵抗器にラダー構造を有するものがある(特許文献1)。この薄膜抵抗器では、抵抗器の入力部と出力部の間に、抵抗値の調整のためのラダー抵抗の調整パターン構造が設けられている。抵抗値を測定しながら、レーザビームでこのラダー部を順々にカットしていくことにより、薄膜抵抗器を最適抵抗値に調整することができる。   As a conventional thin film resistor adjustment pattern structure, there is a thin film resistor having a ladder structure (Patent Document 1). In this thin film resistor, a ladder resistor adjustment pattern structure for adjusting a resistance value is provided between an input portion and an output portion of the resistor. The thin film resistor can be adjusted to the optimum resistance value by sequentially cutting the ladder portion with a laser beam while measuring the resistance value.

他の薄膜抵抗の調整パターン構造として、薄膜抵抗を、粗調整トリミング部と微調整トリミング部とから構成するものがある(特許文献2)。蛇行ラダーパターンの細線部を順次カットして粗調整を行い、微調整トリミング部の抵抗を同一方向から2箇所カットして切込み量の深さを微調整することにより、抵抗値の微調整を行なうものである。
実開平−72106号公報 特開平−159899号公報
As another thin film resistor adjustment pattern structure, there is a thin film resistor composed of a coarse adjustment trimming portion and a fine adjustment trimming portion (Patent Document 2). Fine adjustment of the resistance value is performed by cutting the fine line portion of the meandering ladder pattern in order to make coarse adjustment, and finely adjusting the depth of cut by cutting the resistance of the fine adjustment trimming portion in two places from the same direction. Is.
Japanese Utility Model Publication No. 72-106 JP-A-159899

しかし、特許文献1の薄膜抵抗の調整パターン構造によれば、ラダー部をレーザビームで順々にカットしていくことにより、最適抵抗値に調整することができるとされているが、微調整を行なうことは困難であるので、高精度の抵抗値が要求される場合には問題があった。   However, according to the adjustment pattern structure of the thin film resistor in Patent Document 1, it is said that the ladder portion can be adjusted to the optimum resistance value by sequentially cutting with a laser beam. Since it is difficult to perform, there is a problem when a highly accurate resistance value is required.

また、特許文献2の薄膜抵抗の調整パターン構造によれば、微調整トリミング部を有するので高精度の抵抗値が要求される場合にも対応できるが、抵抗値の調整を行なう場合に、粗調整と微調整の2つの工程を要し、抵抗値の調整に時間を要するという問題があった。   Further, according to the adjustment pattern structure of the thin film resistor disclosed in Patent Document 2, since the fine adjustment trimming unit is provided, it is possible to cope with a case where a highly accurate resistance value is required. However, when the resistance value is adjusted, coarse adjustment is performed. And two steps of fine adjustment are required, and there is a problem that it takes time to adjust the resistance value.

本発明の目的は、粗調整と微調整の2つの工程を要することなく、1つの工程によるトリミング作業により、高精度な抵抗値調整が可能なラダー抵抗の調整パターン構造及びこれを有する電子部品を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a ladder resistor adjustment pattern structure capable of highly accurate resistance value adjustment by a trimming operation in one step without requiring two steps of rough adjustment and fine adjustment, and an electronic component having the same. It is to provide.

[1]本発明の一態様によれば、基板上に形成された第1及び第2の柱部と、前記第1及び第2の柱部の間に並列に形成された複数のラダー部と、を有し、前記第1の柱部の端部に設けられた第1の入出力部と、前記第2の柱部の前記端部と反対側の端部に設けられた第2の入出力部と、を有することを特徴とするラダー抵抗の調整パターン構造を提供する。   [1] According to one aspect of the present invention, the first and second pillar portions formed on the substrate, and the plurality of ladder portions formed in parallel between the first and second pillar portions, The first input / output unit provided at the end of the first column part and the second input provided at the end of the second column part opposite to the end part. And a ladder resistor adjustment pattern structure characterized by comprising an output section.

