JP2008103155A - Manufacturing method of oxide superconductive wire rod, and judgement method of powder for oxide superconductive wire rod - Google Patents

Manufacturing method of oxide superconductive wire rod, and judgement method of powder for oxide superconductive wire rod Download PDF

Info

Publication number
JP2008103155A
JP2008103155A JP2006283874A JP2006283874A JP2008103155A JP 2008103155 A JP2008103155 A JP 2008103155A JP 2006283874 A JP2006283874 A JP 2006283874A JP 2006283874 A JP2006283874 A JP 2006283874A JP 2008103155 A JP2008103155 A JP 2008103155A
Authority
JP
Japan
Prior art keywords
powder
temperature
molecules
maximum value
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006283874A
Other languages
Japanese (ja)
Inventor
Kazumi Ohata
一実 大圃
Takemi Muroga
岳海 室賀
Genzo Iwaki
源三 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006283874A priority Critical patent/JP2008103155A/en
Publication of JP2008103155A publication Critical patent/JP2008103155A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an oxide superconductive wire rod capable of obtaining high critical current characteristics with good reproducibility and a judgement method of the oxide superconductive wire rod powder. <P>SOLUTION: The manufacturing method of the oxide superconductive wire rod is provided with a filling process to fill powders of the oxide superconductor or powders to become its material into a metal sheath material and a drawing process to manufacture a wire rod by applying a plastic working on the metal sheath material. The H<SB>2</SB>O molecular number desorbed from sample powders 1g is measured and, at its measurement, those sample powders having a maximum value A of the H<SB>2</SB>O molecular number in a range of 50-300°C of 10<SP>18</SP>or less and a ratio (B/A) of the peak value B of the H<SB>2</SB>O molecular number measured at further temperature rise within temperature range of 200°C from the measuring temperature of the maximum value A and the maximum value A being below 0.5 are judged as an adequate powder 1, and the adequate powders 1 are filled into the metal sheath material 2 to manufacture the wire rod. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、再現性に優れた高い臨界電流特性を有する酸化物超電導線材の製造方法及び酸化物超電導線材用粉末の判定方法に関するものである。   The present invention relates to a method for producing an oxide superconducting wire having excellent reproducibility and high critical current characteristics, and a method for determining a powder for an oxide superconducting wire.

高臨界電流特性を有する酸化物超電導線材には、ビスマス系やイットリウム系があり、特に前者の酸化物超電導線材の製造方法として、長尺化に優れたパウダーインチューブ法が一般的に知られている。このプロセスは、基本的に、酸化物超電導体の粉末又はその原料粉末を銀パイプ等の金属シース材内に充填し、これに伸線加工などの塑性加工を施し、最後に超電導体の結晶を配向させる熱処理を行うものである。   Oxide superconducting wires having high critical current characteristics include bismuth and yttrium, and the powder-in-tube method, which is excellent in lengthening, is generally known as the former method for producing oxide superconducting wires. Yes. In this process, oxide superconductor powder or its raw material powder is basically filled into a metal sheath material such as a silver pipe, subjected to plastic processing such as wire drawing, and finally superconductor crystals are formed. A heat treatment for orientation is performed.

酸化物超電導線材は、超電導コイル、超電導マグネット、MRI装置、磁気浮上列車、SMES(Superconducting Magnetic Energy Storage:超電導電力貯蔵装置)等に応用するため、高い臨界電流密度を有することが必要である。パウダーインチューブ法によると、線材の長尺化が容易であり、さらにはビスマス系酸化物超電導線材では比較的高い臨界電流特性が得られることが知られている。   The oxide superconducting wire is required to have a high critical current density in order to be applied to a superconducting coil, a superconducting magnet, an MRI apparatus, a magnetic levitation train, a SMES (Superconducting Magnetic Energy Storage). According to the powder-in-tube method, it is known that it is easy to lengthen the wire, and that a relatively high critical current characteristic can be obtained with a bismuth oxide superconducting wire.

特開昭63−270342号公報Japanese Unexamined Patent Publication No. 63-270342 特開2004−087488号公報JP 2004-087488 A

しかしながら、パウダーインチューブ法による線材は、金属シース材内へ充填する原料粉末の状態、塑性加工条件などにより、最終線材の臨界電流特性が大きく異なってしまうことが知られている。例えば、ビスマス系酸化物超電導線材の製造においては、高い臨界電流特性の再現性が乏しいこと、つまり高い臨界電流特性を有する線材の歩留まりが低いことが欠点となっている。   However, it is known that the wire material obtained by the powder-in-tube method has greatly different critical current characteristics of the final wire material depending on the state of the raw material powder filled in the metal sheath material, plastic working conditions, and the like. For example, in the production of a bismuth-based oxide superconducting wire, the drawback is that the reproducibility of high critical current characteristics is poor, that is, the yield of wires having high critical current characteristics is low.

このような原因の一つとして、原料粉末に関しては、酸化物超電導体の粉末に限らず、一般に水分吸着が起こるため、原料粉末が吸湿状態(吸蔵状態)となることによって、粉末そのものの性質が変わってしまい、最終線材の臨界電流特性に大きく影響を及ぼしていることが考えられる。   As one of the causes, the raw material powder is not limited to the oxide superconductor powder, and moisture adsorption generally occurs. Therefore, when the raw material powder is in a hygroscopic state (occlusion state), the properties of the powder itself are It is considered that the critical current characteristics of the final wire are greatly affected.

