JP2008101478A - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP2008101478A
JP2008101478A JP2006282646A JP2006282646A JP2008101478A JP 2008101478 A JP2008101478 A JP 2008101478A JP 2006282646 A JP2006282646 A JP 2006282646A JP 2006282646 A JP2006282646 A JP 2006282646A JP 2008101478 A JP2008101478 A JP 2008101478A
Authority
JP
Japan
Prior art keywords
injection
learning
amount
cylinder
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006282646A
Other languages
Japanese (ja)
Other versions
JP4788557B2 (en
Inventor
Hirokatsu Oda
洋克 尾田
Takeshi Iwai
健 岩井
Hiroshi Yamakita
宏 山北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006282646A priority Critical patent/JP4788557B2/en
Publication of JP2008101478A publication Critical patent/JP2008101478A/en
Application granted granted Critical
Publication of JP4788557B2 publication Critical patent/JP4788557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection control device in which the low accuracy of fuel injection amount is quickly eliminated. <P>SOLUTION: In a priority learning cylinder setting treatment S110, a cylinder in which the difference between an actual injection amount and an instruction injection amount is large is set as a priority learning cylinder for which a corrected injection amount must be preferentially calculated (injection amount learning). In an injection correction amount calculating treatment S120, a single injection is performed for the set priority learning cylinder to acquire a predetermined quantity of learned values. Based on the acquired learned values, a corrected injection amount is obtained. This is repeated until the injection correction amount calculating treatment is performed for all the cylinders S130. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、多気筒を有する内燃機関において燃料噴射を制御する燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device that controls fuel injection in an internal combustion engine having multiple cylinders.

従来より、ガソリン機関やディーゼル機関等の内燃機関において、インジェクタに対する指令噴射量と実噴射量との差を学習値として取得し、その取得した学習値に基づいて実噴射量を指令噴射量に一致させるための噴射補正量を求め、その噴射補正量によって補正された指令噴射量に従って、インジェクタを駆動する燃料噴射制御装置が知られている(例えば、特許文献1,2参照)。   Conventionally, in an internal combustion engine such as a gasoline engine or a diesel engine, the difference between the command injection amount for the injector and the actual injection amount is acquired as a learned value, and the actual injection amount matches the command injection amount based on the acquired learned value. 2. Description of the Related Art There is known a fuel injection control device that obtains an injection correction amount for causing an injector to drive an injector according to a command injection amount corrected by the injection correction amount (see, for example, Patent Documents 1 and 2).

これら特許文献1,2に記載の従来装置では、インジェクタに対する指令噴射量がゼロ以下となる無噴射状態(例えば、シフトチェンジ時,減速時等)の時に、内燃機関の特定気筒のインジェクタでのみ燃料噴射(以下「単発噴射」という)を実施し、その単発噴射によって生じるエンジン回転数の変動量から実噴射量を推定するようにされている。   In these conventional apparatuses described in Patent Documents 1 and 2, fuel is supplied only to the injector of a specific cylinder of the internal combustion engine when the command injection amount to the injector is zero or less (for example, at the time of shift change or deceleration). The injection (hereinafter referred to as “single injection”) is performed, and the actual injection amount is estimated from the fluctuation amount of the engine speed generated by the single injection.

なお、図7は、エンジン無負荷時に、単発噴射を実施した時のエンジン回転数ω[rpm]の変化を表す模式図である。但し、図中の点は、各気筒の噴射タイミングであり、図では気筒#1の噴射タイミングで単発噴射を実施した場合を示している。
特開2005−133678号公報 特開2005−139951号公報
FIG. 7 is a schematic diagram showing changes in the engine speed ω [rpm] when single injection is performed when the engine is not loaded. However, the points in the figure are the injection timings of the respective cylinders, and the figure shows the case where the single injection is performed at the injection timing of the cylinder # 1.
JP 2005-133678 A JP 2005-139951 A

ところで、多気筒を有する内燃機関では、各気筒の燃料噴射量は、個々のインジェクタの特性等の影響を受けて気筒毎にばらつき、また、同じ気筒であっても、動作環境の影響を受けてその時々でばらつきが生じる。このため、上述の噴射量学習は、気筒毎に個別に実施する必要があるだけでなく、各気筒のそれぞれについて複数の学習データを収集し、その収集した学習データを平均化する等のばらつき低減対策を施す必要がある。従って、噴射量学習では、多くの学習データを収集しなければならない。   By the way, in an internal combustion engine having multiple cylinders, the fuel injection amount of each cylinder varies from cylinder to cylinder due to the influence of the characteristics of the individual injectors, and even the same cylinder is influenced by the operating environment. Variations occur from time to time. For this reason, the above-described injection amount learning not only needs to be performed individually for each cylinder, but also reduces variation such as collecting a plurality of learning data for each cylinder and averaging the collected learning data. It is necessary to take measures. Therefore, a lot of learning data must be collected in the injection amount learning.

特に、動作環境の影響を緩和させるために、同じ気筒であっても動作環境(例えば、ディーゼル機関であればコモンレール圧の大きさ等)毎に噴射補正量を求める場合には、収集すべき学習データは更に増加する。   In particular, in order to mitigate the influence of the operating environment, learning should be collected when determining the injection correction amount for each operating environment (for example, the magnitude of the common rail pressure for a diesel engine) even in the same cylinder. Data further increases.

また、特許文献1,2に記載の従来装置では、学習条件が成立すると、その直後の噴射タイミングの気筒が特定気筒となる。即ち、単発噴射を実施する特定気筒は動作の成り行きで確率的に決まり、全ての気筒についての学習データが並行して収集されることになる。   Further, in the conventional devices described in Patent Documents 1 and 2, when the learning condition is satisfied, the cylinder at the injection timing immediately after that becomes the specific cylinder. That is, the specific cylinder that performs the single injection is stochastically determined by the course of operation, and learning data for all the cylinders is collected in parallel.

その結果、噴射補正量の算出に必要な学習データを全て収集するには長い時間を要することになり、この間、指令噴射量と実噴射量とのずれが大きい状態、即ち、噴射量の精度が低い状態が継続してしまうという問題があった。   As a result, it takes a long time to collect all of the learning data necessary for calculating the injection correction amount. During this time, the deviation between the command injection amount and the actual injection amount is large, that is, the injection amount accuracy is high. There was a problem that the low state continued.

本発明は、上記問題点を解決するために、噴射量の精度が低い状態を速やかに解消することが可能な燃料噴射制御装置を提供することを目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a fuel injection control device capable of quickly eliminating a state where the accuracy of the injection amount is low.

上記目的を達成するためになされた本発明の燃料噴射制御装置では、指令噴射量設定手段が、多気筒を有する内燃機関の各気筒に設けられたインジェクタに噴射させる燃料量である指令噴射量を設定し、補正手段が、その指令噴射量を、予め求められた噴射補正量を用いて補正し、駆動手段が、その補正された指令噴射量に従ってインジェクタを駆動する。   In the fuel injection control device of the present invention made to achieve the above object, the command injection amount setting means sets a command injection amount that is a fuel amount to be injected into an injector provided in each cylinder of an internal combustion engine having multiple cylinders. The correction unit corrects the command injection amount using a previously obtained injection correction amount, and the drive unit drives the injector according to the corrected command injection amount.