[2]前記第1及び第2の柱部のパターン幅は、前記ラダー抵抗のパターン幅よりも大きいパターン幅で形成されていることを特徴とする上記[1]に記載のラダー抵抗の調整パターン構造であってもよい。   [2] The ladder resistance adjustment pattern according to [1], wherein a pattern width of the first and second column portions is larger than a pattern width of the ladder resistor. It may be a structure.

[3]本発明の一態様によれば、基板上に形成された第1及び第2の柱部と、前記第1及び第2の柱部の間に並列に形成された複数のラダー部と、を有し、前記第1の柱部の端部に設けられた第1の入出力部と、前記第2の柱部の前記端部と反対側の端部に設けられた第2の入出力部と、を有するラダー抵抗を回路素子として含み、前記ラダー抵抗のラダー部の少なくとも1つは、抵抗値を調整するためのトリミング処理が施されていることを特徴とする電子部品を提供する。   [3] According to one aspect of the present invention, the first and second pillar portions formed on the substrate, and a plurality of ladder portions formed in parallel between the first and second pillar portions, The first input / output unit provided at the end of the first column part and the second input provided at the end of the second column part opposite to the end part. An electronic component comprising: a ladder resistor having an output portion as a circuit element, wherein at least one of the ladder portions of the ladder resistor is subjected to a trimming process for adjusting a resistance value. .

[4]また、前記第1及び第2の柱部のパターン幅は、前記ラダー抵抗のパターン幅よりも大きいパターン幅でラダー抵抗の調整パターンが形成されていることを特徴とする上記[3]に記載の電子部品であってもよい。   [4] The above-mentioned [3], wherein the adjustment pattern of the ladder resistor is formed so that the pattern width of the first and second column portions is larger than the pattern width of the ladder resistor. It may be an electronic component described in 1.

本発明の実施の態様によれば、粗調整と微調整の2つの工程を要することなく、1つの工程によるトリミング作業により、高精度な抵抗値調整が可能なラダー抵抗の調整パターン構造及びこれを有する電子部品を提供することが可能となる。   According to the embodiment of the present invention, there is provided an adjustment pattern structure of a ladder resistor capable of highly accurate resistance value adjustment by trimming work in one step without requiring two steps of coarse adjustment and fine adjustment. It becomes possible to provide the electronic component which has.

(本発明の実施の形態)
図1(a)は、本発明の実施の形態に係るラダー抵抗の調整パターン構造を示す回路構成図であり、(b)は、基板上に形成された(a)のラダー抵抗のパターンレイアウトを示す図である。
(Embodiment of the present invention)
FIG. 1A is a circuit configuration diagram showing a ladder resistor adjustment pattern structure according to an embodiment of the present invention, and FIG. 1B shows a ladder resistor pattern layout of FIG. 1A formed on a substrate. FIG.

本発明の実施の形態に係るラダー抵抗の調整パターン構造は、基板上に形成された第1及び第2の柱部と、この第1及び第2の柱部の間に並列に形成された複数のラダー部とを有して構成されている。   The ladder resistor adjustment pattern structure according to the embodiment of the present invention includes a first and second pillar portions formed on a substrate and a plurality of parallel portions formed between the first and second pillar portions. And a ladder part.

基板は、Si等の半導体基板であるが、特に半導体基板に限られず、抵抗素子等がその上に形成できるものであればよい。本発明の実施の形態に係るラダー抵抗の調整パターン構造、及びこれを有する電子部品が半導体基板上に形成される場合は、公知の半導体プロセスにより形成可能であるので、抵抗素子等を有する電子部品の製造工程は説明を省略する。   The substrate is a semiconductor substrate such as Si, but is not particularly limited to the semiconductor substrate, and any substrate can be used as long as a resistance element or the like can be formed thereon. When the ladder resistor adjustment pattern structure according to the embodiment of the present invention and the electronic component having the same are formed on a semiconductor substrate, the electronic component having a resistance element or the like can be formed by a known semiconductor process. Description of the manufacturing process is omitted.