そこで本発明の目的は、高い臨界電流特性が再現性よく得られる酸化物超電導線材の製造方法及び酸化物超電導線材用粉末の判定方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing an oxide superconducting wire and a method for determining a powder for an oxide superconducting wire, which can obtain high critical current characteristics with good reproducibility.

上記の目的を達成するために、請求項1の発明は、酸化物超電導体の粉末又はその原料となる粉末を金属シース材内に充填する充填工程と、前記粉末が充填された金属シース材に塑性加工を施して線材を作製する伸線工程とを備えた酸化物超電導線材の製造方法において、サンプル粉末1gを10-6Paの真空度以上の高真空状態で、室温から20℃/分の昇温速度で昇温させると共に昇温4℃毎に質量分析計を用いてサンプル粉末から脱離するH2O分子数を測定し、その測定時、サンプル粉末又はサンプル粉末周辺の温度が50〜300℃の範囲内における各測定温度でのH2O分子数の最大値Aが1018個以下であり、かつ、最大値Aの計測温度から更に200℃の温度範囲内で昇温させた時に計測されるH2O分子数のピーク値Bと前記最大値Aとの比(B/A)が<0.5であるもの、或いは最大値Aが1018個以下であり、かつ、最大値Aの計測温度から更に200℃の温度範囲内で昇温させた時にH2O分子数が減少するのみでピーク値Bが計測されないものを適正な粉末とし、その適正な粉末を前記金属シース材内に充填し、線材の作製を行うことを特徴とする酸化物超電導線材の製造方法である。 In order to achieve the above object, the invention of claim 1 includes a filling step of filling a metal sheath material with a powder of an oxide superconductor or a raw material thereof, and a metal sheath material filled with the powder. In a method for producing an oxide superconducting wire comprising a wire drawing step for producing a wire by performing plastic working, 1 g of sample powder is heated from room temperature to 20 ° C./minute in a high vacuum state of 10 −6 Pa or higher. The temperature is increased at a rate of temperature increase, and the number of H 2 O molecules desorbed from the sample powder is measured every 4 ° C. using a mass spectrometer. When the maximum value A of the number of H 2 O molecules at each measurement temperature within the range of 300 ° C. is 10 18 or less, and when the temperature is further increased within the temperature range of 200 ° C. from the measurement temperature of the maximum value A The peak value B of the number of H 2 O molecules to be measured The ratio (B / A) to the maximum value A is <0.5, or the maximum value A is 10 18 or less, and within the temperature range of 200 ° C. from the measurement temperature of the maximum value A When the temperature is raised, the number of H 2 O molecules only decreases and the peak value B is not measured is made an appropriate powder, the appropriate powder is filled in the metal sheath material, and the wire is produced. It is a manufacturing method of the oxide superconducting wire.

請求項2の発明は、H2O分子数の測定時に不適正であった粉末に減圧熱処理を施し、粉末の脱水分を行う請求項1記載の酸化物超電導線材の製造方法である。 The invention according to claim 2 is the method for producing an oxide superconducting wire according to claim 1, wherein the powder, which is inappropriate at the time of measuring the number of H 2 O molecules, is subjected to heat treatment under reduced pressure to dehydrate the powder.

請求項3の発明は、前記酸化物超電導体の粉末は、ビスマス系酸化物超電導体の2212相が主成分である請求項1記載の酸化物超電導線材の製造方法である。   The invention according to claim 3 is the method for producing an oxide superconducting wire according to claim 1, wherein the oxide superconductor powder is composed mainly of a 2212 phase of a bismuth-based oxide superconductor.

請求項4の発明は、酸化物超電導線材の製造に用いられ、酸化物超電導体の粉末又はその原料となる粉末の判定方法において、前記粉末に吸湿、吸蔵されているH2O分子数を測定すべく、サンプル粉末1gを10-6Paの真空度以上の高真空状態で、室温から20℃/分の昇温速度で昇温させると共に昇温4℃毎に質量分析計を用いてサンプル粉末から脱離するH2O分子数を測定し、その測定時、サンプル粉末又はサンプル粉末周辺の温度が50〜300℃の範囲内における各測定温度でのH2O分子数の最大値Aが1018個以下であり、かつ、最大値Aの計測温度から更に200℃の温度範囲内で昇温させた時に計測されるH2O分子数のピーク値Bと前記最大値Aとの比(B/A)が<0.5であるもの、或いは最大値Aが1018個以下であり、かつ、最大値Aの計測温度から更に200℃の温度範囲内で昇温させた時にH2O分子数が減少するのみでピーク値Bが計測されないものを適正な粉末と判定し、その適正と判定された粉末を酸化物超電導線材の製造に用いることを特徴とする酸化物超電導線材用粉末の判定方法である。 The invention of claim 4 is used in the manufacture of oxide superconducting wires, and in the method for determining oxide superconductor powder or powder as a raw material thereof, the number of H 2 O molecules absorbed and occluded in the powder is measured. Therefore, 1 g of the sample powder is heated from room temperature at a temperature rising rate of 20 ° C./min in a high vacuum state of 10 −6 Pa or higher, and the sample powder is used every 4 ° C. using a mass spectrometer. The number of H 2 O molecules desorbed from the sample is measured, and at the time of measurement, the maximum value A of the number of H 2 O molecules at each measurement temperature within a temperature range of 50 to 300 ° C. of the sample powder or the sample powder is 18 or less, and the ratio between the maximum value a and the peak value B of H 2 O the number of molecules to be measured when the temperature was raised within a temperature range of more 200 ° C. from the measured temperature of the maximum value a (B / A) is <0.5 or the maximum value A is 10 18 The following is determined as an appropriate powder when the peak value B is not measured only when the number of H 2 O molecules is decreased when the temperature is further increased from the maximum temperature A within the temperature range of 200 ° C. A method for determining a powder for an oxide superconducting wire, wherein the powder determined to be appropriate is used for manufacturing an oxide superconducting wire.

本発明によれば、パウダーインチューブ法による酸化物超電導線材の製造に用いる充填粉末として使用可能な、粉末の吸蔵・吸着水分量を規定したことで、再現性に優れた高い臨界電流特性を有する酸化物超電導線材が製造可能となる。   According to the present invention, by defining the amount of occluded / adsorbed moisture that can be used as a filling powder used in the production of oxide superconducting wires by the powder-in-tube method, it has high critical current characteristics with excellent reproducibility. An oxide superconducting wire can be manufactured.

以下、本発明の実施の形態を添付図面に基いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

本発明の好適一実施の形態に係る酸化物超電導線材の製造方法は、先ず、図1に示すように、ビスマス系2212酸化物超電導体の粉末(以下、Bi2212粉末という)1をAgパイプ(金属シース材)2に充填する(充填工程)。Bi2212酸化物超電導体の原料粉末を用いる場合、先ず、それらの粉末を合成焼成させてBi2212粉末1を作製し、その合成焼成されたBi2212粉末1をAgパイプ2に充填する。   In a method of manufacturing an oxide superconducting wire according to a preferred embodiment of the present invention, first, as shown in FIG. 1, a bismuth 2212 oxide superconductor powder (hereinafter referred to as Bi2212 powder) 1 is an Ag pipe (metal). The sheath material 2 is filled (filling step). When using raw material powders of Bi2212 oxide superconductor, first, these powders are synthesized and fired to produce Bi2212 powder 1, and then Ag22 is filled with Bi2212 powder 1 that has been synthesized and fired.

次に、図2に示すように、Bi2212粉末1が充填されたAgパイプ2に、伸線ダイス3を用いて第1伸線加工(塑性加工)を施し、単芯線材5を作製する(第1伸線工程)。次に、図3に示すように、この単芯線材5を多数本、Ag合金パイプ(金属シース材)4内に組み込んで多芯線材(ビレット)6を作製する(組み込み工程)。次に、図4に示すように、多芯線材6に、伸線ダイス13を用いて第2伸線加工を施し、線材15を作製する(第2伸線工程)。   Next, as shown in FIG. 2, the Ag pipe 2 filled with the Bi2212 powder 1 is subjected to first wire drawing (plastic working) using a wire drawing die 3 to produce a single core wire 5 (first wire). 1 wire drawing process). Next, as shown in FIG. 3, a large number of single-core wires 5 are incorporated into an Ag alloy pipe (metal sheath material) 4 to produce a multi-core wire (billet) 6 (an assembling step). Next, as shown in FIG. 4, the multifilamentary wire 6 is subjected to second wire drawing using a wire drawing die 13 to produce a wire 15 (second wire drawing step).

最後に、線材15に熱処理を施して超伝導体の結晶を配向させ(熱処理工程)、Bi2212酸化物超電導線材が得られる。   Finally, the wire 15 is subjected to a heat treatment to orient the superconductor crystals (heat treatment step), whereby a Bi2212 oxide superconducting wire is obtained.

本実施の形態では、製造プロセスの充填工程に用いる粉末(Bi2212粉末1又はBi2212酸化物超電導体の原料粉末)の、許容可能な“H2O分子数/1g”を規定したことに特徴がある。 The present embodiment is characterized in that the acceptable “H 2 O molecular number / 1 g” of the powder (Bi2212 powder 1 or Bi2212 oxide superconductor raw material powder) used in the filling step of the manufacturing process is defined. .

製造プロセスの充填工程に用いるBi2212粉末1は、程度の差はあるが、少なからずの水分(H2O)を含んで(吸蔵・吸着して)おり、さらには粉末の取り扱い中にも水分吸着が発生する。酸化物超電導体の粉末に一定量以上の水分が吸蔵、吸着されていると、その粉末を用いて製造した最終線材の臨界電流特性が低くなる及び/又は臨界電流特性の再現性が悪くなる。そこで、本実施の形態では、製造プロセスの充填工程の前に、粉末が使用に適しているかどうかの判定を行う(判定工程)。 Bi2212 powder 1 used in the filling process of the manufacturing process contains a certain amount of moisture (H 2 O) (occluded and adsorbed), but also adsorbs moisture during the handling of the powder. Will occur. When a certain amount or more of moisture is occluded and adsorbed on the oxide superconductor powder, the critical current characteristic of the final wire manufactured using the powder is lowered and / or the reproducibility of the critical current characteristic is deteriorated. Therefore, in this embodiment, it is determined whether the powder is suitable for use before the filling step of the manufacturing process (determination step).

