JP2007139441A - Sensor and liquid level meter for measuring liquid level of ultra cold liquefied gas - Google Patents

Sensor and liquid level meter for measuring liquid level of ultra cold liquefied gas Download PDF

Info

Publication number
JP2007139441A
JP2007139441A JP2005329961A JP2005329961A JP2007139441A JP 2007139441 A JP2007139441 A JP 2007139441A JP 2005329961 A JP2005329961 A JP 2005329961A JP 2005329961 A JP2005329961 A JP 2005329961A JP 2007139441 A JP2007139441 A JP 2007139441A
Authority
JP
Japan
Prior art keywords
liquid level
sensor
liquefied gas
ultra
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005329961A
Other languages
Japanese (ja)
Other versions
JP2007139441A5 (en
Inventor
Minoru Takeda
実 武田
Hiroaki Kumakura
浩明 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
National Institute for Materials Science
Original Assignee
Kobe University NUC
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC, National Institute for Materials Science filed Critical Kobe University NUC
Priority to JP2005329961A priority Critical patent/JP2007139441A/en
Publication of JP2007139441A publication Critical patent/JP2007139441A/en
Publication of JP2007139441A5 publication Critical patent/JP2007139441A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor and a liquid level meter for measuring the liquid level of ultra cold liquefied gas high in reliability and precision capable of using for an enlarged storage vessel. <P>SOLUTION: The liquid level measurement sensor 1 for measuring the liquid level of ultra cold liquefied gas is provided with MgB<SB>2</SB>and covering metal, and is a long sized single core wire of 50 cm or more, the resistance of which is 1 Ω/m to 5 Ω/m at the normal temperature, and the heat conductivity is 5 W/(m×K) to 15 W/(m×K). The resin 9 for fixing the sensor 1 for measuring the liquid level in the cylinder 8 is dipped in the liquefied gas in the reserver vessel heated by the current from the power source 3 to the heater part 7, the upper part higher than the liquid level of the sensor 1 is made normal temperature state, the sensor 1 is energized by making flow the current from the DC current source 2, the voltage generated at both the terminals of the sensor 1 is measured by the voltmeter 4, from the voltage data by the operational process device 5, the liquid level is calculated and the position of the liquid level is displayed on the monitor 6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、効率よく測定できる上、深さのある大型容器にも使用できる超低温液化ガス液面測定用センサ及びこれを用いた超低温液化ガス液面測定用液面計に関するものである。   The present invention relates to an ultra-low temperature liquefied gas liquid level measuring sensor which can be measured efficiently and can be used for a large-sized container having a depth, and an ultra-low temperature liquefied gas liquid level measuring liquid level meter using the same.

液体水素や液体ヘリウム、液体ネオンなどの極低温液化ガスは、広く産業界において利用されている。特に最近では、環境に優しいクリーンエネルギー導入の観点から、液体水素が脚光を浴びている。   Cryogenic liquid gases such as liquid hydrogen, liquid helium, and liquid neon are widely used in industry. Particularly recently, liquid hydrogen has attracted attention from the viewpoint of introducing clean energy that is environmentally friendly.

上述のような極低温液化ガスを貯蔵する際、液量の把握及び安全管理の面から貯蔵容器内の液面を計測できる液面センサや液面計が必要であるが、これらついて公知技術がある(例えば、下記特許文献1、2参照)。   When storing the cryogenic liquefied gas as described above, a liquid level sensor and a liquid level gauge capable of measuring the liquid level in the storage container are necessary from the viewpoint of grasping the liquid amount and safety management. Yes (for example, see Patent Documents 1 and 2 below).

特開2000−275085号公報JP 2000-275085 A 特開昭50―127659号公報JP-A-50-127659

最近では、極低温液化ガスの利用量が増加していることから、輸送量や貯蔵量が多くなるように貯蔵容器の大型化が望まれている。しかし、特許文献1、2などの従来の液面センサや液面計は、信頼性や精度が高いものではなく、また、長尺状のものとすることが困難であった。したがって、大型化された貯蔵容器(特に深さのある貯蔵容器)を、液体水素や液体ヘリウム、液体ネオンなどの極低温液化ガスの貯蔵に採用することは困難であった。   Recently, since the usage amount of cryogenic liquefied gas is increasing, it is desired to increase the size of the storage container so as to increase the transport amount and the storage amount. However, conventional liquid level sensors and liquid level gauges such as Patent Documents 1 and 2 are not highly reliable and accurate, and it is difficult to make them long. Therefore, it has been difficult to employ an enlarged storage container (particularly a deep storage container) for storing cryogenic liquefied gas such as liquid hydrogen, liquid helium, or liquid neon.

そこで、本発明の目的は、信頼性や精度が高く、大型化された貯蔵容器にも使用可能な超低温液化ガス液面測定用センサ及び超低温液化ガス液面測定用液面計を提供することである。   Accordingly, an object of the present invention is to provide an ultra-low temperature liquefied gas liquid level measuring sensor and an ultra-low temperature liquefied gas liquid level measuring liquid level meter that are highly reliable and accurate and can be used for an enlarged storage container. is there.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明の超低温液化ガス液面測定用センサは、MgB2を含む長尺状の超伝導体と、前記超伝導体の表面を覆っている被覆金属とを備えている。別の観点から、本発明の超低温液化ガス液面測定用センサは、MgB2を含むコイル状の超伝導体と、前記超伝導体の表面を覆っている被覆金属とを備えているものでもよい。 The ultra-low temperature liquefied gas liquid level measuring sensor of the present invention includes a long superconductor containing MgB 2 and a coated metal covering the surface of the superconductor. From another point of view, the ultra-low temperature liquefied gas liquid level measurement sensor of the present invention may include a coiled superconductor containing MgB 2 and a coated metal covering the surface of the superconductor. .

上記構成により、信頼性や精度が高く、大型化された貯蔵容器にも使用可能な超低温液化ガス液面測定用センサを提供できる。また、コイル状の超低温液化ガス液面測定用センサの場合、実効長さを長くできるため、超伝導体における超伝導状態部分と常電導状態部分との抵抗値の差異をさらに大きくすることができる。その結果として、さらに反応性(精度)に優れた超低温液化ガス液面測定用センサを提供できる。   With the above configuration, it is possible to provide an ultra-low temperature liquefied gas liquid level measuring sensor that has high reliability and accuracy and can be used for an enlarged storage container. In addition, in the case of a coiled ultra-low temperature liquefied gas liquid level measurement sensor, the effective length can be increased, so that the difference in resistance between the superconducting state portion and the normal conducting state portion in the superconductor can be further increased. . As a result, it is possible to provide an ultra-low temperature liquefied gas liquid level measurement sensor that is further excellent in reactivity (accuracy).

本発明の超低温液化ガス液面測定用センサは、常温における抵抗値が1Ω/m〜5Ω/mであることが好ましい。   The sensor for measuring the liquid level of the ultra-low temperature liquefied gas of the present invention preferably has a resistance value at room temperature of 1 Ω / m to 5 Ω / m.

上記構成により、常温の際の抵抗値が1Ω/m〜5Ω/mであるので、電流を流せば容易に加温することができ、超低温液化ガス液面測定用センサを液面測定に使用している際、液面に浸っていない部分を常電導状態にしておくことができる。また、超伝導体における超伝導状態部分と常電導状態部分との抵抗値の差異が大きいので、超低温液化ガス液面測定用センサとしての反応性(精度)を実用に十分なものとできる。さらに、抵抗値が大きすぎないので、液化ガスの気化を許容範囲に抑えた超低温液化ガス液面測定用センサとできる。   With the above configuration, the resistance value at room temperature is 1 Ω / m to 5 Ω / m, so it can be easily heated by passing an electric current, and an ultra-low temperature liquefied gas liquid level measurement sensor is used for liquid level measurement. In this case, the portion not immersed in the liquid surface can be kept in a normal conducting state. Moreover, since the difference in resistance value between the superconducting state portion and the normal conducting state portion in the superconductor is large, the reactivity (accuracy) as the ultra-low temperature liquefied gas liquid level measurement sensor can be made practically sufficient. Furthermore, since the resistance value is not too large, it is possible to provide a sensor for measuring the liquid level of an ultra-low temperature liquefied gas in which the vaporization of the liquefied gas is suppressed within an allowable range.

本発明の超低温液化ガス液面測定用センサは、熱伝導度が5W/(m・K)〜15W/(m・K)であることが好ましい。これにより、実用に十分な加温・冷却性能を有することができ、さらに反応性(精度)に優れた超低温液化ガス液面測定用センサを提供できる。   The ultra-low temperature liquefied gas liquid level measurement sensor of the present invention preferably has a thermal conductivity of 5 W / (m · K) to 15 W / (m · K). As a result, it is possible to provide a sensor for measuring a liquid level of an ultra-low temperature liquefied gas, which can have a heating / cooling performance sufficient for practical use and is excellent in reactivity (accuracy).

本発明の超低温液化ガス液面測定用センサは、長さが50cm以上であることが好ましい。これにより、従来に比べ長いセンサとできるので、容器が深くても複数のセンサを縦につないで距離を得る必要がない。したがって、深さがある容器に対しても用いることができる超低温液化ガス液面計用センサを提供できる。   The ultra-low temperature liquefied gas liquid level measurement sensor of the present invention preferably has a length of 50 cm or more. Thereby, since it is possible to make the sensor longer than before, there is no need to obtain a distance by connecting a plurality of sensors vertically even when the container is deep. Therefore, it is possible to provide a sensor for an ultra-low temperature liquefied gas level gauge that can be used for a container having a depth.

本発明の超低温液化ガス液面測定用センサは、全体の断面の径が0.5mm〜2.0mmの線材であり、前記超伝導体の層が断面積の30%〜60%を占めることが好ましい。これにより、必要な強度及び加温・冷却性能を達成できるとともに、さらに反応性(精度)に優れた超低温液化ガス液面測定用センサを提供できる。   The ultra-low temperature liquefied gas liquid level measuring sensor of the present invention is a wire having an overall cross-sectional diameter of 0.5 mm to 2.0 mm, and the superconductor layer may occupy 30% to 60% of the cross-sectional area. preferable. As a result, it is possible to provide a sensor for measuring the liquid level of an ultra-low temperature liquefied gas, which can achieve the required strength and heating / cooling performance and is further excellent in reactivity (accuracy).

本発明の超低温液化ガス液面測定用センサは、前記被覆金属がNi−Cu合金であることが好ましい。これにより、確実に反応性(精度)に優れた超低温液化ガス液面測定用センサを提供できる。   In the ultra-low temperature liquefied gas liquid level measuring sensor of the present invention, the coating metal is preferably a Ni-Cu alloy. As a result, it is possible to provide an ultra-low temperature liquefied gas level sensor having excellent reactivity (accuracy).

本発明の超低温液化ガス液面測定用センサは、前記被覆金属におけるNiとCuとの比が3:7〜4:6であることが好ましい。この範囲の比率であれば、特に反応性(精度)に優れた超低温液化ガス液面測定用センサを提供できる。   In the ultra-low temperature liquefied gas liquid level measurement sensor of the present invention, the ratio of Ni and Cu in the coated metal is preferably 3: 7 to 4: 6. If it is the ratio of this range, the sensor for ultra-low-temperature liquefied gas liquid level measurement excellent in reactivity (accuracy) especially can be provided.

本発明の超低温液化ガス液面測定用センサは、全体がU字型となるように形成されたものであることが好ましい。   The ultra-low temperature liquefied gas level sensor of the present invention is preferably formed so as to be U-shaped as a whole.

上記構成により、超低温液化ガス液面測定用センサの実効長さを長くできるため、超伝導体における超伝導状態部分と常電導状態部分との抵抗値の差異をさらに大きくすることができる。その結果として、さらに反応性(精度)に優れた超低温液化ガス液面測定用センサを提供できる。また、電極が取りやすくなるため、外部の電気回路などとの接続が容易となる。   With the above configuration, since the effective length of the ultra-low temperature liquefied gas liquid level measurement sensor can be increased, the difference in resistance value between the superconducting state portion and the normal conducting state portion in the superconductor can be further increased. As a result, it is possible to provide an ultra-low temperature liquefied gas liquid level measurement sensor that is further excellent in reactivity (accuracy). Moreover, since it becomes easy to take an electrode, the connection with an external electric circuit etc. becomes easy.

本発明の超低温液化ガス液面測定用液面計は、上述の前記超低温液化ガス液面測定用センサと、前記超低温液化ガス液面測定用センサを加熱するヒーターと、前記超低温液化ガス液面測定用センサに電流を流す電源と、前記超低温液化ガス液面測定用センサにおける電圧を測定する電圧計とを備えている。   The ultra-low temperature liquefied gas liquid level measurement level gauge of the present invention includes the above-mentioned ultra-low temperature liquefied gas liquid level measurement sensor, a heater for heating the ultra-low temperature liquefied gas liquid level measurement sensor, and the ultra-low temperature liquefied gas liquid level measurement. And a voltmeter for measuring a voltage in the ultra-low temperature liquefied gas liquid level measuring sensor.

上記構成により、超低温液化ガス液面測定用センサを加熱することができ、超低温液化ガスに一部を浸漬した際、浸漬部分と浸漬されていない部分とで温度の差異による抵抗値の差異をつけることができる。したがって、このとき、電流を超低温液化ガス液面測定用センサに流し、その電圧を電圧計で測定することで、超低温液化ガス液面測定用センサの抵抗値の変化を検知できるので、超低温液化ガスの液面位置を確実に検知することができる。   With the above configuration, it is possible to heat the ultra-low temperature liquefied gas liquid level measurement sensor, and when a part is immersed in the ultra-low temperature liquefied gas, a difference in resistance value is created depending on the temperature difference between the immersed part and the non-immersed part. be able to. Therefore, at this time, a change in resistance value of the ultra-low temperature liquefied gas liquid level measurement sensor can be detected by flowing an electric current through the ultra-low temperature liquefied gas liquid level measurement sensor and measuring the voltage with a voltmeter. The liquid level position can be reliably detected.

以下に、本発明の第1実施形態に係る超低温液化ガス液面測定用液面計について説明する。図1は本発明の第1実施形態に係る超低温液化ガス液面測定用液面計の概略構成図である。   Hereinafter, the liquid level gauge for measuring the liquid level of the ultra-low temperature liquefied gas according to the first embodiment of the present invention will be described. FIG. 1 is a schematic configuration diagram of a liquid level gauge for liquid level measurement of an ultra-low temperature liquefied gas according to the first embodiment of the present invention.

図1に示すように、超低温液化ガス液面測定用液面計10(以下、液面計10とする)は、超低温液化ガス液面測定用センサ1(以下、センサ1とする)と、直流電流電源2と、ヒーター電源3と、電圧計4と、演算処理装置5と、モニター6と、ヒーター部7と、筒8と、固定用樹脂9とを備えている。なお、図1では、貯蔵容器(図示せず)内の超低温液化ガスに筒8が途中まで浸かっている状態を示している。   As shown in FIG. 1, an ultra-low temperature liquefied gas liquid level measuring liquid level gauge 10 (hereinafter referred to as a liquid level gauge 10) includes an ultra-low temperature liquefied gas liquid level measuring sensor 1 (hereinafter referred to as sensor 1) and a direct current. A current power source 2, a heater power source 3, a voltmeter 4, an arithmetic processing unit 5, a monitor 6, a heater unit 7, a cylinder 8, and a fixing resin 9 are provided. In addition, in FIG. 1, the cylinder 8 has shown the state immersed in the ultra-low temperature liquefied gas in a storage container (not shown) to the middle.

センサ1は、金属被覆された超伝導体MgB2からなる長さが50cm以上の長尺状単芯線であって、常温の際の抵抗値が1Ω/m〜5Ω/m、熱伝導度が5W/(m・K)〜15W/(m・K)のものである。また、センサ1は、全体の断面の径が0.5mm〜2.0mmの線材であり、MgB2の層が断面積の30%〜60%を占めている。 The sensor 1 is a long single-core wire made of a metal-coated superconductor MgB 2 having a length of 50 cm or more, a resistance value at room temperature of 1 Ω / m to 5 Ω / m, and a thermal conductivity of 5 W. / (M · K) to 15 W / (m · K). The sensor 1 is a wire having an overall cross-sectional diameter of 0.5 mm to 2.0 mm, and the MgB 2 layer occupies 30% to 60% of the cross-sectional area.

上述のセンサ1は、いわゆるパウダー・イン・チューブ(powder−in−tube:PIT)法で作製することができる。このPIT法でも、MgとBとの混合粉末を被覆層となるシース材(金属筒)に詰めて加工し、熱処理によってMgB2を生成する方法(in−situ法)と、MgB2の化合物粉末をシース材に直接詰めて加工する方法(ex−situ法)とがあるが、どちらの方法を用いてもよい。 The sensor 1 described above can be manufactured by a so-called powder-in-tube (PIT) method. Also in this PIT method, a mixed powder of Mg and B is packed into a sheath material (metal tube) to be a coating layer and processed to produce MgB 2 by heat treatment (in-situ method), and a compound powder of MgB 2 However, either method may be used.

なお、MgB2の被覆層となるシース材(金属筒)としては、Ni−Cu合金、Cu、Fe、ステンレス、Nbなどが挙げられる。Ni−Cu合金を採用する場合には、NiとCuとの比が3:7〜4:6に調整したものを使用する。これにより、確実に反応性(精度)に優れたセンサ1とできる。 As the sheath material comprising the MgB 2 coating layer (metal tube), Ni-Cu alloy, Cu, Fe, stainless steel, Nb and the like. In the case of adopting a Ni-Cu alloy, one having a ratio of Ni and Cu adjusted to 3: 7 to 4: 6 is used. Thereby, the sensor 1 having excellent reactivity (accuracy) can be obtained.