図1(a)に示すように、第1の柱部として抵抗Raが連結され、また、第2の柱部として抵抗Raが連結されて、基板上に1対の柱部が形成されている。第1の柱部の各抵抗Raの間と第2の柱部の各抵抗Raの間には抵抗Rbが並列的に接続されて、ラダー形状の抵抗器を構成している。このような構成により、ラダー抵抗の調整パターン構造が形成されている。この回路構成を、基板上に形成されたパターンレイアウトで表すと、図1(b)のようになる。   As shown in FIG. 1A, a resistor Ra is connected as a first column portion, and a resistor Ra is connected as a second column portion to form a pair of column portions on the substrate. . A resistor Rb is connected in parallel between the resistors Ra of the first column portion and between the resistors Ra of the second column portion to constitute a ladder-shaped resistor. With such a configuration, a ladder resistor adjustment pattern structure is formed. This circuit configuration is represented by a pattern layout formed on the substrate as shown in FIG.

すなわち、図1(b)に示すように、ラダー抵抗10は、各々入出力部であるコンタクト領域14、15に接続された第1の柱部11と第2の柱部12が対向して1対の柱部を形成し、この2つの柱部の間に、並列にラダー部13a〜13gが形成されている。   That is, as shown in FIG. 1B, the ladder resistor 10 has a first column portion 11 and a second column portion 12 connected to the contact regions 14 and 15 which are input / output portions, respectively. A pair of pillar portions are formed, and ladder portions 13a to 13g are formed in parallel between the two pillar portions.

ここで、第1の柱部11の端部にコンタクト領域14が接続され、第2の柱部12の第1の柱部11の端部から遠い方の端部にコンタクト領域15が接続され、これらの端部、すなわちコンタクト領域14、15はラダー抵抗10の各々第1及び第2の入出力部となっている。このラダー抵抗10は、図示しない基板上に、公知の半導体製造工程により形成されている。   Here, the contact region 14 is connected to the end portion of the first column portion 11, and the contact region 15 is connected to the end portion of the second column portion 12 far from the end portion of the first column portion 11, These end portions, that is, the contact regions 14 and 15 are first and second input / output portions of the ladder resistor 10, respectively. The ladder resistor 10 is formed on a substrate (not shown) by a known semiconductor manufacturing process.

本発明の実施の形態では、コンタクト領域14、15、第1の柱部11、第2の柱部12、及びラダー部13a〜13gは、例えば、抵抗配線材料として、NiCo、InSb等を使用した。   In the embodiment of the present invention, the contact regions 14, 15, the first pillar portion 11, the second pillar portion 12, and the ladder portions 13a to 13g use, for example, NiCo, InSb or the like as a resistance wiring material. .

(ラダー抵抗10の抵抗値調整)
図2(a)、(b)は、本発明の実施の形態に係るラダー抵抗10をレーザによりトリミングして、所定の抵抗値に調整する動作を説明するための図である。
(Adjustment of resistance value of ladder resistor 10)
FIGS. 2A and 2B are diagrams for explaining the operation of trimming the ladder resistor 10 according to the embodiment of the present invention with a laser and adjusting it to a predetermined resistance value.

図1(a)に示したように、第1の柱部11の部分、ラダー部13a〜13g、第2の柱部12の部分の抵抗値をそれぞれRa、Rb、Raとする。   As shown to Fig.1 (a), let the resistance value of the part of the 1st pillar part 11, the ladder parts 13a-13g, and the part of the 2nd pillar part 12 be Ra, Rb, and Ra, respectively.

図2(a)は、ラダー部13dの位置までレーザトリミングにより切断したことを示す図であり、(b)は、これに対応する回路図である。ここで、ラダー部を1段トリミングすることにより抵抗値を調整できる調整ステップを近似的に算出するため、Rbが無視できる程度に小さいものとする。   FIG. 2A is a view showing that the position of the ladder portion 13d has been cut by laser trimming, and FIG. 2B is a circuit diagram corresponding thereto. Here, since the adjustment step capable of adjusting the resistance value by trimming the ladder portion by one step is approximately calculated, Rb is assumed to be small enough to be ignored.

上記の条件の下では、トリミングされたラダー抵抗10に流れる電流Iは、図2(a)に示すように流れる。この場合、回路図としては図2(b)のように等価的に表され、合成抵抗は、トリミング部分までの直列合成抵抗4Raと、トリミング部分以降の並列合成抵抗2Ra/2=Raを合わせて、5Raとなる。   Under the above conditions, the current I flowing through the trimmed ladder resistor 10 flows as shown in FIG. In this case, the circuit diagram is equivalently represented as shown in FIG. 2B, and the combined resistance is the sum of the series combined resistance 4Ra up to the trimming portion and the parallel combined resistance 2Ra / 2 = Ra after the trimming portion. 5Ra.