この判定工程は、先ず、サンプル粉末1gを、10-6Paの真空度以上の高真空状態で、室温から20℃/分の昇温速度で昇温させると共に昇温4℃毎に質量分析計を用いてサンプル粉末から脱離するH2O分子数を測定する。この測定は、例えば、昇温脱離ガス分析(TDS:Thermal Desorption Spectroscopy)を用いて行う。TDS分析の測定原理は、図5に示すように、試料ステージ10上に載置した試料9を赤外線で加熱し、放出されるガス(脱離H2O)8を四重極型質量分析計7で検出するものである。得られる情報は、質量数1から200までの放出ガス8のマススペクトルであり、H2O分子の計測はMz18のマススペクトルを検出することでなされる。 In this determination step, 1 g of sample powder is first heated from room temperature at a rate of temperature increase of 20 ° C./min in a high vacuum state of 10 −6 Pa or higher, and a mass spectrometer is increased every 4 ° C. Is used to measure the number of H 2 O molecules desorbed from the sample powder. This measurement is performed by using, for example, temperature desorption spectroscopy (TDS). As shown in FIG. 5, the measurement principle of TDS analysis is that a sample 9 placed on a sample stage 10 is heated with infrared rays, and a gas (desorption H 2 O) 8 is released from a quadrupole mass spectrometer. 7 is detected. The obtained information is a mass spectrum of the emitted gas 8 having a mass number of 1 to 200, and measurement of H 2 O molecules is performed by detecting a mass spectrum of Mz18.

図6は、Bi2212粉末1をTDS分析した結果であり、試料表面温度(粉末表面温度)とH2O分子数/1gとの関係を示したものである。 FIG. 6 shows the result of TDS analysis of Bi2212 powder 1 and shows the relationship between the sample surface temperature (powder surface temperature) and the number of H 2 O molecules / 1 g.

図6に示すように、粉末表面温度50〜300℃の範囲内では、120℃付近でH2O分子数の最大値Aが計測される。さらに、試料ステージ10の温度120〜320℃(最大値Aの計測温度から更に200℃)の範囲内では、粉末表面温度220℃付近でH2O分子数のピーク値Bが計測される。 As shown in FIG. 6, the maximum value A of the number of H 2 O molecules is measured at around 120 ° C. within the range of the powder surface temperature of 50 to 300 ° C. Furthermore, within the range of the temperature 120 to 320 ° C. of the sample stage 10 (further 200 ° C. from the measurement temperature of the maximum value A), the peak value B of the number of H 2 O molecules is measured around the powder surface temperature of 220 ° C.

本実施の形態では、これらの計測時、H2O分子数の最大値Aが1018個以下であり、かつ、H2O分子数のピーク値Bと最大値Aとの比(B/A)が<0.5であるものを、吸蔵水分量が適正なBi2212粉末1(充填工程に用いるBi2212粉末1)と判定する。或いは、H2O分子数の最大値Aが1018個以下であり、かつ、粉末表面温度120〜320℃の範囲内ではH2O分子数が減少するのみでピーク値Bが計測されないものを、吸蔵水分量が適正なBi2212粉末1と判定する。Bi2212酸化物超電導体の原料粉末の場合においても、同様の判定を行い、吸蔵水分量が適正と判定された各原料粉末を合成焼成させ、適正なBi2212粉末1を作製する。 In this embodiment, during these measurements, the maximum value A of the number of H 2 O molecules is 10 18 or less, and the ratio of the peak value B of the number of H 2 O molecules to the maximum value A (B / A ) Is <0.5, it is determined that Bi2212 powder 1 (Bi2212 powder 1 used in the filling step) has an appropriate amount of occluded water. Alternatively, the maximum value A of the number of H 2 O molecules is 10 18 or less, and the peak value B is not measured only when the number of H 2 O molecules decreases within the range of the powder surface temperature of 120 to 320 ° C. It is determined that Bi 2212 powder 1 has an appropriate amount of occluded water. In the case of the raw material powder of the Bi2212 oxide superconductor, the same determination is performed, and each raw material powder determined to have an appropriate amount of occluded moisture is synthesized and fired to produce an appropriate Bi2212 powder 1.

この適正と判定されたBi2212粉末1を用い、最終的に得られたBi2212酸化物超電導線材は、高い臨界電流特性値を有し、かつ、再現性に非常に優れる。つまり、本実施の形態に係る酸化物超電導線材用粉末の判定方法を用いて酸化物超電導線材を製造することで、高い臨界電流特性を有するBi2212酸化物超電導線材を再現性よく製造することが可能となる。また、粉末のH2O分子数/1gの値が、最大値Aが1018個以下であり、かつ、B/Aが<0.5(或いはピーク値Bなし)の条件を満足する範囲内であれば、再現性はいずれも良好であるが、臨界電流特性Jc値はB/A値が小さくなるにつれ、若干高くなる傾向にある。 The Bi2212 oxide superconducting wire finally obtained using the Bi2212 powder 1 determined to be appropriate has a high critical current characteristic value and is extremely excellent in reproducibility. In other words, by manufacturing the oxide superconducting wire using the method for determining a powder for an oxide superconducting wire according to the present embodiment, it is possible to manufacture a Bi2212 oxide superconducting wire having high critical current characteristics with high reproducibility. It becomes. Further, the value of the number of H 2 O molecules per gram of the powder is within a range satisfying the condition that the maximum value A is 10 18 or less and B / A is <0.5 (or no peak value B). If so, the reproducibility is good, but the critical current characteristic Jc value tends to increase slightly as the B / A value decreases.

一方、吸蔵水分量が適正と判定されなかったBi2212粉末1の内、図6中のB/Aが≧0.5のBi2212粉末1を用いたBi2212酸化物超電導線材は、臨界電流特性が非常に小さくなる。また、B/Aが<0.5であっても、最大値Aが1018個よりも多いBi2212粉末1を用いたBi2212酸化物超電導線材は、臨界電流特性が低くなり、また、再現性にも欠ける。 On the other hand, the Bi2212 oxide superconducting wire using the Bi2212 powder 1 with B / A of ≧ 0.5 in FIG. Get smaller. In addition, even when B / A is <0.5, the Bi2212 oxide superconducting wire using the Bi2212 powder 1 having a maximum value A of more than 10 18 has low critical current characteristics and is reproducible. Also lacks.

ここで、吸蔵水分量が適正と判定されなかったBi2212粉末1であっても、減圧熱処理を施して粉末の脱水分を適正に行った後、再度、前述した判定を行い、最大値Aが1018個以下、かつ、B/Aが<0.5(或いはピーク値Bなし)の条件を満足すれば、すなわちBi2212粉末1の吸蔵水分量を適正な範囲に制御すれば、酸化物超電導線材の製造に適用することが可能となる。また、吸蔵水分量が適正と判定されたBi2212粉末1であっても、減圧熱処理を施して粉末の脱水分を行い、吸蔵水分量をより少なく制御することで、より高い臨界電流特性値、より高い再現性が得られるようになる。減圧熱処理条件の温度、時間、及び真空度は、Bi2212粉末1の吸蔵水分量に応じて適宜調整され、例えば、吸蔵水分量が多い程、温度を高く、時間を長く、又は真空度を高くし、吸蔵水分量が少ない程、温度を低く、時間を短く、又は真空度を低くする。 Here, even if Bi 2212 powder 1 whose occluded water content was not determined to be appropriate was subjected to the heat treatment under reduced pressure to properly dehydrate the powder, the above-described determination was performed again, and the maximum value A was 10 If 18 or less and B / A satisfies the condition of <0.5 (or no peak value B), that is, if the stored moisture content of Bi2212 powder 1 is controlled within an appropriate range, the oxide superconducting wire It becomes possible to apply to manufacturing. Further, even if Bi 2212 powder 1 is determined to have an appropriate amount of occluded moisture, it can be dehydrated by performing reduced pressure heat treatment to control the amount of occluded moisture to a higher level, thereby achieving a higher critical current characteristic value. High reproducibility can be obtained. The temperature, time, and degree of vacuum of the reduced pressure heat treatment conditions are appropriately adjusted according to the amount of stored moisture of Bi2212 powder 1. For example, the higher the stored amount of moisture, the higher the temperature, the longer the time, or the higher the degree of vacuum. The lower the moisture content, the lower the temperature, the shorter the time, or the lower the vacuum.

本実施の形態の製造方法は、酸化物超電導線材、特にBi2212酸化物超電導線材の製造方法に関したものであるが、パウダーインチューブ法により作製している他の超電導線材、例えばビスマス系2223酸化物超電導線材の製造方法にも適用可能である。また、本実施の形態の製造方法は、この他のパウダーインチューブ法を用いて作製する酸化物超電導線材一般、もしくはパウダーインチューブ法以外の方法で、粉末を用いて作製する酸化物超電導線材一般の製造方法にも適用可能である。さらには、酸化物超電導線材以外にも、MgB2超電導線材のようなパウダーインチューブ法を用いる超電導線材の製造方法にも適用可能である。但し、これらの場合の内、B/Aの基準、範囲が異なってくるものもあり、場合によっては“B/A”ではなく“A+B”等の基準を設けた方がよい場合も考えられる。 The manufacturing method of the present embodiment relates to a manufacturing method of an oxide superconducting wire, particularly a Bi2212 oxide superconducting wire, but other superconducting wire manufactured by a powder-in-tube method, for example, a bismuth-based 2223 oxide. It can also be applied to a method of manufacturing a superconducting wire. In addition, the manufacturing method of the present embodiment is a general oxide superconducting wire produced using another powder in-tube method, or an oxide superconducting wire produced using powder in a method other than the powder in-tube method. This method can also be applied. Furthermore, in addition to the oxide superconducting wire, the present invention can also be applied to a superconducting wire manufacturing method using a powder-in-tube method such as a MgB 2 superconducting wire. However, some of these cases have different B / A criteria and ranges. In some cases, it may be better to provide criteria such as “A + B” instead of “B / A”.

本実施の形態の製造方法により得られた酸化物超電導線材は、超電導コイル、超電導マグネット、MRI装置、磁気浮上列車、SMES等に応用でき、これらの他にも、高い臨界電流密度を必要とする超電導線材の応用システム全般に使用可能である。   The oxide superconducting wire obtained by the manufacturing method of the present embodiment can be applied to a superconducting coil, a superconducting magnet, an MRI apparatus, a magnetic levitation train, SMES, etc. In addition to these, a high critical current density is required. It can be used for all superconducting wire application systems.

以下、本発明の実施例及び比較例を示す。   Examples of the present invention and comparative examples are shown below.

試料は、Bi2212粉末を減圧熱処理(脱水分処理)したもの(実施例1)、粉末合成焼成後のまま(処理なし)のもの(実施例2)、加水分処理して吸蔵水分量を変化させたもの(実施例3及び比較例1〜3)の6種類を準備した。表1に6種類の試料(粉末No.a〜f)の詳細を示す。   Samples were Bi2212 powder heat-treated under reduced pressure (dehydration treatment) (Example 1), as it was after powder synthesis firing (no treatment) (Example 2), and hydrolyzed to change the amount of occluded water. Six types of samples (Example 3 and Comparative Examples 1 to 3) were prepared. Table 1 shows details of six types of samples (powder Nos. A to f).

Figure 2008103155
Figure 2008103155

実施例1〜3及び比較例1〜3の各試料についてTDS分析を行った。TDS分析の分析条件を表2に示す。また、各試料について、試料ステージの温度50〜300℃の範囲内でH2O分子数の最大値A及びピーク値Bを計測し、比(B/A)を求め、その結果を表3に示す。さらに、各試料の、試料表面温度とH2O分子数との関係を図7〜図12に示す。 TDS analysis was performed about each sample of Examples 1-3 and Comparative Examples 1-3. Table 2 shows the analysis conditions for the TDS analysis. In addition, for each sample, the maximum value A and peak value B of the number of H 2 O molecules were measured within the range of the sample stage temperature of 50 to 300 ° C., and the ratio (B / A) was determined. Show. Furthermore, the relationship between the sample surface temperature and the number of H 2 O molecules of each sample is shown in FIGS.

Figure 2008103155
Figure 2008103155

Figure 2008103155
Figure 2008103155

図7〜図12に示すように、実施例1〜3及び比較例1〜3の各試料のB/Aは、それぞれ0、0.13、0.44、0.68、1.86、0.40であり、実施例1の試料ではピーク値Bは計測されなかった。   As shown in FIGS. 7-12, B / A of each sample of Examples 1-3 and Comparative Examples 1-3 is 0, 0.13, 0.44, 0.68, 1.86, 0, respectively. .40, and the peak value B was not measured in the sample of Example 1.

次に、6種類の各Bi2212粉末を用いて、酸化物超電導線材を作製した。線材の作製条件を表4に示す。各線材の、液体ヘリウム中(at4.2K、0T)での臨界電流特性の評価結果を前述した表3に示す。臨界電流特性の再現性評価については、各々の線材について5個の試片(1〜5)を作製し、評価を行った。   Next, an oxide superconducting wire was produced using each of the six types of Bi2212 powders. Table 4 shows the production conditions of the wire. The evaluation results of the critical current characteristics of each wire in liquid helium (at 4.2K, 0T) are shown in Table 3 described above. For evaluation of reproducibility of the critical current characteristics, five specimens (1 to 5) were prepared for each wire and evaluated.

Figure 2008103155
Figure 2008103155

実施例1〜3の試料はいずれもB/Aが0.5未満であり、これらの試料を用いた線材の臨界電流特性Jc値は約4,000A/mm2程度と高い値であった。また、これらの線材は試片間のばらつきが小さく、Jc値の再現性に優れていた。 The samples of Examples 1 to 3 each had a B / A of less than 0.5, and the critical current characteristic Jc value of the wire using these samples was a high value of about 4,000 A / mm 2 . In addition, these wires had small variations between specimens and were excellent in reproducibility of the Jc value.

一方、比較例1,2の試料はいずれもB/Aが0.5超であり、これらの試料を用いた線材の臨界電流特性Jc値は、B/Aの増大と共に著しく低くなった。また、これらの線材は試片間のばらつきが大きく、Jc値の再現性が悪かった。   On the other hand, the samples of Comparative Examples 1 and 2 each had a B / A value exceeding 0.5, and the critical current characteristic Jc value of the wire material using these samples was significantly lowered with an increase in B / A. Moreover, these wires had large variations between specimens, and the reproducibility of the Jc value was poor.

また、故意に過剰の水分を吸着させた比較例3の試料は、B/Aこそ0.5未満であるものの、最大値Aが3.0×1019個と1018個超であるため、この試料を用いた線材は、試片間のばらつき(再現性の有無)を評価する以前に、臨界電流特性Jc値が全てゼロであった。 In addition, the sample of Comparative Example 3 in which excessive moisture was intentionally adsorbed was B / A less than 0.5, but the maximum value A was 3.0 × 10 19 and more than 10 18 , The wire using this sample had all critical current characteristic Jc values of zero before evaluating the variation between specimens (presence of reproducibility).

パウダーインチューブ法による酸化物超電導線材の製造プロセスにおける充填工程を示す図である。It is a figure which shows the filling process in the manufacturing process of the oxide superconducting wire by a powder in tube method. パウダーインチューブ法による酸化物超電導線材の製造プロセスにおける第1伸線工程を示す図である。It is a figure which shows the 1st wire drawing process in the manufacturing process of the oxide superconducting wire by a powder in tube method. パウダーインチューブ法による酸化物超電導線材の製造プロセスにおける多芯組込み工程を示す図である。It is a figure which shows the multi-core incorporation process in the manufacturing process of the oxide superconducting wire by a powder in tube method. パウダーインチューブ法による酸化物超電導線材の製造プロセスにおける第2伸線工程を示す図である。It is a figure which shows the 2nd wire drawing process in the manufacturing process of the oxide superconducting wire by a powder in tube method. 昇温脱離ガス分析の測定原理を説明するための概略図である。It is the schematic for demonstrating the measurement principle of temperature rising desorption gas analysis. 試料表面温度とH2O分子数との関係を示す図である。Is a diagram showing the relationship between the sample surface temperature and H 2 O the number of molecules. 実施例1の試料(粉末a)の試料表面温度とH2O分子数との関係を示す図である。Is a diagram showing the relationship between the sample surface temperature and H 2 O the number of molecules of the sample of Example 1 (powder a). 実施例2の試料(粉末b)の試料表面温度とH2O分子数との関係を示す図である。Is a diagram showing the relationship between the sample surface temperature and H 2 O number of molecules of the sample of Example 2 (powder b). 実施例3の試料(粉末c)の試料表面温度とH2O分子数との関係を示す図である。Is a diagram showing the relationship between the sample surface temperature and H 2 O the number of molecules of the sample of Example 3 (powder c). 比較例1の試料(粉末d)の試料表面温度とH2O分子数との関係を示す図である。Sample of Comparative Example 1 is a diagram showing the relationship between the sample surface temperature and H 2 O the number of molecules of (powder d). 比較例2の試料(粉末e)の試料表面温度とH2O分子数との関係を示す図である。Comparative Example 2 Sample is a diagram showing the relationship between the sample surface temperature and H 2 O the number of molecules of (powder e). 比較例3の試料(粉末f)の試料表面温度とH2O分子数との関係を示す図である。Sample of Comparative Example 3 is a diagram showing the relationship between the sample surface temperature and H 2 O the number of molecules of (powder f).

符号の説明Explanation of symbols

1 Bi2212粉末(粉末)
2 Agパイプ(金属シース材)
1 Bi2212 powder (powder)
2 Ag pipe (metal sheath material)

Claims (4)

酸化物超電導体の粉末又はその原料となる粉末を金属シース材内に充填する充填工程と、前記粉末が充填された金属シース材に塑性加工を施して線材を作製する伸線工程とを備えた酸化物超電導線材の製造方法において、サンプル粉末1gを10-6Paの真空度以上の高真空状態で、室温から20℃/分の昇温速度で昇温させると共に昇温4℃毎に質量分析計を用いてサンプル粉末から脱離するH2O分子数を測定し、その測定時、サンプル粉末又はサンプル粉末周辺の温度が50〜300℃の範囲内における各測定温度でのH2O分子数の最大値Aが1018個以下であり、かつ、最大値Aの計測温度から更に200℃の温度範囲内で昇温させた時に計測されるH2O分子数のピーク値Bと前記最大値Aとの比(B/A)が<0.5であるもの、或いは最大値Aが1018個以下であり、かつ、最大値Aの計測温度から更に200℃の温度範囲内で昇温させた時にH2O分子数が減少するのみでピーク値Bが計測されないものを適正な粉末とし、その適正な粉末を前記金属シース材内に充填し、線材の作製を行うことを特徴とする酸化物超電導線材の製造方法。 A filling step of filling a metal sheath material with a powder of an oxide superconductor or a raw material powder thereof, and a wire drawing step of plastically processing the metal sheath material filled with the powder to produce a wire rod In the method for producing an oxide superconducting wire, 1 g of sample powder is heated from room temperature at a heating rate of 20 ° C./min in a high vacuum state of 10 −6 Pa or higher and mass analysis is performed every 4 ° C. The number of H 2 O molecules desorbed from the sample powder is measured using a meter, and at the time of measurement, the number of H 2 O molecules at each measurement temperature within the temperature range of 50 to 300 ° C. of the sample powder or around the sample powder. The maximum value A of 10 18 or less, and the peak value B of the number of H 2 O molecules measured when the temperature is further raised within the temperature range of 200 ° C. from the measurement temperature of the maximum value A and the maximum value The ratio with A (B / A) is <0.5 Or the maximum value A is 10 18 or less, and when the temperature is further increased within the temperature range of 200 ° C. from the measurement temperature of the maximum value A, the peak value B is only reduced by the decrease in the number of H 2 O molecules. A method for producing an oxide superconducting wire, characterized in that an unmeasured powder is used as an appropriate powder, the appropriate powder is filled in the metal sheath material, and a wire is produced. 2O分子数の測定時に不適正であった粉末に減圧熱処理を施し、粉末の脱水分を行う請求項1記載の酸化物超電導線材の製造方法。 The method for producing an oxide superconducting wire according to claim 1, wherein the powder that is inappropriate at the time of measuring the number of H 2 O is subjected to heat treatment under reduced pressure to dehydrate the powder. 前記酸化物超電導体の粉末は、ビスマス系酸化物超電導体の2212相が主成分である請求項1記載の酸化物超電導線材の製造方法。   2. The method for producing an oxide superconducting wire according to claim 1, wherein the oxide superconductor powder is mainly composed of a 2212 phase of a bismuth-based oxide superconductor. 3. 酸化物超電導線材の製造に用いられ、酸化物超電導体の粉末又はその原料となる粉末の判定方法において、前記粉末に吸湿、吸蔵されているH2O分子数を測定すべく、サンプル粉末1gを10-6Paの真空度以上の高真空状態で、室温から20℃/分の昇温速度で昇温させると共に昇温4℃毎に質量分析計を用いてサンプル粉末から脱離するH2O分子数を測定し、その測定時、サンプル粉末又はサンプル粉末周辺の温度が50〜300℃の範囲内における各測定温度でのH2O分子数の最大値Aが1018個以下であり、かつ、最大値Aの計測温度から更に200℃の温度範囲内で昇温させた時に計測されるH2O分子数のピーク値Bと前記最大値Aとの比(B/A)が<0.5であるもの、或いは最大値Aが1018個以下であり、かつ、最大値Aの計測温度から更に200℃の温度範囲内で昇温させた時にH2O分子数が減少するのみでピーク値Bが計測されないものを適正な粉末と判定し、その適正と判定された粉末を酸化物超電導線材の製造に用いることを特徴とする酸化物超電導線材用粉末の判定方法。 In the method for determining the oxide superconductor powder or the raw material powder used in the production of the oxide superconducting wire, 1 g of sample powder is used to measure the number of H 2 O molecules absorbed and occluded in the powder. H 2 O that is heated from room temperature at a rate of temperature increase of 20 ° C./min in a high vacuum state of 10 −6 Pa or higher and desorbed from the sample powder at every 4 ° C. using a mass spectrometer. The number of molecules is measured, and at the time of measurement, the maximum value A of the number of H 2 O molecules at each measurement temperature in the temperature range of 50 to 300 ° C. of the sample powder or the sample powder is 10 18 or less, and The ratio (B / A) between the peak value B of the number of H 2 O molecules measured when the temperature is further raised within the temperature range of 200 ° C. from the measured temperature of the maximum value A and the maximum value A is <0. 5 or a maximum value A of 10 18 or less, and When the temperature is further increased within the temperature range of 200 ° C from the maximum temperature A, it is determined that the number of H 2 O molecules only decreases and the peak value B is not measured is an appropriate powder. A method for determining a powder for an oxide superconducting wire, wherein the powder is used for manufacturing an oxide superconducting wire.
JP2006283874A 2006-10-18 2006-10-18 Manufacturing method of oxide superconductive wire rod, and judgement method of powder for oxide superconductive wire rod Pending JP2008103155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283874A JP2008103155A (en) 2006-10-18 2006-10-18 Manufacturing method of oxide superconductive wire rod, and judgement method of powder for oxide superconductive wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283874A JP2008103155A (en) 2006-10-18 2006-10-18 Manufacturing method of oxide superconductive wire rod, and judgement method of powder for oxide superconductive wire rod

