JP2004296156A - MANUFACTURING METHOD OF MgB2 SUPERCONDUCTING WIRE - Google Patents

MANUFACTURING METHOD OF MgB2 SUPERCONDUCTING WIRE Download PDF

Info

Publication number
JP2004296156A
JP2004296156A JP2003084172A JP2003084172A JP2004296156A JP 2004296156 A JP2004296156 A JP 2004296156A JP 2003084172 A JP2003084172 A JP 2003084172A JP 2003084172 A JP2003084172 A JP 2003084172A JP 2004296156 A JP2004296156 A JP 2004296156A
Authority
JP
Japan
Prior art keywords
powder
mgb
superconducting wire
mixture
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003084172A
Other languages
Japanese (ja)
Other versions
JP3876317B2 (en
Inventor
Hiroaki Kumakura
浩明 熊倉
Hiroki Fujii
宏樹 藤井
Akiyoshi Matsumoto
明善 松本
Hitoshi Kitaguchi
仁 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003084172A priority Critical patent/JP3876317B2/en
Publication of JP2004296156A publication Critical patent/JP2004296156A/en
Application granted granted Critical
Publication of JP3876317B2 publication Critical patent/JP3876317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve critical current density, in a MgB<SB>2</SB>superconducting wire. <P>SOLUTION: This manufacturing method is used for manufacturing the MgB<SB>2</SB>superconducting wire by filling a metal tube with a mixture of Mg powder and B powder, by forming it into a tape-like or wire-like shape by cold-working it, and thereafter by heat-treating it. One or more kinds of compound powder selected from ZrSi<SB>2</SB>, ZrB<SB>2</SB>, WSi<SB>2</SB>, WB, WB<SB>2</SB>and MoB are added to the mixture of Mg powder and B powder. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この出願の発明は、MgB超伝導線材の製造方法に関するものである。さらに詳しくは、この出願の発明は、臨界電流密度の向上を図ることのできるMgB超伝導線材の製造方法に関するものである。
【0002】
【従来の技術とその課題】
MgB超伝導体は金属系超伝導体の中で最も高い臨界温度T=39Kを示す他、軽量、安価であるなど、実用上、数多くの利点を兼ね備えている。このような利点から、冷却コストが抑えられる20K程度の温度域での使用や低磁界用の実用材料であるNb−Ti超伝導線材の代替材など、各種の検討が行われている。
【0003】
MgB超伝導線材の製造方法としては、金属管内に原料粉末を詰めて加工・熱処理する、いわゆるパウダー・イン・チューブ法が主流である。だが、これまでに得られているMgB超伝導線材の臨界電流密度(J)は実用レベルに達せず、その改善が急務である。
【0004】
そこで、たとえば、Mg粉末とB粉末の混合体にSiCを添加してMgB超伝導線材の臨界電流密度を向上させる試みがなされている(たとえば、非特許文献1参照)。
【0005】
この出願の発明は、以上のとおりの事情に鑑みてなされたものであり、臨界電流密度の向上を図ることのできるMgB超伝導線材の製造方法を提供することを解決すべき課題としている。
【0006】
【非特許文献1】
S.X.Dou外,Enhancement of the critical current density and flux pinning of MgB superconductor by nanoparticle SiC doping,アプライド・フィジックス・レターズ(Applied Physics Letters),2002年,第81巻,第18号,p.3419−3421
【0007】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、Mg粉末とB粉末の混合体又はMgH粉末とB粉末の混合体を金属管に充填し、冷間加工によりテープ若しくはワイヤー状にした後、熱処理してMgB超伝導線材を製造するMgB超伝導線材の製造方法において、Mg粉末とB粉末の混合体又はMgH粉末とB粉末の混合体にZrSi、ZrB、WSi、WB、WB及びMoBから選択される一種若しくは二種以上の化合物粉末を添加することを特徴とするMgB超伝導線材の製造方法(請求項1)を提供する。
【0008】
またこの出願の発明は、金属管に充填する際の化合物粉末の濃度を、熱処理により生成するMgBに対して1〜25モル%とすること(請求項2)を一態様として提供する。
【0009】
以下、実施例を示しつつこの出願の発明のMgB超伝導線材の製造方法についてさらに詳しく説明する。
【0010】
【発明の実施の形態】
この出願の発明のMgB超伝導線材の製造方法は、主流であるパウダー・イン・チューブ法にならっている。すなわち、Mg粉末とB粉末の混合体又はMgH粉末とB粉末の混合体を金属管に充填し、冷間加工によりテープ若しくはワイヤー状にした後、熱処理するという手法である。その上で、この出願の発明のMgB超伝導線材の製造方法では、Mg粉末とB粉末の混合体にZrSi、ZrB、WSi、WB、WB及びMoBから選択される一種若しくは二種以上の化合物粉末を添加し、これら化合物粉末の添加によりMgB超伝導線材の臨界電流密度(J)を向上させる。製造されるMgB超伝導線材の臨界電流密度(J)は、以上の化合物粉末が無添加の場合の2〜3.5倍となる。
【0011】
ZrSi、ZrB、WSi、WB、WB及びMoBから選択される一種若しくは二種以上の化合物粉末については、金属管に充填する際の濃度を、熱処理により生成するMgBに対して1〜25モル%とすることが好ましい。1モル%未満では、臨界電流密度があまり向上せず、25モル%を超えると、MgBの超伝導臨界温度(T)に影響を及ぼし、Tが低下し、その結果、臨界電流密度の低下が起こる。
【0012】
金属管の材質については特に制限はなく、パウダー・イン・チューブ法に採用されている鉄、ステンレス、銅、銅−ニッケル合金等を適宜選択することができる。
【0013】
【実施例】
外径6mm、内径4mmの純鉄の管に、Mg、B、そしてZrSi、WSi、ZrBの各化合物粉末を混合して充填し、冷間でテープ状に加工した。ZrSi、WSi及びZrBの添加量は、後に生成されるMgBに対して0〜30モル%とした。添加したZrSi、WSi及びZrBの粉末の粒径は2〜7μmであった。作製されたテープから短尺テープを切り出し、アルゴン雰囲気下600℃で1時間の熱処理を行った。そして、熱処理後、鉄シースを取り除き、微細組織をSEM並びにX線回折により調べた。また、超伝導遷移温度(T)をSQUIDにより測定し、臨界電流密度(J)−磁界(B)特性を抵抗法により測定した。
【0014】
SEM観察の結果、上記化合物粉末が無添加の試料、添加した試料ともにMgBの粒径は〜0.2μmであった。EDX分析の結果、化合物粉末を添加したテープには、MgB粒内にW、Si、Zrが検出された。T(onset)は、無添加試料で35.7Kであり、添加試料で0.5Kの低下にとどまった。
【0015】
図1は、ZrSi、WSi、ZrBの各化合物粉末を5モル%添加して作製したMgBテープの、4.2Kにおける臨界電流密度(J)の外部磁場(B)依存性を無添加のMgBテープと比較して示したグラフである。
【0016】
外部磁場は、テープ面に平行にかけた。
【0017】
図1から確認されるように、上記化合物粉末の添加によりJが向上し、中ではZrSiの添加による効果が大きい。
【0018】
なお、実施例において、ZrSi、WSi、ZrBの各化合物粉末の添加量が1モル%未満の場合、Jの向上はあまり望めず、25モル%を超えると、Tが低下し、これにともないJも低下した。
【0019】
また、ZrSi、WSi、ZrBに替えてWB、WB、MoBの各化合物粉末を添加してMgBテープを同様に作製したところ、ZrSi、WSi、ZrBの各化合物粉末の添加の場合と同様にJの向上が確認された。
【0020】
もちろん、この出願の発明は、以上の実施形態によって限定されるものではない。金属管の材質、大きさ、冷間加工の条件等の細部については様々な態様が可能であることはいうまでもない。
【0021】
【発明の効果】
以上詳しく説明した通り、この出願の発明によって、MgB超伝導線材の臨界電流密度の向上が図られる。MgB超伝導線材の実用化に有効となる。
【図面の簡単な説明】
【図1】ZrSi、WSi、ZrBの各化合物粉末を5モル%添加して作製したMgBテープの、4.2Kにおける臨界電流密度(J)の外部磁場(B)依存性を無添加のMgBテープと比較して示したグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a method for manufacturing a MgB 2 superconducting wire. More specifically, the invention of this application relates to a method for producing a MgB 2 superconducting wire capable of improving the critical current density.
[0002]
[Prior art and its problems]
The MgB 2 superconductor has a number of practical advantages such as being lightest and inexpensive in addition to exhibiting the highest critical temperature T c = 39 K among metal-based superconductors. Due to such advantages, various studies have been made, such as use in a temperature range of about 20K where the cooling cost is suppressed, and a substitute for an Nb-Ti superconducting wire which is a practical material for a low magnetic field.
[0003]
As a method for producing the MgB 2 superconducting wire, a so-called powder-in-tube method, which is a method in which a raw material powder is packed in a metal tube and processed and heat treated, is mainly used. However, this critical current density of the MgB 2 superconducting wire is obtained to (J c) does not reach a practical level, it is urgent improvement.
[0004]
Thus, for example, an attempt has been made to improve the critical current density of a MgB 2 superconducting wire by adding SiC to a mixture of Mg powder and B powder (for example, see Non-Patent Document 1).
[0005]
The invention of this application has been made in view of the above circumstances, and has as an object to solve the problem of providing a method of manufacturing a MgB 2 superconducting wire capable of improving the critical current density.
[0006]
[Non-patent document 1]
S. X. Dou et al., Enhancement of the critical current density and flux pinning of MgB 2 superconductor by nanoparticulates, Sci., Ltd., 81st. 3419-3421
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the invention of this application fills a metal tube with a mixture of Mg powder and B powder or a mixture of MgH 2 powder and B powder, and forms a tape or wire by cold working. after, in the manufacturing method of the MgB 2 superconducting wire to produce a MgB 2 superconducting wire was heat-treated, ZrSi 2 to a mixture of mixture or MgH 2 powder and B powder Mg powder and B powder, ZrB 2, WSi 2 , WB, to provide a method of manufacturing a MgB 2 superconducting wire, characterized by the addition of one or two or more compound powder is selected from the WB 2 and MoB (claim 1).
[0008]
The invention of this application, the concentration of the compound powder when filling the metal tube, provided as one embodiment be 1-25 mol% with respect to MgB 2 a (claim 2) produced by heat treatment.
[0009]
Hereinafter, the manufacturing method of the MgB 2 superconducting wire of the present invention will be described in more detail with reference to examples.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The manufacturing method of the MgB 2 superconducting wire of the invention of this application follows the mainstream powder-in-tube method. That is, a method in which a mixture of Mg powder and B powder or a mixture of MgH 2 powder and B powder is filled in a metal tube, formed into a tape or wire by cold working, and then heat-treated. In addition, in the method for manufacturing a MgB 2 superconducting wire of the invention of the present application, the mixture of Mg powder and B powder contains one or two selected from ZrSi 2 , ZrB 2 , WSi 2 , WB, WB 2 and MoB. It was added compound powder above species, improving the critical current density of the MgB 2 superconducting wire (J c) by the addition of these compounds powders. The critical current density of the MgB 2 superconducting wire to be manufactured (J c), the above compound powder is 2 to 3.5 times the case of no addition.
[0011]
With respect to one or more compound powders selected from ZrSi 2 , ZrB 2 , WSi 2 , WB, WB 2 and MoB, the concentration at the time of filling the metal tube is set to 1 with respect to MgB 2 generated by the heat treatment. Preferably, it is set to 〜25 mol%. If it is less than 1 mol%, the critical current density does not improve much, and if it exceeds 25 mol%, it affects the superconducting critical temperature (T c ) of MgB 2 and lowers T c. Decrease.
[0012]
There is no particular limitation on the material of the metal tube, and iron, stainless steel, copper, copper-nickel alloy, and the like used in the powder-in-tube method can be appropriately selected.
[0013]
【Example】
A pure iron tube having an outer diameter of 6 mm and an inner diameter of 4 mm was mixed with Mg, B, and compound powders of ZrSi 2 , WSi 2 , and ZrB 2 , filled, and processed into a tape shape in a cold state. ZrSi 2 , WSi 2, and ZrB 2 were added in an amount of 0 to 30 mol% based on MgB 2 generated later. The particle size of the added powder of ZrSi 2 , WSi 2 and ZrB 2 was 2 to 7 μm. A short tape was cut out from the produced tape and heat-treated at 600 ° C. for 1 hour in an argon atmosphere. After the heat treatment, the iron sheath was removed, and the microstructure was examined by SEM and X-ray diffraction. Further, the superconducting transition temperature (T c) measured by SQUID, the critical current density (J c) - and the magnetic field (B) characteristic measured by resistance method.
[0014]
As a result of SEM observation, the particle size of MgB 2 was 〜0.2 μm in both the sample to which no compound powder was added and the sample to which the compound powder was added. As a result of EDX analysis, W, Si, and Zr were detected in two MgB grains in the tape to which the compound powder was added. T c (onset) was 35.7K in the non-added sample, and decreased only by 0.5K in the added sample.
[0015]
FIG. 1 shows the dependence of the critical current density (J c ) at 4.2 K on the external magnetic field (B) of an MgB 2 tape prepared by adding 5 mol% of each compound powder of ZrSi 2 , WSi 2 and ZrB 2. it is a graph showing, in comparison with no addition MgB 2 tapes.
[0016]
An external magnetic field was applied parallel to the tape plane.
[0017]
As confirmed from FIG. 1, J c is improved by the addition of the compound powder, a large effect by the addition of ZrSi 2 is in.
[0018]
Incidentally, in the embodiment, when the addition amount of each compound powder of ZrSi 2, WSi 2, ZrB 2 is less than 1 mol%, improvement of J c is not expected so much, and when it exceeds 25 mol%, T c decreases , Jc also decreased.
[0019]
Also, WB instead of ZrSi 2, WSi 2, ZrB 2 , was added to each compound powder of WB 2, MoB to prepare a MgB 2 tapes Similarly, ZrSi 2, WSi 2, of ZrB 2 in the compound powder improved if similar to the J c of addition was confirmed.
[0020]
Of course, the invention of this application is not limited by the above embodiments. It goes without saying that various aspects are possible for details such as the material and size of the metal tube and the conditions for cold working.
[0021]
【The invention's effect】
As described above in detail, the critical current density of the MgB 2 superconducting wire is improved by the invention of this application. This is effective for putting the MgB 2 superconducting wire into practical use.
[Brief description of the drawings]
FIG. 1 shows the dependence of the critical current density (J c ) at 4.2 K on the external magnetic field (B) of an MgB 2 tape prepared by adding 5 mol% of each compound powder of ZrSi 2 , WSi 2 and ZrB 2. it is a graph showing, in comparison with no addition MgB 2 tapes.

Claims (2)

Mg粉末とB粉末の混合体又はMgH粉末とB粉末の混合体を金属管に充填し、冷間加工によりテープ若しくはワイヤー状にした後、熱処理してMgB超伝導線材を製造するMgB超伝導線材の製造方法において、Mg粉末とB粉末の混合体又はMgH粉末とB粉末の混合体にZrSi、ZrB、WSi、WB、WB及びMoBから選択される一種若しくは二種以上の化合物粉末を添加することを特徴とするMgB超伝導線材の製造方法。Mg powder and B powder mixture or MgH 2 powder and B powder mixture of the filling in the metal tube, after the tape or wire form by cold working, MgB 2 for producing a MgB 2 superconducting wire was heat-treated In the method for producing a superconducting wire, one or two selected from ZrSi 2 , ZrB 2 , WSi 2 , WB, WB 2 and MoB are added to a mixture of Mg powder and B powder or a mixture of MgH 2 powder and B powder. A method for producing a MgB 2 superconducting wire, comprising adding the above compound powder. 金属管に充填する際の化合物粉末の濃度を、熱処理により生成するMgBに対して1〜25モル%とする請求項1記載のMgB超伝導線材の製造方法。The concentration of the compound powder when filling the metal tube production method of the MgB 2 superconducting wire according to claim 1 wherein 1 to 25 mol% with respect to MgB 2 produced by thermal treatment.
JP2003084172A 2003-03-26 2003-03-26 Method for manufacturing MgB2 superconducting wire Expired - Lifetime JP3876317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084172A JP3876317B2 (en) 2003-03-26 2003-03-26 Method for manufacturing MgB2 superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084172A JP3876317B2 (en) 2003-03-26 2003-03-26 Method for manufacturing MgB2 superconducting wire

Publications (2)

Publication Number Publication Date
JP2004296156A true JP2004296156A (en) 2004-10-21
JP3876317B2 JP3876317B2 (en) 2007-01-31

Family

ID=33399393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084172A Expired - Lifetime JP3876317B2 (en) 2003-03-26 2003-03-26 Method for manufacturing MgB2 superconducting wire

Country Status (1)

Country Link
JP (1) JP3876317B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040825A (en) * 2005-08-03 2007-02-15 Mitsubishi Heavy Ind Ltd Superconductive liquid level gage
JP2007059261A (en) * 2005-08-25 2007-03-08 National Institute For Materials Science Mgb2 superconductor, its wire rod, and manufacturing method of those
JP2007139441A (en) * 2005-11-15 2007-06-07 Kobe Univ Sensor and liquid level meter for measuring liquid level of ultra cold liquefied gas
CN100354986C (en) * 2005-12-28 2007-12-12 西北有色金属研究院 High critical current density MgB2-base super conductor and producing method thereof
WO2018159513A1 (en) * 2017-03-03 2018-09-07 株式会社日立製作所 Superconductor production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040825A (en) * 2005-08-03 2007-02-15 Mitsubishi Heavy Ind Ltd Superconductive liquid level gage
JP2007059261A (en) * 2005-08-25 2007-03-08 National Institute For Materials Science Mgb2 superconductor, its wire rod, and manufacturing method of those
JP2007139441A (en) * 2005-11-15 2007-06-07 Kobe Univ Sensor and liquid level meter for measuring liquid level of ultra cold liquefied gas
CN100354986C (en) * 2005-12-28 2007-12-12 西北有色金属研究院 High critical current density MgB2-base super conductor and producing method thereof
WO2018159513A1 (en) * 2017-03-03 2018-09-07 株式会社日立製作所 Superconductor production method
JP2018145038A (en) * 2017-03-03 2018-09-20 株式会社日立製作所 Manufacturing method of superconductor
US11387017B2 (en) 2017-03-03 2022-07-12 Hitachi, Ltd. Method of producing superconductor

Also Published As

Publication number Publication date
JP3876317B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
Kumakura et al. Superconducting Properties of Diffusion-Processed Multifilamentary ${\rm MgB} _ {2} $ Wires
JP2002222619A (en) Magnesium diboride superconducting wire material
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
Miao et al. Studies of precursor composition effect on Jc in Bi‐2212/Ag wires and tapes
JP2004296156A (en) MANUFACTURING METHOD OF MgB2 SUPERCONDUCTING WIRE
Yang et al. Influence of Strand Design, Boron Type, and Carbon Doping Method on the Transport Properties of Powder-in-Tube $\hbox {MgB} _ {2-{\rm X}}\hbox {C} _ {\rm X} $ Strands
TW200834608A (en) An oxide super conducting material and its production method, and superconducting wire using this oxide superconducting material and superconducting apparatus
JP2008066168A (en) Mgb2 superconducting wire rod and its manufacturing method
Verhoeven et al. The morphology and grain size of Nb 3 Sn filaments in in situ prepared multifilamentary Nb 3 Sn-Cu composite wire
Vignolo et al. Development of ${\hbox {MgB}} _ {2} $ Powders and Study of the Properties and Architecture of Ex-Situ PIT Wires
JP3728504B2 (en) Method for producing MgB2 superconducting wire
JP2007149416A (en) Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
JP4925639B2 (en) RE123 oxide superconductor and manufacturing method thereof
JP5356132B2 (en) Superconducting wire
JP2003297162A (en) METHOD FOR MANUFACTURING Nb3Ga EXTRAFINE MULTI-CORE WIRE ROD
Kario et al. Properties of ${\rm MgB} _ {2} $ Tapes Prepared by Using MA In-Ex Situ Powder
JP4193194B2 (en) Method for producing Nb3Sn superconducting wire
Fujii et al. Improved critical current density property in ex situ processed MgB2 tapes using filling powders with metallic particle addition
Bovone et al. Improved Performances of $\hbox {MgB} _ {2} $ Conductor by Using of Innovative Amorphous and Nano-Structurated Boron
JP3536920B2 (en) Alloy superconductor and method of manufacturing the same
JPH06275146A (en) Composite superconducting wire
JP3692657B2 (en) Oxide superconducting wire
Romano et al. Superconducting Performance of Ex-situ SiC Doped MgB 2 Monofilamentary Tapes
Suenaga Understanding properties and fabrication processes of superconducting Nb3Sn wires
Chaowu et al. Characterizations of A15 Phase Composition and $ T_ {c} $ for Internal-Sn $\hbox {Nb} _ {3}\hbox {Sn} $ Strands

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

R150 Certificate of patent or registration of utility model

Ref document number: 3876317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term