上記と同様の考え方で、N段のラダー抵抗の場合について考える。図3(a)は、N段のラダー部を有するラダー抵抗の回路図を示し、(b)は、トリミングされた場合の等価回路図である。N段のうちn段目までの第2の柱部12がトリミングされた場合の合成抵抗を考える。ここで、Rbが無視できる程度に小さいものとすると、図3(b)のように等価的に表されるので、トリミング部分までの直列合成抵抗nRaと、トリミング部分以降の並列合成抵抗(N−n)Ra/2を合わせて、合成抵抗は、(N+n)Ra/2となる。   Consider the case of an N-stage ladder resistor in the same way as described above. FIG. 3A is a circuit diagram of a ladder resistor having an N-stage ladder portion, and FIG. 3B is an equivalent circuit diagram when trimming is performed. Consider the combined resistance when the second column part 12 up to the n-th of the N stages is trimmed. Here, if Rb is small enough to be ignored, it is equivalently expressed as shown in FIG. 3B. Therefore, the series combined resistance nRa up to the trimming portion and the parallel combined resistance (N− after the trimming portion) are expressed. n) Combined with Ra / 2, the combined resistance is (N + n) Ra / 2.

従って、本発明の実施の形態に係るラダー抵抗10では、ラダー部を1段だけトリミングにより切断することで、Ra/2のステップで抵抗値調整ができることになる。   Therefore, in the ladder resistor 10 according to the embodiment of the present invention, the resistance value can be adjusted in steps of Ra / 2 by cutting the ladder portion by one stage by trimming.

(本発明の実施の形態の効果)
図4(a)は、従来のN段のラダー部を有するラダー抵抗を示すもので、(b)は、このラダー部をn段だけトリミングにより切断した状態を示す図である。
(Effect of the embodiment of the present invention)
FIG. 4A shows a ladder resistor having a conventional N-stage ladder portion, and FIG. 4B shows a state in which this ladder portion is cut by n stages by trimming.

このラダー抵抗に流れる電流I´は、図4(b)に示すように、大部分が(n+1)段目のラダー部を流れることになるので、この合成抵抗は、2nRa+Rbとなる。従って、ラダー部を1段だけトリミングにより切断することで、2Raのステップで抵抗値調整をすることになる。   As shown in FIG. 4B, most of the current I ′ flowing through the ladder resistor flows through the (n + 1) -th ladder portion, so that the combined resistance is 2nRa + Rb. Therefore, the resistance value is adjusted in steps of 2Ra by cutting the ladder portion by one stage by trimming.

よって、本発明の実施の形態に係るラダー抵抗は、従来のラダー抵抗に比べて、4倍の精度で抵抗値調整をすることが可能になる。   Therefore, the resistance value of the ladder resistor according to the embodiment of the present invention can be adjusted with an accuracy four times that of the conventional ladder resistor.

また、上記の効果は、第1の柱部11及び第2の柱部12とラダー部13の線幅が異なるパターンレイアウトとしても成り立つので、第1の柱部11及び第2の柱部12をラダー部13の線幅より大きく設定することができる。これにより、ラダー部13の線幅を従来と同じに設定し、第1の柱部11及び第2の柱部12の線幅を従来よりも大きく設定することで、ラダー部13を長くすることなく、さらに高精度な抵抗値調整が可能となる。   In addition, the above-described effect can be achieved as a pattern layout in which the line widths of the first pillar portion 11 and the second pillar portion 12 and the ladder portion 13 are different, so that the first pillar portion 11 and the second pillar portion 12 are The line width of the ladder portion 13 can be set larger. Thereby, the ladder part 13 is lengthened by setting the line width of the ladder part 13 to be the same as the conventional one, and setting the line widths of the first pillar part 11 and the second pillar part 12 larger than the conventional one. In addition, the resistance value can be adjusted with higher accuracy.

