JP4407427B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP4407427B2
JP4407427B2 JP2004244949A JP2004244949A JP4407427B2 JP 4407427 B2 JP4407427 B2 JP 4407427B2 JP 2004244949 A JP2004244949 A JP 2004244949A JP 2004244949 A JP2004244949 A JP 2004244949A JP 4407427 B2 JP4407427 B2 JP 4407427B2
Authority
JP
Japan
Prior art keywords
injection amount
injection
pressure
fuel
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004244949A
Other languages
Japanese (ja)
Other versions
JP2006063824A (en
Inventor
享史 菊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004244949A priority Critical patent/JP4407427B2/en
Publication of JP2006063824A publication Critical patent/JP2006063824A/en
Application granted granted Critical
Publication of JP4407427B2 publication Critical patent/JP4407427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、例えば、コモンレール式燃料噴射装置を搭載する直噴ディーゼルエンジン等において、高噴射領域(高負荷、高回転)での気筒間の噴射量ばらつきを抑制する内燃機関用燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device for an internal combustion engine that suppresses injection amount variation between cylinders in a high injection region (high load, high rotation) in, for example, a direct injection diesel engine equipped with a common rail fuel injection device. .

従来、複数の気筒を有するエンジンでは、各気筒間の爆発力のばらつきによる各気筒の回転速度変動に起因してエンジン振動が発生する。特に、エンジンの無負荷状態、つまりアイドル安定状態においては、そのエンジン振動が運転者に不快感を与える場合がある。 上記のような気筒間に生じる回転速度変動を抑制するために、気筒毎の燃料噴射量を補正する気筒間噴射量補正制御(FCCB補正)が提案されている(特許文献1および特許文献2参照)。
これは、各気筒の回転速度変動を検出し、その検出値と全気筒の回転速度変動の平均値とを比較して、気筒間の回転速度変動を平滑化するように、気筒毎の燃料噴射量を増減補正するものである。
特開昭60−256537号公報 特開2001−355500号公報
Conventionally, in an engine having a plurality of cylinders, engine vibration occurs due to fluctuations in the rotational speed of each cylinder due to variations in explosive force between the cylinders. In particular, when the engine is in a no-load state, that is, in an idling stable state, the engine vibration may cause discomfort to the driver. In order to suppress the rotational speed fluctuation generated between the cylinders as described above, an inter-cylinder injection amount correction control (FCCB correction) for correcting the fuel injection amount for each cylinder has been proposed (see Patent Document 1 and Patent Document 2). ).
This is to detect the rotational speed fluctuation of each cylinder, compare the detected value with the average value of the rotational speed fluctuation of all cylinders, and smooth the rotational speed fluctuation between the cylinders. The amount is corrected to increase or decrease.
JP 60-256537 A JP 2001-355500 A

しかし、従来のFCCB補正は、エンジン回転速度が安定した状態、つまりアイドリング状態で実施されるため、エンジン回転速度が変動する高噴射領域では実施できない。このため、高噴射領域では、気筒間の噴射量ばらつきを抑制することが困難であり、エンジン振動によるドライバビリティの悪化、および排気ガス性能が悪化する問題があった。
本発明は、上記事情に基づいて成されたもので、その目的は、高噴射領域での気筒間の噴射量ばらつきを抑制できる内燃機関用燃料噴射制御装置を提供することにある。
However, since the conventional FCCB correction is performed in a state where the engine rotational speed is stable, that is, in an idling state, it cannot be performed in a high injection region where the engine rotational speed varies. For this reason, in the high injection region, it is difficult to suppress the variation in the injection amount between the cylinders, and there is a problem that the drivability deteriorates due to engine vibration and the exhaust gas performance deteriorates.
The present invention has been made based on the above circumstances, and an object of the present invention is to provide a fuel injection control device for an internal combustion engine that can suppress variation in the injection amount between cylinders in a high injection region.

(請求項1の発明)
本発明の内燃機関用燃料噴射制御装置は、車速を一定に保つことのできるクルーズコントロール装置を搭載する車両において、燃料を圧送する燃料供給ポンプと、この燃料供給ポンプより圧送された燃料を所定の噴射圧力まで蓄えるコモンレールと、多気筒内燃機関の各気筒に取り付けられた複数のインジェクタとを有し、コモンレールに蓄圧された燃料を複数のインジェクタより各気筒内へ噴射するコモンレール式燃料噴射装置と、所定の学習実行条件が成立した上で、内燃機関の気筒間の噴射量ばらつきを検出し、その噴射量ばらつきを抑制するために、気筒毎の噴射量を補正する噴射量補正手段とを備える。
(Invention of Claim 1)
A fuel injection control device for an internal combustion engine according to the present invention is a vehicle equipped with a cruise control device capable of keeping the vehicle speed constant, a fuel supply pump that pumps fuel, and a fuel that is pumped from the fuel supply pump. A common rail fuel injection device that has a common rail that accumulates up to the injection pressure and a plurality of injectors attached to each cylinder of the multi-cylinder internal combustion engine, and injects fuel accumulated in the common rail into each cylinder from the plurality of injectors; An injection amount correcting means for detecting an injection amount variation between cylinders of the internal combustion engine and correcting the injection amount for each cylinder in order to detect the variation in the injection amount after a predetermined learning execution condition is satisfied.

噴射量補正手段は、クルーズコントロール装置により車速が一定に保たれた状態で、コモンレールに蓄圧される燃料圧力(コモンレール圧と呼ぶ)を指令する噴射圧指令値およびインジェクタの噴射量を指令する噴射量指令値をそれぞれ所定の値に固定する指令値固定手段を有し、この指令値固定手段により噴射圧指令値および噴射量指令値がそれぞれ所定の値に固定されることで、所定の学習実行条件が成立することを特徴とする。
上記の構成によれば、車速が一定に保たれた状態で噴射パターンを固定する、つまり、噴射圧指令値および噴射量指令値をそれぞれ所定の値に固定することで、走行中の高噴射領域においても気筒間の噴射量ばらつきを精度良く検出できる。これにより、気筒間の噴射量ばらつきが抑制される方向に、気筒毎の噴射量を補正する(インジェクタに対する噴射量指令値を補正する)ことで、高噴射領域での気筒間の噴射量ばらつきを抑制できる。
The injection amount correction means is an injection pressure command value for instructing a fuel pressure (referred to as common rail pressure) accumulated in the common rail and an injection amount for injecting the injector while the vehicle speed is kept constant by the cruise control device. There are command value fixing means for fixing the command values to predetermined values, respectively, and the injection pressure command value and the injection amount command value are fixed to predetermined values by the command value fixing means, respectively. Is established.
According to the above configuration, the injection pattern is fixed in a state where the vehicle speed is kept constant, that is, the injection pressure command value and the injection amount command value are fixed to predetermined values, respectively, so that the high injection region during traveling is fixed. In this case, it is possible to accurately detect the injection amount variation between the cylinders. As a result, by correcting the injection amount for each cylinder (correcting the injection amount command value for the injector) in a direction in which the variation in the injection amount between the cylinders is suppressed, the variation in the injection amount between the cylinders in the high injection region is corrected. Can be suppressed.

また、指令値固定手段は、クルーズコントロール装置により車速が一定に保たれた状態で、コモンレール圧および各気筒の噴射量が安定している時に、その安定時の圧力センサによって検出される実コモンレール圧に最も近いマップ格子点の圧力を噴射圧指令値として固定するとともに、その安定時の噴射量の規定回数の平均値を噴射量指令値として固定することを特徴とする。
これにより、噴射圧指令値を固定することによってコモンレール圧が大きく変動することはなく、かつ、噴射量指令値を固定することによって噴射量が大きく変動することもなく、車両乗員の違和感を低減できる。
Further, the command value fixing means is an actual common rail pressure detected by a pressure sensor when the common rail pressure and the injection amount of each cylinder are stable while the vehicle speed is kept constant by the cruise control device. The pressure at the map grid point closest to is fixed as the injection pressure command value, and the average value of the prescribed number of injection amounts at the time of stabilization is fixed as the injection amount command value.
As a result, the common rail pressure does not fluctuate greatly by fixing the injection pressure command value, and the injection amount does not fluctuate greatly by fixing the injection amount command value, thereby reducing the uncomfortable feeling of the vehicle occupant. .

(請求項の発明)
請求項1に記載した内燃機関用燃料噴射制御装置において、噴射量補正手段は、各気筒の角速度(予め決められたクランク角度範囲の時間)を計測すると共に、各気筒の計測値の平均値を算出し、各気筒の計測値が平均値より速い場合は、噴射量が減少する方向に補正し、各気筒の計測値が平均値より遅い場合は、噴射量が増加する方向に補正することを特徴とする。
これにより、各気筒の計測値(角速度の計測値)と全気筒の平均値との偏差を小さくできるので、気筒間の噴射量ばらつきを抑制できる。
(Invention of Claim 2 )
The fuel injection control apparatus for a combustion engine among according to claim 1, the injection quantity correction means is adapted to measure the angular velocity (time of a predetermined crank angle range) of each cylinder, an average of the measurement values of the respective cylinders When the measured value of each cylinder is faster than the average value, the injection amount is reduced. When the measured value of each cylinder is slower than the average value, the injection amount is corrected. It is characterized by that.
Thereby, since the deviation between the measured value of each cylinder (measured value of angular velocity) and the average value of all the cylinders can be reduced, variation in the injection amount among the cylinders can be suppressed.

本発明を実施するための最良の形態を以下の実施例により詳細に説明する。   The best mode for carrying out the present invention will be described in detail by the following examples.

図1は内燃機関の燃料噴射制御システムを示す構成図である。
本実施例の内燃機関は、例えば4気筒のディーゼル機関1であり、車速を一定に保つことのできるクルーズコントロール装置(図示せず)を搭載する車両の走行用エンジンである。このディーゼル機関1は、以下に説明するコモンレール式燃料噴射装置と、この燃料噴射装置を電子制御する電子制御ユニット(以下ECU2と呼ぶ)とを備える。
FIG. 1 is a block diagram showing a fuel injection control system for an internal combustion engine.
The internal combustion engine of the present embodiment is, for example, a four-cylinder diesel engine 1 and is a traveling engine for a vehicle equipped with a cruise control device (not shown) that can keep the vehicle speed constant. The diesel engine 1 includes a common rail fuel injection device described below and an electronic control unit (hereinafter referred to as ECU 2) that electronically controls the fuel injection device.

コモンレール式燃料噴射装置は、図1に示す様に、燃料タンク3より汲み上げた燃料を加圧して圧送する燃料供給ポンプ4と、この燃料供給ポンプ4より圧送された燃料を蓄えるコモンレール5と、このコモンレール5より供給される高圧燃料をディーゼル機関1の気筒内(燃焼室1a)に噴射する複数のインジェクタ6等を備える。   As shown in FIG. 1, the common rail type fuel injection device includes a fuel supply pump 4 that pressurizes and pumps fuel pumped from the fuel tank 3, a common rail 5 that stores fuel pumped from the fuel supply pump 4, A plurality of injectors 6 for injecting high-pressure fuel supplied from the common rail 5 into the cylinder (combustion chamber 1a) of the diesel engine 1 are provided.

燃料供給ポンプ4は、ディーゼル機関1に駆動されて回転するカム軸7、このカム軸7に駆動されて燃料タンク3から燃料を汲み上げるフィードポンプ8、カム軸7の回転に同期してシリンダ内を往復動するプランジャ9、シリンダ内の加圧室10に吸入される燃料量を調量する吸入調量弁11、この吸入調量弁11と加圧室10とを繋ぐ吸入通路12に設けられる吸入弁13、および加圧室10とコモンレール5とを繋ぐ吐出通路14に設けられる吐出弁15等より構成される。   The fuel supply pump 4 is driven by the diesel engine 1 and rotated by a camshaft 7. The camshaft 7 is driven by the camshaft 7 to pump fuel from the fuel tank 3. A reciprocating plunger 9, a suction metering valve 11 for metering the amount of fuel sucked into the pressurizing chamber 10 in the cylinder, and a suction passage 12 connecting the suction metering valve 11 and the pressurizing chamber 10. The valve 13 and the discharge valve 15 provided in the discharge passage 14 connecting the pressurizing chamber 10 and the common rail 5 are configured.

この燃料供給ポンプ4の作動について説明する。
カム軸7の回転により、プランジャ9がシリンダ内を上死点から下死点に向かって移動すると、加圧室10の圧力が低下して、フィードポンプ8より送り出された燃料が吸入弁13を押し開いて加圧室10に吸入される。この加圧室10に吸入される燃料量は、ECU2により制御される吸入調量弁11の弁開度に応じて調量される。
プランジャ9がシリンダ内を下死点から上死点に向かって移動すると、加圧室10に吸入された燃料が加圧され、その燃料圧力が吐出弁15の開弁圧を超えると、吐出弁15が開弁して、加圧室10の燃料がコモンレール5へ圧送される。
The operation of the fuel supply pump 4 will be described.
When the plunger 9 moves in the cylinder from the top dead center to the bottom dead center due to the rotation of the cam shaft 7, the pressure in the pressurizing chamber 10 decreases, and the fuel sent from the feed pump 8 causes the intake valve 13 to flow. It is pushed open and sucked into the pressurizing chamber 10. The amount of fuel sucked into the pressurizing chamber 10 is metered according to the opening degree of the suction metering valve 11 controlled by the ECU 2.
When the plunger 9 moves in the cylinder from the bottom dead center toward the top dead center, the fuel sucked into the pressurizing chamber 10 is pressurized, and when the fuel pressure exceeds the valve opening pressure of the discharge valve 15, the discharge valve The valve 15 is opened, and the fuel in the pressurizing chamber 10 is pumped to the common rail 5.

コモンレール5は、燃料供給ポンプ4より供給された高圧燃料を噴射圧力(目標レール圧と呼ぶ)まで蓄圧する。目標レール圧は、ディーゼル機関1の運転状態(例えば、アクセル開度と機関回転速度NE)に応じてECU2により設定される。このコモンレール5には、蓄圧された燃料圧力(実レール圧と呼ぶ)を検出してECU2に出力する圧力センサ16と、燃料タンク3に通じる低圧通路17を開閉する減圧弁18が取り付けられている。この減圧弁18は、ECU2により制御されて、例えば、車両の減速時に開弁することで、速やかに実レール圧を減圧することが可能である。   The common rail 5 accumulates the high-pressure fuel supplied from the fuel supply pump 4 up to the injection pressure (referred to as target rail pressure). The target rail pressure is set by the ECU 2 in accordance with the operation state of the diesel engine 1 (for example, the accelerator opening degree and the engine rotational speed NE). A pressure sensor 16 that detects the accumulated fuel pressure (referred to as an actual rail pressure) and outputs it to the ECU 2 and a pressure reducing valve 18 that opens and closes the low pressure passage 17 that leads to the fuel tank 3 are attached to the common rail 5. . The pressure reducing valve 18 is controlled by the ECU 2, and can open the valve when the vehicle is decelerated, for example, to quickly reduce the actual rail pressure.

インジェクタ6は、ディーゼル機関1の各気筒にそれぞれ取り付けられ、燃料配管19を介してコモンレール5に接続されている。このインジェクタ6は、噴孔(図示せず)を開閉するためのニードル(図示せず)を内蔵すると共に、このニードルの背圧を制御する電磁弁6aを有し、ECU2により電磁弁6aへの通電時期および通電時間が制御される。電磁弁6aが通電されると、ニードルの背圧が低圧側に開放されて、ニードルを押し上げる開弁力がニードルを押し下げる閉弁力より大きくなることにより、ニードルがリフトして噴射が開始される。電磁弁6aへの通電が停止されると、ニードルに背圧が印加されて閉弁力が開弁力を上回ることにより、ニードルが押し下げられて噴射が終了する。   The injector 6 is attached to each cylinder of the diesel engine 1 and is connected to the common rail 5 via a fuel pipe 19. The injector 6 has a built-in needle (not shown) for opening and closing a nozzle hole (not shown), and has an electromagnetic valve 6a for controlling the back pressure of the needle. The energization timing and energization time are controlled. When the solenoid valve 6a is energized, the back pressure of the needle is released to the low pressure side, and the valve opening force that pushes up the needle becomes larger than the valve closing force that pushes down the needle, whereby the needle lifts and injection is started. . When the energization of the electromagnetic valve 6a is stopped, the back pressure is applied to the needle and the valve closing force exceeds the valve opening force, whereby the needle is pushed down and the injection ends.

ECU2は、図1に示す各種センサ類(圧力センサ16、NEセンサ20、アクセル開度センサ等)で検出されたセンサ情報を入力し、これらのセンサ情報を基に、噴射量制御および噴射圧制御を実施する。
NEセンサ20は、ディーゼル機関1のクランク軸が1回転する間に複数のパルス信号を出力する。ECU2では、NEセンサ20より出力されたパルス信号の時間間隔を計測することで、機関回転速度NEを検出する。
アクセル開度センサは、運転者が操作するアクセルペダル(図示せず)の操作量(踏込み量)よりアクセル開度を検出して、検出結果をECU2に出力する。
The ECU 2 inputs sensor information detected by various sensors shown in FIG. 1 (pressure sensor 16, NE sensor 20, accelerator opening sensor, etc.), and injection amount control and injection pressure control based on these sensor information. To implement.
The NE sensor 20 outputs a plurality of pulse signals while the crankshaft of the diesel engine 1 makes one revolution. The ECU 2 detects the engine speed NE by measuring the time interval of the pulse signal output from the NE sensor 20.
The accelerator opening sensor detects the accelerator opening from the operation amount (depression amount) of an accelerator pedal (not shown) operated by the driver, and outputs the detection result to the ECU 2.

噴射量制御は、インジェクタ6より噴射される噴射量および噴射時期を制御するもので、機関回転速度NEとアクセル開度を基に、ディーゼル機関1の運転状態に応じた最適な噴射量および噴射時期を演算し、その演算結果より決定される噴射量指令値に従ってインジェクタ6の電磁弁6aを駆動する。
噴射圧制御は、コモンレール5に蓄圧される燃料圧力を制御するもので、圧力センサ16によって検出される実レール圧が目標レール圧と一致する様に噴射圧指令値を決定し、その噴射圧指令値に従って、燃料供給ポンプ4の吸入調量弁11を制御する。
The injection amount control is to control the injection amount and the injection timing injected from the injector 6. Based on the engine speed NE and the accelerator opening, the optimal injection amount and the injection timing according to the operating state of the diesel engine 1 are used. And the electromagnetic valve 6a of the injector 6 is driven according to the injection amount command value determined from the calculation result.
The injection pressure control is to control the fuel pressure accumulated in the common rail 5, and determines the injection pressure command value so that the actual rail pressure detected by the pressure sensor 16 matches the target rail pressure. The intake metering valve 11 of the fuel supply pump 4 is controlled according to the value.

また、ECU2は、本発明の噴射量補正手段の機能を備え、この機能により、ディーゼル機関1の気筒間の噴射量ばらつきを抑制するための噴射量学習を実行する。この噴射量学習を実行するECU2の処理手順を図2に示すフローチャートと、図3及び図4に示すタイムチャートを基に説明する。
ステップ10…クルーズ制御中か否かを判定する。上記の噴射量学習は、車速が一定に保たれている状態で行う必要がある。そこで、図3(a)に示す様に、クルーズコントロール装置が作動している(ON状態)か否かを判定する。
Further, the ECU 2 has the function of the injection amount correcting means of the present invention, and executes the injection amount learning for suppressing the injection amount variation among the cylinders of the diesel engine 1 by this function. The processing procedure of the ECU 2 that executes this injection amount learning will be described based on the flowchart shown in FIG. 2 and the time charts shown in FIGS. 3 and 4.
Step 10: It is determined whether or not cruise control is in progress. The above injection amount learning needs to be performed in a state where the vehicle speed is kept constant. Therefore, as shown in FIG. 3A, it is determined whether or not the cruise control device is operating (ON state).

ステップ20…クルーズ制御中における車速、噴射量、および実レール圧(本発明のコモンレール圧)が安定してから一定時間経過したか否かを判定する。
クルーズコントロール装置により車速が一定に保たれている状態であっても、例えば、坂道走行等では、噴射量および実レール圧が大きく変動する場合がある。そこで、噴射量学習を実行するための前提として、車速、噴射量、および実レール圧が安定し、その安定状態が一定時間継続していることを条件とする。具体的には、図3に示す様に、(b)車速、(c)噴射量、(d)実レール圧の安定状態を示すフラグが全て「ON」となった後、(e)カウンタの計数値が予め決められた閾値定数に到達した時点で、(f)学習実行条件成立フラグを「ON」にする。
Step 20: It is determined whether or not a certain period of time has elapsed since the vehicle speed, the injection amount, and the actual rail pressure (common rail pressure of the present invention) during cruise control are stabilized.
Even when the vehicle speed is kept constant by the cruise control device, for example, when traveling on a slope, the injection amount and the actual rail pressure may vary greatly. Therefore, the premise for executing the injection amount learning is that the vehicle speed, the injection amount, and the actual rail pressure are stable and the stable state continues for a certain period of time. Specifically, as shown in FIG. 3, after the flags indicating the stable state of (b) vehicle speed, (c) injection amount, and (d) actual rail pressure are all “ON”, (e) When the count value reaches a predetermined threshold constant, (f) the learning execution condition satisfaction flag is set to “ON”.

ステップ30…学習期間中の噴射パターンを固定する(図4参照)。すなわち、燃料供給ポンプ4に対する噴射圧指令値およびインジェクタ6に対する噴射量指令値をそれぞれ所定の値に固定する(本発明の指令値固定手段)。この場合、噴射圧指令値は、安定時の実レール圧(フラグが「ON」の時の実レール圧)に最も近いマップ格子点の圧力に固定することが望ましい。また、噴射量指令値は、安定時の噴射量(フラグが「ON」の時の噴射量)の規定回数の平均値とすることが望ましい。   Step 30: The injection pattern during the learning period is fixed (see FIG. 4). That is, the injection pressure command value for the fuel supply pump 4 and the injection amount command value for the injector 6 are each fixed to predetermined values (command value fixing means of the present invention). In this case, it is desirable that the injection pressure command value is fixed to the pressure at the map grid point closest to the actual rail pressure at the time of stabilization (the actual rail pressure when the flag is “ON”). Further, it is desirable that the injection amount command value is an average value of the prescribed number of times of stable injection amount (injection amount when the flag is “ON”).

ステップ40…FCCB補正を開始すると同時に、学習期間を設定する学習期間カウンタをスタートさせる(図4参照)。
FCCB補正は、ディーゼル機関1の気筒間の回転速度変動が平滑化されるように、気筒毎の噴射量を増減補正する周知の技術である。具体的には、各気筒の角速度(予め決められたクランク角度範囲の時間)を計測すると共に、各気筒の計測値の平均値を算出し、各気筒の計測値が前記平均値より速い場合は、噴射量が減少する方向に補正し、各気筒の計測値が前記平均値より遅い場合は、噴射量が増加する方向に補正する。
Step 40... Starts the learning period counter for setting the learning period simultaneously with the start of FCCB correction (see FIG. 4).
FCCB correction is a well-known technique for increasing or decreasing the injection amount for each cylinder so that the rotational speed fluctuation between the cylinders of the diesel engine 1 is smoothed. Specifically, the angular velocity of each cylinder (time in a predetermined crank angle range) is measured, the average value of the measured values of each cylinder is calculated, and when the measured value of each cylinder is faster than the average value, When the measured value of each cylinder is slower than the average value, the injection amount is corrected so as to increase.

ステップ50…FCCB補正による補正値が一定範囲内で安定したか否か、あるいは学習期間カウンタの計数値が一定値を超えたか否か(つまり予め決められた学習期間を経過したか否か)を判定する。学習期間内であっても、補正値が一定範囲内で安定した場合は、その時点で学習を終了する。あるいは、補正値が一定範囲内で安定していなくても、学習期間を経過した場合は、その時点で学習を終了する。
ステップ60…FCCB補正を停止して、通常の運転状態(クルーズコントロール装置により車速が一定に保たれた状態)に復帰する。
Step 50: Whether the correction value by FCCB correction is stable within a certain range, or whether the count value of the learning period counter exceeds a certain value (that is, whether a predetermined learning period has passed). judge. Even within the learning period, if the correction value is stable within a certain range, the learning is terminated at that time. Alternatively, even if the correction value is not stable within a certain range, when the learning period has elapsed, the learning is terminated at that point.
Step 60: Stop FCCB correction and return to a normal driving state (a state where the vehicle speed is kept constant by the cruise control device).

ステップ70…補正値をチェックし、異常があった場合は、本処理を終了し、正常の場合は、次のステップ80へ進む。
ステップ80…補正値を学習値として記憶する。なお、この学習値は、学習値の反映によって角速度が安定することを確認するために、規定回数分の噴射を実施して、各気筒の角速度変化が一定範囲内に収まっている時のみ使用される。また、学習値は、学習を抜けた後も使用される。
Step 70: The correction value is checked. If there is an abnormality, the process is terminated. If normal, the process proceeds to the next step 80.
Step 80 ... The correction value is stored as a learning value. This learning value is used only when the specified number of injections are performed and the change in the angular velocity of each cylinder is within a certain range in order to confirm that the angular velocity is stabilized by reflecting the learning value. The The learning value is also used after exiting learning.

(実施例1の効果)
実施例1に記載した噴射量学習では、車速が一定に保たれた状態で噴射パターンを固定する(噴射圧指令値および噴射量指令値を固定する)ことにより、走行中の高噴射領域においてもFCCB補正を精度良く実施できる。その結果、FCCB補正によって得られた補正値を学習値として気筒毎の噴射量に反映させることで、高噴射領域での気筒間の噴射量ばらつきを抑制できる。
これにより、運転者のドライブスタイルに合った領域において、気筒間の噴射量ばらつきを集中的に補正できるので、気筒間の噴射量ばらつきによるドライバビリティの悪化、および排気ガス性能の悪化を抑えることができる。
(Effect of Example 1)
In the injection amount learning described in the first embodiment, by fixing the injection pattern with the vehicle speed kept constant (fixing the injection pressure command value and the injection amount command value), even in a high injection region during traveling. FCCB correction can be performed with high accuracy. As a result, by correcting the correction value obtained by FCCB correction as the learning value in the injection amount for each cylinder, it is possible to suppress the injection amount variation between the cylinders in the high injection region.
This makes it possible to intensively correct the injection amount variation between cylinders in a region that matches the driver's drive style, thereby suppressing deterioration in drivability and exhaust gas performance due to variation in injection amount between cylinders. it can.

なお、噴射量学習によって得られた補正値(学習値)は、ディーゼル機関1の全運転領域に反映されることはなく、学習した領域の極限られた範囲の補正にのみ使用されるが、クルーズコントロール装置のセット車速を変更することで、より広い範囲での学習が可能となる。
学習値の反映時には、学習した条件での補正計数を、例えば「1」として、実レール圧および噴射量に補正係数を持たせて、学習値の反映寄与度を調整し、学習値の反映領域を調整することができる。
Note that the correction value (learning value) obtained by the injection amount learning is not reflected in the entire operation region of the diesel engine 1 and is used only for correcting a limited range of the learned region. Learning in a wider range is possible by changing the set vehicle speed of the control device.
When reflecting the learning value, the correction count under the learned condition is set to, for example, “1”, the correction coefficient is given to the actual rail pressure and the injection amount, the reflection contribution of the learning value is adjusted, and the reflection region of the learning value Can be adjusted.

また、実施例1に記載した噴射量学習では、噴射圧指令値および噴射量指令値を固定する際に、噴射圧指令値を安定時の実レール圧に最も近いマップ格子点の圧力とし、噴射量指令値を安定時の噴射量の規定回数の平均値としているので、噴射圧指令値および噴射量指令値を固定することによる運転者の違和感を低減でき、ドライブフィーリングの悪化を抑制できる。   Further, in the injection amount learning described in the first embodiment, when the injection pressure command value and the injection amount command value are fixed, the injection pressure command value is set to the pressure at the map grid point closest to the actual rail pressure at the time of stable injection. Since the amount command value is the average value of the prescribed number of injection amounts at the time of stabilization, the driver's uncomfortable feeling caused by fixing the injection pressure command value and the injection amount command value can be reduced, and the deterioration of drive feeling can be suppressed.

内燃機関の燃料噴射制御システムを示す構成図である。It is a block diagram which shows the fuel-injection control system of an internal combustion engine. 噴射量学習の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of injection amount learning. 噴射量学習に伴う制御タイムチャートである。It is a control time chart accompanying injection quantity learning. 噴射量学習の実行タイムチャートである。It is an execution time chart of injection quantity learning.

符号の説明Explanation of symbols

1 ディーゼル機関(多気筒内燃機関)
2 ECU(噴射量補正手段、内燃機関用燃料噴射制御装置)
4 燃料供給ポンプ
5 コモンレール
6 インジェクタ
1 Diesel engine (multi-cylinder internal combustion engine)
2 ECU (injection amount correction means, fuel injection control device for internal combustion engine)
4 Fuel supply pump 5 Common rail 6 Injector

Claims (2)

車速を一定に保つことのできるクルーズコントロール装置を搭載する車両において、
燃料を圧送する燃料供給ポンプと、この燃料供給ポンプより圧送された燃料を所定の噴射圧力まで蓄えるコモンレールと、多気筒内燃機関の各気筒に取り付けられた複数のインジェクタとを有し、前記コモンレールに蓄圧された燃料を前記複数のインジェクタより前記各気筒内へ噴射するコモンレール式燃料噴射装置と、
所定の学習実行条件が成立した上で、前記内燃機関の気筒間の噴射量ばらつきを検出し、その噴射量ばらつきを抑制するために、気筒毎の噴射量を補正する噴射量補正手段とを備える内燃機関用燃料噴射制御装置であって、
前記噴射量補正手段は、前記クルーズコントロール装置により車速が一定に保たれた状態で、前記コモンレールに蓄圧される燃料圧力(コモンレール圧と呼ぶ)を指令する噴射圧指令値および前記インジェクタの噴射量を指令する噴射量指令値をそれぞれ所定の値に固定する指令値固定手段を有し、この指令値固定手段により前記噴射圧指令値および前記噴射量指令値がそれぞれ所定の値に固定されることで、前記所定の学習実行条件が成立し、
前記指令値固定手段は、前記クルーズコントロール装置により車速が一定に保たれた状態で、前記コモンレール圧および各気筒の噴射量が安定している時に、その安定時の圧力センサによって検出される実コモンレール圧に最も近いマップ格子点の圧力を前記噴射圧指令値として固定するとともに、その安定時の噴射量の規定回数の平均値を前記噴射量指令値として固定することを特徴とする内燃機関用燃料噴射制御装置。
In a vehicle equipped with a cruise control device that can keep the vehicle speed constant,
A fuel supply pump that pumps fuel, a common rail that stores fuel pumped from the fuel supply pump to a predetermined injection pressure, and a plurality of injectors that are attached to each cylinder of the multi-cylinder internal combustion engine. A common rail fuel injection device that injects the accumulated fuel into the cylinders from the plurality of injectors;
An injection amount correcting means for detecting an injection amount variation between cylinders of the internal combustion engine and correcting an injection amount for each cylinder in order to detect the variation in the injection amount after a predetermined learning execution condition is satisfied. A fuel injection control device for an internal combustion engine,
The injection amount correction means determines an injection pressure command value for instructing a fuel pressure (referred to as a common rail pressure) accumulated in the common rail and an injection amount of the injector in a state where a vehicle speed is kept constant by the cruise control device. Command value fixing means for fixing the commanded injection amount command value to a predetermined value, respectively, and by the command value fixing means, the injection pressure command value and the injection amount command value are fixed to predetermined values, respectively. , The predetermined learning execution condition is satisfied,
The command value fixing means is an actual common rail detected by a stable pressure sensor when the common rail pressure and the injection amount of each cylinder are stable while the vehicle speed is kept constant by the cruise control device. to fix the pressure closest map lattice points pressure as before Symbol injection pressure command value, for an internal combustion engine, characterized in that to fix the average of the specified number of its stability during the injection amount as the injection amount command value Fuel injection control device.
請求項1に記載した内燃機関用燃料噴射制御装置において、
前記噴射量補正手段は、前記各気筒の角速度(予め決められたクランク角度範囲の時間)を計測すると共に、各気筒の計測値の平均値を算出し、各気筒の計測値が前記平均値より速い場合は、噴射量が減少する方向に補正し、各気筒の計測値が前記平均値より遅い場合は、噴射量が増加する方向に補正することを特徴とする内燃機関用燃料噴射制御装置。
The fuel injection control device for an internal combustion engine according to claim 1,
The injection amount correcting means measures an angular velocity (time in a predetermined crank angle range) of each cylinder and calculates an average value of measured values of each cylinder, and the measured value of each cylinder is calculated from the average value. A fuel injection control device for an internal combustion engine that corrects in a direction in which the injection amount decreases when it is fast, and corrects in a direction in which the injection amount increases when the measured value of each cylinder is slower than the average value.
JP2004244949A 2004-08-25 2004-08-25 Fuel injection control device for internal combustion engine Expired - Fee Related JP4407427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004244949A JP4407427B2 (en) 2004-08-25 2004-08-25 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004244949A JP4407427B2 (en) 2004-08-25 2004-08-25 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006063824A JP2006063824A (en) 2006-03-09
JP4407427B2 true JP4407427B2 (en) 2010-02-03

Family

ID=36110534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004244949A Expired - Fee Related JP4407427B2 (en) 2004-08-25 2004-08-25 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4407427B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4983549B2 (en) * 2007-10-31 2012-07-25 トヨタ自動車株式会社 Drive control device for damping control of diesel engine vehicle
JP4941235B2 (en) * 2007-10-31 2012-05-30 トヨタ自動車株式会社 Drive control device for damping control of diesel engine vehicle
JP5027062B2 (en) * 2008-06-18 2012-09-19 トヨタ自動車株式会社 Vehicle and control method thereof
JP5471864B2 (en) 2010-06-11 2014-04-16 いすゞ自動車株式会社 Combustion diagnostic device for internal combustion engine
JP6167830B2 (en) * 2013-10-08 2017-07-26 株式会社デンソー Control device for internal combustion engine
JP6610571B2 (en) 2017-01-20 2019-11-27 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
JP6451789B2 (en) * 2017-06-26 2019-01-16 株式会社デンソー Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2006063824A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
US6990958B2 (en) Injection control system of diesel engine
JP4596064B2 (en) Internal combustion engine control device and internal combustion engine control system
US7055503B2 (en) Fuel injection controller for engine
JP4775342B2 (en) Fuel injection control device and fuel injection system using the same
EP2458186B1 (en) Fuel injection control apparatus for internal combustion engine
JP5316525B2 (en) Cetane number estimation device
US20100268444A1 (en) Controller for diesel engine and method of controlling diesel engine
US7028667B2 (en) Fuel supply apparatus for internal combustion engine
JPH10220272A (en) Method and device for injecting fuel of engine
JP2006125371A (en) Accumulator fuel injection device
JP4349451B2 (en) Fuel injection control device and fuel injection system using the same
US11859584B2 (en) Solenoid valve control device
JP5040884B2 (en) Fuel injection control device
JP6451789B2 (en) Control device for internal combustion engine
JP4407427B2 (en) Fuel injection control device for internal combustion engine
JP4161746B2 (en) INJECTION CHARACTERISTICS DETECTING DEVICE FOR FUEL INJECTION VALVE AND FUEL INJECTION CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE EQUIPPED
US7599783B2 (en) Injection quantity control unit and fuel injection system having the unit
JP3695411B2 (en) Fuel injection control device for internal combustion engine
JP4788557B2 (en) Fuel injection control device
JP6252327B2 (en) Fuel supply control device
JP2004108160A (en) Fuel injection device for internal combustion engine
JP2013253508A (en) Fuel supply device of direct injection type internal combustion engine
JP2000130234A (en) Fuel injection control device for direct injection internal combustion engine
JP4421451B2 (en) Abnormality detection device for fuel supply system for internal combustion engine
JP3807293B2 (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees