JP2008102019A - Oscillation device and oscillation method for tuning fork type piezoelectric transducing device - Google Patents

Oscillation device and oscillation method for tuning fork type piezoelectric transducing device Download PDF

Info

Publication number
JP2008102019A
JP2008102019A JP2006284798A JP2006284798A JP2008102019A JP 2008102019 A JP2008102019 A JP 2008102019A JP 2006284798 A JP2006284798 A JP 2006284798A JP 2006284798 A JP2006284798 A JP 2006284798A JP 2008102019 A JP2008102019 A JP 2008102019A
Authority
JP
Japan
Prior art keywords
oscillation
fork type
tuning fork
piezoelectric vibration
vibration device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006284798A
Other languages
Japanese (ja)
Inventor
Yoshimi Inami
良実 伊波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2006284798A priority Critical patent/JP2008102019A/en
Publication of JP2008102019A publication Critical patent/JP2008102019A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress generation of a time lag and delay in generation stabilization time by quickening the oscillation of a tuning fork type transducing device, at oscillation inspection. <P>SOLUTION: An oscillation device 4 for a tuning fork type crystal resonator 2 is employed for making the crystal resonator 2 oscillate and is equipped with an exciting oscillator 41 for outputting the oscillation signal of a frequency equal or close to the resonance frequency of the crystal resonator 2 to the crystal oscillator 2, for exciting the crystal resonator 2, and an inspecting oscillator 42 for oscillating the crystal resonator 2. In this oscillation device 4, the crystal resonator 2 is excited by the exciting oscillator 41, and this crystal resonator 2 in the excited state is oscillated by the resonance frequency of the crystal resonator 2 by the inspecting oscillator 42. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、音叉型圧電振動デバイスの発振装置および発振方法に関し、特に、音叉型圧電振動デバイスの発振の有無を検査する音叉型圧電振動デバイスの発振検査器に用いる発振装置および発振方法に関する。   The present invention relates to an oscillation device and an oscillation method for a tuning fork type piezoelectric vibration device, and more particularly to an oscillation device and an oscillation method used for an oscillation tester for a tuning fork type piezoelectric vibration device for inspecting the presence or absence of oscillation of the tuning fork type piezoelectric vibration device.

水晶振動子などの圧電振動デバイスの製造工程のなかには、圧電振動デバイスの発振特性を検査する工程がある(例えば、特許文献1ご参照。)。   Among the steps of manufacturing a piezoelectric vibrating device such as a quartz resonator, there is a step of inspecting the oscillation characteristics of the piezoelectric vibrating device (see, for example, Patent Document 1).

この下記する特許文献1に記載の水晶振動子の良否判定方法は、直流入力電圧に従って増幅率が変化する増幅回路を少なくとも一つ有する、判定対象の水晶振動子が接続された水晶発振回路を用い、直流入力電圧を増大させて水晶発振回路が発振を開始したときの直流入力電圧の最大値を測定し、その測定値に従って水晶振動子の良否を判定する方法である。   The crystal resonator quality determination method described in Patent Document 1 described below uses a crystal oscillation circuit having at least one amplifier circuit whose amplification factor changes according to a DC input voltage and to which a crystal resonator to be determined is connected. In this method, the DC input voltage is increased and the maximum value of the DC input voltage when the crystal oscillation circuit starts oscillating is measured, and the quality of the crystal resonator is judged according to the measured value.

この特許文献1に記載の水晶振動子の良否判定方法によれば、水晶振動子が実際の発振回路で発振する時の動作を定量的に測定し、水晶振動子の良否を確実、且つ正確に判定することができる。
特開2001−242209号公報
According to the crystal resonator quality determination method described in Patent Document 1, the operation when the crystal resonator oscillates in an actual oscillation circuit is quantitatively measured, and the quality of the crystal resonator is reliably and accurately determined. Can be determined.
JP 2001-242209 A

ところで、この圧電振動デバイスにおける発振特性に関して、圧電振動デバイスの発振検査時において発振器での電源のONから実際に発振するまで(発振信号の立ち上がり)にタイムラグ(未発振時間)が発生する。すなわち、発振器での電源のONに対する発振信号の立ち上がり時間が遅い。また、これに比例して発振してから発振が安定するまでにかかる時間(発振安定時間)も遅い。つまり、圧電振動デバイスの発振動作が遅い。具体的に、現在、ATカット水晶振動子の場合、発振安定時間が1〜3mSECであるのに対して、音叉型圧電振動デバイスの場合、発振安定時間は300〜500mSECである。   By the way, regarding the oscillation characteristics of this piezoelectric vibration device, a time lag (non-oscillation time) occurs from when the power supply of the oscillator is turned on to when it actually oscillates (rising of the oscillation signal) during the oscillation inspection of the piezoelectric vibration device. That is, the rise time of the oscillation signal with respect to the power ON of the oscillator is slow. In addition, the time taken for oscillation to stabilize after oscillation oscillates in proportion (oscillation stabilization time) is also slow. That is, the oscillation operation of the piezoelectric vibration device is slow. Specifically, at present, the oscillation stabilization time is 1 to 3 mSEC in the case of an AT-cut crystal resonator, whereas the oscillation stabilization time is 300 to 500 mSEC in the case of a tuning fork type piezoelectric vibration device.

そこで、上記課題を解決するために、本発明は、音叉型圧電振動デバイスの発振検査時において、音叉型圧電振動デバイスの発振を早めて、タイムラグの発生や発振安定時間の遅延を抑える音叉型圧電振動デバイスの発振装置および発振方法を提供することを目的とする。   Accordingly, in order to solve the above-described problems, the present invention provides a tuning fork type piezoelectric device that accelerates the oscillation of the tuning fork type piezoelectric vibration device during the oscillation inspection of the tuning fork type piezoelectric vibration device and suppresses the generation of a time lag and the delay of the oscillation stabilization time. An object is to provide an oscillation device and an oscillation method for a vibration device.

上記の目的を達成するため、本発明にかかる音叉型圧電振動デバイスの発振装置は、音叉型圧電振動デバイスを発振させる音叉型圧電振動デバイスの発振装置であって、音叉型圧電振動デバイスの共振周波数または当該共振周波数近傍の周波数の発振信号を音叉型圧電振動デバイスに出力して当該音叉型圧電振動デバイスを励振させる励振用発振器と、音叉型圧電振動デバイスを発振させる検査用発振器と、が設けられ、前記励振用発振器により音叉型圧電振動デバイスを励振させ、この励振させた状態の音叉型圧電振動デバイスを前記検査用発振器により当該音叉型圧電振動デバイスの共振周波数で発振させることを特徴とする。   In order to achieve the above object, an oscillation device for a tuning fork type piezoelectric vibration device according to the present invention is an oscillation device for a tuning fork type piezoelectric vibration device that oscillates a tuning fork type piezoelectric vibration device, and the resonance frequency of the tuning fork type piezoelectric vibration device. Or, an oscillation oscillator for exciting the tuning fork type piezoelectric vibration device by outputting an oscillation signal having a frequency near the resonance frequency to the tuning fork type piezoelectric vibration device and an inspection oscillator for oscillating the tuning fork type piezoelectric vibration device are provided. The tuning fork type piezoelectric vibration device is excited by the excitation oscillator, and the excited tuning fork type piezoelectric vibration device is oscillated at the resonance frequency of the tuning fork type piezoelectric vibration device by the inspection oscillator.

本発明によれば、前記励振用発振器と前記検査用発振器とが設けられ、前記励振用発振器により音叉型圧電振動デバイスを励振させ、この励振させた状態の音叉型圧電振動デバイスを前記検査用発振器により当該音叉型圧電振動デバイスの共振周波数で発振させるので、音叉型圧電振動デバイスの発振検査時において、音叉型圧電振動デバイスの発振を早めて、タイムラグ(未発振時間)の発生や発振安定時間の遅延を抑えることが可能となる。その結果、音叉型圧電振動デバイスの製造において生産性を向上させることが可能となる。なお、音叉型圧電振動デバイスの発振検査において音叉型圧電振動デバイスの発振を検知する対象を、音叉型圧電振動デバイスの周波数としてもよく、音叉型圧電振動デバイスの直列共振抵抗値としてもよい。   According to the present invention, the excitation oscillator and the inspection oscillator are provided, and the tuning fork type piezoelectric vibration device is excited by the excitation oscillator, and the excited tuning fork type piezoelectric vibration device is used as the inspection oscillator. Oscillates at the resonance frequency of the tuning fork type piezoelectric vibration device, so that at the time of oscillation inspection of the tuning fork type piezoelectric vibration device, the oscillation of the tuning fork type piezoelectric vibration device can be accelerated so that time lag (non-oscillation time) occurs and It becomes possible to suppress the delay. As a result, productivity can be improved in the manufacture of a tuning fork type piezoelectric vibration device. It should be noted that the target for detecting the oscillation of the tuning fork type piezoelectric vibration device in the oscillation inspection of the tuning fork type piezoelectric vibration device may be the frequency of the tuning fork type piezoelectric vibration device or the series resonance resistance value of the tuning fork type piezoelectric vibration device.

前記構成において、前記励振用発振器と前記検査用発振器とは切替部を介して接続され、前記切替部により前記励振用発振器と音叉型圧電振動デバイスとの接続と、前記検査用発振器と音叉型圧電振動デバイスとの接続とが切り替えられてもよい。   In the above configuration, the excitation oscillator and the inspection oscillator are connected via a switching unit, the connection between the excitation oscillator and the tuning fork type piezoelectric vibration device by the switching unit, the inspection oscillator and the tuning fork type piezoelectric device. The connection with the vibration device may be switched.

この場合、前記励振用発振器と前記検査用発振器とは切替部を介して接続され、前記切替部により前記励振用発振器と音叉型圧電振動デバイスとの接続と、前記検査用発振器と音叉型圧電振動デバイスとの接続とが切り替えられるので、前記励振用発振器によって励振させた音叉型圧電振動デバイスを前記検査用発振器によって発振させるために、前記各発振器と音叉型圧電振動デバイスとの切替を容易にすることが可能となる。   In this case, the excitation oscillator and the inspection oscillator are connected via a switching unit, the connection between the excitation oscillator and the tuning fork type piezoelectric vibration device by the switching unit, and the inspection oscillator and the tuning fork type piezoelectric vibration. Since the connection with the device can be switched, in order to oscillate the tuning fork type piezoelectric vibration device excited by the excitation oscillator by the inspection oscillator, the switching between each oscillator and the tuning fork type piezoelectric vibration device is facilitated. It becomes possible.

前記構成において、前記励振用発振器から前記検査用発振器への前記切替部による音叉型圧電振動デバイスとの接続の切替は、連続して行われてもよい。   In the above configuration, the switching of the connection with the tuning fork type piezoelectric vibration device by the switching unit from the excitation oscillator to the inspection oscillator may be performed continuously.

この場合、前記励振用発振器から前記検査用発振器への前記切替部による音叉型圧電振動デバイスとの接続の切替は連続して行われるので、検査用発振器での電源供給(供給信号がON状態)から実際に発振するまで(発振信号(発振検出信号)の立ち上がり)に発生するタイムラグを抑えるのに好適である。   In this case, since switching of the connection with the tuning fork type piezoelectric vibration device by the switching unit from the excitation oscillator to the inspection oscillator is continuously performed, power supply by the inspection oscillator (supply signal is in an ON state) It is suitable for suppressing a time lag that occurs from when the oscillation signal is actually oscillated (rising of the oscillation signal (oscillation detection signal)).

前記構成において、当該発振装置は、音叉型圧電振動デバイスの発振検査器に取り外し可能に外付けされてもよい。   In the above configuration, the oscillation device may be detachably attached to the oscillation tester of the tuning fork type piezoelectric vibration device.

前記構成において、前記励振用発振器には、任意の発振信号を出力する任意の発振源が取替え可能に設けられてもよい。   In the above configuration, the oscillation oscillator for excitation may be provided with an arbitrary oscillation source that outputs an arbitrary oscillation signal.

この場合、前記励振用発振器には、任意の発振信号を出力する任意の発振源が取替え可能に設けられるので、任意の周波数に対応したあらゆる音叉型圧電振動デバイスに対応させることが可能となり、当該発振装置の自由度をあげることが可能となる。   In this case, the excitation oscillator is provided with an arbitrary oscillation source that outputs an arbitrary oscillation signal so that it can be replaced. Therefore, it can be adapted to any tuning fork type piezoelectric vibration device corresponding to an arbitrary frequency. The degree of freedom of the oscillation device can be increased.

また、上記の目的を達成するため、本発明にかかる音叉型圧電振動デバイスの発振方法は、音叉型圧電振動デバイスを発振させる音叉型圧電振動デバイスの発振方法であって、音叉型圧電振動デバイスの共振周波数または当該共振周波数近傍の周波数の発振信号を音叉型圧電振動デバイスに出力して当該音叉型圧電振動デバイスを励振させる励振用発振工程と、音叉型圧電振動デバイスを発振させる検査用発振工程と、を有し、前記励振用発振工程において音叉型圧電振動デバイスを励振させ、前記検査用発振工程において励振させた状態の音叉型圧電振動デバイスを当該音叉型圧電振動デバイスの共振周波数で発振させることを特徴とする。   In order to achieve the above object, an oscillation method of a tuning fork type piezoelectric vibrating device according to the present invention is an oscillation method of a tuning fork type piezoelectric vibrating device that oscillates a tuning fork type piezoelectric vibrating device. An oscillation process for excitation for exciting the tuning fork type piezoelectric vibration device by outputting an oscillation signal having a resonance frequency or a frequency near the resonance frequency to the tuning fork type piezoelectric vibration device; and an oscillation process for testing for causing the tuning fork type piezoelectric vibration device to oscillate. The tuning fork type piezoelectric vibration device is excited in the oscillation step for excitation, and the tuning fork type piezoelectric vibration device excited in the oscillation step for inspection is oscillated at the resonance frequency of the tuning fork type piezoelectric vibration device. It is characterized by.

本発明によれば、前記励振用発振工程と前記検査用発振工程とを有し、前記励振用発振工程において音叉型圧電振動デバイスを励振させ、前記検査用発振工程において励振させた状態の音叉型圧電振動デバイスを当該音叉型圧電振動デバイスの共振周波数で発振させるので、音叉型圧電振動デバイスの発振検査時において、音叉型圧電振動デバイスの発振を早めて、タイムラグ(未発振時間)の発生や発振安定時間の遅延を抑えることが可能となる。その結果、音叉型圧電振動デバイスの製造において生産性を向上させることが可能となる。また、短時間の間隔で発振が要求される音叉型圧電振動デバイスに好適である。特に、本発明は、音叉型圧電振動デバイスの製造工程で用いることが可能であり、この製造工程のうち、周波数調整工程やその前後工程、もしくは出荷前の最終検査工程などに用いることが好適である。なお、音叉型圧電振動デバイスの発振検査において音叉型圧電振動デバイスの発振を検知する対象を、音叉型圧電振動デバイスの周波数としてもよく、音叉型圧電振動デバイスの直列共振抵抗値としてもよい。   According to the present invention, the tuning fork type includes the excitation oscillation step and the inspection oscillation step, wherein the tuning fork type piezoelectric vibration device is excited in the excitation oscillation step and is excited in the inspection oscillation step. Since the piezoelectric vibrating device is oscillated at the resonance frequency of the tuning fork type piezoelectric vibrating device, the tuning fork type piezoelectric vibrating device is oscillated earlier and the time lag (non-oscillation time) is generated or oscillated. It becomes possible to suppress the delay of the stabilization time. As a result, productivity can be improved in the manufacture of a tuning fork type piezoelectric vibration device. Further, it is suitable for a tuning fork type piezoelectric vibration device that requires oscillation at short time intervals. In particular, the present invention can be used in the manufacturing process of a tuning fork type piezoelectric vibration device, and is suitable for use in the frequency adjustment process, its pre- and post-processes, or the final inspection process before shipment. is there. It should be noted that the target for detecting the oscillation of the tuning fork type piezoelectric vibration device in the oscillation inspection of the tuning fork type piezoelectric vibration device may be the frequency of the tuning fork type piezoelectric vibration device or the series resonance resistance value of the tuning fork type piezoelectric vibration device.

本発明にかかる音叉方圧電振動デバイスの発振装置および発振方法によれば、音叉型圧電振動デバイスの発振検査において、音叉型圧電振動デバイスの発振を早めて、タイムラグの発生や発振安定時間の遅延を抑えることが可能となる。   According to the oscillation device and the oscillation method of the tuning fork type piezoelectric vibration device according to the present invention, in the oscillation inspection of the tuning fork type piezoelectric vibration device, the oscillation of the tuning fork type piezoelectric vibration device is accelerated so that the time lag is generated and the oscillation stabilization time is delayed. It becomes possible to suppress.

以下、本発明の実施の形態について図面を参照して説明する。なお、以下に示す実施例では、音叉型圧電振動デバイスとして音叉型水晶振動子に本発明を適用した場合を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiment, a case where the present invention is applied to a tuning fork type crystal resonator as a tuning fork type piezoelectric vibration device is shown.

本実施例にかかる発振検査器11は、図1に示すように、音叉型水晶振動子2の製造装置(図示省略)の製造ラインに組み込まれ、製造ライン上に配された発振検査装置3で用いられる。   As shown in FIG. 1, the oscillation tester 11 according to the present embodiment is incorporated in a production line of a production apparatus (not shown) of the tuning fork type crystal resonator 2, and is an oscillation examination apparatus 3 arranged on the production line. Used.

音叉型水晶振動子2の製造装置は、12個の音叉型水晶振動子2の載置が可能なキャリア31がライン32上を移動しながら、各製造機器による製造工程を行い音叉型水晶振動子2を製造するものである。図1では製造工程の一工程である発振検査工程で用いる発振検査装置3を示した概略図である。この図1に示す発振検査器11では、発振検査器11に接続された発振装置4によりキャリア31上の音叉型水晶振動子2を1つずつ発振させ、音叉型水晶振動子2の発振状態(発振の有無)を発振検査器11で検査する。そして、この発振検査器11において、良品と判断された音叉型水晶振動子2は搬出路33を通って良品用ケース34に搬出され、不良品と判断された音叉型水晶振動子2は搬出路33を通って不良品用ケース35に搬出される。   The tuning fork type crystal resonator 2 is manufactured by a tuning fork type crystal resonator in which a manufacturing process by each manufacturing device is performed while a carrier 31 on which twelve tuning fork type crystal resonators 2 can be placed moves on a line 32. 2 is manufactured. FIG. 1 is a schematic diagram showing an oscillation inspection apparatus 3 used in an oscillation inspection process that is one process of the manufacturing process. In the oscillation tester 11 shown in FIG. 1, the tuning fork crystal resonator 2 on the carrier 31 is oscillated one by one by the oscillation device 4 connected to the oscillation tester 11, and the oscillation state of the tuning fork crystal resonator 2 ( The oscillation checker 11 checks whether or not there is oscillation. In the oscillation tester 11, the tuning fork type crystal resonator 2 determined to be a non-defective product is unloaded to the non-defective case 34 through the unloading path 33, and the tuning fork type crystal resonator 2 determined to be defective is unloaded. It is carried out to the defective product case 35 through 33.

発振検査器11には、図1に示すように音叉型水晶振動子2を発振させる発振装置4が取り外し可能に外付けされる。また、この発振検査器11には、外部機器を接続可能な外部機器接続部(I/Oポート、図示省略)が設けられている。なお、ここでいう外部機器には、自動で検査を行うための自動機全体を制御する制御器などが挙げられ、本実施例では、シーケンサ制御器(図2で示す制御部12)が用いられている。このシーケンサ制御器12からスタート信号が入力されると発振検査を継続する。また、シーケンサ制御器12からスタート信号が入力されると、このスタート信号は、切替用制御部44(下記参照)に出力される。なお、シーケンサ制御器12は、発振装置検査器11および発振装置4だけでなく、音叉型水晶振動子2の周波数選別機構や搬送装置などの他の外部機器も制御している。   As shown in FIG. 1, an oscillation device 4 that oscillates the tuning fork crystal resonator 2 is detachably attached to the oscillation tester 11. Further, the oscillation tester 11 is provided with an external device connection unit (I / O port, not shown) to which an external device can be connected. The external device mentioned here includes a controller that controls the entire automatic machine for automatically inspecting, and in this embodiment, a sequencer controller (the control unit 12 shown in FIG. 2) is used. ing. When a start signal is input from the sequencer controller 12, the oscillation test is continued. Further, when a start signal is input from the sequencer controller 12, the start signal is output to the switching control unit 44 (see below). The sequencer controller 12 controls not only the oscillation device tester 11 and the oscillation device 4 but also other external devices such as a frequency selection mechanism and a conveying device of the tuning fork type crystal resonator 2.

この発振検査器11に取り外し可能に外付けされた発振装置4は、図2に示すように、音叉型水晶振動子2を発振させる装置であり、発振信号を音叉型水晶振動子2に出力して音叉型水晶振動子2を励振させる励振用発振器41と、音叉型水晶振動子2を発振させる検査用発振器42と、これら励振用発振器41,検査用発振器42と音叉型水晶振動子2との接続を切り替える切替部43と、切替部43を切替制御する切替用制御部44とから構成されている。具体的に、図2に示すように、励振用発振器41と検査用発振器42とは切替部43(図2に示すリレースイッチ(RL))を介して接続され、切替用制御部44による切替制御信号により切替部43において励振用発振器41と音叉型水晶振動子2との接続と、検査用発振器42と音叉型水晶振動子2との接続とが切り替えられる。なお、励振用発振器41は、切替部43による音叉型水晶振動子2との接続の有無により電源供給されて供給信号がON状態となっている。また、検査用発振器42は、切替用制御部44を介してスタート信号の入力のON/OFFに連動して電源供給されて供給信号がON/OFF状態となる。   As shown in FIG. 2, the oscillation device 4 detachably attached to the oscillation tester 11 is a device that oscillates the tuning fork crystal resonator 2 and outputs an oscillation signal to the tuning fork crystal resonator 2. The excitation oscillator 41 for exciting the tuning fork type crystal resonator 2, the inspection oscillator 42 for oscillating the tuning fork type crystal resonator 2, the excitation oscillator 41, the inspection oscillator 42, and the tuning fork type crystal resonator 2 A switching unit 43 that switches connection and a switching control unit 44 that controls switching of the switching unit 43 are included. Specifically, as shown in FIG. 2, the excitation oscillator 41 and the inspection oscillator 42 are connected via a switching unit 43 (relay switch (RL) shown in FIG. 2), and switching control by the switching control unit 44. The switching unit 43 switches the connection between the excitation oscillator 41 and the tuning fork type crystal resonator 2 and the connection between the inspection oscillator 42 and the tuning fork type crystal resonator 2 by the signal. The excitation oscillator 41 is supplied with power depending on whether the switching unit 43 is connected to the tuning fork type crystal resonator 2 and the supply signal is in an ON state. Further, the inspection oscillator 42 is supplied with power via the switching control unit 44 in conjunction with the ON / OFF of the input of the start signal, and the supply signal is turned on / off.

この発振装置4によれば、スタート信号が入力されるまで、切替部43により励振用発振器41と音叉型水晶振動子2とが接続した状態となり励振用発振器41により音叉型水晶振動子2が励振する。そして、発振検査器11を介してシーケンサ制御器12から入力信号が発振装置4に入力されると、この入力信号は切替用制御部44と検査用発振器42とに入力される。この入力信号の切替制御器44への入力により、切替制御器44は切替部43に音叉型水晶振動子2の接続切替を行うための切替制御信号を出力して、切替部43では音叉型水晶振動子2との接続を励振用発振器41から検査用発振器42に切り替える。なお、この切り替えと同時に検査用発振器42により音叉型水晶振動子2を発振させる。ここでいう同時とは、音叉型水晶振動子2との接続の切替が瞬時に連続して行なわれることを意味する。しかしながら、この切換動作は好適な例であり、音叉型水晶振動子2との接続の切替動作は任意に設定できるものとする。   According to the oscillation device 4, the excitation oscillator 41 and the tuning fork crystal resonator 2 are connected by the switching unit 43 until the start signal is input, and the tuning fork crystal resonator 2 is excited by the excitation oscillator 41. To do. When an input signal is input from the sequencer controller 12 to the oscillation device 4 via the oscillation tester 11, this input signal is input to the switching control unit 44 and the test oscillator 42. When the input signal is input to the switching controller 44, the switching controller 44 outputs a switching control signal for switching the connection of the tuning fork type crystal resonator 2 to the switching unit 43, and the switching unit 43 outputs the tuning fork type crystal. The connection with the vibrator 2 is switched from the excitation oscillator 41 to the inspection oscillator 42. Simultaneously with this switching, the tuning fork type crystal resonator 2 is oscillated by the inspection oscillator 42. Here, “simultaneous” means that the connection with the tuning fork type crystal resonator 2 is switched instantaneously and continuously. However, this switching operation is a preferred example, and the switching operation of the connection with the tuning fork type crystal resonator 2 can be arbitrarily set.

次に、上記した発振装置4を用いた発振検査器11における音叉型水晶振動子2の発振検査について、以下に説明する。   Next, an oscillation test of the tuning fork type crystal resonator 2 in the oscillation tester 11 using the oscillation device 4 described above will be described below.

まず、スタート信号が発振装置4に入力されていない状態では、切替部43により励振用発振器4と音叉型水晶振動子2とが接続された状態となる。なお、本実施例では励振用発振器41は32.768kHzの励振信号を出力(ON状態)している。そのため、励振用発振器41によって32.768kHzの励振信号が音叉型水晶振動子2に出力され、この励振信号の出力により音叉型水晶振動子2が励振する(本発明でいう励振用発振工程)。なお、実施例では、この励振用発振工程において音叉型水晶振動子2に励振信号を約20mSEC出力している。しかしながら、この励振信号の出力時間は各条件によって任意に設定すればよく約20mSECに限定されるものではない。   First, when the start signal is not input to the oscillation device 4, the switching unit 43 connects the excitation oscillator 4 and the tuning fork type crystal resonator 2. In this embodiment, the excitation oscillator 41 outputs (ON state) an excitation signal of 32.768 kHz. Therefore, the excitation oscillator 41 outputs an excitation signal of 32.768 kHz to the tuning fork crystal resonator 2, and the tuning fork crystal resonator 2 is excited by the output of this excitation signal (excitation oscillation step in the present invention). In this embodiment, an excitation signal is output to the tuning fork type crystal resonator 2 by about 20 mSEC in this oscillation process for excitation. However, the output time of the excitation signal may be arbitrarily set according to each condition, and is not limited to about 20 mSEC.

そして、シーケンサ制御器12から発振検査器11にスタート信号が出力されると、設定した条件に従って発振装置4に電源が供給され(スタート信号のON)、励振用発振器41の電源をOFFする。   When a start signal is output from the sequencer controller 12 to the oscillation checker 11, power is supplied to the oscillation device 4 according to the set conditions (start signal is turned on), and the excitation oscillator 41 is turned off.

具体的に、シーケンサ制御器12からスタート信号が入力されると(スタート信号のON状態)、発振検査器11を介してシーケンサ制御器12から入力信号が発振装置4の切替用制御部44および検査用発振器42に入力される。この入力信号の切替制御器44の入力により切替制御器44は切替部43に音叉型水晶振動子2との接続の切替を行うための切替制御信号を出力して、切替部43では音叉型水晶振動子2との接続が励振用発振器41から検査用発振器42に切り替えられる。この切替の際、励振用発振器41の電源がOFFされ、同時に検査用発振器42への電源供給が行われる(供給信号のON状態)。検査用発振器42への電源供給が行なわれると検査用発振器による音叉型水晶振動子2の発振が行なわれて(本発明でいう検査用発振工程)、ON時間における発振検出信号の有無により音叉型水晶振動子2の発振を検査する。なお、励振用発振器41から検査用発振器42への切替部43における音叉型水晶振動子2の接続切替は、検査用発振器42による音叉型水晶振動子2の発振と同時に行われる。   Specifically, when a start signal is input from the sequencer controller 12 (the start signal is in an ON state), the input signal is transmitted from the sequencer controller 12 via the oscillation tester 11 and the switching control unit 44 of the oscillation device 4 and the test. Is input to the generator oscillator 42. In response to the input signal switching controller 44, the switching controller 44 outputs a switching control signal for switching the connection with the tuning fork crystal unit 2 to the switching unit 43, and the switching unit 43 outputs the tuning fork type crystal. The connection with the vibrator 2 is switched from the excitation oscillator 41 to the inspection oscillator 42. At the time of this switching, the power source of the excitation oscillator 41 is turned off, and at the same time, the power source is supplied to the inspection oscillator 42 (supply signal ON state). When power is supplied to the inspection oscillator 42, the tuning fork crystal resonator 2 is oscillated by the inspection oscillator (inspection oscillation step in the present invention), and the tuning fork type is determined depending on the presence or absence of an oscillation detection signal in the ON time. The oscillation of the crystal unit 2 is inspected. Note that the switching of the tuning fork crystal resonator 2 in the switching unit 43 from the excitation oscillator 41 to the inspection oscillator 42 is performed simultaneously with the oscillation of the tuning fork crystal resonator 2 by the inspection oscillator 42.

また、検査用発振工程では音叉型水晶振動子2が発振することを前提に説明しているが、この検査用発振工程において音叉型水晶振動子2が発振しているか否かも同時に検査される。そして、発振検査器11における音叉型水晶振動子2の発振検査の結果に基づいて、良品と判断された音叉型水晶振動子2は搬出路33を通って良品用ケース34に搬出され、不良品と判断された音叉型水晶振動子2は搬出路33を通って不良品用ケース35に搬出される。   In the inspection oscillation process, the description is based on the premise that the tuning fork type crystal resonator 2 oscillates. In this inspection oscillation step, whether the tuning fork type crystal resonator 2 is oscillating is also inspected. Then, based on the result of the oscillation inspection of the tuning fork type crystal resonator 2 by the oscillation tester 11, the tuning fork type crystal resonator 2 determined to be a non-defective product is carried out to the non-defective case 34 through the carry-out path 33 and defective. The tuning-fork type crystal resonator 2 that has been determined to pass through the carry-out path 33 is carried out to the defective product case 35.

上記したように、本実施例によれば、音叉型水晶振動子2の発振検査時において、音叉型水晶振動子2の発振を早めて、タイムラグ(未発振時間)の発生や発振安定時間の遅延を抑えることができる。例えば、検査用発振器42での電源供給(供給信号がON状態)から実際に発振するまで(発振信号(発振検出信号)の立ち上がり)に発生するタイムラグを抑えることができる。その結果、音叉型水晶振動子2の製造において生産性を向上させることができる。また、短時間の間隔で発振が要求される音叉型水晶振動子2に好適である。特に、本実施例は、音叉型水晶振動子2の製造工程で用いることができ、この製造工程のうち、周波数調整工程やその前後工程、もしくは出荷前の最終検査工程などに用いることが好適である。   As described above, according to the present embodiment, at the time of the oscillation test of the tuning fork type crystal resonator 2, the oscillation of the tuning fork type crystal resonator 2 is accelerated so as to generate a time lag (non-oscillation time) or delay the oscillation stabilization time. Can be suppressed. For example, it is possible to suppress a time lag that occurs from the power supply (the supply signal is in the ON state) to the actual oscillation (rising edge of the oscillation signal (oscillation detection signal)) from the inspection oscillator 42. As a result, productivity can be improved in the production of the tuning fork crystal unit 2. Further, it is suitable for the tuning fork type crystal resonator 2 that requires oscillation at short intervals. In particular, the present embodiment can be used in the manufacturing process of the tuning fork type crystal resonator 2 and is preferably used in the frequency adjustment process, its pre- and post-processes, or the final inspection process before shipment. is there.

また、発振装置4には切替部43および切替用制御部44が設けられているので、励振用発振器41によって励振させた音叉型水晶振動子2を検査用発振器42によって発振させるために、各発振器41,42と音叉型水晶振動子2との切替を容易にできる。   In addition, since the switching device 43 and the switching control unit 44 are provided in the oscillation device 4, each oscillator is used to oscillate the tuning fork type crystal resonator 2 excited by the excitation oscillator 41 by the inspection oscillator 42. Switching between 41 and 42 and the tuning fork type crystal resonator 2 can be facilitated.

また、励振用発振器41から検査用発振器42への切替部43による音叉型水晶振動子2との接続の切替は連続して行われるので、検査用発振器42での電源供給(供給信号がON状態)から実際に発振するまで(発振信号(発振検出信号)の立ち上がり)に発生するタイムラグを抑えるのに好適である。   In addition, since the switching unit 43 from the excitation oscillator 41 to the inspection oscillator 42 is continuously switched to the tuning fork type crystal resonator 2, power is supplied from the inspection oscillator 42 (the supply signal is in the ON state). ) To actual oscillation (rising edge of oscillation signal (oscillation detection signal)).

また、発振装置4への電源供給を自動的に行うためのシーケンサ制御器12等の外部機器が当該発振検査器11に外付けされているので、様々な条件の発振に基づいて使用する外部機器を取り替えることで様々な条件に対応させることが容易となる。   Since an external device such as a sequencer controller 12 for automatically supplying power to the oscillation device 4 is externally attached to the oscillation tester 11, an external device used based on oscillation under various conditions It becomes easy to cope with various conditions by replacing.

なお、本実施の形態では発振検査装置3の一工程である発振検査工程のみを図1を用いて説明したが、この図1に示すライン32や各ケース34、35はこれに限定されるものではない。そのため、例えば、本実施の形態にかかる発振検査器11は、図3に示すように任意の形態の発振検査装置3に設けることができる。   In the present embodiment, only the oscillation inspection process which is one process of the oscillation inspection apparatus 3 has been described with reference to FIG. 1, but the line 32 and the cases 34 and 35 shown in FIG. 1 are limited to this. is not. Therefore, for example, the oscillation tester 11 according to the present embodiment can be provided in any form of the oscillation tester 3 as shown in FIG.

この図3に示す発振検査装置3には、発振検査器11と、音叉型水晶振動子2の外部接続端子21(以下、リードという)を挟持または解放する検査チャック36と、発振検査器11における音叉型水晶振動子2の検査判定結果に基づいて音叉型水晶振動子2を分類する分類部37と、複数個の音叉型水晶振動子2を検査チャック36による挟持位置まで搬送するライン搬送部38と、が設けられている。また、外部機器にはシーケンサ制御器12が用いられている。   The oscillation test apparatus 3 shown in FIG. 3 includes an oscillation tester 11, an inspection chuck 36 that holds or releases an external connection terminal 21 (hereinafter referred to as a lead) of the tuning fork crystal resonator 2, and an oscillation tester 11. A classification unit 37 that classifies the tuning fork type crystal resonator 2 based on the inspection determination result of the tuning fork type crystal resonator 2, and a line conveyance unit 38 that conveys a plurality of tuning fork type crystal resonators 2 to a holding position by the inspection chuck 36. And are provided. A sequencer controller 12 is used as an external device.

ライン搬送部38は、図3に示すように、ランダムに投入された多数個の音叉型水晶振動子2を、音叉型水晶振動子2のリード21が上方に向いた状態にそれぞれ整列させるパーツフィーダ381と、パーツフィーダ381から送出された、リード21が上方に向いた各音叉型水晶振動子2を連続して搬送するリニアフィーダ383と、リニアフィーダ383から連続して搬送された音叉型水晶振動子2を1つずつ個別になるよう分けて配置する位置決め部382とから構成される。   As shown in FIG. 3, the line transport unit 38 aligns a large number of randomly inserted tuning fork type crystal resonators 2 with the leads 21 of the tuning fork type crystal resonators 2 facing upward. 381, a linear feeder 383 that continuously feeds each tuning-fork type crystal resonator 2 that is sent from the parts feeder 381, and the lead 21 faces upward, and a tuning-fork type crystal vibration that is continuously conveyed from the linear feeder 383. It is comprised from the positioning part 382 which divides | segments and arrange | positions the child 2 separately one by one.

位置決め部382はその一部に収納ポケット384を有するとともに、全体として細長い形状で、かつスライド機構を有している。収納ポケット384に1つの音叉型水晶振動子が入ると位置決め部382がスライドし、収納ポケットが後述の地点Aまで移動する。このときリニアフィーダ383の先端(搬出口)は位置決め部382の側壁で遮断され、音叉型水晶振動子2の搬送が停止された構成となっている。   The positioning portion 382 has a storage pocket 384 in a part thereof, has an elongated shape as a whole, and has a slide mechanism. When one tuning-fork type crystal resonator enters the storage pocket 384, the positioning portion 382 slides, and the storage pocket moves to a point A described later. At this time, the front end (carrying outlet) of the linear feeder 383 is blocked by the side wall of the positioning portion 382, and the conveyance of the tuning fork type crystal resonator 2 is stopped.

検査チャック36は、前述のリード21を挟持する部分にコンタクト電極361が設けられ、位置決め部382に配置された音叉型水晶振動子2のリード21を挟持することによりコンタクト電極361との導通を行う。コンタクト電極361は発振装置4の端子に接続されており、前述のように設定条件に従って電源供給が行われる。また、検査チャック36は図示しないハンドリング装置に取り付けられ、任意動作が可能となっている。具体的構成を例示すると、検査チャック36を地点Aにある位置決め部382の収納ポケット384に移動し、音叉型水晶振動子2のリード21を挟持する。その後、挟持した状態で音叉型水晶振動子2を地点Bに移動させ、この位置Bで特性検査を実行する。位置決め部382は検査チャック36が地点Bに移動した時点で元のリニアフィーダ383の先端の位置へ戻る。   The inspection chuck 36 is provided with a contact electrode 361 at a portion where the lead 21 is sandwiched, and conducts the contact electrode 361 by sandwiching the lead 21 of the tuning-fork type crystal resonator 2 disposed at the positioning portion 382. . The contact electrode 361 is connected to the terminal of the oscillation device 4 and is supplied with power according to the set conditions as described above. Further, the inspection chuck 36 is attached to a handling device (not shown) and can be arbitrarily operated. To illustrate a specific configuration, the inspection chuck 36 is moved to the storage pocket 384 of the positioning portion 382 at the point A, and the lead 21 of the tuning fork type crystal resonator 2 is clamped. Thereafter, the tuning fork type crystal resonator 2 is moved to the point B while being held, and the characteristic inspection is executed at the position B. The positioning unit 382 returns to the position of the tip of the original linear feeder 383 when the inspection chuck 36 moves to the point B.

分類部37は、前記検査結果に基づき動作する選別シュータ371と、選別シュータ371の投入先に位置する良品用ケース34と不良品用ケース35とからなる。選別シュータ371は音叉型水晶振動子2を滑走させる溝状の面を持ち、検査結果に応じて地点Bを中心に選別シュータ371の下端372が良品用ケース34あるいは不良品用ケース35の位置になるよう旋回し(X方向)、旋回後、検査チャック36は挟持を解放して音叉型水晶振動子2を選別シュータ371に投入すると、滑走して決められたケース34、35に収納される。   The classification unit 37 includes a sorting shooter 371 that operates based on the inspection result, and a non-defective product case 34 and a defective product case 35 that are located at the input destination of the sorting shooter 371. The sorting shooter 371 has a groove-like surface on which the tuning fork type crystal resonator 2 slides, and the lower end 372 of the sorting shooter 371 is positioned at the position of the good product case 34 or the defective product case 35 around the point B according to the inspection result. After the turning, the inspection chuck 36 releases the nipping and inserts the tuning fork type crystal resonator 2 into the sorting shooter 371, and is stored in the cases 34 and 35 determined by sliding.

図3に示す音叉型水晶振動子2は、発振検査が終了し不良品と判断された場合の動作を例示しており、検査チャック36は地点Bの位置にあり、選別シュータ371は、下端372が不良品用ケース35の上部に位置する状態となっている。また、音叉型水晶振動子2を不良品用ケース35に搬出させるために検査チャック36の挟持が解放された状態となっている。音叉型水晶振動子2は選別シュータ371の滑走面を滑走し、不良品用ケース35に搬出される。なお、良品判定された場合は、選別シュータ371が良品用ケース34に旋回移動し良品用ケース34に搬出する。   The tuning fork type crystal resonator 2 shown in FIG. 3 exemplifies the operation when the oscillation inspection is finished and it is determined that the product is defective. The inspection chuck 36 is at the position B, and the sorting shooter 371 is at the lower end 372. Is located in the upper part of the case 35 for defective products. Further, the holding of the inspection chuck 36 is released in order to carry the tuning fork type crystal resonator 2 to the defective product case 35. The tuning fork crystal unit 2 slides on the sliding surface of the sorting shooter 371 and is carried out to the defective product case 35. When the non-defective product is determined, the sorting shooter 371 turns to the non-defective product case 34 and is carried out to the good product case 34.

この発振検査装置3によれば、音叉型水晶振動子2の発振を限定することなく、任意の発振(基本波や三倍波などの発振)の音叉型水晶振動子2を検査することができる。特に、発振装置4が音叉型水晶振動子2の発振検査器11に取り外し可能に外付けされているので、基本波や三倍波の発振に対応させるのに好適である。   According to the oscillation inspection device 3, the tuning fork type crystal resonator 2 of any oscillation (oscillation such as fundamental wave or triple wave) can be inspected without limiting the oscillation of the tuning fork type crystal resonator 2. . In particular, since the oscillation device 4 is detachably attached to the oscillation tester 11 of the tuning fork type crystal resonator 2, it is suitable for dealing with oscillation of a fundamental wave or a triple wave.

また、本実施例では、圧電振動デバイスに水晶振動子を用いているが、これに限定されるものではなく、圧電振動を行う任意の媒体を用いてもよい。   In this embodiment, the crystal resonator is used as the piezoelectric vibration device. However, the present invention is not limited to this, and any medium that performs piezoelectric vibration may be used.

また、本実施の形態では、外部からスタート信号を入力しているが、これに限定されるものではなく、発振検査器内に電源部を設けて、発振装置に電源供給してもよい。   In this embodiment, the start signal is input from the outside. However, the present invention is not limited to this, and a power supply unit may be provided in the oscillation tester to supply power to the oscillation device.

また、本実施例では、音叉型水晶振動子2の発振を検知する対象を、音叉型水晶振動子2の周波数としているが、これに限定されるものではなく、音叉型水晶振動子2の発振特性に関連するものであれば他の特性であってもよく、例えば、直列共振抵抗値や直列共振抵抗電圧値であってもよく、または直列共振抵抗電圧値および周波数などであってもよい。   In this embodiment, the object for detecting the oscillation of the tuning fork type crystal resonator 2 is the frequency of the tuning fork type crystal resonator 2, but the present invention is not limited to this. Other characteristics may be used as long as they are related to characteristics, for example, a series resonance resistance value, a series resonance resistance voltage value, or a series resonance resistance voltage value and frequency.

また、本実施例では、励振用発振器41によって32.768kHzの励振信号を約20mSECの間、音叉型水晶振動子2に出力して音叉型水晶振動子2を励振させているが、これに限定されるものではなく、励振用発振器41による励振信号の周波数および励振時間を任意に変更してもよい。そのため、本実施例の発振装置4の励振用発振器41の発振源(図示省略)をモジュール化することが好ましく、励振用発振器41に任意の発振信号を出力する任意の発振源が取替え可能に設けられてもよい。例えば、ダイレクトデジタルシンセサイザー(DDS)を用いたユニットを用いてもよい。この場合、任意の周波数に対応したあらゆる音叉型水晶振動子2に対応させることができ、発振装置4の自由度をあげることができる。   In this embodiment, the excitation oscillator 41 outputs an excitation signal of 32.768 kHz to the tuning fork type crystal resonator 2 for about 20 mSEC to excite the tuning fork type crystal resonator 2, but this is not limitative. However, the frequency and the excitation time of the excitation signal by the excitation oscillator 41 may be arbitrarily changed. Therefore, it is preferable to modularize the oscillation source (not shown) of the excitation oscillator 41 of the oscillation device 4 of the present embodiment, and an arbitrary oscillation source that outputs an arbitrary oscillation signal to the excitation oscillator 41 is provided in a replaceable manner. May be. For example, a unit using a direct digital synthesizer (DDS) may be used. In this case, any tuning fork type crystal resonator 2 corresponding to an arbitrary frequency can be supported, and the degree of freedom of the oscillation device 4 can be increased.

また、上記した実施例では、32.768kHzの周波数を用いているがこれに限定されるものではなく、任意の周波数を用いてよい。例えば、38.4kHz,40.0kHz,60.0kHz,75.0kHz,77.503kHz,150kHz,250kHzなどの周波数を用いてもよい。   In the above-described embodiment, the frequency of 32.768 kHz is used. However, the present invention is not limited to this, and an arbitrary frequency may be used. For example, frequencies such as 38.4 kHz, 40.0 kHz, 60.0 kHz, 75.0 kHz, 77.503 kHz, 150 kHz, and 250 kHz may be used.

上述した本実施例および変形例に基づいて、音叉型水晶振動子2の発振検査の実験を行なった。その結果を、図4〜6に示す。なお、下記する実験では、検査用発振器42における電源供給時間(供給信号のON時間)から、発振を検出した時間(発振検出信号のON時間)及び発振が安定するまでの未検出時間を測定した。また、下記する実験(実施例1,3)では比較例(比較例1,3)として、励振用発振器を用いない従来の検査用発振器のみからなる発振装置を用いて、検査用発振器における電源供給時間(供給信号のON時間)から発振を検出した時間(発振検出信号のON時間)までの未検出時間(発振安定時間ともいう)を測定した。   Based on the above-described embodiments and modifications, an oscillation test experiment of the tuning fork type crystal resonator 2 was performed. The results are shown in FIGS. In the experiment described below, the time when the oscillation was detected (ON time of the oscillation detection signal) and the undetected time until the oscillation was stabilized from the power supply time (supply signal ON time) in the test oscillator 42 were measured. . Further, in the following experiments (Examples 1 and 3), as a comparative example (Comparative Examples 1 and 3), an oscillation device consisting only of a conventional inspection oscillator that does not use an excitation oscillator is used, and power is supplied to the inspection oscillator. The non-detection time (also referred to as oscillation stabilization time) from the time (ON time of the supply signal) to the time when oscillation was detected (ON time of the oscillation detection signal) was measured.

図4に示す実施例1および比較例1では、音叉型水晶振動子2の発振を検知する対象を、音叉型水晶振動子2の直列共振抵抗電圧とし、励振用発振器41の励振信号は32.768kHzであり、検査用発振器41の発振信号(発振検出信号)は32.768kHzである。また、発振検査を行う音叉型水晶振動子2の音叉型水晶振動片の寸法は、長さ3.2mm、幅0.56mm、厚さ0.12mmである。図4(a)に示すように、実施例1では発振が電源供給開始から約20mSECで立ち上がり約80mSECで安定した。これに対して図4(b)に示すように、比較例1では発振が安定するまでに電源供給開始から約350mSECかかった。このことから、実施例1によれば、比較例1に対して、音叉型水晶振動子2の発振検査時において音叉型水晶振動子2の発振を早めることができることは明らかである。   In Example 1 and Comparative Example 1 shown in FIG. 4, the target for detecting the oscillation of the tuning fork crystal resonator 2 is the series resonance resistance voltage of the tuning fork crystal resonator 2, and the excitation signal of the excitation oscillator 41 is 32. The oscillation signal (oscillation detection signal) of the inspection oscillator 41 is 32.768 kHz. The dimensions of the tuning-fork type crystal vibrating piece of the tuning-fork type crystal resonator 2 to be subjected to the oscillation test are a length of 3.2 mm, a width of 0.56 mm, and a thickness of 0.12 mm. As shown in FIG. 4A, in Example 1, the oscillation started up at about 20 mSEC from the start of power supply and stabilized at about 80 mSEC. On the other hand, as shown in FIG. 4B, in Comparative Example 1, it took about 350 mSEC from the start of power supply until the oscillation stabilized. From this, it is clear that according to the first embodiment, the oscillation of the tuning fork type crystal resonator 2 can be accelerated compared to the first comparative example at the time of the oscillation inspection of the tuning fork type crystal resonator 2.

図5に示す実施例2では、上記した実施例1とは別形態の音叉型水晶振動子2を使用し、この実施例2の音叉型水晶振動子2の音叉型水晶振動片の寸法は、長さ4.5mm、幅1.00mm、厚さ0.24mmであり上記した実施例1と比べると寸法が大きい音叉型水晶振動片を用いている。その他の構成は格別異なる構成のものを用いているものでなく、ここでの説明は省略する。図5に示すように、実施例2では発振が電源供給開始から約10mSECで立ち上がり約80mSECで安定した。このように、実施例2によれば、上記した実施例1と比較して(図4(a)参照)、発振の立ち上がりの速さの点で音叉型水晶振動子2の発振を早めるのに好ましい。   In Example 2 shown in FIG. 5, a tuning fork type crystal resonator 2 of a different form from Example 1 described above is used, and the dimensions of the tuning fork type crystal resonator element of the tuning fork type crystal resonator 2 of Example 2 are as follows: A tuning-fork type crystal vibrating piece having a length of 4.5 mm, a width of 1.00 mm, and a thickness of 0.24 mm, which is larger than that of the first embodiment, is used. Other configurations are not different from each other and will not be described here. As shown in FIG. 5, in Example 2, the oscillation started up at about 10 mSEC from the start of power supply and stabilized at about 80 mSEC. As described above, according to the second embodiment, compared with the first embodiment (see FIG. 4A), the tuning-fork crystal resonator 2 can be oscillated faster in terms of the rising speed of oscillation. preferable.

図6に示す実施例3および比較例3では、音叉型水晶振動子2の発振を検知する対象を、音叉型水晶振動子2の発振周波数(具体的に発振周波数の3σ(周波数バラツキ))とし、3σが10.00以下において発振が安定状態であるとしている。また、励振用発振器41の励振信号は32.768kHzであり、検査用発振器41の発振信号(発振検出信号)は32.768kHz(本実施例3では3000逓倍として98.3040MHzとし、発振周波数カウンターのゲート時間を0.1秒としている)であり、同一の音叉型水晶振動子2に対して30回同じ条件で測定した。また、発振検査を行う音叉型水晶振動子2の音叉型水晶振動片の寸法は、長さ4.5mm、幅1.00mm、厚さ0.24mmである。図6に示すように、実施例3では発振が電源供給開始から約20mSECで安定した。これに対して比較例3では発振が安定するまで電源供給開始から約250mSECかかった。このことから、実施例3によれば、比較例3に対して、音叉型水晶振動子2の発振検査時において音叉型水晶振動子2の発振を早めることができることは明らかである。   In Example 3 and Comparative Example 3 shown in FIG. 6, the target for detecting the oscillation of the tuning fork crystal resonator 2 is the oscillation frequency of the tuning fork crystal resonator 2 (specifically, the oscillation frequency is 3σ (frequency variation)). It is assumed that oscillation is stable when 3σ is 10.00 or less. Further, the excitation signal of the excitation oscillator 41 is 32.768 kHz, and the oscillation signal (oscillation detection signal) of the inspection oscillator 41 is 32.768 kHz (in the third embodiment, it is set to 98.3040 MHz by multiplication by 3000). The measurement was performed 30 times for the same tuning fork type crystal resonator 2 under the same conditions. The dimensions of the tuning-fork type crystal vibrating piece of the tuning-fork type crystal resonator 2 to be subjected to the oscillation test are 4.5 mm in length, 1.00 mm in width, and 0.24 mm in thickness. As shown in FIG. 6, in Example 3, the oscillation stabilized at about 20 mSEC from the start of power supply. On the other hand, in Comparative Example 3, it took about 250 mSEC from the start of power supply until oscillation was stabilized. From this, according to Example 3, it is clear that the oscillation of the tuning fork type crystal resonator 2 can be accelerated in comparison with the comparative example 3 at the time of the oscillation test of the tuning fork type crystal resonator 2.

なお、本発明は、その精神や主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   It should be noted that the present invention can be implemented in various other forms without departing from the spirit, gist, or main features. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明は、音叉型水晶振動子などの音叉型圧電振動デバイスの発振検査の際に用いる機器に適用できる。   The present invention can be applied to an apparatus used in the oscillation inspection of a tuning fork type piezoelectric vibration device such as a tuning fork type crystal resonator.

図1は、本実施例にかかる、音叉型水晶振動子の製造工程の一工程である発振検査工程で用いる発振装置を示した概略図である。FIG. 1 is a schematic diagram showing an oscillation device used in an oscillation inspection process, which is one process of a tuning fork crystal resonator manufacturing process, according to the present embodiment. 図2は、本実施例にかかる、音叉型水晶振動子の発振検査器および発振装置の概略構成図である。FIG. 2 is a schematic configuration diagram of an oscillation tester and an oscillation device for a tuning-fork type crystal resonator according to the present embodiment. 図3は、本実施の変形例にかかる、音叉型水晶振動子の製造装置の一工程である発振検査工程を示した概略図である。FIG. 3 is a schematic view showing an oscillation inspection process, which is one process of a tuning fork type crystal resonator manufacturing apparatus, according to a modification of the present embodiment. 図4は、本実施例1および比較例1における実験結果を示したデータ図である。図4(a)は、本実施例1の実験結果を示したデータ図である。図4(b)は、比較例1の実験結果を示したデータ図である。FIG. 4 is a data diagram showing experimental results in Example 1 and Comparative Example 1. FIG. 4A is a data diagram showing the experimental results of the first embodiment. FIG. 4B is a data diagram showing the experimental results of Comparative Example 1. 図5は、本実施例2における実験結果を示したデータ図である。FIG. 5 is a data diagram showing experimental results in the second embodiment. 図6は、本実施例3および比較例3における実験結果を示した表である。FIG. 6 is a table showing the experimental results in Example 3 and Comparative Example 3.

符号の説明Explanation of symbols

2 音叉型水晶振動子(音叉型圧電振動デバイス)
4 発振装置
41 励振用発振器
42 検査用発振器
43 切替部
2 Tuning fork type crystal resonator (tuning fork type piezoelectric vibration device)
4 Oscillator 41 Excitation Oscillator 42 Inspection Oscillator 43 Switching Unit

Claims (6)

音叉型圧電振動デバイスを発振させる音叉型圧電振動デバイスの発振装置であって、
音叉型圧電振動デバイスの共振周波数または当該共振周波数近傍の周波数の発振信号を音叉型圧電振動デバイスに出力して当該音叉型圧電振動デバイスを励振させる励振用発振器と、
音叉型圧電振動デバイスを発振させる検査用発振器と、が設けられ、
前記励振用発振器により音叉型圧電振動デバイスを励振させ、この励振させた状態の音叉型圧電振動デバイスを前記検査用発振器により当該音叉型圧電振動デバイスの共振周波数で発振させることを特徴とする音叉型圧電振動デバイスの発振装置。
An oscillation device for a tuning fork type piezoelectric vibration device that oscillates a tuning fork type piezoelectric vibration device,
An excitation oscillator for exciting the tuning fork type piezoelectric vibration device by outputting an oscillation signal having a resonance frequency of the tuning fork type piezoelectric vibration device or a frequency near the resonance frequency to the tuning fork type piezoelectric vibration device;
An inspection oscillator for oscillating a tuning fork type piezoelectric vibration device, and
A tuning fork type piezoelectric vibration device is excited by the excitation oscillator, and the excited tuning fork type piezoelectric vibration device is oscillated at a resonance frequency of the tuning fork type piezoelectric vibration device by the inspection oscillator. Oscillator of piezoelectric vibration device.
前記励振用発振器と前記検査用発振器とは切替部を介して接続され、
前記切替部により前記励振用発振器と音叉型圧電振動デバイスとの接続と、前記検査用発振器と音叉型圧電振動デバイスとの接続とが切り替えられることを特徴とする請求項1に記載の音叉型圧電振動デバイスの発振装置。
The excitation oscillator and the inspection oscillator are connected via a switching unit,
2. The tuning fork type piezoelectric device according to claim 1, wherein the switching unit switches the connection between the excitation oscillator and the tuning fork type piezoelectric vibration device and the connection between the inspection oscillator and the tuning fork type piezoelectric vibration device. Oscillator of vibration device.
前記励振用発振器から前記検査用発振器への前記切替部による音叉型圧電振動デバイスとの接続の切替は、連続して行われることを特徴とする請求項2に記載の音叉型圧電振動デバイスの発振装置。   The oscillation of the tuning-fork type piezoelectric vibration device according to claim 2, wherein the switching of the connection from the excitation oscillator to the inspection oscillator by the switching unit with the tuning-fork type piezoelectric vibration device is continuously performed. apparatus. 当該発振装置は、音叉型圧電振動デバイスの発振検査器に取り外し可能に外付けされたことを特徴とする請求項1乃至3のうちいずれか1つに記載の音叉型圧電振動デバイスの発振装置。   4. The oscillation device for a tuning-fork type piezoelectric vibration device according to claim 1, wherein the oscillation device is detachably attached to an oscillation tester for the tuning-fork type piezoelectric vibration device. 前記励振用発振器には、任意の発振信号を出力する任意の発振源が取替え可能に設けられたことを特徴とする請求項1乃至4のうちいずれか1つに記載の音叉型圧電振動デバイスの発振装置。   5. The tuning fork type piezoelectric vibration device according to claim 1, wherein an arbitrary oscillation source that outputs an arbitrary oscillation signal is replaceably provided in the excitation oscillator. Oscillator. 音叉型圧電振動デバイスを発振させる音叉型圧電振動デバイスの発振方法であって、
音叉型圧電振動デバイスの共振周波数または当該共振周波数近傍の周波数の発振信号を音叉型圧電振動デバイスに出力して当該音叉型圧電振動デバイスを励振させる励振用発振工程と、音叉型圧電振動デバイスを発振させる検査用発振工程と、を有し、
前記励振用発振工程において音叉型圧電振動デバイスを励振させ、前記検査用発振工程において励振させた状態の音叉型圧電振動デバイスを当該音叉型圧電振動デバイスの共振周波数で発振させることを特徴とする音叉型圧電振動デバイスの発振方法。
An oscillation method of a tuning fork type piezoelectric vibration device for oscillating a tuning fork type piezoelectric vibration device,
An oscillation process for excitation for exciting the tuning fork type piezoelectric vibration device by outputting an oscillation signal having a resonance frequency of the tuning fork type piezoelectric vibration device or a frequency near the resonance frequency to the tuning fork type piezoelectric vibration device, and oscillating the tuning fork type piezoelectric vibration device An oscillation process for inspection,
A tuning fork type piezoelectric vibration device is excited in the excitation oscillation step, and the tuning fork type piezoelectric vibration device excited in the inspection oscillation step is oscillated at a resonance frequency of the tuning fork type piezoelectric vibration device. Method of a piezoelectric vibration device of a type.
JP2006284798A 2006-10-19 2006-10-19 Oscillation device and oscillation method for tuning fork type piezoelectric transducing device Pending JP2008102019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284798A JP2008102019A (en) 2006-10-19 2006-10-19 Oscillation device and oscillation method for tuning fork type piezoelectric transducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284798A JP2008102019A (en) 2006-10-19 2006-10-19 Oscillation device and oscillation method for tuning fork type piezoelectric transducing device

Publications (1)

Publication Number Publication Date
JP2008102019A true JP2008102019A (en) 2008-05-01

Family

ID=39436451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284798A Pending JP2008102019A (en) 2006-10-19 2006-10-19 Oscillation device and oscillation method for tuning fork type piezoelectric transducing device

Country Status (1)

Country Link
JP (1) JP2008102019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102334A (en) * 2013-11-21 2015-06-04 株式会社昭和真空 Piezoelectric element frequency measurement device and frequency measurement method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624585A (en) * 1979-08-06 1981-03-09 Fujitsu Ltd Automatic measurement of constant of equivalent circuit for piezoelectric vibrator
JPS5824867A (en) * 1981-08-06 1983-02-14 Seiko Epson Corp Characteristics measuring apparatus for quartz vibrator
JPH03231504A (en) * 1990-02-06 1991-10-15 Seiko Epson Corp Piezoelectric oscillation circuit
JP2003032039A (en) * 2001-07-16 2003-01-31 Toyo Commun Equip Co Ltd Piezoelectric oscillation circuit
JP2004304253A (en) * 2003-03-28 2004-10-28 Seiko Epson Corp Oscillator and electronic apparatus employing the same
JP2005121590A (en) * 2003-10-20 2005-05-12 Seiko Epson Corp Piezoelectric vibrator inspecting apparatus
JP2006023082A (en) * 2004-07-06 2006-01-26 Daishinku Corp Oscillation tester of piezoelectric oscillating device, manufacturing equipment, and oscillation test method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624585A (en) * 1979-08-06 1981-03-09 Fujitsu Ltd Automatic measurement of constant of equivalent circuit for piezoelectric vibrator
JPS5824867A (en) * 1981-08-06 1983-02-14 Seiko Epson Corp Characteristics measuring apparatus for quartz vibrator
JPH03231504A (en) * 1990-02-06 1991-10-15 Seiko Epson Corp Piezoelectric oscillation circuit
JP2003032039A (en) * 2001-07-16 2003-01-31 Toyo Commun Equip Co Ltd Piezoelectric oscillation circuit
JP2004304253A (en) * 2003-03-28 2004-10-28 Seiko Epson Corp Oscillator and electronic apparatus employing the same
JP2005121590A (en) * 2003-10-20 2005-05-12 Seiko Epson Corp Piezoelectric vibrator inspecting apparatus
JP2006023082A (en) * 2004-07-06 2006-01-26 Daishinku Corp Oscillation tester of piezoelectric oscillating device, manufacturing equipment, and oscillation test method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102334A (en) * 2013-11-21 2015-06-04 株式会社昭和真空 Piezoelectric element frequency measurement device and frequency measurement method

Similar Documents

Publication Publication Date Title
JP4181579B2 (en) Mass measuring method, excitation circuit of piezoelectric vibrating piece for mass measurement, and mass measuring apparatus
US8176773B2 (en) Piezoelectric sensor and sensing instrument
CN105228932A (en) Panel system of processing
JP2013171840A (en) Frequency enhanced impedance dependent power control for multi-frequency rf pulsing
JPH10135176A (en) Ultrasonic cleaning apparatus
JP6971805B2 (en) Plasma processing equipment and plasma processing method
ATE485611T1 (en) TRANSVERSAL ELECTRICALLY EXCITED GAS DISCHARGE LASER FOR GENERATING LIGHT PULSES WITH HIGH PULSE REQUEST FREQUENCY AND METHOD FOR PRODUCTION
US2411298A (en) Piezoelectric crystal
JP2008102019A (en) Oscillation device and oscillation method for tuning fork type piezoelectric transducing device
JP2002164759A (en) Frequency adjusting device for tuning fork oscillator and its method and fork oscillator whose frequency is adjusted by the same method
JPH10142134A (en) Odor measuring apparatus
JP2007007649A (en) Method and circuit arrangement for operating ultrasound transducer
JP2006071482A (en) Analysis method of propagation face of multiple round surface acoustic wave element and element of the same
EP3696975A1 (en) Piezoelectric transducer and sensor
JP4792715B2 (en) Oscillation tester, manufacturing apparatus and oscillation test method for piezoelectric vibration device
JP4551297B2 (en) Manufacturing method of crystal unit
JP2008205764A (en) Frequency adjustment apparatus of quartz vibrator, and frequency adjustment method thereof
JP2007192731A (en) Method and apparatus for measuring frequency characteristic
JP4493896B2 (en) Plasma processing apparatus and plasma processing stop method
JP2001217677A (en) Tuning-fork type piezoelectric vibrating piece and its manufacturing method, its frequency adjusting process device, and tuning-fork type piezoelectric vibrator
JP2002026672A (en) Resonance frequency measurement device for piezoelectric material, resonance frequency measurement method for piezoelectric material, foreign material eliminating device for piezoelectric material, foreign material eliminating method for piezoelectric material, device for manufacturing piezoelectric material and method for manufacturing piezoelectric material
JP5138770B2 (en) Silicon purity measuring instrument, silicon sorting apparatus, and silicon purity measuring method
JP2000269764A (en) Method and device for inspection of quartz vibrator
JP6402883B2 (en) Tuning fork type crystal resonator frequency measuring device and frequency measuring method
JP5944936B2 (en) Continuous sample analyzer and continuous sample analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002