以上から、本発明の実施の形態に係るラダー抵抗10の調整パターン構造によれば、従来のラダー抵抗の調整ステップよりも4倍以上の細かさで調整可能となる。従って、粗調整と微調整の2つの工程を必要としないので調整時間の短縮を図ることが可能になると共に、1つの工程によるトリミング作業により高精度な抵抗値調整が可能になるという効果を有する。   As described above, according to the adjustment pattern structure of the ladder resistor 10 according to the embodiment of the present invention, the adjustment can be performed with a fineness four times or more than the conventional ladder resistor adjustment step. Accordingly, since two steps of rough adjustment and fine adjustment are not required, the adjustment time can be shortened, and the resistance value can be adjusted with high accuracy by trimming work in one step. .

また、これを電子部品に適用すれば、半導体チップ上に占めるラダー抵抗の面積を小さくすることもでき、コスト低減効果を有することになる。   Moreover, if this is applied to an electronic component, the area of the ladder resistor occupying the semiconductor chip can be reduced, and the cost can be reduced.

(本発明の実施の形態に係るラダー抵抗の電子部品への適用例)
電子部品として、抵抗値の調整により高精度なオフセット調整が要求されるMRセンサ100への適用例を示す。
(Example of application of ladder resistor according to embodiment of present invention to electronic component)
As an electronic component, an example of application to an MR sensor 100 in which a highly accurate offset adjustment is required by adjusting a resistance value will be described.

MRセンサ100は、磁気抵抗効果により、MRセンサ100を構成する抵抗部分の抵抗値が磁界によって変化することを利用して、磁界の変化や磁性体の有無を電圧変化として検出するものである。   The MR sensor 100 detects the change in the magnetic field and the presence / absence of the magnetic substance as a voltage change by utilizing the fact that the resistance value of the resistance part constituting the MR sensor 100 changes due to the magnetic resistance due to the magnetoresistive effect.

図5(a)は、水平垂直方向に抵抗R1、R2、R3、R4をブリッジ接続した構成、及びトリミング調整時にそれぞれの抵抗にかける磁界のA方向及びB方向を示すもので、(b)は、直交する45度方向に抵抗R5、R6、R7、R8をブリッジ接続した構成、及びトリミング調整時にそれぞれの抵抗にかける磁界のC方向及びD方向を示す回路接続図である。   FIG. 5A shows a configuration in which the resistors R1, R2, R3, and R4 are bridge-connected in the horizontal and vertical directions, and the A direction and the B direction of the magnetic field applied to each resistor during trimming adjustment. FIG. 5 is a circuit connection diagram showing a configuration in which resistors R5, R6, R7, and R8 are bridge-connected in an orthogonal 45-degree direction, and a C direction and a D direction of a magnetic field applied to each resistor during trimming adjustment.

抵抗R1とR3が接続された端部に電源電圧Vcc1が供給され、抵抗R2とR4が接続された端部がグランドGNDに接続されると共に、抵抗R1とR2が接続された端部からは出力電圧Vout1+、抵抗R3とR4が接続された端部からは出力電圧Vout1−が出力されるようになっている。   The power supply voltage Vcc1 is supplied to the end where the resistors R1 and R3 are connected, the end where the resistors R2 and R4 are connected is connected to the ground GND, and the output is output from the end where the resistors R1 and R2 are connected. The output voltage Vout1- is output from the end where the voltage Vout1 + and the resistors R3 and R4 are connected.

同様に、抵抗R5とR7が接続された端部に電源電圧Vcc2が供給され、抵抗R6とR8が接続された端部がグランドGNDに接続されると共に、抵抗R5とR6が接続された端部からは出力電圧Vout2+、抵抗R7とR8が接続された端部からは出力電圧Vout2−が出力されるようになっている。   Similarly, the power supply voltage Vcc2 is supplied to the end where the resistors R5 and R7 are connected, the end where the resistors R6 and R8 are connected is connected to the ground GND, and the end where the resistors R5 and R6 are connected. Output voltage Vout2 +, and output voltage Vout2- is output from the end where resistors R7 and R8 are connected.

図6(a)は、上記の回路接続図で構成されるものを基板50の上に所定のパターンでレイアウトして構成したMRセンサ100を示す平面図であり、(b)は、R1〜R8の一部に形成されたラダー抵抗10の部分拡大図である。   FIG. 6A is a plan view showing the MR sensor 100 configured by laying out the circuit configuration diagram described above on the substrate 50 in a predetermined pattern, and FIG. 6B shows R1 to R8. It is the elements on larger scale of the ladder resistor 10 formed in a part of.

基板50上には、図3で示したブリッジに組まれた抵抗R1〜R8が所定の抵抗材料で形成されている。抵抗R1〜R8のそれぞれの一部には、図6(b)で示したラダー抵抗10が形成され、第2の柱部12を除いては抵抗R1〜R8と同じ抵抗材料で形成されている。抵抗R1〜R8及びラダー抵抗10の第1の柱部11、ラダー部13は、例えばInSb、NiCo等を用いて、公知の半導体プロセスにより形成されている。ラダー抵抗10の第2の柱部12は、InSb、NiCo等と比べて比抵抗が小さい材料、例えばAlまたはその合金で形成されている。   Resistors R1 to R8 assembled in the bridge shown in FIG. 3 are formed of a predetermined resistance material on the substrate 50. A ladder resistor 10 shown in FIG. 6B is formed on a part of each of the resistors R1 to R8, and is formed of the same resistance material as the resistors R1 to R8 except for the second column portion 12. . The first column portion 11 and the ladder portion 13 of the resistors R1 to R8 and the ladder resistor 10 are formed by a known semiconductor process using InSb, NiCo, or the like, for example. The second column portion 12 of the ladder resistor 10 is formed of a material having a specific resistance lower than that of InSb, NiCo or the like, for example, Al or an alloy thereof.

電子移動度が大きくMRセンサとしてよく用いられるNiCoを抵抗R1〜R8及びラダー抵抗10の第1の柱部11、第2の柱部12、ラダー部13に用い、その比抵抗は、約2.3×10−7(Ω・m)である。 NiCo, which has a high electron mobility and is often used as an MR sensor, is used for the resistors R1 to R8 and the first pillar portion 11, the second pillar portion 12 and the ladder portion 13 of the ladder resistor 10, and the specific resistance thereof is about 2. 3 × 10 −7 (Ω · m).

上記のように形成されたMRセンサ100に、図5(a)、(b)で示したA〜D方向の磁界をかけながら、MRセンサ100の出力電圧Vout1+、Vout1−、Vout2+、Vout2−を測定する。この測定を行いながら、抵抗R1〜R8のそれぞれのラダー抵抗10のラダー部13のレーザトリミングを行なう。レーザトリミングにより、各抵抗R1〜R8の抵抗値を精度よく調整することで、各出力電圧Vout1+、Vout1−、Vout2+、Vout2−のオフセットを精度よく調整することができる。   While applying the magnetic fields in the A to D directions shown in FIGS. 5A and 5B to the MR sensor 100 formed as described above, the output voltages Vout1 +, Vout1-, Vout2 +, and Vout2- of the MR sensor 100 are applied. taking measurement. While performing this measurement, laser trimming of the ladder portion 13 of each of the ladder resistors 10 of the resistors R1 to R8 is performed. By adjusting the resistance values of the resistors R1 to R8 with laser trimming, the offsets of the output voltages Vout1 +, Vout1-, Vout2 +, and Vout2- can be adjusted with high accuracy.

このMRセンサ100の場合には、第1の柱部11及び第2の柱部12を従来用いられている線幅よりも大きな線幅で構成するようにしたので、各抵抗R1〜R8のオフセット調整精度は、大幅に向上した。具体的には、従来の構成では調整精度が±5mVであったものが±1mVの精度で調整可能となった。   In the case of this MR sensor 100, since the first pillar portion 11 and the second pillar portion 12 are configured with a line width larger than the line width conventionally used, the offset of each of the resistors R1 to R8. Adjustment accuracy has been greatly improved. Specifically, the adjustment accuracy of ± 5 mV in the conventional configuration can be adjusted with an accuracy of ± 1 mV.