また、補正量算出手段は、予め設定された学習条件が成立している学習期間中に内燃機関のいずれか一つの気筒のインジェクタに燃料噴射を行わせる単発噴射を行い、この単発噴射を実施したことによる内燃機関の回転数の変動に基づいて、インジェクタが実際に噴射した燃料量である実噴射量又は該実噴射量と相関を有する実噴射相関量を学習値として取得し、その学習値に基づいて、上述の噴射補正量を算出する。   Further, the correction amount calculation means performs a single injection that causes the injector of any one cylinder of the internal combustion engine to perform fuel injection during a learning period in which a preset learning condition is satisfied, and performs this single injection The actual injection amount that is the fuel amount actually injected by the injector or the actual injection correlation amount that has a correlation with the actual injection amount is acquired as a learning value based on the fluctuation in the rotational speed of the internal combustion engine. Based on this, the above-described injection correction amount is calculated.

そして、特に本発明では、優先学習気筒設定手段が、気筒毎に指令噴射量と実噴射量との差を求め、その差が最も大きい気筒を優先学習気筒として設定し、補正量算出手段は、その設定された優先学習気筒について学習値の取得を行うようにされている。   In particular, in the present invention, the priority learning cylinder setting means determines the difference between the command injection amount and the actual injection amount for each cylinder, sets the cylinder having the largest difference as the priority learning cylinder, and the correction amount calculation means The learning value is acquired for the set priority learning cylinder.

従って、本発明の燃料噴射制御装置によれば、優先学習気筒が設定されると、その優先学習気筒について集中的に学習値が取得されるため、その優先学習気筒の噴射補正量の算出に必要な個数の学習値を取得するのに要する時間、ひいてはその学習結果(噴射補正量)が燃料噴射制御に反映されるまでに要する時間を、優先学習気筒を設定しない従来装置と比較して、大幅に短縮することができる。   Therefore, according to the fuel injection control device of the present invention, when the priority learning cylinder is set, the learning value is acquired intensively for the priority learning cylinder, so that it is necessary to calculate the injection correction amount of the priority learning cylinder. The time required to acquire a large number of learning values, and thus the time required for the learning result (injection correction amount) to be reflected in the fuel injection control, is significantly larger than that of a conventional device that does not set a priority learning cylinder. Can be shortened.

また、本発明の燃料噴射制御装置によれば、その時々で判定値が最も大きい気筒、即ち噴射量の精度が最も低い気筒から順番に学習が実施され、一つの気筒についての学習が完了する毎に精度が改善されるため、全気筒についての平均的な噴射量精度を、速やかに向上させることができる。   In addition, according to the fuel injection control device of the present invention, learning is performed in order from the cylinder with the largest determination value, that is, the cylinder with the lowest accuracy of the injection amount, and each time learning for one cylinder is completed. Therefore, the accuracy of the average injection amount for all the cylinders can be quickly improved.

なお、本発明の燃料噴射制御装置において、優先学習気筒設定手段は、例えば、請求項2に記載のように、噴射補正量を算出する必要のある全ての気筒について、単発噴射を1回ずつ実施した結果から、判定値(指令噴射量と実噴射量との差)を求めるように構成されていてもよい。   In the fuel injection control device of the present invention, the priority learning cylinder setting means, for example, as described in claim 2, performs single injection once for all the cylinders for which the injection correction amount needs to be calculated. The determination value (difference between the command injection amount and the actual injection amount) may be obtained from the result.

即ち、1回の単発噴射の結果からでは、精度の高い判定値を得ることはできないが、気筒間でその判定値の大小関係さえ判定できれば、優先学習気筒を設定することが可能なため、噴射補正量を求める場合のような精度で判定値を求めることは、必ずしも必要ないのである。   In other words, it is not possible to obtain a highly accurate determination value from the result of one single injection, but it is possible to set a priority learning cylinder as long as it is possible to determine the magnitude relationship between the determination values among the cylinders. It is not always necessary to obtain the determination value with accuracy as in the case of obtaining the correction amount.

また、本発明の燃料噴射制御装置において、優先学習気筒設定手段は、請求項3に記載のように、必要な回数分の単発噴射を、1回の学習期間内で実施するように構成されていることが望ましい。   Further, in the fuel injection control device of the present invention, the priority learning cylinder setting means is configured to perform a single injection for a required number of times within one learning period, as described in claim 3. It is desirable.

即ち、単発噴射の結果は、同一気筒であっても、その時々の使用環境(燃料の圧力、周囲温度など)によって変化してしまう。しかし、1回の学習期間中で使用環境が大きく変化する可能性は低いため、全ての気筒に対する単発噴射の実施が複数の学習期間にわたってしまう場合と比較して、優先学習すべき気筒をより正確に特定することができる。   That is, the result of the single injection changes depending on the usage environment (fuel pressure, ambient temperature, etc.) at that time even in the same cylinder. However, since it is unlikely that the operating environment will change significantly during a single learning period, the cylinders that should be prioritized are more accurate than when single injection is performed for all cylinders over multiple learning periods. Can be specified.

また、本発明の燃料噴射制御装置において、補正量算出手段は、請求項4に記載のように、少なくとも、指令噴射量がゼロ以下であることを学習条件とすること、或いは、請求項5に記載のように、少なくとも、指令噴射量がゼロ以下、且つ変速装置がニュートラル状態であることを学習条件とすることが望ましい。   Further, in the fuel injection control device of the present invention, the correction amount calculation means uses at least a command injection amount as zero or less as a learning condition as described in claim 4, or according to claim 5. As described, it is desirable that the learning condition is that at least the command injection amount is zero or less and the transmission is in the neutral state.

このように、無噴射時に単発噴射を実施することで、単発噴射によって生じる内燃機関の回転数の変動を精度良く検出することができる。特に、変速装置がニュートラル状態であれば、内燃機関の回転慣性力(単発噴射を行わなかった場合の回転数)を正確に把握することができるため、回転数の変動をより精度よく検出することができる。   In this way, by performing single injection at the time of non-injection, it is possible to accurately detect fluctuations in the rotational speed of the internal combustion engine caused by single injection. In particular, if the transmission is in a neutral state, the rotational inertia force of the internal combustion engine (the number of revolutions when single injection is not performed) can be accurately grasped, so that fluctuations in the number of revolutions can be detected more accurately. Can do.

以下に本発明の実施形態を図面と共に説明する。
<全体構成>
図1は、4気筒のディーゼル機関(以下「エンジン」と呼ぶ)1に適用される燃料噴射システムを示す全体構成図である。
Embodiments of the present invention will be described below with reference to the drawings.
<Overall configuration>
FIG. 1 is an overall configuration diagram showing a fuel injection system applied to a four-cylinder diesel engine (hereinafter referred to as “engine”) 1.

