JP2008102087A - Method for treating radioactive effluent solidification - Google Patents

Method for treating radioactive effluent solidification Download PDF

Info

Publication number
JP2008102087A
JP2008102087A JP2006286620A JP2006286620A JP2008102087A JP 2008102087 A JP2008102087 A JP 2008102087A JP 2006286620 A JP2006286620 A JP 2006286620A JP 2006286620 A JP2006286620 A JP 2006286620A JP 2008102087 A JP2008102087 A JP 2008102087A
Authority
JP
Japan
Prior art keywords
water
radioactive
liquid
waste
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006286620A
Other languages
Japanese (ja)
Inventor
Hiroto Yamazaki
寛人 山崎
Takashi Asano
浅野  隆
Toru Kawasaki
透 川嵜
Yoshikazu Kondo
賀計 近藤
Yoshihiko Horikawa
義彦 堀川
Yoshimasa Hatsuoka
賢政 初岡
Takashi Yasuda
孝志 安田
Natsuko Higuchi
奈津子 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi GE Nuclear Energy Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi GE Nuclear Energy Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2006286620A priority Critical patent/JP2008102087A/en
Publication of JP2008102087A publication Critical patent/JP2008102087A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating radioactive effluent solidification for making a solidified body employing an in-drum method and by solidifying a radioactive effluent containing sodium sulfate and having high radioactive concentration, wherein a solution resulting after the solid body is immersed in water that has a pH of 12 and a sulfate ion concentration that is not higher than a mortar equilibrium concentration. <P>SOLUTION: Barium hydroxide 5 is added to a radioactive effluent 1 containing sodium sulfate so that the content of barium hydroxide becomes equivalent to or higher than the content of sodium sulfate in terms of mol, and a silicon oxide compound 6 and a water reducing agent 7 are added to a mixture of barium sulfate and an aqueous alkali solution, thus obtained, and are kneaded to produce water glass. A hardener 8 is added to a mixture of the water glass produced and barium sulfate prior to being subjected to the kneading and solidification treatment. A viscosity enabling solidification treatment by in-drum method can be obtained, by controlling a water/powder ratio and the quantity of the water reducing agent 7, wherein the ratio of total water/(total of silicon oxide compound 6 and hardener 8) is defined as the water/power ratio. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原子力発電所または原子力関連施設で発生し硫酸ナトリウムを含有する放射性廃棄物を固化処理方法に係り、特に、インドラム方式で固化処理する方法に関する。   The present invention relates to a solidification method for radioactive waste generated in a nuclear power plant or a nuclear related facility and containing sodium sulfate, and more particularly to a method for solidifying in an in-drum system.

原子力発電所から発生する硫酸ナトリウムを含有する放射性廃液のうち、現行の政令濃度上限値を超える放射能レベルの廃棄物は、一般的な地下利用に余裕を持った深度への埋設処分が検討されている。   Among radioactive waste liquids containing sodium sulfate generated from nuclear power plants, wastes with radioactive levels exceeding the current upper limit of government ordinance are considered to be buried at a depth sufficient for general underground use. ing.

処分法としては、固化体の周囲に透水性の小さいベントナイト粘土と物質の拡散性の小さいモルタルを組み合わせた人工バリア施設への埋設が有望視されている。   As a disposal method, embedding in an artificial barrier facility combining bentonite clay with low water permeability and mortar with low material diffusibility around the solidified body is promising.

人工バリア施設が長期に渡り、放射性廃棄物の隔離性能を維持するには、ベントナイト粘土やモルタルの性能に影響を及ぼさないような固化体を作成することが必要となる。   In order for the artificial barrier facility to maintain the isolation performance of radioactive waste for a long period of time, it is necessary to create a solidified body that does not affect the performance of bentonite clay and mortar.

具体的には、ベントナイト粘土については、高アルカリ条件では溶解性が高くなってしまうため、固化体を水に浸漬した際の液のpHを12以下に抑制することが望ましい。   Specifically, since bentonite clay has high solubility under high alkali conditions, it is desirable to suppress the pH of the liquid when the solidified body is immersed in water to 12 or less.