(a)は、本発明の実施の形態に係るラダー抵抗の調整パターン構造を示す回路構成図であり、(b)は、基板上に形成された(a)のラダー抵抗のパターンレイアウトを示す図である。(A) is a circuit block diagram which shows the adjustment pattern structure of the ladder resistance which concerns on embodiment of this invention, (b) is a figure which shows the pattern layout of the ladder resistance of (a) formed on the board | substrate. It is. (a)は、ラダー部13dの位置までレーザトリミングにより切断したことを示す図であり、(b)は、これに対応する回路図である。(A) is a figure which shows having cut | disconnected by the laser trimming to the position of the ladder part 13d, (b) is a circuit diagram corresponding to this. (a)は、N段のラダー部を有するラダー抵抗の回路図を示し、(b)は、トリミングされた場合の等価回路図である。(A) is a circuit diagram of a ladder resistor having an N-stage ladder section, and (b) is an equivalent circuit diagram when trimming is performed. (a)は、従来のN段のラダー部を有するラダー抵抗を示すもので、(b)は、このラダー部をn段だけトリミングにより切断した状態を示す図である。(A) shows the ladder resistance which has the conventional N-stage ladder part, (b) is a figure which shows the state which cut | disconnected only this n-stage ladder part by trimming. (a)は、水平垂直方向に抵抗R1、R2、R3、R4をブリッジ接続した構成、及びトリミング調整時にそれぞれの抵抗にかける磁界のA方向及びB方向を示すもので、(b)は、直交する45度方向に抵抗R5、R6、R7、R8をブリッジ接続した構成、及びトリミング調整時にそれぞれの抵抗にかける磁界のC方向及びD方向を示す回路接続図である。(A) shows the configuration in which the resistors R1, R2, R3, and R4 are bridge-connected in the horizontal and vertical directions, and the A direction and the B direction of the magnetic field applied to each resistor during trimming adjustment, and (b) is orthogonal FIG. 5 is a circuit connection diagram showing a configuration in which resistors R5, R6, R7, and R8 are bridge-connected in a 45-degree direction, and a C direction and a D direction of a magnetic field applied to each resistor during trimming adjustment. (a)は、上記の回路接続図で構成されるものを基板50の上に所定のパターンでレイアウトして構成したMRセンサ100を示す平面図であり、(b)は、R1〜R8の一部に形成されたラダー抵抗10の部分拡大図である。(A) is a top view which shows MR sensor 100 comprised by laying out what was constituted by the above-mentioned circuit connection diagram on substrate 50 by a predetermined pattern, and (b) is one of R1-R8. It is the elements on larger scale of the ladder resistor 10 formed in the part.

符号の説明Explanation of symbols

10 ラダー抵抗
11 第1の柱部
12 第2の柱部
13、13a〜13g ラダー部
14、15 コンタクト領域
50 基板
100 MRセンサ
R1〜R8 抵抗
DESCRIPTION OF SYMBOLS 10 Ladder resistance 11 1st pillar part 12 2nd pillar part 13, 13a-13g Ladder part 14, 15 Contact area | region 50 Board | substrate 100 MR sensor R1-R8 Resistance

Claims (4)

基板上に形成された第1及び第2の柱部と、
前記第1及び第2の柱部の間に並列に形成された複数のラダー部と、を有し、
前記第1の柱部の端部に設けられた第1の入出力部と、
前記第2の柱部の前記端部と反対側の端部に設けられた第2の入出力部と、
を有することを特徴とするラダー抵抗の調整パターン構造。
First and second pillars formed on the substrate;
A plurality of ladder portions formed in parallel between the first and second pillar portions, and
A first input / output unit provided at an end of the first column part;
A second input / output unit provided at an end opposite to the end of the second column part;
A ladder resistance adjustment pattern structure characterized by comprising:
前記第1及び第2の柱部のパターン幅は、前記ラダー抵抗のパターン幅よりも大きいパターン幅で形成されていることを特徴とする請求項1に記載のラダー抵抗の調整パターン構造。   2. The ladder resistor adjustment pattern structure according to claim 1, wherein a pattern width of each of the first and second pillar portions is larger than a pattern width of the ladder resistor. 基板上に形成された第1及び第2の柱部と、
前記第1及び第2の柱部の間に並列に形成された複数のラダー部と、を有し、
前記第1の柱部の端部に設けられた第1の入出力部と、前記第2の柱部の前記端部と反対側の端部に設けられた第2の入出力部と、を有するラダー抵抗を回路素子として含み、
前記ラダー抵抗のラダー部の少なくとも1つは、抵抗値を調整するためのトリミング処理が施されていることを特徴とする電子部品。
First and second pillars formed on the substrate;
A plurality of ladder portions formed in parallel between the first and second pillar portions, and
A first input / output unit provided at an end portion of the first column portion; and a second input / output unit provided at an end portion on the opposite side of the end portion of the second column portion. Including a ladder resistor having a circuit element;
At least one of the ladder portions of the ladder resistor is subjected to a trimming process for adjusting a resistance value.
前記第1及び第2の柱部のパターン幅は、前記ラダー抵抗のパターン幅よりも大きいパターン幅でラダー抵抗の調整パターンが形成されていることを特徴とする請求項3に記載の電子部品。
4. The electronic component according to claim 3, wherein the adjustment pattern of the ladder resistance is formed so that the pattern width of the first and second column portions is larger than the pattern width of the ladder resistance.
JP2006285325A 2006-10-19 2006-10-19 Adjustment pattern structure for ladder resistance and electronic component having the same Withdrawn JP2008103565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285325A JP2008103565A (en) 2006-10-19 2006-10-19 Adjustment pattern structure for ladder resistance and electronic component having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285325A JP2008103565A (en) 2006-10-19 2006-10-19 Adjustment pattern structure for ladder resistance and electronic component having the same

Publications (1)

Publication Number Publication Date
JP2008103565A true JP2008103565A (en) 2008-05-01

Family

ID=39437668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285325A Withdrawn JP2008103565A (en) 2006-10-19 2006-10-19 Adjustment pattern structure for ladder resistance and electronic component having the same

Country Status (1)

Country Link
JP (1) JP2008103565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084634A (en) * 2010-10-08 2012-04-26 Honda Motor Co Ltd Semiconductor device
WO2018125110A1 (en) * 2016-12-29 2018-07-05 Intel Corporation Configurable resistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084634A (en) * 2010-10-08 2012-04-26 Honda Motor Co Ltd Semiconductor device
WO2018125110A1 (en) * 2016-12-29 2018-07-05 Intel Corporation Configurable resistor
US11011481B2 (en) 2016-12-29 2021-05-18 Intel Corporation Configurable resistor

Similar Documents

Publication Publication Date Title
TWI503646B (en) Method and system for measuring the resistance of a resistive structure
JP5433957B2 (en) Semiconductor device
JP2008198775A (en) Method for fuse trimming of semiconductor device
JP2008047556A (en) Adjustment pattern structure of ladder resistor, and electronic component having the same
JP2008103565A (en) Adjustment pattern structure for ladder resistance and electronic component having the same
JP6070460B2 (en) Current detection circuit and magnetic detection device including the same
US7609046B2 (en) Constant voltage circuit
JP2009135774A (en) Differential amplifier circuit
US20030154456A1 (en) Resistor circuit
US7345477B1 (en) Magnetic detection device including resistance adjusting unit
JP2006234384A (en) Strain gauge device
KR102642649B1 (en) Semiconductor device
JP6457192B2 (en) Hall electromotive force signal processing apparatus, current sensor, and hall electromotive force signal processing method
KR20170061700A (en) Hall sensor
JP2009204422A (en) Semiconductor temperature sensor circuit
JP2014190862A (en) Hall element driving circuit and hall element driving method
JP2010074587A (en) Voltage comparator
US6232823B1 (en) Voltage setting circuit in a semiconductor integrated circuit
JP5559733B2 (en) Physical quantity sensor
JP2005301409A (en) Constant current circuit
JP2011155075A (en) Offset voltage-adjusting structure of bridge circuit, and electronic component equipped therewith
JP5006341B2 (en) Magnetic detection method and magnetic detection apparatus
JP3688691B2 (en) Resistors and circuit boards
JP6269936B2 (en) Integrated circuit
JP2005116634A (en) Semiconductor device including plurality of reference voltage generating circuits and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110519