図1に示すように、燃料噴射システムは、高圧燃料を蓄えるコモンレール2と、燃料タンク3から汲み上げた燃料を加圧してコモンレール2に供給する燃料供給ポンプ4と、コモンレール2より供給される高圧燃料をエンジン1の気筒内(燃焼室1a)に噴射するインジェクタ5と、本システムを電子制御する電子制御ユニット(以下「ECU」と呼ぶ)6とを備えている。   As shown in FIG. 1, the fuel injection system includes a common rail 2 that stores high-pressure fuel, a fuel supply pump 4 that pressurizes fuel pumped from a fuel tank 3 and supplies the fuel to the common rail 2, and high-pressure fuel supplied from the common rail 2. Is injected into the cylinder (combustion chamber 1a) of the engine 1 and an electronic control unit (hereinafter referred to as "ECU") 6 for electronically controlling the system.

コモンレール2は、ECU6により目標レール圧が設定され、燃料供給ポンプ4から供給された高圧燃料を目標レール圧まで蓄圧する。このコモンレール2には、蓄圧された燃料圧力(以下、レール圧と呼ぶ)を検出してECU6に出力する圧力センサ7と、レール圧が予め設定された上限値を超えないように制限するプレッシャリミッタ8が取り付けられている。   The common rail 2 has a target rail pressure set by the ECU 6 and accumulates the high-pressure fuel supplied from the fuel supply pump 4 to the target rail pressure. The common rail 2 includes a pressure sensor 7 that detects the accumulated fuel pressure (hereinafter referred to as rail pressure) and outputs it to the ECU 6, and a pressure limiter that limits the rail pressure so as not to exceed a preset upper limit value. 8 is attached.

燃料供給ポンプ4は、エンジン1に駆動されて回転するカム軸9と、このカム軸9に駆動されて燃料タンク3から燃料を汲み上げるフィードポンプ10と、カム軸9の回転に同期してシリンダ11内を往復運動するプランジャ12と、フィードポンプ10からシリンダ11内の加圧室13に吸入される燃料量を調量する電磁調量弁14などを有している。   The fuel supply pump 4 includes a camshaft 9 that is driven by the engine 1 to rotate, a feed pump 10 that is driven by the camshaft 9 to pump fuel from the fuel tank 3, and a cylinder 11 in synchronization with the rotation of the camshaft 9. It has a plunger 12 that reciprocates inside and an electromagnetic metering valve 14 that regulates the amount of fuel drawn from the feed pump 10 into the pressurizing chamber 13 in the cylinder 11.

この燃料供給ポンプ4は、プランジャ12がシリンダ11内を上死点から下死点に向かって移動する際に、フィードポンプ10より送り出された燃料が電磁調量弁14で調量され、吸入弁15を押し開いて加圧室13に吸入される。その後、プランジャ12がシリンダ11内を下死点から上死点へ向かって移動する際に、プランジャ12によって加圧室13の燃料が加圧され、その加圧された燃料が、吐出弁16を押し開いてコモンレール2に圧送される。   In the fuel supply pump 4, when the plunger 12 moves in the cylinder 11 from the top dead center toward the bottom dead center, the fuel fed from the feed pump 10 is metered by the electromagnetic metering valve 14, and the suction valve 15 is pushed open and sucked into the pressurizing chamber 13. Thereafter, when the plunger 12 moves in the cylinder 11 from the bottom dead center to the top dead center, the fuel in the pressurizing chamber 13 is pressurized by the plunger 12, and the pressurized fuel passes through the discharge valve 16. Pushed open and pumped to the common rail 2.

インジェクタ5は、エンジン1の気筒毎に搭載され、それぞれ高圧配管17を介してコモンレール2に接続されている。このインジェクタ5は、ECU6の指令に基づいて作動する電磁弁5aと、この電磁弁5aへの通電時に燃料を噴射するノズル5bとを備える。   The injector 5 is mounted for each cylinder of the engine 1 and is connected to the common rail 2 via a high-pressure pipe 17. The injector 5 includes an electromagnetic valve 5a that operates based on a command from the ECU 6, and a nozzle 5b that injects fuel when the electromagnetic valve 5a is energized.

電磁弁5aは、コモンレール2の高圧燃料が印加される圧力室(図示せず)から低圧側に通じる低圧通路(図示せず)を開閉するもので、通電時に低圧通路を開放し、通電停止時に低圧通路を遮断する。   The solenoid valve 5a opens and closes a low-pressure passage (not shown) that leads from the pressure chamber (not shown) to which the high-pressure fuel of the common rail 2 is applied to the low-pressure side. Shut off the low pressure passage.

ノズル5bは、噴孔を開閉するニードル(図示せず)を内蔵し、圧力室の燃料圧力がニードルを閉弁方向(噴孔を閉じる方向)に付勢している。従って、電磁弁5aへの通電により低圧通路が開放されて圧力室の燃料圧力が低下すると、ニードルがノズル5b内を上昇して開弁する(噴孔を開く)ことにより、コモンレール2より供給された高圧燃料を噴孔より噴射する。一方、電磁弁5aへの通電停止により低圧通路が遮断されて、圧力室の燃料圧力が上昇すると、ニードルがノズル5b内を下降して閉弁することにより、噴射が終了する。   The nozzle 5b incorporates a needle (not shown) that opens and closes the nozzle hole, and the fuel pressure in the pressure chamber urges the needle in the valve closing direction (direction in which the nozzle hole is closed). Accordingly, when the low pressure passage is opened by energization of the electromagnetic valve 5a and the fuel pressure in the pressure chamber decreases, the needle rises in the nozzle 5b and opens (opens the nozzle hole), thereby being supplied from the common rail 2. High pressure fuel is injected from the nozzle hole. On the other hand, when the low pressure passage is blocked by stopping energization of the electromagnetic valve 5a and the fuel pressure in the pressure chamber rises, the needle descends in the nozzle 5b and closes, thereby terminating the injection.

ECU6は、エンジン回転数(1分間当たりの回転数)を検出する回転数センサ18と、アクセル開度(エンジン負荷)を検出するアクセル開度センサ(図示せず)、レール圧を検出する圧力センサ7、変速機がニュートラル状態であるか否かを検出するニュートラル検出センサ(図示せず)等が接続されている。   The ECU 6 includes a rotation speed sensor 18 that detects an engine rotation speed (rotation speed per minute), an accelerator opening sensor (not shown) that detects an accelerator opening (engine load), and a pressure sensor that detects a rail pressure. 7. A neutral detection sensor (not shown) for detecting whether or not the transmission is in the neutral state is connected.

なお、ニュートラル検出センサは、クラッチがOFF状態、つまり、駆動輪に対してエンジン動力が遮断されている状態にあることを検出するものであればよい。
そして、ECU6は、図2に示すように、これらのセンサで検出されたセンサ情報に基づいてコモンレール2の目標レール圧、及びエンジン1の運転状態に適した噴射時期,噴射量を示した噴射指令(通常噴射)を生成する指令噴射量設定手段としての目標値生成処理21と、後述する補正噴射量により噴射指令に示された噴射量(以下「指令噴射量」と呼ぶ)を補正する補正手段としての噴射量補正処理23、その補正された指令噴射量及び目標レール圧に従って、燃料供給ポンプ4の電磁調量弁14及びインジェクタ5の電磁弁5aを駆動するための駆動信号を生成する駆動手段としての駆動信号生成処理25と、センサ情報及び目標値生成処理21にて生成された噴射指令が示す指令噴射量に基づいて単発噴射を行うための噴射指令を生成し、その単発噴射の結果に従って、噴射量補正処理23で使用する補正噴射量を求める補正量算出手段及び優先学習設定手段としての噴射量学習処理27とを少なくとも実行する。
The neutral detection sensor may be any sensor that detects that the clutch is in the OFF state, that is, the engine power is cut off from the drive wheels.
Then, as shown in FIG. 2, the ECU 6 shows an injection command indicating the target rail pressure of the common rail 2 and the injection timing and the injection amount suitable for the operating state of the engine 1 based on the sensor information detected by these sensors. Target value generation processing 21 as command injection amount setting means for generating (normal injection) and correction means for correcting an injection amount (hereinafter referred to as “command injection amount”) indicated in the injection command by a correction injection amount described later. In accordance with the injection amount correction process 23, the drive means for generating a drive signal for driving the electromagnetic metering valve 14 of the fuel supply pump 4 and the electromagnetic valve 5a of the injector 5 according to the corrected command injection amount and the target rail pressure. An injection command for performing single injection based on the command injection amount indicated by the injection command generated by the drive signal generation processing 25 and the sensor information and the target value generation processing 21 Form, according to the result of the single-shot injection, performing at least the injection quantity learning process 27 as the correction amount calculating means and the high-priority learning setting means obtains the correction injection amount to be used in the injection amount correction process 23.

ただし、ECU6は、エンジン1の運転状態に応じて実施する通常噴射では、メイン噴射に先立って極小量のパイロット噴射をインジェクタ5を行わせるように制御し、噴射学習処理では、そのパイロット噴射での噴射量を学習するように構成されている。   However, the ECU 6 performs control so that a minimum amount of pilot injection is performed by the injector 5 prior to main injection in normal injection performed according to the operating state of the engine 1, and in the injection learning processing, The injection amount is learned.

なお、上述の各処理のうち、目標値生成処理21,噴射量補正処理23,駆動信号生成処理25については、周知のものであるため説明を省略し、以下では、本発明の主要部に関わる噴射量学習処理を中心に詳述する。
<噴射量学習処理>
図3は、噴射量学習処理の内容を示すフローチャートである。
Of the above-described processes, the target value generation process 21, the injection amount correction process 23, and the drive signal generation process 25 are well known and will not be described. The following description relates to the main part of the present invention. The injection amount learning process will be described in detail.
<Injection amount learning process>
FIG. 3 is a flowchart showing the contents of the injection amount learning process.

なお、本処理は、外部からの起動指令があった場合に起動する。これに限らず、予め設定された一定期間(例えば1年)を経過する毎、又は予め設定された一定距離(例えば、10000Km)を走行する毎に起動するように構成してもよい。   This process is started when an external start command is issued. However, the present invention is not limited to this, and it may be configured to start every time a predetermined period (for example, one year) elapses or every time a predetermined distance (for example, 10,000 km) travels.

図3に示すように、本処理が起動すると、まずS110では、優先的に噴射補正量の算出(噴射量学習)をすべき気筒を優先学習気筒として設定する優先学習気筒設定手段としての優先学習気筒設定処理を実行し、続くS120では、S110にて特定された優先学習気筒について、補正噴射量を求める際に使用する学習値を取得して噴射補正量を求める補正量算出手段としての噴射補正量算出処理を実行する。   As shown in FIG. 3, when this process is started, first, in S110, priority learning as priority learning cylinder setting means for setting a cylinder for which calculation of injection correction amount (injection amount learning) should be preferentially performed as a priority learning cylinder. In step S120, the cylinder setting process is executed, and in step S120, injection correction as a correction amount calculation unit that obtains a learning value to be used when determining the correction injection amount for the priority learning cylinder specified in step S110 and calculates the injection correction amount. The amount calculation process is executed.

そして、S130では、全気筒について噴射補正量算出処理を実行した否かを判断し、実行していない気筒が存在すれば、S110に戻って、噴射補正量算出処理を終了していない気筒に対してS110〜S120の処理を繰り返す。一方、全気筒について噴射補正量算出処理が終了していれば、そのまま本処理を終了する。
<優先学習気筒設定処理>
次に、図4は、S110で実行する優先学習気筒設定処理での処理内容を示すフローチャートである。
In S130, it is determined whether or not the injection correction amount calculation process has been executed for all the cylinders. If there is a cylinder that has not been executed, the process returns to S110, and the cylinders for which the injection correction amount calculation process has not been completed are returned. Steps S110 to S120 are repeated. On the other hand, if the injection correction amount calculation process has been completed for all the cylinders, this process is terminated.
<Priority learning cylinder setting process>
Next, FIG. 4 is a flowchart showing the processing contents in the priority learning cylinder setting processing executed in S110.

図4に示すように、本処理が起動すると、まず、S210では、噴射補正量算出処理を実行していない学習未完了気筒数が1であるか否かを判断し、学習未完了気筒数が1であれば、S220に進み、その学習未完了気筒を優先学習気筒に設定して、本処理を終了する。   As shown in FIG. 4, when this process is started, first, in S210, it is determined whether or not the number of learning incomplete cylinders that have not executed the injection correction amount calculation process is 1, and the number of learning incomplete cylinders is determined. If it is 1, the process proceeds to S220, the learning incomplete cylinder is set as the priority learning cylinder, and this process is terminated.

一方、S210にて、学習未完了気筒数が1ではない(即ち、2以上である)と判断された場合は、S230に進み、学習条件が成立しているか否かを判断する。
具体的には、目標値生成処理21で生成される噴射指令(通常噴射)に示された指令噴射量がゼロ以下となる無噴射時であること、当燃料噴射システムを搭載する車両の変速装置がニュートラル状態であること(例えば、シフトチェンジ時)、所定範囲のレール圧が維持されていることを学習条件としている。
On the other hand, if it is determined in S210 that the number of incomplete learning cylinders is not 1 (that is, 2 or more), the process proceeds to S230, and it is determined whether or not a learning condition is satisfied.
Specifically, it is a non-injection time when the command injection amount indicated in the injection command (normal injection) generated in the target value generation process 21 is zero or less, and a transmission for a vehicle equipped with the fuel injection system Is a neutral condition (for example, at the time of a shift change) and that a predetermined range of rail pressure is maintained as learning conditions.

なお、上述した三つの学習条件のうち、いずれか一つまたは二つを学習条件としてもよい。また、EGR装置、ディーゼルスロットル、可変ターボ等を装備している場合は、EGRバルブの開度、ディーゼルスロットルの開度、可変ターボの開度等を学習条件に加えてもよい。   Note that one or two of the three learning conditions described above may be used as the learning condition. Further, when an EGR device, a diesel throttle, a variable turbo, or the like is installed, the opening degree of the EGR valve, the opening degree of the diesel throttle, the opening degree of the variable turbo, etc. may be added to the learning conditions.

S230にて学習条件が成立していないと判断した場合は、同ステップ(S230)を繰り返すことで待機し、学習条件が成立したと判断した場合は、S240に進み、学習未完了気筒の噴射タイミングであるか否かを判断する。なお、噴射タイミングは、クランクセンサやカムセンサ(図示せず)の出力に基づく周知の方法で特定することができる。   If it is determined in S230 that the learning condition is not satisfied, the process waits by repeating the same step (S230). If it is determined that the learning condition is satisfied, the process proceeds to S240, and the injection timing of the incomplete learning cylinder is determined. It is determined whether or not. The injection timing can be specified by a known method based on the output of a crank sensor or a cam sensor (not shown).

S240にて学習未完了気筒の噴射タイミングではないと判断した場合は、同ステップ(S240)を繰り返すことで待機し、学習未完了気筒の噴射タイミングであると判断した場合は、S250に進み、単発噴射用の噴射指令を生成することにより、単発噴射を実施してS260に進む。   If it is determined in S240 that it is not the injection timing of the incomplete learning cylinder, the process waits by repeating the same step (S240), and if it is determined that it is the injection timing of the learning incomplete cylinder, the process proceeds to S250, By generating an injection command for injection, single injection is performed, and the process proceeds to S260.

S260では、回転数センサ18の出力に基づき、単発噴射を実施したことによるエンジン回転数変動量を検出する。このエンジン回転数変動量は、単発噴射を実施しなかった場合のエンジン回転数(推定値)と、単発噴射の実施後に回転数センサ18の出力から得られたエンジン回転数との差を求めることで得られる。なお、エンジン回転数は、無噴射時において単調に減少するため、単発噴射を実施しなかった場合のエンジン回転数は、単発噴射を実施する直前のエンジン回転数、及びその変化率から簡単に推定することができる(図6参照)。   In S260, based on the output of the rotational speed sensor 18, the engine rotational speed fluctuation amount due to the single injection is detected. The engine speed fluctuation amount is obtained by obtaining a difference between the engine speed (estimated value) when the single injection is not performed and the engine speed obtained from the output of the rotational speed sensor 18 after the single injection is performed. It is obtained by. Since the engine speed decreases monotonously when there is no injection, the engine speed when single injection is not performed is simply estimated from the engine speed immediately before single injection and the rate of change. (See FIG. 6).

続くS270では、学習完了気筒数と単発噴射実施完了気筒数との合計が、全気筒数に等しいか否かを判断する。
S270にて否定判定された場合は、単発噴射を実施していない学習未完了気筒が存在するものとして、S240に戻り、S240〜S260の処理を繰り返すことにより、学習未完了気筒に対する単発噴射を実施する。
In subsequent S270, it is determined whether or not the sum of the learning completion cylinder number and the single injection execution completion cylinder number is equal to the total cylinder number.
If a negative determination is made in S270, assuming that there is an incomplete learning cylinder that has not performed single injection, the process returns to S240 and repeats the processing of S240 to S260, thereby performing single injection for the incomplete learning cylinder. To do.

S270にて肯定判定された場合は、全気筒について単発噴射が完了しているものとしてS280に進み、全気筒についてのS250〜S260の処理(単発噴射,エンジン回転数変動量検出)が、学習条件が成立している条件下(継続する1回の学習期間)で行われたか否か、即ち、上記処理の途中で、通常の噴射制御が再開されたり、レール圧が大きく変化したりすることがなかったか否かを判定する。   If an affirmative determination is made in S270, it is determined that single injection has been completed for all cylinders, and the flow proceeds to S280, and the processing in S250 to S260 (single injection, engine speed fluctuation amount detection) for all cylinders is performed as a learning condition. Whether or not under the condition (one learning period to be continued), that is, during the above process, normal injection control may be resumed or the rail pressure may change significantly. It is determined whether or not there was.

上記処理の途中で学習条件が不成立となり、S280にて否定判定された場合は、単発噴射により得られたエンジン回転数変動量を破棄して、S230に戻る。
一方、S280にて肯定判定された場合は、全ての単発噴射が同じ条件で実施されたものとして、S290に進み、単発噴射を実施した全ての気筒について、その単発噴射の実施によって発生するエンジントルク(以下「発生トルク」と呼ぶ)に比例した特性値(トルク相当量)を算出する。
If the learning condition is not satisfied during the above process and a negative determination is made in S280, the engine speed variation obtained by the single injection is discarded, and the process returns to S230.
On the other hand, if an affirmative determination is made in S280, it is assumed that all single injections have been performed under the same conditions, and the process proceeds to S290, and engine torque generated by the execution of the single injection is performed for all cylinders that have performed single injection. A characteristic value (torque equivalent amount) proportional to (hereinafter referred to as “generated torque”) is calculated.

この特性値Tpは、S260にて算出したエンジン回転数変動量Δωと単発噴射を実施した時のエンジン回転数ω0との積により求められ、単発噴射によって発生するエンジン1のトルクTとは、(1)式に示す関係を有する。   This characteristic value Tp is obtained from the product of the engine speed fluctuation amount Δω calculated in S260 and the engine speed ω0 when the single injection is performed. The torque T of the engine 1 generated by the single injection is ( 1) It has the relationship shown to Formula.

T=K・Tp=K・Δω・ω0 (1)
K:比例定数
なお、本実施形態のエンジン1、即ちディーゼル機関では、発生トルクTと実噴射量とが比例するため、S290で算出される特性値Tpも実噴射量に比例することになる。
T = K · Tp = K · Δω · ω0 (1)
K: Proportional constant In the engine 1 of this embodiment, that is, the diesel engine, the generated torque T and the actual injection amount are proportional to each other. Therefore, the characteristic value Tp calculated in S290 is also proportional to the actual injection amount.

続くS300では、S290にて算出した特性値から、単発噴射によりインジェクタ5から実際に噴射された燃料噴射量(実噴射量)を推定し、その実噴射量と単発噴射での指令噴射量との差を判定値として算出する。   In subsequent S300, the fuel injection amount (actual injection amount) actually injected from the injector 5 by single injection is estimated from the characteristic value calculated in S290, and the difference between the actual injection amount and the command injection amount in single injection is estimated. Is calculated as a determination value.