Publications (1)

Publication Number Publication Date
JP2008103155A true JP2008103155A (en) 2008-05-01

Family

ID=39437339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283874A Pending JP2008103155A (en) 2006-10-18 2006-10-18 Manufacturing method of oxide superconductive wire rod, and judgement method of powder for oxide superconductive wire rod

Country Status (1)

Country Link
JP (1) JP2008103155A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016914A1 (en) 2008-04-11 2010-01-28 Yazaki Corp. Waterproof plug and method of making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016914A1 (en) 2008-04-11 2010-01-28 Yazaki Corp. Waterproof plug and method of making the same

Similar Documents

Publication Publication Date Title
JP2008091136A (en) Nbti based superconductive wire
Lu et al. Critical current scaling laws for advanced Nb3Sn superconducting strands for fusion applications with six free parameters
JP4527399B2 (en) Method for manufacturing MgB2-based superconducting wire including heat treatment
US20090176650A1 (en) Internal diffusion process nb3sn superconducting wire
JP2008103155A (en) Manufacturing method of oxide superconductive wire rod, and judgement method of powder for oxide superconductive wire rod
Hasegawa et al. 12 kA HTS Rutherford cable
CA2542728A1 (en) Method of manufacturing superconducting wire
TW200834608A (en) An oxide super conducting material and its production method, and superconducting wire using this oxide superconducting material and superconducting apparatus
Kovác et al. Bending of Bi (2223)-Ag tapes at 77 and 300 K
CN101872661A (en) Method for preparing naphthalene-doped MgB2 superconductive single-core wire
CN111540534B (en) Superconducting wire and preparation method thereof
CA2542829A1 (en) Method for manufacturing superconducting wire
JP5356132B2 (en) Superconducting wire
Schooley et al. Preparation and calibration of the NBS SRM767: A superconductive temperature fixed point device
Liu et al. Nb3Sn strand verification for ITER TF conductors of CNDA
CN110600191B (en) Iron-based superconducting multi-core wire and preparation method thereof
JPH05266726A (en) Oxide superconducting wire
Critchlow et al. Preparation and properties of a multifilamentary V3Ga composite
JP2004296156A (en) MANUFACTURING METHOD OF MgB2 SUPERCONDUCTING WIRE
JP2003031057A (en) MANUFACTURING METHOD OF MgB2 SUPERCONDUCTING WIRE
JP2005141968A (en) Compound superconducting wire material and its manufacturing method
JP4595813B2 (en) Oxide superconducting wire, manufacturing method thereof and superconducting equipment
JP2871907B2 (en) Method of manufacturing flexible superconducting tape
JP2582290B2 (en) Indium thin film RTD
Djurek et al. Apparatus for annealing high-TC superconductors in flowing oxygen