モルタルについては、固化体を水に曝した際に液に浸出する硫酸イオン濃度が高いと、モルタル成分中のアルミン酸カルシウム(3CaO・Al2O3)および水酸化カルシウム(Ca(OH)2)と硫酸ナトリウムとが反応し、化学式(1)に示すエトリンガイト(3CaO・Al2O3・3CaSO4・32H2O)を生成するので、
3CaO・Al2O3+3Ca(OH)2+3Na2SO4+32H2O
→3CaO・Al2O3・3CaSO4・32H2O+6NaOH…(1)
体積が膨張し、モルタルの健全性が損なわれる可能性がある。
For mortar, when the concentration of sulfate ions leached into the liquid when the solidified body is exposed to water is high, calcium aluminate (3CaO · Al 2 O 3 ) and calcium hydroxide (Ca (OH) 2 ) in the mortar component Reacts with sodium sulfate to produce ettringite (3CaO · Al 2 O 3 · 3CaSO 4 · 32H 2 O) as shown in chemical formula (1).
3CaO ・ Al 2 O 3 + 3Ca (OH) 2 + 3Na 2 SO 4 + 32H 2 O
→ 3CaO ・ Al 2 O 3・ 3CaSO 4・ 32H 2 O + 6NaOH… (1)
The volume may expand and the mortar health may be compromised.

このため、モルタル単独を水に浸漬した場合の硫酸の平衡濃度(約2×10-3mol/L)以下となるように、固化体中の硫酸イオン濃度を抑制することが望ましい。 For this reason, it is desirable to suppress the sulfuric acid ion concentration in the solidified body so as to be equal to or lower than the equilibrium concentration of sulfuric acid (about 2 × 10 −3 mol / L) when mortar alone is immersed in water.

化学式(2)に示すように、硫酸ナトリウムを含む放射性廃液に水酸化バリウム等のアルカリ土類金属水酸化物を加え、硫酸イオンを難溶性の硫酸バリウム沈殿にした後、放出されるナトリウムには、酸化ケイ素化合物を添加し、水ガラス(Na2O・nSiO2)を生成させ、
Na2SO4+Ba(OH)2+nSiO2
→BaSO4(難溶性沈殿)+Na2O・nSiO2 ……(2)
さらに水ガラスの硬化剤を添加し、固化処理する方法が提案されている(例えば、特許文献1参照)。
As shown in chemical formula (2), after adding alkaline earth metal hydroxide such as barium hydroxide to radioactive liquid waste containing sodium sulfate, and making sulfate ions into sparingly soluble barium sulfate precipitate, , Adding a silicon oxide compound to produce water glass (Na 2 O · nSiO 2 ),
Na 2 SO 4 + Ba (OH) 2 + nSiO 2
→ BaSO 4 (Slightly soluble precipitate) + Na 2 O · nSiO 2 …… (2)
Further, a method of adding a water glass curing agent and solidifying the same has been proposed (for example, see Patent Document 1).

ただし、この方法では硫酸イオン濃度については抑制できるが、固化体を水に浸漬した際の液のpHについては検討していない。   However, this method can suppress the sulfate ion concentration, but does not examine the pH of the liquid when the solidified body is immersed in water.

一方、セメント系の水硬性固化材を用いる固化処理では、固化材,廃棄物,添加水等を均一に混練する必要がある。このとき、粘度が高い混合ペーストの均一性を高めるため、専用の混練機を用いて混合ペーストを作成し、これを固化容器に注入して固化する方法、すなわちアウトドラム方式が一般的である。   On the other hand, in the solidification treatment using a cement-based hydraulic solidification material, it is necessary to uniformly knead the solidification material, waste, added water, and the like. At this time, in order to improve the uniformity of the mixed paste having a high viscosity, a method of preparing a mixed paste using a dedicated kneader and injecting it into a solidification container to solidify, that is, an outdrum method is generally used.

特開昭61-182599号公報(第4〜5頁 図2,図5)Japanese Patent Laid-Open No. 61-182599 (pages 4-5, FIGS. 2 and 5)

アウトドラム方式の場合、混練機の混練槽や混練翼およびバルブやペーストの払い出し配管部に付着したセメントペーストの固着を防止するため、1バッチごとまたは1日の運転終了後に、混練機内部を洗浄する必要がある。従来の混練機の一般的な洗浄方法では、水で洗浄した洗浄廃液はそのまま二次廃棄物として処理していた。   In the case of the outdrum system, the inside of the kneader is washed after every batch or after one day of operation to prevent the cement paste from adhering to the kneading tank, kneading blade, valve and paste discharge pipe of the kneading machine. There is a need to. In a general washing method of a conventional kneader, the washing waste liquid washed with water is directly processed as secondary waste.

これに対し、廃棄物,水,固化材を固化用容器すなわちドラム缶に直接注入し、このドラム缶の中で撹拌機により混練するインドラム方式がある。インドラム方式は、アウトドラム方式に比べて、洗浄廃液の発生量が少なくなる利点がある。しかし、装置形状が制限されるため、高粘度のペーストの混練には適していない。   On the other hand, there is an in-drum system in which waste, water, and a solidifying material are directly injected into a solidifying container, that is, a drum can, and kneaded by a stirrer in the drum can. The in-drum method has an advantage that the generation amount of cleaning waste liquid is smaller than the out-drum method. However, since the apparatus shape is limited, it is not suitable for kneading high-viscosity paste.

このように、放射性廃液の固化処理は、システム構成が簡素になることから、インドラム方式で混練することが望ましい。しかし、インドラム方式で混練するには、ペーストの粘度を低くする必要がある。   As described above, the solidification treatment of the radioactive liquid waste is desirable to knead in an in-drum method because the system configuration becomes simple. However, in order to knead by the in-drum method, it is necessary to lower the viscosity of the paste.

本発明の課題は、硫酸ナトリウムを含む放射能濃度の比較的高い放射性廃液を固化し、固化体を水に浸漬した際の液のpHが12以下で、硫酸イオン濃度がモルタル平衡濃度以下となる固化体をインドラム方式で混練できる放射性廃液の固化処理方法を提供することである。   The object of the present invention is to solidify a radioactive waste liquid containing sodium sulfate having a relatively high radioactivity concentration, and when the solidified body is immersed in water, the pH of the liquid is 12 or less, and the sulfate ion concentration is less than the mortar equilibrium concentration. It is an object of the present invention to provide a radioactive waste liquid solidification method capable of kneading a solidified body in an in-drum system.

本発明は、上記課題を解決するために、ドラム缶に所定量注入した硫酸ナトリウムを含む放射性廃液に廃液中の硫酸ナトリウムの量と等量モル以上となるように水酸化バリウムを加え、生じた硫酸バリウムとアルカリ水溶液の混合物に酸化ケイ素系化合物と減水剤を加えて混練し水ガラスを生成させ、生成した水ガラスと硫酸バリウムの混合物に硬化剤を加えて混練し固化体とする放射性廃液の固化処理方法において、水/紛体比と減水剤の量とを調整し混練時の粘度を低下させる放射性廃液の固化処理方法を提案する。   In order to solve the above-mentioned problems, the present invention adds barium hydroxide to a radioactive waste liquid containing sodium sulfate injected into a drum can in a predetermined amount so that the molar amount is equal to or more than the amount of sodium sulfate in the waste liquid. Solidification of radioactive liquid waste by adding a silicon oxide compound and a water reducing agent to a mixture of barium and alkaline aqueous solution and kneading to produce water glass, adding a curing agent to the mixture of water glass and barium sulfate produced and kneading to solidify In the treatment method, a solidification method for radioactive waste liquid is proposed in which the water / powder ratio and the amount of water reducing agent are adjusted to lower the viscosity during kneading.

本発明によれば、混練時の粘度を低下させることができるので、硫酸ナトリウムを含む放射能濃度の比較的高い放射性廃液を固化し、固化体のpHが12以下で、硫酸イオン濃度がモルタル平衡濃度以下となる固化体をインドラム方式で混練できる放射性廃液の固化処理方法が得られる。   According to the present invention, the viscosity at the time of kneading can be reduced, so that a radioactive waste liquid containing sodium sulfate and having a relatively high radioactivity concentration is solidified, the solidified body has a pH of 12 or less, and the sulfate ion concentration is in a mortar equilibrium. A method for solidifying radioactive waste liquid that can knead the solidified product having a concentration below the in-drum system is obtained.

また、アウトドラム方式に比べて、装置構成が簡素化され、処理時間も短縮されるので、コストを削減できる。   Further, compared to the out drum system, the apparatus configuration is simplified and the processing time is shortened, so that the cost can be reduced.

さらに、混練装置などを洗浄した廃液を次回のバッチの混練水として添加するので、二次廃棄物を発生させない効果も得られる。   Furthermore, since the waste liquid that has been washed in the kneading apparatus or the like is added as kneading water for the next batch, an effect of not generating secondary waste can be obtained.

次に、図1〜図4を参照して、本発明による放射性廃液の固化処理方法および放射性廃液の固化処理装置の実施例を説明する。   Next, with reference to FIGS. 1-4, the Example of the solidification processing method of radioactive waste liquid and the solidification processing apparatus of radioactive waste liquid by this invention is described.

図1は、水/紛体比と廃液ペーストの粘度との関係を示す図である。この例では減水剤として、ナフタリンスルホン酸ホルマリン高縮合物塩を使用している。   FIG. 1 is a graph showing the relationship between the water / powder ratio and the viscosity of the waste liquid paste. In this example, a naphthalenesulfonic acid formalin highly condensed product salt is used as a water reducing agent.

ある一定の減水剤を投入したとき、水/紛体比が大きくなるようにすれば、粘度は低下することがわかる。また、ある一定の水/紛体比のときには、減水剤の添加量を多くすれば、粘度は低下することがわかる。すなわち、水/紛体比と減水剤量とを調整し混練時の粘度を低下させることができる。ここで、水/紛体比とは、廃液中の水分,減水剤を水溶液として添加するときの水分および添加水の総容量(L)と、酸化ケイ素化合物および硬化剤の総量(kg)との比である。   It can be seen that when a certain water reducing agent is added, the viscosity decreases if the water / powder ratio is increased. It can also be seen that when the water / powder ratio is constant, the viscosity decreases as the amount of the water reducing agent is increased. That is, the viscosity at the time of kneading can be reduced by adjusting the water / powder ratio and the amount of water reducing agent. Here, the water / powder ratio is the ratio of the total volume of water and added water (L) when adding water and water reducing agent as an aqueous solution to the total amount of silicon oxide compound and curing agent (kg). It is.

インドラム方式で混練可能なペースト粘度は、装置の混練翼の回転速度や翼形状などで決まるため、一概に規定できないが、今回使用した装置では10Pa・s以下である。このインドラム装置を使用する際には、減水剤添加量を0.6kgとした場合は、水/紛体比を1.0以上とする必要がある。同様に、減水剤添加量を1.8kgとした場合は、水/紛体比を0.8以上とする必要がある。さらに、減水剤添加量を増せば、必要な水/紛体比を低い値にすることもできる。具体的には、減水剤添加量を4.5kgとした場合は、水/紛体比は0.65以上であればよい。   The paste viscosity that can be kneaded by the in-drum method is determined by the rotational speed of the kneading blade of the device, the blade shape, etc., and thus cannot be specified in general, but it is 10 Pa · s or less in the device used this time. When this in-drum device is used, the water / powder ratio needs to be 1.0 or more when the amount of water reducing agent added is 0.6 kg. Similarly, when the amount of water reducing agent added is 1.8 kg, the water / powder ratio needs to be 0.8 or more. Further, if the amount of water reducing agent added is increased, the required water / powder ratio can be lowered. Specifically, when the amount of water reducing agent added is 4.5 kg, the water / powder ratio may be 0.65 or more.

図2は、廃液ペーストが10Pa・sとなるときの水/紛体比と減水剤との関係を示す図である。   FIG. 2 is a diagram showing the relationship between the water / powder ratio and the water reducing agent when the waste paste becomes 10 Pa · s.

図の曲線より上側の範囲となるように減水剤添加量と水/粉体比を選択すると、今回使用したインドラム装置で放射性廃液を処理できる。   When the amount of water reducing agent added and the water / powder ratio are selected so as to be in the range above the curve in the figure, the radioactive waste liquid can be treated with the in-drum device used this time.

より好ましくは、曲線上の減水剤添加量と水/粉体比を選択するのがよい。水/紛体比が高すぎると強度が低下したり、作製した固化体を水に浸漬した際の液のpHが上昇してしまうためである。   More preferably, the amount of water reducing agent added on the curve and the water / powder ratio are selected. This is because if the water / powder ratio is too high, the strength is lowered, or the pH of the liquid when the produced solidified body is immersed in water is increased.

図3は、本発明による放射性廃液の固化処理装置の系統構成を示す図であり、図4は、本発明による放射性廃液の固化処理装置における処理手順の一例を示すフローチャートである。   FIG. 3 is a diagram showing a system configuration of the radioactive waste liquid solidification processing apparatus according to the present invention, and FIG. 4 is a flowchart showing an example of a processing procedure in the radioactive waste liquid solidification processing apparatus according to the present invention.

本実施例は、使用済イオン交換樹脂の溶離・再生に伴って発生する放射性廃液を固化処理する方法である。   The present embodiment is a method for solidifying radioactive waste liquid generated with elution / regeneration of used ion exchange resin.

処理手順の概略を説明すると、硫酸ナトリウムを含む放射性廃液に硫酸ナトリウムの量と等量モル以上となるように水酸化バリウムを加え、生じた硫酸バリウムとアルカリ水溶液の混合物に酸化ケイ素化合物を加えて水ガラスを生成させ、生成した水ガラスと硫酸バリウムの混合物に硬化剤を加え、固化処理する。   The outline of the treatment procedure is as follows. Barium hydroxide is added to a radioactive liquid waste containing sodium sulfate so that the molar amount is equal to or more than the amount of sodium sulfate, and a silicon oxide compound is added to the resulting mixture of barium sulfate and an aqueous alkaline solution. Water glass is produced, and a curing agent is added to the mixture of the produced water glass and barium sulfate, followed by solidification treatment.

より具体的には、図3において、放射性廃液は、硫酸ナトリウムを主成分とし、放射性廃液タンク1に貯蔵されている。本実施例で処理する放射性廃液中の硫酸ナトリウムの濃度は25wt%である。放射性廃液80Lを200Lドラム缶2に移送する。   More specifically, in FIG. 3, the radioactive liquid waste is stored in the radioactive liquid waste tank 1 with sodium sulfate as a main component. The concentration of sodium sulfate in the radioactive liquid waste treated in this example is 25 wt%. 80L of radioactive liquid waste is transferred to the 200L drum 2

ドラム缶2には、予め前のバッチの洗浄廃液20Lが注入されている。廃液の比重は1.25kg/Lであるから、廃液80Lに含まれる硫酸ナトリウムの量は、数式(3)により、220molと求められる。
廃液量(80L)×比重(1.25kg/L)
×硫酸ナトリウム濃度(25wt%)
÷硫酸ナトリウム分子量(142g/mol)=176mol……(3)
その後、廃液を入れたドラム缶2を搬送装置3によって、ドラム缶昇降装置4まで運び、上部に移動させた後、まず、薬剤タンク5から水酸化バリウムを10水塩の形態で添加する。
In the drum 2, 20 L of cleaning waste liquid from the previous batch is injected in advance. Since the specific gravity of the waste liquid is 1.25 kg / L, the amount of sodium sulfate contained in 80 L of the waste liquid is calculated to be 220 mol according to Equation (3).
Waste liquid volume (80L) x specific gravity (1.25kg / L)
× Sodium sulfate concentration (25wt%)
÷ Sodium sulfate molecular weight (142g / mol) = 176mol …… (3)
Thereafter, the drum 2 containing the waste liquid is transported to the drum can lifting / lowering device 4 by the transport device 3 and moved to the upper portion. First, barium hydroxide is added from the drug tank 5 in the form of 10 hydrate.

水酸化バリウムは、数式(3)で求めた硫酸ナトリウムの量の1.1倍等量モルである194molをBa(OH)2・8H2Oの形態で61.2kg添加した。なお、添加する水酸化バリウムの形態は、Ba(OH)2・8H2Oに限定されるものではなく、無水水酸化バリウムでもよいし、塩化バリウムなど水酸化物でないバリウムの塩でもよい。また、水酸化バリウムの添加とともに混練装置9がドラム缶内で廃液と水酸化バリウムとを十分に混練した。 As barium hydroxide, 61.2 kg of 194 mol, which is 1.1 times the molar amount of sodium sulfate obtained by the formula (3), was added in the form of Ba (OH) 2 .8H 2 O. The form of barium hydroxide to be added is not limited to Ba (OH) 2 .8H 2 O, and may be anhydrous barium hydroxide or a barium salt that is not a hydroxide such as barium chloride. In addition, with the addition of barium hydroxide, the kneader 9 sufficiently kneaded the waste liquid and barium hydroxide in the drum.

混練が終了した後、引き続き、助剤タンク6から、減水剤粉末を4.5kg添加した。このため、水/粉体比は0.65以上とする必要があるが、本実施例では、水/粉体比を0.65とした。したがって、酸化ケイ素化合物と硬化剤である高炉スラグの重量は、数式(4)から、
廃液と洗浄廃液中の水の総量(100L)÷水/粉体比(0.65L/kg)=154kg……(4)
154kgである。
After the kneading was completed, 4.5 kg of the water reducing agent powder was continuously added from the auxiliary tank 6. For this reason, the water / powder ratio needs to be 0.65 or more, but in this example, the water / powder ratio was set to 0.65. Therefore, the weight of the blast furnace slag, which is the silicon oxide compound and the curing agent, can be calculated from the formula (4):
Total amount of water in waste liquid and cleaning waste liquid (100L) ÷ water / powder ratio (0.65L / kg) = 154kg …… (4)
154kg.

本実施例では、酸化ケイ素化合物と硬化剤である高炉スラグは等量とした。このため、助剤タンク7から、酸化ケイ素化合物であるシリカヒューム(SiO2)を77kg添加した。同様に、硬化剤タンク8から、硬化剤として高炉スラグを77kg添加した。 In this example, the silicon oxide compound and the blast furnace slag, which is a curing agent, were made equal. Therefore, 77 kg of silica fume (SiO 2 ), which is a silicon oxide compound, was added from the auxiliary tank 7. Similarly, 77 kg of blast furnace slag was added from the curing agent tank 8 as a curing agent.

その後、混練装置9により十分に撹拌した後、ドラム缶2を下降させ、搬送装置3により搬出する。この後、十分に養生すると、固化体となる。   Then, after sufficiently stirring by the kneading device 9, the drum can 2 is lowered and carried out by the transport device 3. After this, when cured sufficiently, it becomes a solidified body.

ドラム缶2を搬出後、次のバッチのドラム缶22を搬送装置3によりドラム缶昇降装置4まで運び、上部に移動させた後、洗浄機10により混練装置9を洗浄する。発生した洗浄廃液20Lは、ドラム缶22に収納され、次のバッチの混練水として利用される。したがって、二次廃棄物の発生が抑制される。   After unloading the drum 2, the drum batch 22 of the next batch is transported to the drum lift 4 by the transport device 3, moved to the upper part, and then the kneading device 9 is cleaned by the cleaning machine 10. The generated cleaning waste liquid 20L is stored in a drum 22 and used as kneading water for the next batch. Therefore, the generation of secondary waste is suppressed.

発明者らは、上記配合条件においてビーカーサイズの試験をした。1か月間養生をした後に、2週間浸漬したところ、pHは12以下であり、硫酸イオン濃度はモルタル平衡濃度(約2×10-3mol/L)以下であった。その結果、課題を満足する固化体を作成できることを確認した。 The inventors conducted a beaker size test under the above-mentioned blending conditions. After curing for 1 month and then immersing for 2 weeks, the pH was 12 or less, and the sulfate ion concentration was less than the mortar equilibrium concentration (about 2 × 10 −3 mol / L). As a result, it was confirmed that a solidified body satisfying the problem could be created.

本発明によれば、アウトドラム方式に比べて、装置構成が簡素化され、処理時間も短縮されるので、コストを削減できる。また、混練装置などを洗浄した廃液を次回のバッチの混練水として添加するので、二次廃棄物を発生させない効果も得られる。   According to the present invention, the apparatus configuration is simplified and the processing time is shortened as compared with the outdrum system, so that the cost can be reduced. Moreover, since the waste liquid which wash | cleaned the kneading apparatus etc. is added as kneading water of the next batch, the effect which does not generate | occur | produce a secondary waste is also acquired.

水/紛体比と廃液ペーストの粘度との関係を示す図である。It is a figure which shows the relationship between the water / powder ratio and the viscosity of a waste liquid paste. 廃液ペーストが10Pa・sとなるときの水/紛体比と減水剤との関係を示す図である。It is a figure which shows the relationship between a water / powder ratio and a water reducing agent when a waste liquid paste becomes 10 Pa * s. 本発明による放射性廃液の固化処理装置の系統構成を示す図である。It is a figure which shows the system | strain structure of the solidification processing apparatus of the radioactive waste liquid by this invention.

符号の説明Explanation of symbols

1 放射性廃液タンク
2 ドラム缶
3 搬送装置
4 ドラム缶昇降装置
5 薬剤タンク(水酸化バリウム)
6 助剤タンク(減水剤)
7 助剤タンク(シリカヒューム)
8 硬化剤タンク(高炉スラグ)
9 混練装置
10 洗浄機
22 次のバッチのドラム缶
DESCRIPTION OF SYMBOLS 1 Radioactive waste liquid tank 2 Drum can 3 Conveying device 4 Drum can raising / lowering device 5 Drug tank (barium hydroxide)
6 Auxiliary tank (water reducing agent)
7 Auxiliary tank (silica fume)
8 Hardener tank (blast furnace slag)
9 Kneading device 10 Washing machine 22 Drum can of the next batch

Claims (6)

ドラム缶に所定量注入した硫酸ナトリウムを含む放射性廃液に廃液中の硫酸ナトリウムの量と等量モル以上となるように水酸化バリウムを加え、生じた硫酸バリウムとアルカリ水溶液の混合物に酸化ケイ素系化合物と減水剤を加えて混練し水ガラスを生成させ、生成した水ガラスと硫酸バリウムの混合物に硬化剤を加えて混練し固化体とする放射性廃液の固化処理方法において、
水/紛体比と減水剤量とを調整し混練時の粘度を低下させることを特徴とする放射性廃液の固化処理方法。
Barium hydroxide is added to a radioactive waste liquid containing sodium sulfate injected into a drum can so that the molar amount of sodium sulfate is equal to or greater than the amount of sodium sulfate in the waste liquid, and the resulting mixture of barium sulfate and aqueous alkali solution is mixed with a silicon oxide compound. In the solidification treatment method of radioactive waste liquid to add water reducing agent and knead to produce water glass, add the curing agent to the mixture of water glass and barium sulfate produced and knead to make a solidified body,
A method for solidifying a radioactive liquid waste comprising adjusting the water / powder ratio and the amount of water reducing agent to lower the viscosity during kneading.
請求項1に記載の放射性廃液の固化処理方法において、
混練機の洗浄廃液を次回のバッチの混練水として利用することを特徴とする放射性廃液の固化処理方法。
In the solidification processing method of the radioactive liquid waste according to claim 1,
A method for solidifying a radioactive waste liquid, wherein the cleaning waste liquid of the kneader is used as kneading water for the next batch.
請求項1に記載の放射性廃液の固化処理方法において、
酸化ケイ素化合物がシリカフュームであることを特徴とする放射性廃液の固化処理方法。
In the solidification processing method of the radioactive liquid waste according to claim 1,
A method for solidifying radioactive waste liquid, wherein the silicon oxide compound is silica fume.
請求項1ないし3のいずれか一項に記載の放射性廃液の固化処理方法において、
硬化剤が高炉スラグであることを特徴とする放射性廃液の固化処理方法。
In the solidification processing method of the radioactive liquid waste as described in any one of Claims 1 thru | or 3,
A solidification method for radioactive liquid waste, wherein the curing agent is blast furnace slag.
硫酸ナトリウムを含む放射性廃液の固化処理装置において、
硫酸ナトリウムを含む放射性廃液を供給するタンクと、水酸化バリウムを供給するタンクと、酸化ケイ素化合物を供給するタンクと、硬化剤を供給するタンクと、減水剤を供給するタンクと、放射性廃液と水酸化バリウムなどの添加物とをドラム缶内で混練する混練機とからなる放射性廃液の固化処理装置。
In the solidification processing equipment for radioactive liquid waste containing sodium sulfate,
Tank for supplying radioactive liquid waste containing sodium sulfate, tank for supplying barium hydroxide, tank for supplying silicon oxide compound, tank for supplying hardener, tank for supplying water reducing agent, radioactive liquid waste and water An apparatus for solidifying radioactive waste liquid comprising a kneader for kneading additives such as barium oxide in a drum.
請求項5に記載の放射性廃液の固化処理装置において、
ドラム缶内で混練機を洗浄する洗浄機を備えたことを特徴とする放射性廃液の固化処理装置。
In the solidification processing apparatus of the radioactive waste liquid of Claim 5,
A radioactive waste liquid solidification treatment apparatus comprising a washing machine for washing a kneading machine in a drum.
JP2006286620A 2006-10-20 2006-10-20 Method for treating radioactive effluent solidification Pending JP2008102087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006286620A JP2008102087A (en) 2006-10-20 2006-10-20 Method for treating radioactive effluent solidification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006286620A JP2008102087A (en) 2006-10-20 2006-10-20 Method for treating radioactive effluent solidification

Publications (1)

Publication Number Publication Date
JP2008102087A true JP2008102087A (en) 2008-05-01

Family

ID=39436510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286620A Pending JP2008102087A (en) 2006-10-20 2006-10-20 Method for treating radioactive effluent solidification

Country Status (1)

Country Link
JP (1) JP2008102087A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231696A (en) * 2012-05-01 2013-11-14 Sanai Fujita Immobilizing agent and immobilizing method for radioactive waste
KR20210047402A (en) * 2019-10-21 2021-04-30 한국원자력연구원 Solidifying method of hydroxides of radionuclides

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231696A (en) * 2012-05-01 2013-11-14 Sanai Fujita Immobilizing agent and immobilizing method for radioactive waste
KR20210047402A (en) * 2019-10-21 2021-04-30 한국원자력연구원 Solidifying method of hydroxides of radionuclides
KR102255388B1 (en) * 2019-10-21 2021-05-26 한국원자력연구원 Solidifying method of hydroxides of radionuclides
US11587693B2 (en) 2019-10-21 2023-02-21 Korea Atomic Energy Research Institute Solidifying method of hydroxides of radionuclides

Similar Documents

Publication Publication Date Title
JP5219999B2 (en) Cement-based composition for embedding boron-containing aqueous solution, embedding method, and cement grout composition
JP2009537433A5 (en)
US5463171A (en) Method for solidification of waste, and apparatus, waste form, and solidifying material therefor
JP2008511531A (en) Encapsulation medium
JP2008102087A (en) Method for treating radioactive effluent solidification
JP2009294017A (en) Processing method of radioactive processed product and land-shielding technique
JP3184508B2 (en) Radioactive waste treatment method, radioactive waste solidified material and solidified material
JP2008256660A (en) Radioactive waste burned ash solidification processing method
JP5190975B1 (en) Solidification method for combustible waste incineration ash and its solidified body
JP6371127B2 (en) Production method of ready-mixed concrete
CN106517951B (en) It is a kind of to utilize the non-burning brick of heavy metal polluted bed mud preparation
JP2013007599A (en) Solidification material for contaminated water and processing method
KR102181217B1 (en) A method of solidifying radioactive waste and the solidified waste form thereof
JP4901359B2 (en) Radioactive waste disposal method
JP2009121940A (en) Method for immobilizing radioactive waste
JP3777380B2 (en) Treatment method for complex heavy metal contaminated soil
JP2007003393A (en) Solidification disposal method for radioactive waste
JP2007083183A (en) Insolubilization treatment of soil contaminated with heavy metal and so on
JP2006143976A (en) Method and apparatus for reduction of leaching out of heavy metals in improved matter
JP7176708B1 (en) Solidifying material for radioactive waste treatment
JP4787998B2 (en) Solidification method for radioactive waste
JP3164131B2 (en) Aggregate used in radioactive waste treatment structures
JP2001289993A (en) Device for manufacturing paste for solidification of radioactive waste including amphoteric metal
JP2005139368A (en) Grouting agent and grouting construction method
JP2005195497A (en) Solidification method and solidification device for radioactive waste