続くS310では、S300にて求めた判定値が最大である気筒、即ち、実噴射量と指定噴射量との差が最も大きい気筒を優先学習気筒に設定して、本処理を終了する。
なお、図6は、各気筒#1〜#4の噴射タイミングが#1→#3→#4→#2→#1→・・・の順に現れるものとして、全気筒の単発噴射を連続して実施した場合にエンジン回転数が変化する様子、及び単発噴射の実施タイミングを例示する模式図である。また、図中の点は、図7と同様に各気筒の噴射タイミングを示す。
<噴射補正量算出処理>
次に、図5は、S120で実行する噴射補正量算出処理での処理内容を示すフローチャートである。
In the subsequent S310, the cylinder having the largest determination value obtained in S300, that is, the cylinder having the largest difference between the actual injection amount and the designated injection amount is set as the priority learning cylinder, and this processing is terminated.
In FIG. 6, assuming that the injection timings of the cylinders # 1 to # 4 appear in the order of # 1 → # 3 → # 4 → # 2 → # 1 →. It is a schematic diagram which illustrates a mode that an engine speed changes when implemented, and the implementation timing of single injection. The points in the figure indicate the injection timing of each cylinder as in FIG.
<Injection correction amount calculation processing>
Next, FIG. 5 is a flowchart showing the processing contents in the injection correction amount calculation processing executed in S120.

図5に示すように、本処理が起動すると、まず、S410では、先のS210と同様に、学習条件が成立しているか否かを判断し、学習条件が成立していなければ、同ステップ(S410)を繰り返すことで待機し、学習条件が成立すると420に進む。   As shown in FIG. 5, when this process is started, first, in S410, as in the previous S210, it is determined whether or not the learning condition is satisfied. If the learning condition is not satisfied, the same step ( The process waits by repeating S410), and proceeds to 420 when the learning condition is satisfied.

S420では、S110で設定された優先学習気筒の噴射タイミングであるか否かを判断し、優先学習気筒の噴射タイミングでなければ、同ステップ(S420)を繰り返すことで待機し、優先学習気筒の噴射タイミングであれば、S430に進む。   In S420, it is determined whether or not it is the injection timing of the priority learning cylinder set in S110. If it is not the injection timing of the priority learning cylinder, the process waits by repeating the same step (S420), and the injection of the priority learning cylinder is performed. If it is timing, the process proceeds to S430.

S430,S440では、先のS250,S260と同様に、単発噴射用の噴射指令を生成することにより、単発噴射を実施し(S430)、回転数センサ18の出力に基づいて、単発噴射を実施したことによるエンジン回転数変動量を検出する。   In S430 and S440, as in the previous S250 and S260, single injection is performed by generating an injection command for single injection (S430), and single injection is performed based on the output of the rotation speed sensor 18 The engine speed fluctuation amount due to this is detected.

続くS450では、S430〜S440の処理(単発噴射,エンジン回転数変動量検出)が、学習条件が成立している条件下(継続する1回の学習期間)で行われたか否かを判断し、否定判定された場合は、単発噴射により得られたエンジン回転数変動量を破棄してS410に戻り、一方、肯定判定された場合はS460に進む。   In subsequent S450, it is determined whether or not the processing of S430 to S440 (single injection, engine speed fluctuation amount detection) was performed under the condition that the learning condition is satisfied (one continuous learning period), If a negative determination is made, the engine speed fluctuation amount obtained by the single injection is discarded, and the process returns to S410. On the other hand, if a positive determination is made, the process proceeds to S460.

S460では、S440にて検出したエンジン回転数変動量に基づいて、先のS290と同様に、単発噴射の実施による発生トルクに比例した特性値(トルク相当量)Tpを算出する。   In S460, a characteristic value (torque equivalent amount) Tp proportional to the torque generated by the single injection is calculated based on the engine speed fluctuation amount detected in S440 as in the previous S290.

続くS470では、先のS300と同様に、S460にて算出した特性値から、単発噴射によりインジェクタ5から実際に噴射された燃料噴射量(実噴射量)を推定し、その実噴射量と単発噴射での指令噴射量との差を学習値として算出する。   In the subsequent S470, as in the previous S300, the fuel injection amount (actual injection amount) actually injected from the injector 5 by single injection is estimated from the characteristic value calculated in S460, and the actual injection amount and single injection are calculated. The difference from the command injection amount is calculated as a learning value.

続くS480では、現在設定されている優先学習気筒について所定個(例えば10個)学習値を取得したか否かを判断し、否定判定された場合は、S410に戻って学習値の取得を繰り返し、肯定判定された場合は、S490に進む。   In subsequent S480, it is determined whether or not a predetermined (for example, 10) learning value has been acquired for the currently set priority learning cylinder. If a negative determination is made, the process returns to S410 and the acquisition of the learning value is repeated. If a positive determination is made, the process proceeds to S490.

S490では、優先学習気筒について取得された所定個の学習値に基づき、これら学習値の平均値を噴射補正量として算出して、本処理を終了する。
つまり、本処理では、学習条件が成立すると単発噴射を実施して学習値の取得を開始し、学習条件が成立している間、学習値の取得を繰り返す。但し、1回の学習期間で所定個の学習値を取得する必要はなく、複数の学習期間に渡って取得した所定個の学習値を用いて噴射補正量を算出する。
In S490, based on a predetermined number of learning values acquired for the priority learning cylinder, an average value of these learning values is calculated as an injection correction amount, and this process is terminated.
That is, in this process, when the learning condition is satisfied, single injection is performed to start acquisition of the learning value, and while the learning condition is satisfied, acquisition of the learning value is repeated. However, it is not necessary to acquire a predetermined number of learning values in one learning period, and the injection correction amount is calculated using a predetermined number of learning values acquired over a plurality of learning periods.

そして、本処理により算出された噴射補正量は噴射量補正処理23に供給され、指令噴射量の補正(本実施形態では指令噴射量との加算)に用いられ、その補正された指令噴射量が駆動信号生成処理25に供給される。
<効果>
以上説明したように、本実施形態の燃料噴射制御装置によれば、実噴射量と指令噴射量との差からなる判定値を全ての気筒について求め、その判定値が最も大きい気筒を優先学習気筒として設定し、その設定された優先学習気筒について集中的に学習値の取得を行うようにされている。
The injection correction amount calculated by this processing is supplied to the injection amount correction processing 23 and used for correction of the command injection amount (addition with the command injection amount in the present embodiment). This is supplied to the drive signal generation process 25.
<Effect>
As described above, according to the fuel injection control device of the present embodiment, the determination value consisting of the difference between the actual injection amount and the command injection amount is obtained for all the cylinders, and the cylinder having the largest determination value is determined as the priority learning cylinder. The learning value is acquired intensively for the set priority learning cylinder.

従って、本実施形態の燃料噴射制御装置によれば、一つの気筒に対する噴射補正量の算出に必要な個数の学習値を取得するのに要する時間、ひいては取得した学習値から算出される噴射補正量をインジェクタ5の駆動に反映させるのに要する時間を、優先学習気筒を設定しない従来装置と比較して、大幅に短縮することができる。   Therefore, according to the fuel injection control device of the present embodiment, the time required to acquire the number of learning values necessary for calculating the injection correction amount for one cylinder, and hence the injection correction amount calculated from the acquired learning value. Can be significantly reduced as compared with the conventional apparatus in which the priority learning cylinder is not set.