直流電流電源2は、センサ1の一端と他端とに電気的に接続されており、センサ1に電流を流すためのものである。   The direct current power source 2 is electrically connected to one end and the other end of the sensor 1, and is used to pass a current through the sensor 1.

ヒーター電源3は、高電気抵抗体などであるヒーター部7の両端と電気的に接続されており、ヒーター部7に電流を流すことによって抵抗熱を発生させ、センサ1の上部を加温できる。   The heater power supply 3 is electrically connected to both ends of the heater unit 7 such as a high electric resistance body, and can generate resistance heat by flowing current through the heater unit 7 to heat the upper part of the sensor 1.

電圧計4は、図示しない直流アンプを備え、センサ1の一端と他端とに電気的に接続されており、センサ1の電圧を計測するものである。   The voltmeter 4 includes a direct-current amplifier (not shown), is electrically connected to one end and the other end of the sensor 1, and measures the voltage of the sensor 1.

演算処理装置5は、電圧計4で計測された電圧値からセンサ1の抵抗値を演算するものである。その演算結果はモニター6に表示される。   The arithmetic processing unit 5 calculates the resistance value of the sensor 1 from the voltage value measured by the voltmeter 4. The calculation result is displayed on the monitor 6.

筒8は、センサ1を内部に収納して保護するものである。センサ1は、筒8に固定用樹脂9によって固定されている。固定用樹脂9としては、エポキシ樹脂などが挙げられる。   The cylinder 8 houses and protects the sensor 1 inside. The sensor 1 is fixed to the cylinder 8 with a fixing resin 9. Examples of the fixing resin 9 include an epoxy resin.

なお、図示しないが、貯蔵容器において、センサ1と各機器とを接続する配線の取出し口は、貯蔵容器の内部圧力を上げた状態でも使用することができるように、配線が貫設されているハーメチックシールやO−リングを用いた耐圧型のものとなっている。また、配線に水素が接触することによって引火して燃焼・爆発することを防止するために、配線には絶縁材料を被覆している。この絶縁材料の例としては、センサ1の極低温部分では繊維強化プラスチック、室温部分では塩化ビニル樹脂が挙げられる。   Although not shown, in the storage container, the wiring outlet connecting the sensor 1 and each device is provided with a wiring so that it can be used even when the internal pressure of the storage container is increased. It is a pressure-resistant type using a hermetic seal or an O-ring. In addition, the wiring is covered with an insulating material in order to prevent it from igniting and burning / explosion due to contact of hydrogen with the wiring. Examples of this insulating material include fiber reinforced plastic in the cryogenic temperature portion of the sensor 1 and vinyl chloride resin in the room temperature portion.

次に、液面計10の動作について説明する。まず、センサ1が内部に固定されている筒8を貯蔵容器内の液化ガスに浸し、ヒーター電源3からヒーター部7に電流を流して加温し、センサ1の液面より上の部分を常温状態としておく。次に、直流電流電源2からセンサ1に電流を流し、電圧計4でセンサ1の両端に発生する電圧を測定し、電圧値データを演算処理装置5に保存する。そして、測定データに基づいて定められたアルゴリズム(例えば、予め実験データから導いておいた電圧値と液面の位置との関係式による)にしたがって、演算処理装置5により電圧値データから液面位置を算出し、モニター6に液面位置を表示する。   Next, the operation of the liquid level gauge 10 will be described. First, the cylinder 8 in which the sensor 1 is fixed is immersed in the liquefied gas in the storage container, and a current is passed from the heater power supply 3 to the heater section 7 to heat the sensor. Leave it in a state. Next, a current is passed from the direct current power source 2 to the sensor 1, the voltage generated at both ends of the sensor 1 is measured by the voltmeter 4, and the voltage value data is stored in the arithmetic processing unit 5. Then, according to an algorithm determined based on the measurement data (for example, according to a relational expression between the voltage value and the liquid level position previously derived from the experimental data), the arithmetic processing unit 5 calculates the liquid level position from the voltage value data. And the liquid level position is displayed on the monitor 6.

上記構成の液面計10によれば、信頼性や精度が高く、大型化された貯蔵容器にも使用可能である。また、センサ1の常温の際の抵抗値が1Ω/m〜5Ω/mであるので、電流を流せば容易に加温することができ、センサ1を液面測定に使用している際、液面に浸っていない部分を常電導状態にしておくことができる。また、超伝導体における超伝導状態部分と常電導状態部分との抵抗値の差異が大きいので、センサ1としての反応性(精度)を実用に十分なものとした液面計10となる。したがって、直流電流電源2から電流をセンサ1に流し、その電圧を電圧計4で測定することで、センサ1の抵抗値の変化を検知できるので、これから演算を行えば、超低温液化ガスの液面位置を確実に検知することができる。   According to the level gauge 10 having the above-described configuration, the reliability and accuracy are high, and it can be used for an enlarged storage container. Moreover, since the resistance value at the normal temperature of the sensor 1 is 1 Ω / m to 5 Ω / m, it can be easily heated by passing an electric current, and when the sensor 1 is used for liquid level measurement, A portion not immersed in the surface can be kept in a normal conducting state. Further, since the difference in resistance value between the superconducting state portion and the normal conducting state portion in the superconductor is large, the liquid level gauge 10 having the reactivity (accuracy) as the sensor 1 sufficient for practical use is obtained. Therefore, since a change in the resistance value of the sensor 1 can be detected by passing a current from the DC current power source 2 to the sensor 1 and measuring the voltage with the voltmeter 4, the liquid level of the ultra-low temperature liquefied gas can be calculated from now on. The position can be reliably detected.

また、センサ1の熱伝導度が5W/(m・K)〜15W/(m・K)であるので、実用に十分な加温・冷却性能を有することができ、さらに反応性(精度)に優れた液面計10を提供できる。   In addition, since the thermal conductivity of the sensor 1 is 5 W / (m · K) to 15 W / (m · K), it can have a heating / cooling performance sufficient for practical use, and further has a high reactivity (accuracy). An excellent liquid level gauge 10 can be provided.

さらに、センサ1が長さが50cm以上であるので、従来に比べ長いセンサとでき、容器が深くても複数のセンサを縦につないで距離を得る必要がない。したがって、深さがある容器に対しても用いることができる液面計10を提供できる。   Furthermore, since the sensor 1 has a length of 50 cm or more, the sensor 1 can be made longer than the conventional one, and it is not necessary to obtain a distance by connecting a plurality of sensors vertically even when the container is deep. Therefore, the level gauge 10 that can be used for a container having a depth can be provided.

センサ1が、全体の断面の径が0.5mm〜2.0mmの線材であり、MgB2の層が断面積の30%〜60%を占めるものであるので、必要な強度及び加温・冷却性能を達成できるとともに、さらに反応性(精度)に優れた液面計10を提供できる。 The sensor 1 is a wire having an overall cross-sectional diameter of 0.5 mm to 2.0 mm, and the MgB 2 layer occupies 30% to 60% of the cross-sectional area. It is possible to provide the level gauge 10 that can achieve performance and is further excellent in reactivity (accuracy).

次に、本発明の第1実施形態の変形例に係る超低温液化ガス液面測定用液面計について説明する。図2は、本発明の第1実施形態の変形例に係る超低温液化ガス液面測定用液面計に用いる超低温液化ガス液面測定用センサを示す図である。なお、上記第1実施形態と同様の部位については説明を省略する。   Next, a liquid level gauge for measuring an ultra-low temperature liquefied gas liquid level according to a modification of the first embodiment of the present invention will be described. FIG. 2 is a diagram showing an ultra-low temperature liquefied gas liquid level measuring sensor used in the ultra-low temperature liquefied gas liquid level measuring liquid level meter according to a modification of the first embodiment of the present invention. Note that description of the same parts as those in the first embodiment is omitted.

第1実施形態の変形例に係る超低温液化ガス液面測定用液面計は、センサ1の代わりにコイル状に巻かれた超低温液化ガス液面測定用センサ1a(以下、センサ1aとする)を用いている点で、第1実施形態の液面計10と異なっている。   An ultra-low temperature liquefied gas liquid level measuring liquid level meter according to a modification of the first embodiment includes an ultra-low temperature liquefied gas liquid level measuring sensor 1a (hereinafter referred to as sensor 1a) wound in a coil shape instead of the sensor 1. It is different from the liquid level gauge 10 of the first embodiment in that it is used.

本変形例によれば、第1実施形態の液面計10と同様の作用・効果を奏することができる。また、センサ1aの実効長さを長くできるため、MgB2層における超伝導状態部分と常電導状態部分との抵抗値の差異をさらに大きくすることができる。その結果として、さらに反応性(精度)に優れたセンサ1aを有する超低温液化ガス液面測定用液面計を提供できる。 According to this modification, the same operation and effect as the liquid level gauge 10 of the first embodiment can be obtained. Further, since the effective length of the sensor 1a can be increased, the difference in resistance value between the superconducting state portion and the normal conducting state portion in the MgB 2 layer can be further increased. As a result, it is possible to provide a liquid level gauge for measuring a liquid level of an ultra-low temperature liquefied gas having a sensor 1a having further excellent reactivity (accuracy).

次に、本発明の第2実施形態に係る超低温液化ガス液面測定用液面計について説明する。図3は本発明の第2実施形態に係る超低温液化ガス液面測定用液面計の概略構成図である。なお、上記第1実施形態と同様の部位(符合2〜6、8、9に対応する符合12〜16、18、19)については説明を省略することがある。   Next, an ultra-low temperature liquefied gas liquid level measuring liquid level meter according to a second embodiment of the present invention will be described. FIG. 3 is a schematic configuration diagram of an ultra-low temperature liquefied gas liquid level measuring liquid level meter according to the second embodiment of the present invention. In addition, description may be abbreviate | omitted about the site | part (symbol 12-16, 18, 19 corresponding to the codes | symbols 2-6, 8, 9) similar to the said 1st Embodiment.

図3に示すように、超低温液化ガス液面測定用液面計20(以下、液面計20とする)は、超低温液化ガス液面測定用センサ11(以下、センサ11とする)と、直流電流電源12と、ヒーター電源13と、電圧計14と、演算処理装置15と、モニター16と、ヒーター部17と、筒18と、固定用樹脂19とを備えている。なお、図3では、第1実施形態と同様に、貯蔵容器(図示せず)内の超低温液化ガスに筒18が途中まで浸かっている状態を示している。   As shown in FIG. 3, a liquid level gauge 20 for liquid level measurement of ultra-low temperature liquefied gas (hereinafter referred to as liquid level gauge 20) includes a sensor 11 for liquid level measurement of liquid cryogenic gas (hereinafter referred to as sensor 11) and a direct current. A current power source 12, a heater power source 13, a voltmeter 14, an arithmetic processing device 15, a monitor 16, a heater unit 17, a cylinder 18, and a fixing resin 19 are provided. FIG. 3 shows a state in which the cylinder 18 is partially immersed in the ultra-low temperature liquefied gas in the storage container (not shown) as in the first embodiment.

液面計20は、センサ1及びヒーター部7の代わりにセンサ11及びヒーター部17a、17bを用いている点で、第1実施形態の液面計10と異なっている。   The liquid level gauge 20 is different from the liquid level gauge 10 of the first embodiment in that the sensor 11 and the heater parts 17a and 17b are used instead of the sensor 1 and the heater part 7.

センサ11は、U字型に折り返された状態で筒18に固定用樹脂19によって固定されており、筒18の上部において電極が取りやすくなっている。   The sensor 11 is fixed to the cylinder 18 by a fixing resin 19 in a state of being folded in a U shape, and an electrode can be easily taken at the upper part of the cylinder 18.

ヒーター部17a、17bは、センサ11の両端をそれぞれ加温できるように配設されており、ヒーター電源13と電気的に接続されている。   The heater units 17 a and 17 b are arranged so as to heat both ends of the sensor 11 and are electrically connected to the heater power supply 13.

上記構成の液面計20によれば、第1実施形態の液面計10と同様の作用・効果を奏することができる。また、センサ11の実効長さを長くできるため、MgB2層における超伝導状態部分と常電導状態部分との抵抗値の差異をさらに大きくすることができる。その結果として、さらに反応性(精度)に優れたセンサ1を有する液面計20とできる。 According to the liquid level gauge 20 having the above-described configuration, the same actions and effects as the liquid level gauge 10 of the first embodiment can be achieved. In addition, since the effective length of the sensor 11 can be increased, the difference in resistance value between the superconducting state portion and the normal conducting state portion in the MgB 2 layer can be further increased. As a result, the liquid level meter 20 having the sensor 1 having further excellent reactivity (accuracy) can be obtained.

次に、本発明の第2実施形態の変形例に係る超低温液化ガス液面測定用液面計について説明する。図4は、本発明の第2実施形態の変形例に係る超低温液化ガス液面測定用液面計に用いる超低温液化ガス液面測定用センサを示す図である。   Next, a liquid level gauge for measuring an ultra-low temperature liquefied gas liquid level according to a modification of the second embodiment of the present invention will be described. FIG. 4 is a diagram showing an ultra-low temperature liquefied gas liquid level measuring sensor used in an ultra-low temperature liquefied gas liquid level measuring liquid level meter according to a modification of the second embodiment of the present invention.

第2実施形態の変形例に係る超低温液化ガス液面測定用液面計は、センサ11の代わりにコイル状に巻かれた超低温液化ガス液面測定用センサ11a(以下、センサ11aとする)を用いている点で、第2実施形態の液面計20と異なっている。   An ultra-low temperature liquefied gas liquid level measuring liquid level meter according to a modification of the second embodiment includes an ultra-low temperature liquefied gas liquid level measuring sensor 11a (hereinafter referred to as sensor 11a) wound in a coil shape instead of the sensor 11. It is different from the liquid level gauge 20 of the second embodiment in that it is used.

本変形例によれば、第2実施形態の液面計20と同様の作用・効果を奏することができる。また、センサ11aの実効長さをさらに長くできるため、MgB2層における超伝導状態部分と常電導状態部分との抵抗値の差異をより大きくすることができる。その結果として、さらに反応性(精度)に優れたセンサ11aを有する超低温液化ガス液面測定用液面計を提供できる。 According to this modification, the same operation and effect as the liquid level gauge 20 of the second embodiment can be achieved. In addition, since the effective length of the sensor 11a can be further increased, the difference in resistance value between the superconducting state portion and the normal conducting state portion in the MgB 2 layer can be further increased. As a result, it is possible to provide a liquid level gauge for measuring a liquid level of an ultra-low temperature liquefied gas that has a sensor 11a having excellent reactivity (accuracy).

以下では、上記第1実施形態に係る液面計10と同構成の液面計を作製し、この液面計の性能の検証を行った。以下に、本実施例に係る液面計の具体的な作製方法及び検証方法について説明する。   Below, the liquid level gauge of the same structure as the liquid level gauge 10 which concerns on the said 1st Embodiment was produced, and the performance of this liquid level gauge was verified. Below, the concrete preparation method and verification method of the liquid level meter which concern on a present Example are demonstrated.

(センサの作製方法)
PIT法のうちin−situ法を用いてセンサを作製した。具体的には、MgとBとの混合粉末を被覆層となるNi−Cu筒(Ni:Cu=3:7)の内部に詰めて線引き加工した後、熱処理によって軸芯部分をMgB2にした。なお、このときのセンサの直径は0.65mm、長さは50cmであり、MgB2層の直径は0.36mm(センサ断面全体の30%を占める)である。
(Sensor production method)
A sensor was produced using the in-situ method among the PIT methods. Specifically, the mixed powder of Mg and B was packed in a Ni—Cu cylinder (Ni: Cu = 3: 7) serving as a coating layer, and after drawing, the shaft core portion was changed to MgB 2 by heat treatment. . At this time, the diameter of the sensor is 0.65 mm, the length is 50 cm, and the diameter of the MgB 2 layer is 0.36 mm (occupies 30% of the entire cross section of the sensor).

(液面計の性能の検証方法)
室温から極低温まで、及び、極低温から室温までについて、作製したセンサの電気抵抗の温度依存性を調べ、電気抵抗がゼロとなる超伝導転移温度を測定することによって検証した。
(Verification method of level gauge performance)
The temperature dependence of the electrical resistance of the fabricated sensor was investigated from room temperature to cryogenic temperature, and from cryogenic temperature to room temperature, and verified by measuring the superconducting transition temperature at which the electrical resistance was zero.

(検証結果)
図5に示すように、34K前後において急激に抵抗値が変化していることがわかる。また、34Kで電気抵抗値がゼロとなっていることもわかる。したがって、34K前後において感度のよいセンサとなっていることがわかる。したがって、34K以下の沸点を有する極低温液化ガス液面測定用液面計のセンサとして使用できる。
(inspection result)
As shown in FIG. 5, it can be seen that the resistance value suddenly changes around 34K. It can also be seen that the electrical resistance value is zero at 34K. Therefore, it can be seen that the sensor is sensitive around 34K. Therefore, it can be used as a sensor for a liquid level gauge for liquid level measurement of a cryogenic liquefied gas having a boiling point of 34K or less.

なお、本発明は、特許請求の範囲を逸脱しない範囲で設計変更できるものであり、上記実施形態や実施例に限定されるものではない。上記各実施形態や実施例でのセンサの形状を波形状としてもよいし、単芯状の線を圧延してテープ状にしてもよい。また、単芯状の線を束ねて線引き加工し、多芯センサとしてもよいし、この多芯センサを圧延してテープ状にしてもよい。   The present invention can be changed in design without departing from the scope of the claims, and is not limited to the above-described embodiments and examples. The shape of the sensor in each of the above embodiments and examples may be a wave shape, or a single-core wire may be rolled into a tape shape. Alternatively, a single core wire may be bundled and drawn to form a multi-core sensor, or the multi-core sensor may be rolled into a tape shape.

本発明の第1実施形態に係る超低温液化ガス液面測定用液面計の概略構成図である。It is a schematic block diagram of the liquid level meter for ultra-low temperature liquefied gas liquid level measurement concerning a 1st embodiment of the present invention. 本発明の第1実施形態の変形例に係る超低温液化ガス液面測定用液面計に用いる超低温液化ガス液面測定用センサを示す図である。It is a figure which shows the sensor for ultra-low temperature liquefied gas liquid level measurement used for the liquid level gauge for ultra-low temperature liquefied gas liquid level measurement which concerns on the modification of 1st Embodiment of this invention. 本発明の第1実施形態に係る超低温液化ガス液面測定用液面計の概略構成図である。It is a schematic block diagram of the liquid level meter for ultra-low temperature liquefied gas liquid level measurement concerning a 1st embodiment of the present invention. 本発明の第2実施形態の変形例に係る超低温液化ガス液面測定用液面計に用いる超低温液化ガス液面測定用センサを示す図である。It is a figure which shows the sensor for ultra-low temperature liquefied gas liquid level measurement used for the liquid level gauge for ultra-low temperature liquefied gas liquid level measurement which concerns on the modification of 2nd Embodiment of this invention. 本発明に係る実施例の検証結果を示すグラフである。It is a graph which shows the verification result of the Example which concerns on this invention.

Claims (10)

MgB2を含む長尺状の超伝導体と、前記超伝導体の表面を覆っている被覆金属とを備えていることを特徴とする超低温液化ガス液面測定用センサ。 An ultra-low temperature liquefied gas liquid level measuring sensor comprising a long superconductor containing MgB 2 and a coated metal covering a surface of the superconductor. MgB2を含むコイル状の超伝導体と、前記超伝導体の表面を覆っている被覆金属とを備えていることを特徴とする超低温液化ガス液面測定用センサ。 An ultra-low temperature liquefied gas liquid level measurement sensor comprising: a coiled superconductor containing MgB 2 ; and a coated metal covering a surface of the superconductor. 常温における抵抗値が1Ω/m〜5Ω/mであることを特徴とする請求項1又は2に記載の超低温液化ガス液面測定用センサ。   The resistance value at normal temperature is 1 Ω / m to 5 Ω / m, and the sensor for measuring a liquid level of an ultra-low temperature liquefied gas according to claim 1 or 2. 熱伝導度が5W/(m・K)〜15W/(m・K)であることを特徴とする請求項1〜3のいずれか1項に記載の超低温液化ガス液面測定用センサ。   The thermal conductivity is 5 W / (m · K) to 15 W / (m · K), the ultra-low temperature liquefied gas liquid level measurement sensor according to any one of claims 1 to 3. 長さが50cm以上であることを特徴とする請求項1〜4のいずれか1項に記載の超低温液化ガス液面測定用センサ。   The sensor for measuring the level of an ultra-low temperature liquefied gas according to any one of claims 1 to 4, wherein the length is 50 cm or more. 全体の断面の径が0.5mm〜2.0mmの線材であり、前記超伝導体の層が断面積の30%〜60%を占めることを特徴とする請求項1〜5のいずれか1項に記載の超低温液化ガス液面測定用センサ。   The diameter of the whole cross section is a wire of 0.5 mm to 2.0 mm, and the superconductor layer occupies 30% to 60% of the cross sectional area. Sensor for liquid level measurement of ultra-low temperature liquefied gas as described in 1. 前記被覆金属がNi−Cu合金であることを特徴とする請求項1〜6のいずれか1項に記載の超低温液化ガス液面測定用センサ。   The ultra-low temperature liquefied gas liquid level measurement sensor according to any one of claims 1 to 6, wherein the coating metal is a Ni-Cu alloy. 前記被覆金属におけるNiとCuとの比が3:7〜4:6であることを特徴とする請求項7に記載の超低温液化ガス液面測定用センサ。   8. The ultra-low temperature liquefied gas liquid level measurement sensor according to claim 7, wherein the ratio of Ni to Cu in the coated metal is from 3: 7 to 4: 6. 全体がU字型となるように形成された請求項1〜8のいずれか1項に記載の超低温液化ガス液面測定用センサ。   The ultra-low temperature liquefied gas liquid level measuring sensor according to any one of claims 1 to 8, wherein the sensor is formed so as to be U-shaped as a whole. 請求項1〜9のいずれか1項に記載の前記超低温液化ガス液面測定用センサと、前記超低温液化ガス液面測定用センサを加熱するヒーターと、前記超低温液化ガス液面測定用センサに電流を流す電源と、前記超低温液化ガス液面測定用センサにおける電圧を測定する電圧計とを備えていることを特徴とする超低温液化ガス液面測定用液面計。   10. The ultra-low temperature liquefied gas liquid level measurement sensor according to any one of claims 1 to 9, a heater for heating the ultra-low temperature liquefied gas liquid level measurement sensor, and the ultra-low temperature liquefied gas liquid level measurement sensor. And a voltmeter for measuring a voltage in the ultra-low temperature liquefied gas liquid level measuring sensor. A liquid level gauge for measuring an ultra-low temperature liquefied gas liquid level.
JP2005329961A 2005-11-15 2005-11-15 Sensor and liquid level meter for measuring liquid level of ultra cold liquefied gas Pending JP2007139441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005329961A JP2007139441A (en) 2005-11-15 2005-11-15 Sensor and liquid level meter for measuring liquid level of ultra cold liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005329961A JP2007139441A (en) 2005-11-15 2005-11-15 Sensor and liquid level meter for measuring liquid level of ultra cold liquefied gas

Publications (2)

Publication Number Publication Date
JP2007139441A true JP2007139441A (en) 2007-06-07
JP2007139441A5 JP2007139441A5 (en) 2008-03-06

Family

ID=38202512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005329961A Pending JP2007139441A (en) 2005-11-15 2005-11-15 Sensor and liquid level meter for measuring liquid level of ultra cold liquefied gas

Country Status (1)

Country Link
JP (1) JP2007139441A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175034A (en) * 2008-01-25 2009-08-06 Kobe Univ Liquid level sensor for liquefied hydrogen, and liquid level meter for liquefied hydrogen
CN102003990A (en) * 2010-12-01 2011-04-06 天津地热勘查开发设计院 Online deep dynamic level-temperature measuring system for geothermal well
CN102740512A (en) * 2011-04-15 2012-10-17 西门子公司 Heating device and liquid level detection system for cryogenic liquid
CN110879091A (en) * 2019-11-01 2020-03-13 东软医疗系统股份有限公司 Liquid level meter for liquid helium, calibration method thereof and liquid helium container

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133329U (en) * 1980-03-11 1980-09-20
JPH062162U (en) * 1992-06-17 1994-01-14 三菱重工業株式会社 Superconducting liquid level gauge
WO1997008518A1 (en) * 1995-08-30 1997-03-06 Hitachi, Ltd. Level gauge using superconductive sensor wire
JP2002352648A (en) * 2001-05-23 2002-12-06 Furukawa Electric Co Ltd:The MgB2 SUPERCONDUCTIVE WIRE AND MANUFACTURING METHOD THEREFOR
JP2004296156A (en) * 2003-03-26 2004-10-21 National Institute For Materials Science MANUFACTURING METHOD OF MgB2 SUPERCONDUCTING WIRE
JP2008532022A (en) * 2005-03-05 2008-08-14 テヒニッシェ・ウニヴェルジテート・ドレスデン Superconducting liquid level measuring device for liquefied hydrogen and liquefied neon and measuring method for measuring liquid level

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133329U (en) * 1980-03-11 1980-09-20
JPH062162U (en) * 1992-06-17 1994-01-14 三菱重工業株式会社 Superconducting liquid level gauge
WO1997008518A1 (en) * 1995-08-30 1997-03-06 Hitachi, Ltd. Level gauge using superconductive sensor wire
JP2002352648A (en) * 2001-05-23 2002-12-06 Furukawa Electric Co Ltd:The MgB2 SUPERCONDUCTIVE WIRE AND MANUFACTURING METHOD THEREFOR
JP2004296156A (en) * 2003-03-26 2004-10-21 National Institute For Materials Science MANUFACTURING METHOD OF MgB2 SUPERCONDUCTING WIRE
JP2008532022A (en) * 2005-03-05 2008-08-14 テヒニッシェ・ウニヴェルジテート・ドレスデン Superconducting liquid level measuring device for liquefied hydrogen and liquefied neon and measuring method for measuring liquid level

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175034A (en) * 2008-01-25 2009-08-06 Kobe Univ Liquid level sensor for liquefied hydrogen, and liquid level meter for liquefied hydrogen
CN102003990A (en) * 2010-12-01 2011-04-06 天津地热勘查开发设计院 Online deep dynamic level-temperature measuring system for geothermal well
CN102740512A (en) * 2011-04-15 2012-10-17 西门子公司 Heating device and liquid level detection system for cryogenic liquid
CN110879091A (en) * 2019-11-01 2020-03-13 东软医疗系统股份有限公司 Liquid level meter for liquid helium, calibration method thereof and liquid helium container

Similar Documents

Publication Publication Date Title
US5726908A (en) Liquid quantity sensor and method
JP2013036842A (en) Method for testing cable core for superconductive cables and cooling container
JP2007139441A (en) Sensor and liquid level meter for measuring liquid level of ultra cold liquefied gas
JP5158633B2 (en) Liquid hydrogen level sensor and liquid hydrogen level gauge
Răduca et al. Finite element analysis of heat transfer in transformers from high voltage stations
JP4969908B2 (en) Liquid hydrogen level sensor element
JP2008175640A (en) Refrigerant liquid level measuring device, refrigerant liquid level measuring method, and superconductive magnet device using it
JP2008016554A (en) High-temperature superconducting coil equipment
JP2009186321A (en) Level gage, low-temperature thermostat equipped with level gage, and superconducting magnet equipped with level gage
EP2944928B1 (en) Mgb2-based superconducting wiring material for liquid hydrogen fluid level sensors, liquid hydrogen fluid level sensor, and fluid level meter for liquid hydrogen
JP5356206B2 (en) Method for measuring critical current of superconducting cable
JP2013044564A (en) Method for measuring critical current of superconductive cable
Zhang et al. Quench, normal zone propagation velocity, and the development of an active protection scheme for a conduction cooled, react-and-wind, MgB2 MRI coil segment
Kajikawa et al. Proposal of a new type of superconducting level sensor for liquidhydrogen with MgB2 wires
JP5229482B2 (en) Superconducting cable soundness inspection method
Núñez-Chico et al. Enhanced quench propagation in 2G-HTS coils co-wound with stainless steel or anodised aluminium tapes
WO2017179488A1 (en) Superconducting wire, liquid level sensor element for liquid hydrogen, and liquid level meter for liquid hydrogen
JP4963016B2 (en) Superconducting liquid level gauge
JPS6133367B2 (en)
JP2010019801A (en) Liquid level meter for cryogenic liquid and reservoir container with liquid level meter
JP4514532B2 (en) AC loss measuring apparatus and measuring method
JP2011214951A (en) Super-conductive liquid level meter
JP2658140B2 (en) Liquid level measurement method and apparatus
CN215005115U (en) Device for detecting accumulated oxides in boiler heating surface tube
Lei et al. Measurements of interstrand thermal and electrical conductance in multistrand superconducting cables

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A621 Written request for application examination

Effective date: 20080117

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Effective date: 20100420

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100817

Free format text: JAPANESE INTERMEDIATE CODE: A02