JP2008102049A - Balance correction device - Google Patents

Balance correction device Download PDF

Info

Publication number
JP2008102049A
JP2008102049A JP2006285661A JP2006285661A JP2008102049A JP 2008102049 A JP2008102049 A JP 2008102049A JP 2006285661 A JP2006285661 A JP 2006285661A JP 2006285661 A JP2006285661 A JP 2006285661A JP 2008102049 A JP2008102049 A JP 2008102049A
Authority
JP
Japan
Prior art keywords
vector
unbalance
vibration
influence coefficient
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006285661A
Other languages
Japanese (ja)
Inventor
Kazuyuki Yamaguchi
和幸 山口
Tadaharu Kishibe
忠晴 岸部
Susumu Nakano
晋 中野
Yukishi Takagi
亨之 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006285661A priority Critical patent/JP2008102049A/en
Publication of JP2008102049A publication Critical patent/JP2008102049A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a balance correction device capable of reducing simply and surely a vibration amplitude in a rotational speed range including a rotational speed range wherein speed cannot be increased at a balance correction time. <P>SOLUTION: This device has an influence coefficient input means 1 for inputting an influence coefficient between a vibration vector and an unbalance vector, an influence coefficient storage means 2 for storing the influence coefficient, a vibration vector measuring means 3 for measuring each measured vibration vector at single of a plurality of inspection rotation speeds, an estimated unbalance vector operation means 4 for operating an estimated unbalance vector based on the measured vibration vector and the influence coefficient, an estimated vibration vector operation means 5 for operating an estimated vibration vector based on the estimated unbalance vector and the influence coefficient, and an unbalance correction vector operation means 6 for operating an unbalance correction vector based on the estimated vibration vector and/or the measured vibration vector and the influence coefficient. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はバランス修正装置に係り、特に、曲げ振動モードの危険速度を通過して運転される高速ターボ機械のバランス修正に好適である。   The present invention relates to a balance correcting device, and is particularly suitable for correcting the balance of a high-speed turbomachine operated through a critical speed in a bending vibration mode.

曲げ危険速度を通過する高速ターボ機械においては、ロータを剛体と仮定した低速バランス修正だけでは十分な振動低減ができず、高速回転時の振動実測結果を用いる高速バランス修正を実施する必要がある。高速バランス修正方法は、例えば特許文献1に開示されている。本バランス修正方法は、ロータが低回転状態及び高回転状態のときのロータの振動ベクトルを振動検出器及びパルス検出器で計測し、予め求めた、修正面における不釣合いベクトルの変化ベクトルと振動ベクトルの変化ベクトルとの線形関係に基づいて計測振動ベクトルを線形変換し、計測振動ベクトルを0ベクトルまで減少するのに必要な不釣合いベクトルの変化ベクトルを不釣合い修正ベクトルとして演算するものである。   In a high-speed turbomachine that passes the critical bending speed, it is not possible to sufficiently reduce the vibration only by correcting the low-speed balance assuming that the rotor is a rigid body, and it is necessary to perform the high-speed balance correction using the vibration measurement result at the time of high-speed rotation. A high-speed balance correction method is disclosed in Patent Document 1, for example. In this balance correction method, the vibration vector of the rotor when the rotor is in a low rotation state and a high rotation state is measured with a vibration detector and a pulse detector, and the change vector and vibration vector of the unbalance vector on the correction surface are obtained in advance. The measured vibration vector is linearly converted based on the linear relationship with the change vector, and the change vector of the unbalance vector necessary to reduce the measurement vibration vector to the zero vector is calculated as the unbalance correction vector.

不釣合いベクトルと振動ベクトルの関係を示す影響係数を用いて不釣合い修正ベクトルを算出する手法を一般的に影響係数法と呼ぶ。上記の手法は影響係数法を改良したものであり、ロータが低回転状態及び高回転状態のときのロータの振動ベクトルを計測することにより、ロータの修正前に行う振動ベクトルの計測だけでロータの高回転状態における撓みを考慮した修正内容を決定できるようにしている。本手法を適用することにより、振動ベクトルを計測した回転速度における振動振幅を低減することが可能である。   A method of calculating an unbalance correction vector using an influence coefficient indicating the relationship between an unbalance vector and a vibration vector is generally called an influence coefficient method. The above method is an improvement of the influence coefficient method. By measuring the vibration vector of the rotor when the rotor is in a low rotation state and a high rotation state, only the measurement of the vibration vector performed before the rotor correction is performed. It is possible to determine a correction content in consideration of bending in a high rotation state. By applying this method, it is possible to reduce the vibration amplitude at the rotational speed at which the vibration vector is measured.

影響係数の算出方法としては、有限要素法などの数値計算手段を用いて解析的に算出する方法と、事前に試し運転を実施し、既知の不釣合いベクトル変化を与えたときの振動ベクトル変化から実験的に算出する方法が考えられる。   As the calculation method of the influence coefficient, from the method of calculating analytically using numerical calculation means such as the finite element method and the vibration vector change when a trial operation is performed in advance and a known unbalance vector change is given. An experimental calculation method can be considered.

特開2000−291408号公報JP 2000-291408 A

バランス修正時に振動ベクトルを計測する回転速度を検査回転速度と呼ぶことにする。上述した高速バランス手法において、ある回転速度における振動振幅を低減するためには、その回転速度における振動ベクトルを計測する必要がある。ところが、高速バランス設備の動力不足等のために最高回転速度まで昇速できない場合がある。また、昇速にかかる時間を短縮するために、最高回転速度より低い回転速度で高速バランス修正を実施したいという要求もある。このような場合には、検査回転速度範囲以上の高回転速度領域における振動ベクトルを計測できないので、上述した高速バランス修正方法では高回転速度領域における振動振幅を低減できない。   The rotational speed at which the vibration vector is measured at the time of balance correction will be referred to as the inspection rotational speed. In the high-speed balance method described above, in order to reduce the vibration amplitude at a certain rotational speed, it is necessary to measure the vibration vector at that rotational speed. However, there are cases where the speed cannot be increased to the maximum rotational speed due to insufficient power of the high-speed balance equipment. There is also a demand to perform high-speed balance correction at a rotation speed lower than the maximum rotation speed in order to shorten the time required for the acceleration. In such a case, since the vibration vector in the high rotational speed region above the inspection rotational speed range cannot be measured, the above-described high-speed balance correction method cannot reduce the vibration amplitude in the high rotational speed region.

図2は回転速度と振動振幅の関係を示す模式図である。図の横軸は回転速度、縦軸は振動振幅である。図中の一点鎖線は初期振動振幅、破線は検査回転速度範囲の振動ベクトルを用いたバランス修正結果の振動振幅、実線は理想のバランス修正結果の振動振幅を示す。上述した高速バランス修正方法のように検査回転速度範囲の振動ベクトルを用いてバランス修正を行った場合、図の破線に示すように、検査回転速度範囲の振動を低減することは可能であるが、検査回転速度範囲よりも高い回転速度範囲においては振動振幅が増大する可能性がある。このように検査回転速度が最高回転速度より低い場合であっても、図中の実線で示すように、最高回転速度を含む全ての回転速度範囲において振動振幅が低減されることが望ましい。   FIG. 2 is a schematic diagram showing the relationship between the rotation speed and the vibration amplitude. In the figure, the horizontal axis represents the rotation speed, and the vertical axis represents the vibration amplitude. In the figure, the one-dot chain line indicates the initial vibration amplitude, the broken line indicates the vibration amplitude of the balance correction result using the vibration vector in the inspection rotation speed range, and the solid line indicates the vibration amplitude of the ideal balance correction result. When the balance correction is performed using the vibration vector in the inspection rotation speed range as in the high-speed balance correction method described above, it is possible to reduce the vibration in the inspection rotation speed range as shown by the broken line in the figure. The vibration amplitude may increase in a rotation speed range higher than the inspection rotation speed range. Thus, even when the inspection rotational speed is lower than the maximum rotational speed, it is desirable that the vibration amplitude is reduced in the entire rotational speed range including the maximum rotational speed as shown by the solid line in the figure.

本発明の目的は、バランス修正時に昇速できない回転速度範囲を含む回転速度範囲における振動振幅を簡単,確実に低減できるバランス修正装置を提供することにある。   An object of the present invention is to provide a balance correction device that can easily and reliably reduce vibration amplitude in a rotation speed range including a rotation speed range that cannot be increased during balance correction.

上記の目的を達成するために、本発明に係るバランス修正装置は、振動ベクトルと不釣合いベクトルとの関係を示す影響係数を入力する影響係数入力手段と、前記影響係数を記憶する影響係数記憶手段と、単一もしくは複数の検査回転速度における実測振動ベクトルを測定する振動ベクトル測定手段と、前記実測振動ベクトルと前記影響係数に基づいて推定不釣合いベクトルを演算する推定不釣合いベクトル演算手段と、前記推定不釣合いベクトルと前記影響係数に基づいて推定振動ベクトルを演算する推定振動ベクトル演算手段と、前記推定振動ベクトルかつまたは前記実測振動ベクトルと前記影響係数に基づいて不釣合い修正ベクトルを演算する不釣合い修正ベクトル演算手段を有することを特徴とするものである。   In order to achieve the above object, a balance correction apparatus according to the present invention includes an influence coefficient input means for inputting an influence coefficient indicating a relationship between a vibration vector and an unbalance vector, and an influence coefficient storage means for storing the influence coefficient. Vibration vector measuring means for measuring an actual vibration vector at a single or a plurality of inspection rotational speeds, estimated unbalance vector calculating means for calculating an estimated unbalance vector based on the actual vibration vector and the influence coefficient, An estimated vibration vector calculating means for calculating an estimated vibration vector based on the estimated unbalance vector and the influence coefficient; and an unbalance for calculating an unbalance correction vector based on the estimated vibration vector and / or the actually measured vibration vector and the influence coefficient. It has a correction vector calculation means.

実測振動ベクトルと影響係数に基づいて推定不釣合いベクトルを演算する推定不釣合いベクトル演算手段と、推定不釣合いベクトルと影響係数に基づいて推定振動ベクトルを演算する推定振動ベクトル演算手段と、推定振動ベクトルかつまたは実測振動ベクトルと影響係数に基づいて不釣合い修正ベクトルを演算することにより、検査回転速度に関係なく、影響係数で振動ベクトルと不釣合いベクトルの関係を示した回転速度における振動ベクトルを推定できるため、バランス修正時に昇速できない回転速度範囲を含む回転速度範囲における振動振幅を低減できる。   Estimated unbalance vector calculating means for calculating an estimated unbalance vector based on the actually measured vibration vector and the influence coefficient, estimated vibration vector calculating means for calculating the estimated vibration vector based on the estimated unbalance vector and the influence coefficient, and the estimated vibration vector In addition, by calculating the unbalance correction vector based on the actually measured vibration vector and the influence coefficient, it is possible to estimate the vibration vector at the rotation speed indicating the relation between the vibration vector and the unbalance vector by the influence coefficient regardless of the inspection rotation speed. Therefore, it is possible to reduce the vibration amplitude in the rotational speed range including the rotational speed range in which the speed cannot be increased when the balance is corrected.

以下に、本発明を実施するための最良の形態を、図面を用いて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1に一実施例の構成図を示す。影響係数入力手段1により、振動ベクトルと不釣合いベクトルとの関係を示す影響係数を入力し、影響計数記憶手段2に記憶する。本実施例における影響係数としては、各回転速度,振動計測位置における振動ベクトル{A}と各修正面(軸方向位置)における不釣合いベクトル{U}の線形関係を示す次式の影響係数行列[α]を用いているが、影響係数行列[α]が振動ベクトル{A}の大きさによって変化する非線形特性を有していても良い。   FIG. 1 shows a configuration diagram of one embodiment. An influence coefficient indicating the relationship between the vibration vector and the unbalance vector is input by the influence coefficient input means 1 and stored in the influence count storage means 2. As an influence coefficient in the present embodiment, an influence coefficient matrix of the following equation indicating a linear relationship between a vibration vector {A} at each rotational speed and vibration measurement position and an unbalance vector {U} at each correction surface (axial position) [ [alpha]] is used, but the influence coefficient matrix [[alpha]] may have a nonlinear characteristic that varies depending on the magnitude of the vibration vector {A}.

Figure 2008102049
Figure 2008102049

前述したように、影響係数の算出方法としては、有限要素法などの数値計算手段を用いて解析的に算出する方法と、事前に試し運転を実施し、既知の不釣合いベクトル変化を与えたときの振動ベクトル変化から実験的に算出する方法が考えられる。影響係数を解析的に算出する場合は、任意の回転速度における影響係数を算出することができる。影響係数を実験的に算出する場合においても、事前に最高回転速度までの試し運転を数回実施すれば、任意の回転速度における影響係数を算出できる。   As described above, the influence coefficient is calculated by analytically using a numerical calculation means such as a finite element method or when a trial run is performed in advance and a known unbalance vector change is given. It is conceivable to experimentally calculate from the vibration vector change. When the influence coefficient is calculated analytically, the influence coefficient at an arbitrary rotation speed can be calculated. Even when the influence coefficient is experimentally calculated, the influence coefficient at an arbitrary rotation speed can be calculated by performing several trial operations up to the maximum rotation speed in advance.

振動ベクトル測定手段3は、単一もしくは複数の検査回転速度における実測振動ベクトルを測定する。本実施例では、バランス修正時に最高回転速度まで上昇できない場合を想定している。振動ベクトル測定手段3の構成としては、例えば渦電流式変位センサ及びトラッキングフィルタなどが考えられる。渦電流式変位センサによりロータ振動変位を計測するとともに、渦電流式変位センサでロータの円周方向1箇所に設けたキー溝等を検出することにより回転パルスを計測する。計測したロータ振動変位と回転パルスをトラッキングフィルタに入力して演算することにより、回転周波数成分のロータ振動の振幅と、回転パルスからの位相遅れが算出され、実測振動ベクトルを測定することができる。   The vibration vector measuring means 3 measures an actually measured vibration vector at a single or a plurality of inspection rotation speeds. In the present embodiment, it is assumed that the maximum rotational speed cannot be increased during balance correction. As the configuration of the vibration vector measuring means 3, for example, an eddy current displacement sensor and a tracking filter can be considered. The rotor vibration displacement is measured by an eddy current displacement sensor, and the rotation pulse is measured by detecting a key groove or the like provided at one place in the circumferential direction of the rotor by the eddy current displacement sensor. By inputting the measured rotor vibration displacement and the rotation pulse to the tracking filter and calculating, the amplitude of the rotor vibration of the rotation frequency component and the phase delay from the rotation pulse are calculated, and the actually measured vibration vector can be measured.

推定不釣合いベクトル演算手段4は、実測振動ベクトルと影響係数に基づいて推定不釣合いベクトルを演算する。本実施例では次式に示す重み係数行列[λ]を考慮した影響係数法を利用し、上記の実測振動ベクトル{A}と影響係数[α]を入力することにより推定不釣合いベクトル{U}を算出しているが、モーダルバランス法等の他の手法を用いても良い。なお重み係数行列を単位行列とすれば重みなし影響係数法となる。   The estimated unbalance vector calculation means 4 calculates an estimated unbalance vector based on the actually measured vibration vector and the influence coefficient. In the present embodiment, the estimated unbalance vector {U} is obtained by inputting the measured vibration vector {A} and the influence coefficient [α] using the influence coefficient method in consideration of the weight coefficient matrix [λ] shown in the following equation. However, other methods such as a modal balance method may be used. If the weight coefficient matrix is a unit matrix, the weightless influence coefficient method is used.

Figure 2008102049
Figure 2008102049

推定不釣合いベクトルを演算する過程においては、実測振動ベクトルの回転速度,振動計測位置に対応する影響係数を選択して使用する。   In the process of calculating the estimated unbalance vector, an influence coefficient corresponding to the rotational speed and vibration measurement position of the actually measured vibration vector is selected and used.

推定振動ベクトル演算手段5は、推定不釣合いベクトルと影響係数に基づいて推定振動ベクトルを演算する。本実施例では(数1)に推定不釣合いベクトル{U}と影響係数行列[α]を入力することにより推定振動ベクトル{A}を算出している。影響係数入力手段1に入力した全ての回転速度、振動計測位置に対応する影響係数を用いて推定振動ベクトルを算出することにより、バランス修正時に昇速できない回転速度範囲を含む回転速度範囲における振動ベクトルを推定できる。   The estimated vibration vector calculation means 5 calculates an estimated vibration vector based on the estimated unbalance vector and the influence coefficient. In this embodiment, the estimated vibration vector {A} is calculated by inputting the estimated unbalance vector {U} and the influence coefficient matrix [α] into (Equation 1). By calculating the estimated vibration vector using the influence coefficients corresponding to all the rotation speeds and vibration measurement positions input to the influence coefficient input means 1, vibration vectors in a rotation speed range including a rotation speed range that cannot be accelerated during balance correction Can be estimated.

不釣合い修正ベクトル演算手段6は、推定振動ベクトルと影響係数に基づいて不釣合い修正ベクトルを演算する。本実施例では、(数2)に推定振動ベクトル{A}と影響係数[α]を入力することにより不釣合い修正ベクトル{U}を算出している。バランス修正時に昇速できない回転速度範囲を含む回転速度範囲における振動ベクトルをもとに不釣合い修正ベクトルを算出するため、バランス修正時に昇速できない回転速度範囲を含む回転速度範囲における振動振幅を低減できる。   The unbalance correction vector calculator 6 calculates an unbalance correction vector based on the estimated vibration vector and the influence coefficient. In this embodiment, the unbalance correction vector {U} is calculated by inputting the estimated vibration vector {A} and the influence coefficient [α] into (Equation 2). Since the unbalance correction vector is calculated based on the vibration vector in the rotation speed range including the rotation speed range that cannot be increased during the balance correction, the vibration amplitude in the rotation speed range including the rotation speed range that cannot be increased during the balance correction can be reduced. .

図3に他の実施例の構成図を示す。実施例1との差異は、不釣合い修正ベクトル演算手段6において、振動ベクトル測定手段3で測定した実測振動ベクトルと、推定振動ベクトル演算手段5で演算した推定振動ベクトルと、影響係数記憶手段2に記憶した影響係数に基づいて不釣合い修正ベクトルを演算していることである。本実施例では、実測振動ベクトルと、検査回転速度以外の回転速度における推定振動ベクトルとを組み合わせて使用している。検査回転速度における不釣合い修正ベクトルの演算において、推定誤差の無い実測振動ベクトルを用いることができるため、振動振幅をより確実に低減できる。   FIG. 3 shows a configuration diagram of another embodiment. The difference from the first embodiment is that in the unbalance correction vector calculation means 6, the actual vibration vector measured by the vibration vector measurement means 3, the estimated vibration vector calculated by the estimated vibration vector calculation means 5, and the influence coefficient storage means 2 The unbalance correction vector is calculated based on the stored influence coefficient. In this embodiment, the actually measured vibration vector and the estimated vibration vector at a rotational speed other than the inspection rotational speed are used in combination. In the calculation of the unbalance correction vector at the inspection rotation speed, since the actually measured vibration vector having no estimation error can be used, the vibration amplitude can be more reliably reduced.

また本実施例においては、推定不釣合いベクトルの軸方向分布を、ロータの固有振動モードに相当する分布としている。不釣合いベクトル{U}は固有振動モード行列[φ]とモード不釣合いベクトル{δ}を用いて次式で表される。   In this embodiment, the axial distribution of the estimated unbalance vector is a distribution corresponding to the natural vibration mode of the rotor. The unbalance vector {U} is expressed by the following equation using the natural vibration mode matrix [φ] and the mode unbalance vector {δ}.

Figure 2008102049
Figure 2008102049

モード影響係数[α′]を次式のように定義する。   The mode influence coefficient [α ′] is defined as follows:

Figure 2008102049
Figure 2008102049

(数4)を用いると、(数1)及び(数2)は次式のように変形される。   When (Equation 4) is used, (Equation 1) and (Equation 2) are transformed into the following equations.

Figure 2008102049
Figure 2008102049

Figure 2008102049
Figure 2008102049

不釣合い分布はモード不釣合いベクトル{δ}の重ね合わせで表せるため、推定不釣合いベクトルの軸方向分布をロータの固有振動モードに相当する分布とすることにより、より実際に近い不釣合い分布を推定することができる。   Since the unbalance distribution can be expressed by superposition of the mode unbalance vector {δ}, the distribution of the estimated unbalance vector in the axial direction is a distribution corresponding to the natural vibration mode of the rotor, so that an unbalance distribution closer to the actual state can be estimated. can do.

図4に他の実施例の構成図を示す。実施例2との差異は、推定振動ベクトルを演算するための推定振動ベクトル演算用影響係数を入力する推定振動ベクトル演算用影響係数入力手段7と、不釣合い修正ベクトルを演算するための不釣合い修正ベクトル演算用影響係数を入力する不釣合い修正ベクトル演算用影響係数入力手段8を有することである。各回転速度において算出方法を統一した推定振動ベクトル演算用影響係数を用いることにより推定振動ベクトルの推定精度を向上できるとともに、回転速度毎に実測結果等の信頼性の高いデータを選択した不釣合い修正ベクトル演算用影響係数を用いることにより不釣合い修正ベクトルの算出精度を向上できるため、振動振幅をより確実に低減できる。   FIG. 4 shows a configuration diagram of another embodiment. The difference from the second embodiment is that the estimated vibration vector calculation influence coefficient input means 7 for inputting the estimated vibration vector calculation influence coefficient for calculating the estimated vibration vector, and the unbalance correction for calculating the unbalance correction vector. This is to have an unbalance corrected vector calculation influence coefficient input means 8 for inputting a vector calculation influence coefficient. By using the influence coefficient for calculating the estimated vibration vector with a unified calculation method at each rotation speed, the estimation accuracy of the estimated vibration vector can be improved, and unbalance correction by selecting highly reliable data such as actual measurement results for each rotation speed Since the calculation accuracy of the unbalance correction vector can be improved by using the vector calculation influence coefficient, the vibration amplitude can be more reliably reduced.

また、実測振動ベクトルと、検査回転速度以外の回転速度における推定振動ベクトルと、影響係数に基づいて不釣合い修正ベクトルを演算する不釣合い修正ベクトル演算手段を有することにより、検査回転速度における不釣合い修正ベクトルの演算において推定誤差の無い実測振動ベクトルを用いることができるため、振動振幅をより確実に低減できる。   Further, by having an unbalance correction vector calculation means for calculating an unbalance correction vector based on an actually measured vibration vector, an estimated vibration vector at a rotation speed other than the inspection rotation speed, and an influence coefficient, the unbalance correction at the inspection rotation speed is achieved. Since the measured vibration vector having no estimation error can be used in the vector calculation, the vibration amplitude can be more reliably reduced.

また、推定振動ベクトルを演算するための推定振動ベクトル演算用影響係数を入力する推定振動ベクトル演算用影響係数入力手段と、不釣合い修正ベクトルを演算するための不釣合い修正ベクトル演算用影響係数を入力する不釣合い修正ベクトル演算用影響係数入力手段を有することにより、各回転速度において算出方法を統一した推定振動ベクトル演算用影響係数を用いることにより推定振動ベクトルの推定精度を向上できるとともに、回転速度毎に実測結果等の信頼性の高いデータを選択した不釣合い修正ベクトル演算用影響係数を用いることにより不釣合い修正ベクトルの算出精度を向上できるため、振動振幅をより確実に低減できる。   Also, input an influence coefficient input means for calculating an estimated vibration vector for calculating an estimated vibration vector and an influence coefficient input means for calculating an unbalance correction vector for calculating an unbalance correction vector. By using the influence coefficient input means for calculating the unbalanced correction vector, it is possible to improve the estimation accuracy of the estimated vibration vector by using the influence coefficient for the estimated vibration vector calculation that unifies the calculation method at each rotation speed, and for each rotation speed. Since the calculation accuracy of the unbalance correction vector can be improved by using the influence coefficient for unbalance correction vector calculation in which highly reliable data such as the actual measurement result is selected, the vibration amplitude can be more reliably reduced.

また、重み付きまたは重み無し最小二乗法を用いた影響係数法に基づいて、推定不釣合いベクトルを演算する推定不釣合いベクトル演算手段を有することにより、推定不釣合いベクトルを簡単,高精度に演算することができ、振動振幅を簡単,確実に低減できる。   In addition, by having an estimated unbalance vector calculation means for calculating an estimated unbalance vector based on an influence coefficient method using a weighted or unweighted least square method, the estimated unbalance vector can be calculated easily and with high accuracy. The vibration amplitude can be reduced easily and reliably.

また、重み付きまたは重み無し最小二乗法を用いた影響係数法に基づいて、不釣合い修正ベクトルを演算する不釣合い修正ベクトル演算手段を有することにより、不釣合い修正ベクトルを簡単,高精度に演算することができ、振動振幅を簡単,確実に低減できる。
また、推定不釣合いベクトルの軸方向分布を、ロータの固有振動モードに相当する分布とする推定不釣合いベクトル演算手段を有することにより、推定振動ベクトルをより精度良く算出することができるため、振動振幅をより確実に低減することができる。
Further, by having an unbalance correction vector calculation means for calculating an unbalance correction vector based on the influence coefficient method using the weighted or unweighted least square method, the unbalance correction vector can be calculated easily and with high accuracy. The vibration amplitude can be reduced easily and reliably.
In addition, the estimated vibration vector can be calculated more accurately by including the estimated unbalance vector calculation means that uses the axial distribution of the estimated unbalance vector as the distribution corresponding to the natural vibration mode of the rotor. Can be more reliably reduced.

本発明の一実施の形態によるバランス修正装置の構成図。The block diagram of the balance correction apparatus by one embodiment of this invention. 回転速度と振動振幅の関係を示す模式図。The schematic diagram which shows the relationship between a rotational speed and a vibration amplitude. 他の実施の形態による構成図。The block diagram by other embodiment. 他の実施の形態による構成図。The block diagram by other embodiment.

符号の説明Explanation of symbols

1 影響係数入力手段
2 影響係数記憶手段
3 振動ベクトル測定手段
4 推定不釣合いベクトル演算手段
5 推定振動ベクトル演算手段
6 不釣合い修正ベクトル演算手段
7 推定振動ベクトル演算用影響係数入力手段
8 不釣合い修正ベクトル演算用影響係数入力手段
9 バランス修正装置

DESCRIPTION OF SYMBOLS 1 Influence coefficient input means 2 Influence coefficient storage means 3 Vibration vector measurement means 4 Estimated unbalance vector calculation means 5 Estimated vibration vector calculation means 6 Unbalance correction vector calculation means 7 Estimated vibration vector calculation influence coefficient input means 8 Unbalance correction vector Influence coefficient input means for calculation 9 Balance correction device

Claims (6)

振動ベクトルと不釣合いベクトルとの関係を示す影響係数を入力する影響係数入力手段と、
前記影響係数を記憶する影響係数記憶手段と、単一もしくは複数の検査回転速度における実測振動ベクトルを測定する振動ベクトル測定手段と、
前記実測振動ベクトルと前記影響係数に基づいて推定不釣合いベクトルを演算する推定不釣合いベクトル演算手段と、
前記推定不釣合いベクトルと前記影響係数に基づいて推定振動ベクトルを演算する推定振動ベクトル演算手段と、
前記推定振動ベクトルかつまたは前記実測振動ベクトルと前記影響係数に基づいて不釣合い修正ベクトルを演算する不釣合い修正ベクトル演算手段と、
を有することを特徴とするバランス修正装置。
An influence coefficient input means for inputting an influence coefficient indicating the relationship between the vibration vector and the unbalanced vector;
An influence coefficient storage means for storing the influence coefficient; a vibration vector measurement means for measuring an actual vibration vector at a single or a plurality of inspection rotation speeds;
Estimated unbalance vector calculation means for calculating an estimated unbalance vector based on the measured vibration vector and the influence coefficient;
Estimated vibration vector computing means for computing an estimated vibration vector based on the estimated unbalance vector and the influence coefficient;
Unbalance correction vector calculation means for calculating an unbalance correction vector based on the estimated vibration vector and / or the actually measured vibration vector and the influence coefficient;
A balance correction apparatus comprising:
請求項1に記載のものにおいて、前記実測振動ベクトルと前記検査回転速度以外の回転速度における前記推定振動ベクトルと、前記影響係数に基づいて前記不釣合い修正ベクトルを演算する不釣合い修正ベクトル演算手段と、を有することを特徴とするバランス修正装置。   The unbalance correction vector calculating means for calculating the unbalance correction vector based on the measured vibration vector, the estimated vibration vector at a rotation speed other than the inspection rotation speed, and the influence coefficient, according to claim 1. The balance correction apparatus characterized by having. 請求項1に記載のものにおいて、前記推定振動ベクトルを演算するための推定振動ベクトル演算用影響係数を入力する推定振動ベクトル演算用影響係数入力手段と、前記不釣合い修正ベクトルを演算するための不釣合い修正ベクトル演算用影響係数を入力する不釣合い修正ベクトル演算用影響係数入力手段を有することを特徴とするバランス修正装置。   The estimated vibration vector calculation influence coefficient input means for inputting the estimated vibration vector calculation influence coefficient for calculating the estimated vibration vector, and an unbalance for calculating the unbalance correction vector. A balance correction apparatus comprising an influence coefficient input means for unbalance correction vector calculation for inputting an influence coefficient for balance correction vector calculation. 請求項1に記載のものにおいて、重み付きまたは重み無し最小二乗法を用いた影響係数法に基づいて、前記推定不釣合いベクトルを演算する推定不釣合いベクトル演算手段を有することを特徴とするバランス修正装置。   2. The balance correction according to claim 1, further comprising estimated unbalance vector calculation means for calculating the estimated unbalance vector based on an influence coefficient method using a weighted or unweighted least square method. apparatus. 請求項1に記載のものにおいて、重み付きまたは重み無し最小二乗法を用いた影響係数法に基づいて、前記不釣合い修正ベクトルを演算する不釣合い修正ベクトル演算手段を有することを特徴とするバランス修正装置。   2. The balance correction according to claim 1, further comprising an unbalance correction vector calculation means for calculating the unbalance correction vector based on an influence coefficient method using a weighted or unweighted least square method. apparatus. 請求項1に記載のものにおいて、前記推定不釣合いベクトルの軸方向分布を、ロータの固有振動モードに相当する分布とする推定不釣合いベクトル演算手段を有することを特徴とするバランス修正装置。
2. The balance correcting apparatus according to claim 1, further comprising estimated unbalance vector calculation means for setting the axial distribution of the estimated unbalance vector to a distribution corresponding to the natural vibration mode of the rotor.
JP2006285661A 2006-10-20 2006-10-20 Balance correction device Pending JP2008102049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285661A JP2008102049A (en) 2006-10-20 2006-10-20 Balance correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285661A JP2008102049A (en) 2006-10-20 2006-10-20 Balance correction device

Publications (1)

Publication Number Publication Date
JP2008102049A true JP2008102049A (en) 2008-05-01

Family

ID=39436476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285661A Pending JP2008102049A (en) 2006-10-20 2006-10-20 Balance correction device

Country Status (1)

Country Link
JP (1) JP2008102049A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043891A (en) * 2008-08-11 2010-02-25 Ihi Corp Device and method of measuring rotation balance of high-speed rotating body
JP2010048588A (en) * 2008-08-20 2010-03-04 Ihi Corp Method and device for calculating of imbalance amount of rotating body
JP2010281743A (en) * 2009-06-05 2010-12-16 Ihi Corp Method of acquiring influence coefficient
JP2012002615A (en) * 2010-06-16 2012-01-05 Ihi Corp Unbalance amount measuring method and device therefor
JP2012063257A (en) * 2010-09-16 2012-03-29 Ihi Corp Influence coefficient acquisition method and device
JP2012073121A (en) * 2010-09-29 2012-04-12 Ihi Corp Influence coefficient correcting method and single balance device with correction function
JP2012073122A (en) * 2010-09-29 2012-04-12 Ihi Corp Influence coefficient correcting method and single balance device with correction function
JP2012088060A (en) * 2010-10-15 2012-05-10 Ihi Corp Influence coefficient acquisition method
JP2012088058A (en) * 2010-10-15 2012-05-10 Ihi Corp Influence coefficient acquisition method
JP2012103096A (en) * 2010-11-10 2012-05-31 Ihi Corp Device and method for determining deterioration of bearing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043891A (en) * 2008-08-11 2010-02-25 Ihi Corp Device and method of measuring rotation balance of high-speed rotating body
JP2010048588A (en) * 2008-08-20 2010-03-04 Ihi Corp Method and device for calculating of imbalance amount of rotating body
JP2010281743A (en) * 2009-06-05 2010-12-16 Ihi Corp Method of acquiring influence coefficient
JP2012002615A (en) * 2010-06-16 2012-01-05 Ihi Corp Unbalance amount measuring method and device therefor
JP2012063257A (en) * 2010-09-16 2012-03-29 Ihi Corp Influence coefficient acquisition method and device
JP2012073121A (en) * 2010-09-29 2012-04-12 Ihi Corp Influence coefficient correcting method and single balance device with correction function
JP2012073122A (en) * 2010-09-29 2012-04-12 Ihi Corp Influence coefficient correcting method and single balance device with correction function
JP2012088060A (en) * 2010-10-15 2012-05-10 Ihi Corp Influence coefficient acquisition method
JP2012088058A (en) * 2010-10-15 2012-05-10 Ihi Corp Influence coefficient acquisition method
JP2012103096A (en) * 2010-11-10 2012-05-31 Ihi Corp Device and method for determining deterioration of bearing

Similar Documents

Publication Publication Date Title
JP2008102049A (en) Balance correction device
JP5234772B2 (en) Vibration suppression method and apparatus for machine tool
JP5933844B2 (en) Angular error correction device and angular error correction method for position detector
JP4965613B2 (en) Resolver interface, method for monitoring input signal from resolver, and differential position sensor interface
JP5215064B2 (en) Method and apparatus for suppressing chatter vibration of machine tool
JP2013044667A (en) Multiaxial fatigue life evaluation method
JP6208699B2 (en) Servo controller that measures the lubrication characteristics of the machine by experimental mode analysis
JP4788543B2 (en) Parameter estimation device for engine bench system
JP4788627B2 (en) Parameter estimation device for engine bench system
JPWO2016117029A1 (en) Angular error correction device and angular error correction method for position detector
CN103105292A (en) Stick-slip detecting device and detecting method
JP2010048588A (en) Method and device for calculating of imbalance amount of rotating body
Puerto-Santana et al. Mechanical rotor unbalance monitoring based on system identification and signal processing approaches
JP6638475B2 (en) Zero setting method, evaluation device and program
JP2017181026A (en) Fault diagnosis device, rotational angle sensor, failure diagnosis method, and program
JP2009020009A (en) Method and apparatus for centering rotational body
JP2009527209A (en) Method for detecting the inductance of an electric motor
JP2020037299A (en) Tire uniformity data correction method and tire uniformity machine
JP4818188B2 (en) Frequency change measuring device, frequency change rate measuring device, and power system control protection device
KR101784166B1 (en) Wobble-type dynamometer system and method of controlling same
US20190391032A1 (en) Method for determining an unbalance of a shaft-elastic rotor with reference to the outward deflection
US20230008848A1 (en) Method and apparatus for determining upvalue factors for expansion measurements on machine elements
JP2009017681A (en) Frequency variation rate protective relay system
KR101372406B1 (en) Apparatus for analysizing rotation axis
Rozumek et al. Control system of the fatigue stand for material tests under combined bending with torsion loading and experimental results