また、本実施形態の燃料噴射制御装置によれば、その時々で判定値(実噴射量と指令噴射量との差)が大きい気筒、即ち、噴射量の精度が低い気筒から順番に学習が完了して精度が改善されるため、全気筒についての平均的な噴射量の精度を、速やかに向上させることができる。   Further, according to the fuel injection control device of the present embodiment, learning is completed in order from a cylinder with a large determination value (difference between the actual injection amount and the command injection amount) from time to time, that is, a cylinder with low injection amount accuracy. Since the accuracy is improved, the accuracy of the average injection amount for all the cylinders can be quickly improved.

更に、本実施形態の燃料噴射制御装置によれば、優先学習気筒の設定に必要な判定値(指令噴射量と実噴射量とのずれ量)を、噴射補正量を算出する必要のある全ての気筒に対して単発噴射を1回ずつ実施した結果に基づいて求めているため、優先学習気筒を短時間で設定することができる。   Furthermore, according to the fuel injection control device of the present embodiment, the determination value necessary for setting the priority learning cylinder (the amount of deviation between the command injection amount and the actual injection amount) is calculated for all the injection correction amounts that need to be calculated. Since it is obtained based on the result of performing single injection once for each cylinder, the priority learning cylinder can be set in a short time.

また、本実施形態の燃料噴射制御装置によれば、優先学習気筒の設定に必要な判定値を求める時には、必要な回数分の単発噴射を、1回の学習期間内で実施するようにされているため、ほぼ同じ条件で取得された判定値を比較することになり、優先学習すべき気筒をより正確に設定することができる。   Further, according to the fuel injection control device of the present embodiment, when the determination value necessary for setting the priority learning cylinder is obtained, the single injection for the required number of times is performed within one learning period. Therefore, the determination values acquired under substantially the same conditions are compared, and the cylinder to be preferentially learned can be set more accurately.

また更に、本実施形態の燃料噴射制御装置によれば、噴射量学習を実施するための学習条件として、少なくとも、無噴射時であり、且つ変速装置がニュートラル状態であることを挙げているため、単発噴射によって生じるエンジン1の回転数変動を正確に検出でき、その結果、学習精度を向上させることができる。
[他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
Furthermore, according to the fuel injection control device of the present embodiment, as the learning condition for performing the injection amount learning, at least, there is no injection and the transmission is in the neutral state. A fluctuation in the rotational speed of the engine 1 caused by a single injection can be accurately detected, and as a result, learning accuracy can be improved.
[Other Embodiments]
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it is possible to implement in various aspects.

例えば、上記実施形態では、優先学習気筒の学習が終了する毎、即ち、一つの気筒について学習が終了する毎に、学習未完了の気筒について優先学習気筒設定処理を再実行し、その都度、優先学習気筒を設定するように構成したが、優先学習気筒設定処理を一度実行すると、全気筒の学習順序を決定し、一つの気筒について学習が終了すると、優先学習気筒特定処理を再実行することなく、他の気筒についての学習を実行するように構成してもよい。   For example, in the above-described embodiment, every time learning of the priority learning cylinder is completed, that is, every time learning of one cylinder is completed, the priority learning cylinder setting process is re-executed for the incomplete learning cylinder, and each time priority is given. The learning cylinder is set, but once the priority learning cylinder setting process is executed, the learning order of all cylinders is determined, and when learning is completed for one cylinder, the priority learning cylinder specifying process is not re-executed. The learning may be performed for other cylinders.

上記実施形態では、噴射補正量算出処理にて、気筒毎に一つの噴射補正量を求めるように構成したが、一つの気筒であってもレール圧等の条件によって場合分けした複数の噴射補正量を求めるように構成してもよい。   In the above embodiment, the injection correction amount calculation process is configured to obtain one injection correction amount for each cylinder. However, even for a single cylinder, a plurality of injection correction amounts divided according to conditions such as rail pressure. You may comprise so that it may obtain | require.

上記実施形態の優先学習気筒設定処理では、単発噴射を各気筒につき一度ずつ実施して判定値を求めているが、エンジン回転数変動量のばらつきが大きい場合には、単発噴射を各気筒につき複数回ずつ実施して判定値を求めるようにしてもよい。この場合、優先学習気筒を設定する際に判定値として求めた実噴射量と指令噴射量との差も、学習値として利用するように構成してもよい。   In the priority learning cylinder setting process of the above-described embodiment, the single injection is performed once for each cylinder to obtain the determination value. However, when the variation in the engine speed variation is large, multiple single injections are performed for each cylinder. The determination value may be obtained by performing the operation one by one. In this case, the difference between the actual injection amount obtained as the determination value when setting the priority learning cylinder and the command injection amount may also be used as the learning value.

燃料噴射装置の全体構成図。1 is an overall configuration diagram of a fuel injection device. ECUが実行する処理の構成を示すブロック図。The block diagram which shows the structure of the process which ECU performs. 噴射量学習処理の内容を示すフローチャート。The flowchart which shows the content of the injection quantity learning process. 優先学習気筒設定処理の詳細を示すフローチャート。The flowchart which shows the detail of a priority learning cylinder setting process. 噴射補正量算出処理の詳細を示すフローチャート。The flowchart which shows the detail of an injection correction amount calculation process. 優先学習気筒設定処理での動作を示す説明図。Explanatory drawing which shows the operation | movement in a priority learning cylinder setting process. 単発噴射の実施によるエンジン回転数の変動、及びエンジン回転数変動量の求め方を示す説明図。Explanatory drawing which shows how to obtain | require the fluctuation | variation of the engine speed by implementation of single injection, and an engine speed fluctuation amount.

符号の説明Explanation of symbols

1…エンジン 2…コモンレール 3…燃料タンク 4…燃料供給ポンプ 5…インジェクタ 7…圧力センサ 8…プレッシャリミッタ 9…カム軸 10…フィードポンプ 12…プランジャ 13…加圧室 14…電磁調量弁 15…吸入弁 16…吐出弁 17…高圧配管 18…回転数センサ 21…目標値生成処理 23…噴射量補正処理 25…駆動信号生成処理 27…噴射量学習処理   DESCRIPTION OF SYMBOLS 1 ... Engine 2 ... Common rail 3 ... Fuel tank 4 ... Fuel supply pump 5 ... Injector 7 ... Pressure sensor 8 ... Pressure limiter 9 ... Cam shaft 10 ... Feed pump 12 ... Plunger 13 ... Pressurizing chamber 14 ... Electromagnetic metering valve 15 ... Suction valve 16 ... Discharge valve 17 ... High-pressure piping 18 ... Rotational speed sensor 21 ... Target value generation process 23 ... Injection amount correction process 25 ... Drive signal generation process 27 ... Injection quantity learning process

Claims (5)

多気筒を有する内燃機関の各気筒に設けられたインジェクタに噴射させる燃料量である指令噴射量を設定する指令噴射量設定手段と、
前記指令噴射量設定手段にて設定された指令噴射量を、予め求められた噴射補正量を用いて補正する補正手段と、
前記補正手段により補正された指令噴射量に従って前記インジェクタを駆動する駆動手段と、
予め設定された学習条件が成立している学習期間中に前記内燃機関のいずれか一つの気筒のインジェクタに燃料噴射を行わせる単発噴射を行い、前記単発噴射を実施したことによる内燃機関の回転数の変動に基づいて、前記インジェクタが実際に噴射した燃料量である実噴射量、又は該実噴射量と相関を有する実噴射相関量を学習値として取得し、該学習値に基づいて、前記実噴射量と前記指令噴射量とが一致するように前記噴射補正量を算出する補正量算出手段と、
を備えた燃料噴射制御装置において、
前記気筒毎に前記指令噴射量と前記実噴射量との差を判定値として求め、該判定値が最も大きい気筒を、優先学習気筒として設定する優先学習気筒設定手段を設け、
前記補正量算出手段は、前記優先学習気筒設定手段にて設定された優先学習気筒について前記学習値の取得を行うことを特徴とする燃料噴射制御装置。
Command injection amount setting means for setting a command injection amount that is a fuel amount to be injected into an injector provided in each cylinder of an internal combustion engine having multiple cylinders;
Correction means for correcting the command injection amount set by the command injection amount setting means using a previously determined injection correction amount;
Drive means for driving the injector in accordance with the command injection amount corrected by the correction means;
The number of revolutions of the internal combustion engine by performing the single injection that causes the injector of any one cylinder of the internal combustion engine to perform fuel injection during the learning period in which the preset learning condition is satisfied, and performing the single injection The actual injection amount, which is the amount of fuel actually injected by the injector, or the actual injection correlation amount that has a correlation with the actual injection amount is acquired as a learning value based on the fluctuation of the actual injection amount. A correction amount calculating means for calculating the injection correction amount so that the injection amount and the command injection amount coincide;
In a fuel injection control device comprising:
A priority learning cylinder setting unit that obtains a difference between the command injection amount and the actual injection amount as a determination value for each cylinder and sets a cylinder having the largest determination value as a priority learning cylinder is provided,
The fuel injection control device, wherein the correction amount calculation means acquires the learning value for the priority learning cylinder set by the priority learning cylinder setting means.
前記優先学習気筒設定手段は、前記噴射補正量を算出する必要のある全ての気筒について、前記単発噴射を1回ずつ実施した結果から、前記判定値を求めることを特徴とする請求項1に記載の燃料噴射制御装置。   The said priority learning cylinder setting means calculates | requires the said determination value from the result of having implemented the said single injection once for all the cylinders which need to calculate the said injection correction amount. Fuel injection control device. 前記優先学習気筒設定手段は、必要な回数分の前記単発噴射を、1回の前記学習期間内で実施することを特徴とする請求項2に記載の燃料噴射制御装置。   3. The fuel injection control device according to claim 2, wherein the priority learning cylinder setting unit performs the single injection for a required number of times within one learning period. 前記補正量算出手段は、少なくとも、前記指令噴射量がゼロ以下であることを前記学習条件とすることを特徴とする請求項1〜3のいずれかに記載の燃料噴射制御装置。   The fuel injection control apparatus according to any one of claims 1 to 3, wherein the correction amount calculation means uses at least the command injection amount as zero or less as the learning condition. 前記補正量算出手段は、少なくとも、前記指令噴射量がゼロ以下、且つ変速装置がニュートラル状態であることを前記学習条件とすることを特徴とする請求項1〜3のいずれかに記載の燃料噴射制御装置。   The fuel injection according to any one of claims 1 to 3, wherein the correction amount calculation means uses the learning condition that at least the command injection amount is equal to or less than zero and the transmission is in a neutral state. Control device.
JP2006282646A 2006-10-17 2006-10-17 Fuel injection control device Expired - Fee Related JP4788557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282646A JP4788557B2 (en) 2006-10-17 2006-10-17 Fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282646A JP4788557B2 (en) 2006-10-17 2006-10-17 Fuel injection control device

Publications (2)

Publication Number Publication Date
JP2008101478A true JP2008101478A (en) 2008-05-01
JP4788557B2 JP4788557B2 (en) 2011-10-05

Family

ID=39436006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282646A Expired - Fee Related JP4788557B2 (en) 2006-10-17 2006-10-17 Fuel injection control device

Country Status (1)

Country Link
JP (1) JP4788557B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270481A (en) * 2008-05-07 2009-11-19 Toyota Motor Corp Fuel injection amount control device
JP2010038142A (en) * 2008-08-08 2010-02-18 Toyota Motor Corp Injection amount control device for internal combustion engine
JP2013217228A (en) * 2012-04-05 2013-10-24 Denso Corp Freeze frame data storage system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005036788A (en) * 2003-06-27 2005-02-10 Denso Corp Injection-quantity control unit of diesel engine
JP2005248720A (en) * 2004-03-01 2005-09-15 Toyota Motor Corp Correction method for boost type fuel injection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005036788A (en) * 2003-06-27 2005-02-10 Denso Corp Injection-quantity control unit of diesel engine
JP2005248720A (en) * 2004-03-01 2005-09-15 Toyota Motor Corp Correction method for boost type fuel injection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270481A (en) * 2008-05-07 2009-11-19 Toyota Motor Corp Fuel injection amount control device
JP4737227B2 (en) * 2008-05-07 2011-07-27 トヨタ自動車株式会社 Fuel injection amount control device
JP2010038142A (en) * 2008-08-08 2010-02-18 Toyota Motor Corp Injection amount control device for internal combustion engine
JP2013217228A (en) * 2012-04-05 2013-10-24 Denso Corp Freeze frame data storage system

Also Published As

Publication number Publication date
JP4788557B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4501974B2 (en) Fuel injection control device for internal combustion engine
JP4277677B2 (en) Injection quantity control device for diesel engine
US6990958B2 (en) Injection control system of diesel engine
EP2250359B1 (en) Cetane number estimation method
US8538664B2 (en) Controller for diesel engine and method of controlling diesel engine
JP4743030B2 (en) Fuel injection control device for diesel engines
JP4442670B2 (en) Fuel injection control device for internal combustion engine
JP4218496B2 (en) Injection quantity control device for internal combustion engine
JP2010275989A (en) Fuel injection control apparatus for internal combustion engine
JP4788557B2 (en) Fuel injection control device
JP4840296B2 (en) Fuel injection control device for internal combustion engine
JP2007192088A (en) Fuel injection control device of internal combustion engine
JP4407427B2 (en) Fuel injection control device for internal combustion engine
JP4760804B2 (en) Fuel injection control device for internal combustion engine
JP4349339B2 (en) Injection quantity control device for internal combustion engine
JP2010038142A (en) Injection amount control device for internal combustion engine
JP5110036B2 (en) Fuel injection control device for internal combustion engine
JP2007032557A (en) Fuel injection controller
JP5994677B2 (en) Fuel injection control device
JP2011153547A (en) Fuel injection device
JP5884710B2 (en) Fuel pressure control device
JP6213351B2 (en) Injection amount learning device for internal combustion engine
JP2010261355A (en) Fuel injection control device
JP2010138754A (en) Fuel injection control device for internal combustion engine
JP2007056767A (en) Abnormality determination device for fuel feeder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4788557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees