JP2008101379A - Supporting structure and construction method for structure foundation - Google Patents

Supporting structure and construction method for structure foundation Download PDF

Info

Publication number
JP2008101379A
JP2008101379A JP2006284126A JP2006284126A JP2008101379A JP 2008101379 A JP2008101379 A JP 2008101379A JP 2006284126 A JP2006284126 A JP 2006284126A JP 2006284126 A JP2006284126 A JP 2006284126A JP 2008101379 A JP2008101379 A JP 2008101379A
Authority
JP
Japan
Prior art keywords
foundation
sheet pile
ground
lightweight material
water pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006284126A
Other languages
Japanese (ja)
Other versions
JP4868589B2 (en
Inventor
Masayuki Kanda
政幸 神田
Hidetoshi Nishioka
英俊 西岡
Osamu Murata
修 村田
Masaru Tateyama
勝 舘山
Junichi Hirao
淳一 平尾
Natsuko Tsuji
奈津子 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Railway Technical Research Institute
Original Assignee
Obayashi Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Railway Technical Research Institute filed Critical Obayashi Corp
Priority to JP2006284126A priority Critical patent/JP4868589B2/en
Publication of JP2008101379A publication Critical patent/JP2008101379A/en
Application granted granted Critical
Publication of JP4868589B2 publication Critical patent/JP4868589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make a foundation uneven settlement hard to occur when liquefaction occurs in the ground below the foundation, and to suppress the foundation settlement while preventing inclination of the foundation even if its settlement is just about to occur, when suppressing the settlement of the foundation by utilizing buoyancy (water pressure). <P>SOLUTION: This supporting structure of the foundation 3 is composed of: sheet piles 4 inserted into the liquefied ground 1 to surround the foundation 3 of a structure 2 while being adjacent to the foundation 3 and being continuous in the peripheral direction of the foundation 3; and a light-weight material 6 provided or put in/into a region being deeper than a bottom face of the foundation 3 and surrounded by the sheet piles 4 to let the buoyancy or water pressure received by the light-weight material 6 from the underground water, act on the bottom face of the foundation 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は橋脚や建物等の構造物を支持する基礎の下の地盤に液状化が生じた場合に、基礎の沈下を抑制する構造物基礎の支持構造及び施工方法に関するものである。   The present invention relates to a support structure and a construction method for a structure foundation that suppresses settlement of the foundation when liquefaction occurs in the ground under the foundation that supports a structure such as a pier or a building.

図6−(a)に示すように構造物の基礎が砂質地盤等の液状化地盤に載る場合、砂質地盤等は圧密沈下が生じにくいために静的には高い支持力を有するが、地震時には間隙水圧の上昇により(b)に示すように地下水位が上昇し、地盤が急速に支持力を失う。地下水位の上昇により地盤への水圧が上昇することに伴い、砂(土)粒子に浮力が働くため、砂の強度が低下して地盤支持力が低下する結果、基礎が沈下を起こすに至る。   When the foundation of the structure is placed on a liquefied ground such as a sandy ground as shown in FIG. 6- (a), the sandy ground or the like has a high supporting force statically because it does not easily cause consolidation settlement. During an earthquake, the groundwater level rises as shown in (b) due to the increase in pore water pressure, and the ground rapidly loses its bearing capacity. As the water pressure to the ground rises due to the rise in the groundwater level, buoyancy acts on the sand (soil) particles, so that the strength of the sand is lowered and the ground bearing capacity is lowered, resulting in the foundation sinking.

このような砂質地盤等における液状化に対する対策としては、地盤を締め固めることにより間隙比を減少させる方法(サンドコンパクションパイル工法等)、地盤中に安定材を添加・混合することにより地盤の抵抗力を上げる方法(深層混合処理工法等)、地下水位を低下させることにより飽和領域を不飽和領域に変更し、有効応力を増大させる方法(ディープウェル工法等)等がある。   As countermeasures against liquefaction in such sandy grounds, ground resistance is reduced by compacting the ground (sand compaction pile method, etc.), and by adding and mixing stabilizers in the ground. There are a method for increasing the force (such as deep mixing method) and a method for increasing the effective stress (such as deep well method) by changing the saturated region to the unsaturated region by lowering the groundwater level.

この他、地盤を壁体によって区画することにより周囲から拘束し、液状化を起こしたときの地盤のせん断変形を抑制する方法(連続地中壁工法等)があるが、砂質地盤等が液状化を起こしてしまった場合に備えた有効な対策は見当たらない。   In addition, there is a method (such as a continuous underground wall method) that constrains the ground from the surroundings by partitioning the ground with walls and suppresses the shear deformation of the ground when liquefaction occurs. There are no effective measures to prepare for the occurrence of the problem.

液状化を起こした砂質地盤中では砂粒子が沈降し、地下水が浮上することから、浮上した地下水による水圧が基礎の底面を押し上げるか、または基礎に浮力を発生させるため、この水圧や浮力に起因して基礎が不同沈下を起こす可能性もある。   Since sand particles settle in the liquefied sandy ground and the groundwater rises, the water pressure from the groundwater that rises pushes up the bottom surface of the foundation or generates buoyancy in the foundation. As a result, the foundation may cause subsidence.

この問題に対し、基礎の底面下に樹脂発泡体ブロックを設置することにより浮力を利用して基礎(構造物)の不同沈下を抑制しようとする方法がある(特許文献1参照)。   In order to solve this problem, there is a method in which a resin foam block is installed under the bottom surface of the foundation so as to suppress uneven settlement of the foundation (structure) using buoyancy (see Patent Document 1).

特開平6−287965号公報(請求項1、段落0008、0019〜0023、図1)JP-A-6-287965 (Claim 1, paragraphs 0008, 0019 to 0023, FIG. 1)

特許文献1の方法では鋼矢板と基礎との一体性を確保するために、基礎を鋼矢板の上端に係合させた状態で接合しているが(請求項1)、基礎は鋼矢板の上端上に載っているだけであり、鋼矢板は基礎全体を包囲していないため、基礎が傾斜し、不同沈下を起こそうとするときに、基礎と鋼矢板との一体性を維持することが難しいと考えられる。鋼矢板は樹脂発泡体ブロックとその下の地盤を包囲しているため、これらと一体となって挙動することはできるものの(段落0018)、基礎が傾斜しようとするときに、鋼矢板が対向する面で基礎の変位を拘束することができないからである。   In the method of Patent Document 1, in order to ensure the integrity of the steel sheet pile and the foundation, the foundation is joined in an engaged state with the upper end of the steel sheet pile (Claim 1), but the foundation is the upper end of the steel sheet pile. Since the steel sheet pile does not surround the entire foundation, it is difficult to maintain the integrity of the foundation and the steel sheet pile when the foundation tilts and tries to cause uneven settlement. it is conceivable that. Since the steel sheet pile surrounds the resin foam block and the ground below it, it can behave integrally with these (paragraph 0018), but the steel sheet pile faces when the foundation is inclined. This is because the displacement of the foundation cannot be constrained by the surface.

鋼矢板によって基礎の傾斜を拘束することができない以上、基礎の不同沈下は樹脂発泡体ブロックによる浮力(水圧)と、鋼矢板の沈下に対する抵抗力である摩擦力によって防止されなければならない。ところが、樹脂発泡体ブロックから基礎に作用する力は樹脂発泡体ブロック底面における上向きの水圧のみであるから、基礎の傾斜に対する安定性を確保する上での確実さに欠ける。   As long as the steel sheet pile cannot constrain the inclination of the foundation, the uneven settlement of the foundation must be prevented by the buoyancy (hydraulic pressure) by the resin foam block and the frictional force that is the resistance against the settlement of the steel sheet pile. However, since the force acting on the foundation from the resin foam block is only the upward water pressure at the bottom surface of the resin foam block, there is a lack of certainty in ensuring stability against the inclination of the foundation.

基礎、または鋼矢板に一旦、傾斜が生じた後にも基礎は傾斜を拘束するような規制を鋼矢板から受ける余地がないため、傾斜を修正することもできない。   Even after the foundation or the steel sheet pile is once inclined, the foundation has no room for receiving a restriction that restricts the inclination from the steel sheet pile, so that the inclination cannot be corrected.

本発明は上記背景より、浮力(水圧)を利用して基礎の沈下を抑制する場合に、不同沈下が発生しにくく、沈下が生じようとしたときにも傾斜を阻止しながら、基礎の沈下を抑制することが可能な基礎の支持構造及び施工方法を提案するものである。   In the present invention, in the case of using the buoyancy (hydraulic pressure) to suppress foundation subsidence, the subsidence is difficult to occur, and when the subsidence is about to occur, the foundation subsidence is prevented while preventing inclination. The foundation support structure and construction method that can be suppressed are proposed.

請求項1に記載の発明の構造物基礎の支持構造は、液状化地盤中に構造物の基礎を包囲するように隣接しながら挿入され、前記基礎の周方向に連続する矢板と、前記基礎の底面以深の、前記矢板に包囲された領域に設置、もしくは充填される軽量材とを備え、前記軽量材が地下水から受ける浮力、または水圧を前記基礎の底面に作用させていることを構成要件とする。液状化地盤は主として砂質土地盤、もしくは砂質土を含む地盤を指す。   The structure foundation support structure according to the first aspect of the present invention is inserted into the liquefied ground so as to surround the foundation of the structure, adjacent to each other, and the sheet pile continuous in the circumferential direction of the foundation, A light-weight material that is installed or filled in an area surrounded by the sheet pile deeper than the bottom surface, and that the light-weight material receives buoyancy received from groundwater, or water pressure is applied to the bottom surface of the foundation. To do. Liquefied ground mainly refers to sandy ground or ground containing sandy soil.

矢板が構造物の基礎を包囲するように隣接し、基礎の周方向に連続する矢板からなる矢板壁が基礎の側面に面で接触(外接)することで、基礎と矢板壁との一体性が強まり、両者が常に一体となって挙動するため、基礎をその傾斜に対して周囲から拘束する効果を有する。この効果は矢板が基礎を包囲することで水平2方向に発揮される。矢板壁が鉛直状態(施工時の状態)を維持している限り、例えば基礎が傾斜しようとしても矢板壁はその傾斜を阻止し、基礎底面を水平に維持するように働くため、基礎は不同沈下に対して高い安定性を保有する。   The sheet pile wall, which is adjacent to the sheet pile so as to surround the foundation of the structure, is in contact with the side of the foundation (surface), and the integrity of the foundation and the sheet pile wall is Strengthens and behaves as a single unit, and therefore has the effect of restraining the foundation from its surroundings against its inclination. This effect is exhibited in two horizontal directions by the sheet pile surrounding the foundation. As long as the sheet pile wall is maintained in the vertical state (the state at the time of construction), for example, even if the foundation tries to incline, the sheet pile wall works to prevent the inclination and keep the foundation bottom level, so the foundation is not settled. Possesses high stability against

矢板壁には図1−(b)に示すように矢板壁が包囲する領域の外周から内周へ向かって土圧と水圧が作用する。矢板壁の内周にも地下水が存在する場合には、内周から外周へ向かって水圧が作用するが、外周から作用する圧力は土圧がある分、大きい。この矢板壁の外周からの水圧と土圧は基礎を包囲する矢板壁の全面に作用するため、周回する矢板壁全体で傾斜と水平移動に対して安定する。矢板壁は基礎を包囲し、基礎の側面に面で接触することで、矢板壁が受ける圧力が基礎の側面にも作用するため、基礎の傾斜と水平移動に対する安定性も確保される。   As shown in FIG. 1- (b), earth pressure and water pressure act on the sheet pile wall from the outer periphery to the inner periphery of the region surrounded by the sheet pile wall. When groundwater exists also on the inner periphery of the sheet pile wall, the water pressure acts from the inner periphery toward the outer periphery, but the pressure acting from the outer periphery is large due to the earth pressure. Since the water pressure and earth pressure from the outer periphery of the sheet pile wall act on the entire surface of the sheet pile wall surrounding the foundation, the entire sheet pile wall that circulates is stable against inclination and horizontal movement. Since the sheet pile wall surrounds the foundation and contacts the side surface of the foundation with the surface, the pressure applied to the sheet pile wall also acts on the side surface of the foundation, so that the stability of the foundation inclination and horizontal movement is also ensured.

例えば地下水位が基礎の底面より上にある場合、平常時には(a)に示すように基礎の底面に上向きの水圧が作用し、軽量材には浮力が作用しており、この上向きの水圧と浮力が矢板壁下の地盤と共に基礎を支持している。軽量材に働く浮力は地下水位のレベルによって変動し、(a)に示すように地下水位が軽量材の上端のレベル以上にあれば、軽量材には常に一定の浮力が作用する。地下水位が軽量材の上端のレベルより下にあるときには、軽量材の、地下水中に浸かる体積分の浮力が作用し、変動し得る。   For example, when the groundwater level is above the bottom of the foundation, upward water pressure acts on the bottom of the foundation as shown in (a), and buoyancy acts on lightweight materials. Supports the foundation with the ground below the sheet pile wall. The buoyancy acting on the lightweight material varies depending on the level of the groundwater level. As shown in (a), if the groundwater level is equal to or higher than the upper end level of the lightweight material, a constant buoyancy acts on the lightweight material. When the groundwater level is below the level of the upper end of the lightweight material, the buoyancy for the volume of the lightweight material immersed in the groundwater acts and can fluctuate.

図1−(a)に示すように地下水位から基礎底面までの距離をL、地下水位から軽量材底面までの距離をH、基礎底面と軽量材底面の面積をAとすれば、基礎底面に作用する水圧P1wの合計はρgLA、軽量材に作用する浮力PFはρg(H−L)Aになり、基礎底面にはρgLA+ρg(H−L)A=ρgHAの力が作用している。   As shown in Fig.1- (a), if the distance from the groundwater level to the bottom of the foundation is L, the distance from the groundwater level to the bottom of the lightweight material is H, and the area of the bottom of the foundation and the lightweight material is A, The sum of the acting water pressures P1w is ρgLA, the buoyancy PF acting on the lightweight material is ρg (HL) A, and the force of ρgLA + ρg (HL) A = ρgHA is acting on the bottom of the foundation.

地震が発生し、軽量材の下、及び矢板壁の周囲に存在する液状化地盤が液状化し、(b)に示すように地下水位が上昇したとき、基礎の下に軽量材がなければ、基礎を支持する地盤が支持能力を失い、基礎が沈下しようとする。これに対し、請求項1では基礎の下に軽量材が存在することで、軽量材の浮力と基礎底面における水圧が基礎を支持した状態を維持しているため、基礎の沈下が拘束されている。加えて地下水位の上昇に伴い、Lが大きくなることで、基礎底面に作用する水圧P1Wが大きくなるため(P1W>P1w)、基礎は地下水位の上昇前より上昇後に地下水から高い支持力を受けることになる。   When an earthquake occurs and the liquefied ground under the lightweight material and around the sheet pile wall liquefies and the groundwater level rises as shown in (b), if there is no lightweight material under the foundation, The ground that supports the ground loses its support ability and the foundation tries to sink. On the other hand, in Claim 1, since the light weight material exists under the foundation, the buoyancy of the light weight material and the water pressure on the bottom surface of the foundation maintain the state of supporting the foundation, and therefore the settlement of the foundation is restrained. . In addition, since the water pressure P1W acting on the bottom of the foundation increases (P1W> P1w) as L increases as the groundwater level rises, the foundation receives higher bearing capacity from the groundwater after the rise than before the rise of the groundwater level. It will be.

基礎が地下水位の上昇前より上昇後に高い支持力を受けることで、地下水による基礎の安定性は支持地盤の液状化の発生前より発生後に高まり、それだけ基礎は液状化に伴う沈下を生じにくくなるため、地盤が支持力を失っても基礎の沈下が抑制、または防止される。仮に一時的に基礎が沈下しようとすることがあっても、基礎の回りを周回し、基礎と一体となって挙動する矢板壁が基礎の傾斜を拘束し、基礎底面を水平に保とうとするため、基礎の不同沈下は阻止される。   By receiving a high bearing capacity after the foundation rises before the groundwater level rises, the stability of the foundation due to groundwater increases after the liquefaction of the supporting ground, and the foundation is less prone to subsidence due to liquefaction. For this reason, even if the ground loses the supporting force, the settlement of the foundation is suppressed or prevented. Even if the foundation is about to sink temporarily, the sheet pile wall that moves around the foundation and moves together with the foundation restrains the inclination of the foundation and tries to keep the foundation bottom horizontal. , The uneven settlement of the foundation is prevented.

地下水位の上昇により基礎の底面が受ける水圧、または軽量材の底面が受ける水圧が上昇することから、基礎や軽量材が受ける水圧を稼ぐ目的で、請求項2に記載のように矢板に上端から下端へかけて、矢板に包囲された領域の内周側から外周側へ向かう傾斜が付けられることもある。矢板壁に上端から下端へかけて内周側から外周側へ向かう傾斜が付けられることで、基礎を包囲する矢板壁で区画される領域は角錐台形状に形成される。   Since the water pressure which the bottom face of a foundation receives by the rise of a groundwater level or the water pressure which the bottom face of a lightweight material rises, in order to earn the water pressure which a foundation and a lightweight material receive, from a top to a sheet pile as described in Claim 2 An inclination from the inner peripheral side to the outer peripheral side of the region surrounded by the sheet pile may be given to the lower end. A region partitioned by the sheet pile wall surrounding the foundation is formed in a truncated pyramid shape by giving the sheet pile wall an inclination from the inner peripheral side to the outer peripheral side from the upper end to the lower end.

請求項2では図4に示すように矢板壁が上方から下方へかけて基礎の中心から外向きに傾斜することで、矢板壁の外周面に垂直に作用する水圧と土圧が外周側から内周側へ向かって下向きの成分を有するため、矢板壁と基礎を下方へ押さえ込み、平常時及び地震時の基礎の浮き上がりを拘束する効果が生ずる。この効果は地下水位の上昇時にも維持される。水圧による矢板壁の押さえ込み効果は矢板の鉛直面に対する傾斜角度が10度前後程度まで確保されれば、得られる。   In claim 2, as shown in FIG. 4, the sheet pile wall is inclined outward from the center of the foundation from above to below, so that the water pressure and earth pressure acting perpendicularly to the outer peripheral surface of the sheet pile wall Since it has a downward component toward the circumferential side, the sheet pile wall and the foundation are pressed down, and the effect of restraining the foundation from rising during normal times and earthquakes is produced. This effect is maintained even when the groundwater level rises. The pressing effect of the sheet pile wall by water pressure can be obtained if the inclination angle of the sheet pile relative to the vertical plane is secured to about 10 degrees.

一方、請求項2の場合、前記の軽量材底面の面積Aが距離Hの増加に伴って2次関数的に増加することから、軽量材に作用する浮力も地下水位の上昇によって増大するため、浮力が構造物の荷重を上回り、基礎が浮き上がることが想定される。このような事態が想定される場合には、請求項3に記載のように矢板の内周側に、矢板に対向する内矢板が挿入され、この内矢板に包囲された領域に軽量材が配置されることで、基礎の浮き上がりを回避することが可能になる。この場合、矢板壁で囲まれた、基礎底面下の領域は矢板壁と内矢板壁の二重壁になる。内矢板は鉛直に挿入される。   On the other hand, in the case of claim 2, since the area A of the bottom surface of the light weight material increases in a quadratic function as the distance H increases, the buoyancy acting on the light weight material also increases due to an increase in the groundwater level. It is assumed that the buoyancy exceeds the load of the structure and the foundation is lifted. When such a situation is assumed, an inner sheet pile opposite to the sheet pile is inserted on the inner peripheral side of the sheet pile as described in claim 3, and a lightweight material is disposed in a region surrounded by the inner sheet pile. By doing so, it becomes possible to avoid lifting of the foundation. In this case, the area under the bottom of the foundation surrounded by the sheet pile wall is a double wall of the sheet pile wall and the inner sheet pile wall. The inner sheet pile is inserted vertically.

請求項3では図4に示すように矢板壁が基礎を包囲し、基礎底面下で内矢板壁が軽量材を包囲することで、外側の矢板壁に傾斜を付けたまま、地下水位の上昇に関係なく軽量材底面の面積Aを一定にすることができるため、軽量材に作用する浮力の増大を抑制することが可能になる。軽量材底面の面積Aが一定になることで、軽量材に作用する浮力は(H−L)に比例するが、地下水位の上昇時にはLが増加するため、地下水位の上昇による浮力の増大がなくなる。   In claim 3, as shown in FIG. 4, the sheet pile wall surrounds the foundation, and the inner sheet pile wall surrounds the lightweight material below the bottom surface of the foundation, thereby increasing the groundwater level while keeping the outer sheet pile wall inclined. Regardless of this, since the area A of the bottom surface of the lightweight material can be made constant, an increase in buoyancy acting on the lightweight material can be suppressed. The buoyancy acting on the lightweight material is proportional to (HL) because the bottom surface area A of the lightweight material is constant, but L increases when the groundwater level rises. Disappear.

前記のように矢板が基礎の回りを周回し、矢板壁と基礎との一体性が確保されることで、基礎は傾斜に対する安定性を保有するが、矢板壁による基礎の傾斜に対する安定性をより高めるために、請求項4に記載のように矢板に包囲された、基礎の底面下の領域が仕切り壁で複数の領域に区分されることもある。この場合、区分された領域毎に軽量材が配置される。仕切り壁には矢板が使用される。   As mentioned above, the sheet pile circulates around the foundation and the integrity of the sheet pile wall and the foundation is ensured, so that the foundation retains stability against inclination, but the stability against the inclination of the foundation by the sheet pile wall is more In order to raise, the area | region under the bottom face of a foundation surrounded by the sheet pile as described in Claim 4 may be divided into a some area | region by a partition wall. In this case, a lightweight material is arrange | positioned for every divided area | region. A sheet pile is used for the partition wall.

基礎底面下の領域が複数の領域に区分されることで、区分された領域毎に仕切り壁で拘束されるため、区分された領域毎の軽量材の安定性が得られ、基礎底面下の軽量材全体での安定性も向上する。請求項3では基礎底面下の領域が内矢板壁に囲まれた領域と、その外側の領域に区分されるが、請求項4では基礎底面下の領域が複数に区分され、区分数によっては請求項3と同様に内側の領域と外側の領域に区分されることもある。   By dividing the area under the bottom of the foundation into multiple areas, each divided area is constrained by a partition wall, so the stability of the lightweight material for each divided area is obtained, and the weight under the bottom of the foundation is reduced. The stability of the whole material is also improved. In claim 3, the area below the bottom of the foundation is divided into an area surrounded by the inner sheet pile wall and an area outside the area. In claim 4, the area below the bottom of the foundation is divided into a plurality of areas. Similarly to the item 3, it may be divided into an inner region and an outer region.

請求項5に記載の発明は請求項1乃至請求項3のいずれかにおいて、互いに隣接する矢板間の止水性が確保され、矢板に包囲された領域から地下水が排除されていることを構成要件とする。この場合、軽量材は基礎の底面と矢板の内周面に密着し、矢板に包囲された領域を隙間なく埋める形になる。図1のように矢板壁と軽量材間に空隙が形成されることは軽量材が発泡体の成型品である場合に生じ得るが、請求項5における止水性は主に軽量材に発泡ビーズやそれに固化材を添加した混合材等、粒子の状態にある材料が使用されることにより得られる。   According to a fifth aspect of the present invention, in any one of the first to third aspects, the water stoppage between the adjacent sheet piles is ensured, and groundwater is excluded from the region surrounded by the sheet piles. To do. In this case, the lightweight material is in close contact with the bottom surface of the foundation and the inner peripheral surface of the sheet pile, and fills the area surrounded by the sheet pile without any gaps. The formation of a gap between the sheet pile wall and the lightweight material as shown in FIG. 1 may occur when the lightweight material is a molded product of foam. It is obtained by using a material in a particle state, such as a mixed material to which a solidifying material is added.

図1の場合には、矢板壁に包囲された領域に地下水が浸入していることで、地下水による水圧は基礎の底面に上向きに作用するが、請求項5では図2−(a)に示すように隣接する矢板間の止水性が確保され、軽量材が基礎の底面と矢板の内周面に密着することで、矢板壁に包囲された領域に地下水が浸入しないため、軽量材自体に浮力は作用せず、上向きの水圧が軽量材の底面に作用する。   In the case of FIG. 1, the groundwater has entered the region surrounded by the sheet pile wall, so that the water pressure due to the groundwater acts upward on the bottom surface of the foundation. In this way, water-stopping between adjacent sheet piles is ensured, and the lightweight material adheres to the bottom surface of the foundation and the inner peripheral surface of the sheet pile, so that groundwater does not enter the area surrounded by the sheet pile wall, so that the lightweight material itself has buoyancy. Does not act, and upward water pressure acts on the bottom surface of the lightweight material.

図2−(a)に示すように地下水位から基礎底面までの距離をL、地下水位から軽量材底面までの距離をH、基礎底面の面積と軽量材底面をAとすれば、軽量材底面にはρgHの水圧P2wが作用し、その合計はρgHAになる。この力は図1の場合の基礎底面に作用する力と等しい。地震が発生し、(b)に示すように地下水位が上昇したときには、Hが大きくなることで、基礎底面に作用する水圧P2Wが大きくなるため(P2W>P2w)、基礎は地下水位の上昇前より上昇後に地下水から高い支持力を受ける。   As shown in Fig.2- (a), if the distance from the groundwater level to the bottom of the foundation is L, the distance from the groundwater level to the bottom of the lightweight material is H, and the area of the foundation bottom and the lightweight material bottom is A, the bottom of the lightweight material The water pressure P2w of ρgH acts on, and the sum becomes ρgHA. This force is equal to the force acting on the base bottom surface in the case of FIG. When an earthquake occurs and the groundwater level rises as shown in (b), the water pressure P2W acting on the bottom of the foundation increases (P2W> P2w) as H increases, so the foundation is before the groundwater level rises. Higher support from groundwater after rising.

この場合も、基礎が地下水位の上昇前より上昇後に高い支持力を受けることで、基礎の安定性は支持地盤に液状化が生じた後に高まるため、地盤が支持力を失っても基礎の沈下が抑制、または防止される。一時的に基礎が沈下しようとしても、矢板壁が基礎底面を水平に保とうとするため、基礎の不同沈下は阻止される。   In this case as well, the foundation receives higher bearing capacity after the groundwater level rises than before, and the stability of the foundation increases after liquefaction occurs in the bearing ground. Is suppressed or prevented. Even if the foundation is about to sink temporarily, the sheet pile wall tries to keep the bottom of the foundation horizontal, so that the foundation is prevented from sinking.

図1(請求項1)、図2(請求項5)のいずれの場合も、主として地震時に液状化により地盤の支持力が失われ、基礎が沈下しようとするときに、地盤支持力に代わって軽量材からの浮力と上向きの水圧が基礎の沈下を抑制、もしくは阻止するように働き、浮力と水圧は地盤支持力の低下分を補うため、基礎が浮力と水圧を受けて上昇することはない。   In both cases of FIG. 1 (Claim 1) and FIG. 2 (Claim 5), when the ground loses its supporting force mainly due to liquefaction and the foundation is about to sink, The buoyancy from the lightweight material and the upward water pressure work to suppress or prevent the settlement of the foundation, and the buoyancy and water pressure compensate for the decrease in ground support capacity, so the foundation will not rise due to buoyancy and water pressure. .

軽量材には発泡ポリスチレンその他の発泡性材料の他、軽量モルタル等、比重が水より小さい材料が使用され、これらの材料が単体で使用される場合と、セメント系材料である固化材を含んだ状態で使用される場合がある。固化材は例えば軽量材が粒子で存在し、粒子が集合した固体の状態を維持しにくい場合に添加される。軽量材が固化材を含む場合には、基礎の底面下に軽量材を隙間なく充填することができるため、主として図2の場合に使用される。固化材を含む軽量材は成型品からなる軽量材と併用されることもある。固化材を含む場合はまた、軽量材の固化作用により軽量材の強度が高まる利点がある。   Lightweight materials include foamed polystyrene and other foamable materials, as well as lightweight mortar and other materials with a specific gravity smaller than water. These materials include single-use materials and solidified materials that are cement-based materials. It may be used in a state. The solidifying material is added, for example, when a lightweight material is present as particles and it is difficult to maintain a solid state in which the particles are aggregated. When the light weight material includes a solidified material, the light weight material can be filled under the bottom surface of the foundation without any gap, and therefore, it is mainly used in the case of FIG. A lightweight material including a solidifying material may be used in combination with a lightweight material made of a molded product. When a solidifying material is included, there is also an advantage that the strength of the lightweight material is increased by the solidifying action of the lightweight material.

請求項5における隣接する矢板間の止水性は具体的には請求項6に記載のように、少なくとも矢板が挿入される箇所の地盤が予め地盤改良されていることにより確保される。矢板が挿入される箇所の原地盤に対し、固化材等の地盤改良材が投入され、攪拌・混合された状態で矢板が挿入されることで、地盤が固化に伴って隣接する矢板間の空隙を塞ぐため、隣接する矢板間の止水性が確保され易く、またその状態が継続して維持され易くなる。   Specifically, the water stoppage between adjacent sheet piles in claim 5 is ensured by ground improvement in advance at least at the location where the sheet pile is inserted, as described in claim 6. The ground improvement material such as solidification material is added to the original ground where the sheet pile is inserted, and the sheet pile is inserted while stirring and mixing, so that the gap between adjacent sheet piles as the ground solidifies Therefore, the water stoppage between the adjacent sheet piles is easily secured, and the state is easily maintained continuously.

請求項6では原地盤に対して地盤改良が施されることで、地質に関係なく地盤を一旦、緩めた後、固化させることができるため、地表から矢板先端までの間に礫層等の硬質地盤が存在する場合にも、矢板の挿入作業と矢板間の止水性の確保が確実になる利点がある。   In claim 6, since the ground is improved with respect to the original ground, the ground can be solidified after being loosened once regardless of the geology. Even when the ground exists, there is an advantage that the sheet pile insertion work and the water stoppage between the sheet piles are ensured.

矢板の内周側に内矢板が挿入される請求項3の場合には、内矢板の挿入箇所に対して地盤改良が施されることもあり、基礎の底面下の領域が仕切り壁で区分される請求項4の場合には、仕切り壁の挿入箇所に対して地盤改良が施されることもある。   In the case of claim 3 in which the inner sheet pile is inserted on the inner peripheral side of the sheet pile, ground improvement may be applied to the insertion position of the inner sheet pile, and the area under the bottom surface of the foundation is divided by the partition wall. In the case of claim 4, the ground may be improved at the insertion location of the partition wall.

図1、図2ではまた、軽量材の底面の深度が矢板の先端の深度に揃えられている状況を示している。実際には矢板の地盤中への根入れ深さを確保する必要から、矢板先端の深度が軽量材底面の深度より大きくなるが、実質的には両者の深度がほぼ等しくなっている。   FIG. 1 and FIG. 2 also show a situation where the depth of the bottom surface of the lightweight material is aligned with the depth of the tip of the sheet pile. Actually, since it is necessary to secure the depth of the sheet pile into the ground, the depth of the sheet pile tip is larger than the depth of the bottom surface of the lightweight material, but the depth of both is substantially equal.

前記の通り、基礎の周方向に連続する矢板壁には外周から内周へ向かって土圧と水圧が作用し、内周からは外周へ向かって水圧が作用するが、外周から作用する圧力は土圧がある分、大きいため、矢板壁の基礎底面以深の区間は内周側へ撓もうとする。この結果、図1に示すように軽量材の周囲と矢板壁の内周面との間に空隙がある場合にも、矢板壁はその空隙を埋め、軽量材に密着しようとする。土圧は下方程、大きいことから、軽量材に密着しようとする矢板に作用する土圧は鉛直上向きの成分を有し得るため、軽量材は上向きの力を受け、基礎の底面に密着しようとする。   As mentioned above, earth pressure and water pressure act on the sheet pile wall continuous in the circumferential direction of the foundation from the outer periphery to the inner periphery, and water pressure acts from the inner periphery to the outer periphery, but the pressure acting from the outer periphery is Since there is earth pressure, the section deeper than the foundation bottom of the sheet pile wall tends to bend toward the inner periphery. As a result, as shown in FIG. 1, even when there is a gap between the periphery of the lightweight material and the inner peripheral surface of the sheet pile wall, the sheet pile wall fills the gap and tries to adhere to the lightweight material. Since the earth pressure is larger in the downward direction, the earth pressure acting on the sheet pile trying to adhere to the lightweight material can have a vertically upward component, so the lightweight material receives an upward force and tries to adhere to the bottom surface of the foundation. To do.

特許文献1のように矢板の長さが本発明の軽量材に相当する樹脂発泡体ブロックの厚さの数倍程度あり、矢板の上方の区間に樹脂発泡体ブロックが位置している場合、矢板の変形が樹脂発泡体ブロックに与える影響は小さいと考えられるため、土圧によって生ずる矢板の変形が樹脂発泡体ブロックを上向きに押す効果を期待することはできない。これに対し、軽量材底面の深度が矢板先端の深度に揃えられている場合には、矢板に生ずる変形によって内周側への力を受け易いため、軽量材が基礎底面に密着する効果が得られる。   When the length of the sheet pile is about several times the thickness of the resin foam block corresponding to the lightweight material of the present invention as in Patent Document 1, and the resin foam block is located in the section above the sheet pile, Since it is considered that the deformation of the sheet foam has little influence on the resin foam block, the deformation of the sheet pile caused by earth pressure cannot be expected to push the resin foam block upward. On the other hand, when the depth of the bottom surface of the lightweight material is aligned with the depth of the sheet pile tip, it is easy to receive a force toward the inner periphery due to the deformation that occurs in the sheet pile, so the effect that the lightweight material adheres to the bottom surface of the foundation is obtained. It is done.

矢板壁が軽量材に密着し、軽量材が基礎の底面に密着しようとすることで、矢板壁が受ける土圧を前記した上向きの水圧と浮力と同じく、基礎を支持するための力として利用することが可能になるため、地盤の液状化に伴う基礎の沈下を抑制する効果が向上する。   The sheet pile wall is in close contact with the lightweight material, and the lightweight material is in close contact with the bottom surface of the foundation, so that the earth pressure received by the sheet pile wall is used as a force to support the foundation, as with the upward water pressure and buoyancy described above. Therefore, the effect of suppressing the settlement of the foundation accompanying the liquefaction of the ground is improved.

請求項1〜請求項6に記載の構造物基礎の支持構造は新規に構築される他、既設の構造物基礎を改修することによっても構築される。新規の場合には請求項7に記載のように、液状化地盤中に、構築すべき構造物の基礎を包囲するように隣接させながら、前記基礎の周方向に連続させて矢板を挿入する工程と、前記矢板に包囲された領域の、前記基礎の底面までの土砂を排出する工程と、前記基礎の底面以深の、前記矢板に包囲された領域に、地下水から受ける浮力、または水圧を前記基礎の底面に作用させる軽量材を設置、もしくは充填する工程と、前記軽量材の上に前記基礎を構築する工程とを含む構造物基礎の施工方法により完成する。   The structure foundation support structure according to any one of claims 1 to 6 is constructed not only newly but also by refurbishing an existing structure foundation. In a new case, as described in claim 7, a step of inserting a sheet pile continuously in the circumferential direction of the foundation while adjoining the liquefied ground so as to surround the foundation of the structure to be constructed. Discharging the earth and sand up to the bottom surface of the foundation in the area surrounded by the sheet pile, and the area surrounded by the sheet pile deeper than the bottom surface of the foundation is subjected to buoyancy or water pressure received from groundwater on the foundation It completes with the construction method of the structure foundation including the process of installing or filling the light weight material made to act on the bottom face of this, and the process of constructing | assembling the said foundation on the said light weight material.

構造物の基礎を包囲するように矢板を隣接させて地盤中に挿入し、基礎底面以深に軽量材を設置、もしくは充填するため、地盤が液状化し、支持力を喪失した場合にも基礎底面に上向きに作用する水圧と軽量材の浮力によって基礎の沈下を抑制することができる。特に矢板からなる矢板壁が基礎の側面に面で接触し、基礎をその傾斜に対して周囲から拘束し、傾斜を阻止する効果を発揮するため、基礎の不同沈下に対する安定性が高い。   The sheet pile is inserted adjacent to the ground so as to surround the foundation of the structure, and light material is installed or filled deeper than the bottom of the foundation. The sinking of the foundation can be suppressed by the hydraulic pressure acting upward and the buoyancy of the lightweight material. In particular, the sheet pile wall made of sheet piles is in contact with the side surface of the foundation by the surface, restrains the foundation from the surroundings with respect to the inclination, and exhibits the effect of preventing the inclination, so the stability against the uneven settlement of the foundation is high.

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1は液状化地盤1中に構造物2の基礎3を包囲するように隣接しながら挿入され、基礎3の周方向に連続する矢板4と、基礎3の底面以深の、矢板4に包囲された領域に設置、もしくは充填される軽量材6とを備え、軽量材6が地下水から受ける浮力を基礎3の底面に作用させている構造物基礎の支持構造の例を示す。図1−(a)は前記のように平常時の様子を、(b)は地震時及び地震後の様子を示す。矢板4は基礎3の周方向に連続することで、矢板壁5を構成する。   1 is inserted in the liquefied ground 1 so as to surround the foundation 3 of the structure 2, and is surrounded by a sheet pile 4 continuous in the circumferential direction of the foundation 3 and a sheet pile 4 deeper than the bottom surface of the foundation 3. An example of a support structure for a structure foundation that includes a lightweight material 6 that is installed or filled in a region and that causes the buoyancy that the lightweight material 6 receives from groundwater to act on the bottom surface of the foundation 3 is shown. FIG. 1- (a) shows the state during normal times as described above, and FIG. 1 (b) shows the state during and after the earthquake. The sheet pile 4 constitutes the sheet pile wall 5 by being continuous in the circumferential direction of the foundation 3.

図1では軽量材6の底面の深度が矢板4の先端の深度に実質的に揃えられているが、矢板4先端の深度が軽量材6底面の深度より大きいこともある。図面ではまた、構造物2が橋脚の場合を示しているが、構造物2の対象は限定されず、構造物2は土木・建築構造物全般を含む。橋脚は上部構造としての橋桁を支持する。   In FIG. 1, the depth of the bottom surface of the lightweight material 6 is substantially aligned with the depth of the tip of the sheet pile 4, but the depth of the tip of the sheet pile 4 may be larger than the depth of the bottom surface of the lightweight material 6. The drawing also shows a case where the structure 2 is a bridge pier, but the object of the structure 2 is not limited, and the structure 2 includes civil engineering and building structures in general. The pier supports the bridge girder as the superstructure.

軽量材6には発泡ポリスチレン、発泡ポリプロピレンその他の発泡体やその原料である発泡ビーズ、あるいは軽量モルタル等が使用される。原則として発泡体や軽量モルタルの成型品は単体で使用され、発泡ビーズは固化材、または固化材と原地盤土等が添加・混合された状態で使用されるが、成型品と発泡ビーズが併用されることもある。   For the lightweight material 6, foamed polystyrene, foamed polypropylene or other foamed material, foamed beads as the raw material, or lightweight mortar are used. In principle, molded products of foam and lightweight mortar are used as a single unit, and foam beads are used in the state of solidified material or solidified material and raw ground soil added and mixed, but molded products and foam beads are used in combination. Sometimes it is done.

発泡体の比重はほぼ0.01〜0.1の範囲にあり、軽量モルタルの比重はほぼ0.5〜0.8の範囲にある。発泡スチロールビーズと固化材からなる混合土の比重は発泡体の比重より大きいが、固化材の配合によって変動し、小さくすることもできる。混合土は空隙への充填性がよい上、軽量材6の強度を高める利点があり、図2のように矢板壁5に包囲された領域から地下水が排除される場合の使用に適する。   The specific gravity of the foam is in the range of about 0.01 to 0.1, and the specific gravity of the light weight mortar is in the range of about 0.5 to 0.8. Although the specific gravity of the mixed soil composed of the expanded polystyrene beads and the solidifying material is larger than the specific gravity of the foam, it varies depending on the blending of the solidifying material and can be reduced. The mixed soil has good fillability in the gap and has the advantage of increasing the strength of the lightweight material 6, and is suitable for use when groundwater is excluded from the area surrounded by the sheet pile wall 5 as shown in FIG.

図1は地下水位が基礎3底面より上に位置し、固体状態の軽量材6の上面と基礎3底面との間、及び軽量材6の側面と矢板壁5との間に空隙が存在し、矢板壁5で囲まれた領域に地下水が入り込んでいる場合を示す。図1−(a)は地震発生前の状態を示すが、この状態のとき、基礎3の底面には水圧が直接上向きに作用し、軽量材6に作用する浮力も作用しており、この水圧と浮力が支持地盤と共に基礎3の平常時の沈下を阻止している。   In FIG. 1, the groundwater level is located above the bottom surface of the foundation 3, and there are voids between the upper surface of the lightweight material 6 in the solid state and the bottom surface of the foundation 3, and between the side surface of the lightweight material 6 and the sheet pile wall 5. The case where the groundwater has entered the area surrounded by the sheet pile wall 5 is shown. FIG. 1- (a) shows a state before the occurrence of the earthquake. In this state, the water pressure acts directly upward on the bottom surface of the foundation 3, and the buoyancy acting on the lightweight material 6 also acts. The buoyancy prevents the subsidence of the foundation 3 along with the supporting ground.

地震の発生時、及び発生後には図1−(b)に示すように地下水位が上昇し、基礎3底面に作用する水圧が増大するため、地盤に液状化が生じ、地盤が支持力を喪失したことによる基礎3の沈下は抑制され、基礎3の安定性が確保される。(b)の状態のときには、水圧の増大分が喪失した地盤支持力を補い、前記水圧と浮力が基礎3を支持し続ける。   As shown in Fig. 1- (b), the groundwater level rises and the water pressure acting on the bottom of the foundation 3 increases, resulting in liquefaction in the ground and the ground loses bearing capacity. As a result, the settlement of the foundation 3 is suppressed, and the stability of the foundation 3 is ensured. In the state of (b), the ground supporting force that lost the increase in water pressure is compensated, and the water pressure and buoyancy continue to support the foundation 3.

図2は地下水位が基礎3底面より上に位置し、互いに隣接する矢板4、4間の止水性が確保され、矢板壁5に包囲された領域から地下水が排除され、軽量材6が基礎3の底面と矢板4の内周面に密着し、矢板壁5に包囲された領域を隙間なく埋めている場合を示している。   In FIG. 2, the groundwater level is located above the bottom surface of the foundation 3, the water stoppage between the adjacent sheet piles 4, 4 is ensured, the groundwater is excluded from the area surrounded by the sheet pile wall 5, and the lightweight material 6 is the foundation 3. In this case, the bottom surface of the sheet pile and the inner peripheral surface of the sheet pile 4 are in close contact with each other and the region surrounded by the sheet pile wall 5 is filled without any gap.

図2−(a)は地震発生前の状態を示すが、この状態のとき、水圧は基礎3の底面に直接作用せず、軽量材6の底面に作用することにより間接的に作用する。基礎3の底面には軽量材6に作用する浮力も作用し、この水圧と浮力が地盤と共に基礎3の平常時の沈下を阻止している。矢板4、4間の止水性を確保する手段は問われず、例えば隣接する矢板4、4の内の少なくともいずれか一方にシーリング材を接続しておき、これを後から挿入される他方の矢板4に密着させることにより確保される。   FIG. 2- (a) shows the state before the occurrence of the earthquake. In this state, the water pressure does not act directly on the bottom surface of the foundation 3, but acts indirectly by acting on the bottom surface of the lightweight material 6. Buoyancy acting on the lightweight material 6 also acts on the bottom surface of the foundation 3, and this water pressure and buoyancy together with the ground prevent normal settlement of the foundation 3. There is no limitation on the means for securing the water stoppage between the sheet piles 4, 4. For example, a sealing material is connected to at least one of the adjacent sheet piles 4, 4, and the other sheet pile 4 is inserted later. It is ensured by bringing it into close contact.

この他、図5に示すように少なくとも矢板4が挿入される箇所の地盤を予め地盤改良しておくことによっても矢板4、4間の止水性が確保される。地盤改良は例えば矢板4が挿入される箇所の原地盤に対し、固化材等の地盤改良材9を注入する等により供給し、原地盤と攪拌・混合することにより行われる。改良された地盤は固化に伴って隣接する矢板4、4間の空隙を塞ぎ、隣接する矢板4、4間の止水性を確保する。   In addition, the water stoppage between the sheet piles 4 and 4 can be ensured by improving the ground at least at the place where the sheet piles 4 are inserted as shown in FIG. The ground improvement is performed, for example, by supplying the ground improvement material 9 such as a solidified material to the original ground where the sheet pile 4 is inserted, and stirring and mixing with the original ground. The improved ground closes the gap between the adjacent sheet piles 4 and 4 with solidification, and ensures the water-stopping property between the adjacent sheet piles 4 and 4.

地震の発生時、及び発生後には図2−(b)に示すように地下水位が上昇し、基礎3底面に作用する水圧が増大するため、図1の場合と同じく地盤に液状化が生じ、地盤が支持力を喪失したことによる基礎3の沈下は発生せず、基礎3の安定性が確保される。(b)の状態のときには、水圧の増大分が喪失した地盤支持力を補い、水圧が基礎3を支持し続ける。   At the time of and after the occurrence of the earthquake, as shown in Fig. 2- (b), the groundwater level rises and the water pressure acting on the bottom surface of the foundation 3 increases, so liquefaction occurs in the ground as in Fig. 1, The subsidence of the foundation 3 due to the loss of bearing capacity of the ground does not occur, and the stability of the foundation 3 is ensured. In the state of (b), the ground supporting force that lost the increase in water pressure is compensated, and the water pressure continues to support the foundation 3.

図3−(a)〜(d)は基礎3の支持構造を新規に構築する場合の施工手順例を示す。新設の場合、(a)に示すように地中に矢板4を、地震時に液状化する可能性のある砂質地盤等、液状化地盤1中の目標深度まで挿入(圧入)し、矢板4からなる矢板壁5で包囲された領域の地盤を掘削し、排出することが行われる。隣接する矢板4、4間の止水性を確保する場合には、例えば図5に示すように矢板4の挿入前に、矢板4が挿入される箇所の地盤に対して地盤改良が施される。   FIGS. 3A to 3D show examples of construction procedures when a support structure for the foundation 3 is newly constructed. In the case of new construction, as shown in (a), the sheet pile 4 is inserted (press-fit) to the target depth in the liquefied ground 1 such as sandy ground that may be liquefied in the event of an earthquake. The ground in the area surrounded by the sheet pile wall 5 is excavated and discharged. In order to ensure the water stoppage between the adjacent sheet piles 4, 4, for example, as shown in FIG. 5, before the sheet pile 4 is inserted, the ground is improved on the ground where the sheet pile 4 is inserted.

矢板4には主に鋼矢板(シートパイル)が使用されるが、矢板4の種類は問われない。軽量材6に平常時から地下水による浮力が作用するようにする上では、地盤は軽量材6の上面が地下水位より下になる深度まで掘削されることが適切である。   Although the steel sheet pile (sheet pile) is mainly used for the sheet pile 4, the kind of sheet pile 4 is not ask | required. In order to allow buoyancy due to groundwater to act on the lightweight material 6 from normal times, it is appropriate that the ground is excavated to a depth where the upper surface of the lightweight material 6 is below the groundwater level.

土砂の排出後、(b)に示すように構築すべき基礎3の底面以深の領域に軽量材6を設置、もしくは充填し、その後、(c)に示すように軽量材6の上端上に割栗石を敷き、基礎3を受ける捨てコンクリート7を構築することが行われる。その後、(d)に示すように捨てコンクリート7上に基礎3を構築し、基礎3上に構造物2を構築することが行われる。基礎3の構築後、必要により基礎3の上に土砂が埋め戻される。   After discharging the earth and sand, the lightweight material 6 is installed or filled in a region deeper than the bottom surface of the foundation 3 to be constructed as shown in (b), and then split onto the upper end of the lightweight material 6 as shown in (c). Abandoned concrete 7 is constructed by placing a chestnut stone and receiving the foundation 3. Thereafter, as shown in (d), the foundation 3 is constructed on the discarded concrete 7 and the structure 2 is constructed on the foundation 3. After the foundation 3 is constructed, earth and sand are refilled on the foundation 3 as necessary.

その後、基礎3上に構造物2としての橋脚を構築し、その後、橋桁を橋脚上に架設することが行われる。   After that, the pier as the structure 2 is constructed on the foundation 3, and then the bridge girder is constructed on the pier.

図4は矢板4に上端から下端へかけて、矢板壁5に包囲された領域の内周側から外周側へ向かう傾斜を付けて矢板4を挿入した場合、及び矢板4の内周側に、矢板4に対向する内矢板8を鉛直に挿入し、この内矢板8に包囲された領域に軽量材6を配置した場合の施工例を示す。   FIG. 4 shows a case where the sheet pile 4 is inserted from the upper end to the lower end of the sheet pile 4 with an inclination from the inner peripheral side to the outer peripheral side of the region surrounded by the sheet pile wall 5, and on the inner peripheral side of the sheet pile 4. An example of construction in the case where the inner sheet pile 8 facing the sheet pile 4 is inserted vertically and the lightweight material 6 is arranged in the area surrounded by the inner sheet pile 8 is shown.

図4では矢板壁5に外周側から作用する水圧と土圧の内、鉛直下向きの成分が矢板壁5を下向きに押さえ込む働きをするため、地下水位の上昇により基礎3底面に作用する水圧と軽量材6に作用する浮力が増大することがあっても、基礎3の浮き上がりを拘束する効果が得られる。   In FIG. 4, among the water pressure and earth pressure acting on the sheet pile wall 5 from the outer peripheral side, the vertically downward component works to hold down the sheet pile wall 5 downward, so that the water pressure and light weight acting on the bottom surface of the foundation 3 due to the rise of the groundwater level. Even if the buoyancy acting on the material 6 increases, the effect of restraining the lifting of the foundation 3 can be obtained.

図4において、基礎3の底面下に内矢板8が存在しない場合には軽量材6全体が角錐台形になり、矢板壁5が傾斜しない場合より軽量材6の体積が増加することから、軽量材6に作用する浮力が増大することになる。そこで、図示するように基礎3の底面下に鉛直に挿入された内矢板8に軽量材6が包囲されることで、軽量材6に作用する浮力の増大がなくなるため、地下水位の上昇に伴う浮力の増大による基礎3の浮き上がりが防止される。   In FIG. 4, when the inner sheet pile 8 does not exist below the bottom surface of the foundation 3, the entire lightweight material 6 has a truncated pyramid shape, and the volume of the lightweight material 6 increases compared to when the sheet pile wall 5 does not tilt. The buoyancy acting on 6 increases. Therefore, as shown in the figure, since the lightweight material 6 is surrounded by the inner sheet pile 8 vertically inserted below the bottom surface of the foundation 3, the increase in buoyancy acting on the lightweight material 6 is eliminated. Lifting of the foundation 3 due to an increase in buoyancy is prevented.

(a)は矢板壁で囲まれた領域内に地下水が入り込んでいる場合の、支持構造の平常時の様子を示した縦断面図、(b)は地震時の様子を示した縦断面図である。(A) is a vertical cross-sectional view showing the normal state of the support structure when groundwater enters the area surrounded by the sheet pile wall, (b) is a vertical cross-sectional view showing the state at the time of the earthquake is there. (a)は矢板壁で囲まれた領域内に地下水が入り込まない場合の、支持構造の平常時の様子を示した縦断面図、(b)は地震時の様子を示した縦断面図である。(A) is a longitudinal sectional view showing a normal state of the support structure when groundwater does not enter the region surrounded by the sheet pile wall, and (b) is a longitudinal sectional view showing a state during an earthquake. . (a)〜(d)は本発明の支持構造を新規に構築する場合の施工手順例を示した縦断面図である。(A)-(d) is the longitudinal cross-sectional view which showed the example of the construction procedure in the case of constructing | supporting the support structure of this invention newly. 矢板に傾斜を付けると共に、矢板の内周側に、内矢板を鉛直に挿入し、内矢板に包囲された領域に軽量材を配置した場合の施工例を示した縦断面図である。It is the longitudinal cross-sectional view which showed the construction example at the time of attaching an inclination to a sheet pile, inserting an inner sheet pile vertically on the inner peripheral side of a sheet pile, and arrange | positioning a lightweight material in the area | region enclosed by the inner sheet pile. 矢板が挿入される箇所の地盤を予め地盤改良した場合の施工例を示した縦断面図である。It is the longitudinal cross-sectional view which showed the example of construction when the ground of the location where a sheet pile is inserted is improved beforehand. (a)は基礎が液状化地盤上に直接支持されている従来構造の平常時の様子を示した縦断面図、(b)は地震時の様子を示した縦断面図である。(A) is the longitudinal cross-sectional view which showed the mode of normal time of the conventional structure where the foundation is directly supported on the liquefied ground, (b) is the longitudinal cross-sectional view which showed the mode at the time of an earthquake.

符号の説明Explanation of symbols

1………地盤
2………構造物
3………基礎
4………矢板
5………矢板壁
6………軽量材
7………捨てコンクリート
8………内矢板
9………地盤改良材

1 ……… Ground 2 ……… Structure 3 ……… Basic 4 ……… Sheet 5 ……… Sheet wall 6 ……… Lightweight material 7 ……… Discarded concrete 8 ……… Inner sheet pile 9 ……… Ground Improvement material

Claims (7)

液状化地盤中に構造物の基礎を包囲するように隣接しながら挿入され、前記基礎の周方向に連続する矢板と、前記基礎の底面以深の、前記矢板に包囲された領域に設置、もしくは充填される軽量材とを備え、前記軽量材が地下水から受ける浮力、または水圧を前記基礎の底面に作用させていることを特徴とする構造物基礎の支持構造。   It is inserted in the liquefied ground so as to surround the foundation of the structure, and is installed or filled in a sheet pile that is continuous in the circumferential direction of the foundation and deeper than the bottom of the foundation and surrounded by the sheet pile. A structure foundation support structure, wherein a buoyancy or water pressure received from groundwater is applied to the bottom surface of the foundation. 前記矢板に上端から下端へかけて、前記矢板に包囲された領域の内周側から外周側へ向かう傾斜が付けられていることを特徴とする請求項1に記載の構造物基礎の支持構造。   The support structure for a structure foundation according to claim 1, wherein the sheet pile is inclined from the upper end to the lower end, and is inclined from the inner periphery side to the outer periphery side of the region surrounded by the sheet pile. 前記矢板の内周側に、前記矢板に対向する内矢板が挿入され、この内矢板に包囲された領域に軽量材が配置されていることを特徴とする請求項1、もしくは請求項2に記載の構造物基礎の支持構造。   The inner sheet pile which opposes the said sheet pile is inserted in the inner peripheral side of the said sheet pile, The lightweight material is arrange | positioned in the area | region enclosed by this inner sheet pile, The Claim 1 or Claim 2 characterized by the above-mentioned. Support structure of the foundation of the structure. 前記矢板に包囲された、前記基礎の底面下の領域が仕切り壁で複数の領域に区分されていることを特徴とする請求項1乃至請求項3のいずれかに記載の構造物基礎の支持構造。   The support structure for a structure foundation according to any one of claims 1 to 3, wherein a region under the bottom surface of the foundation surrounded by the sheet pile is divided into a plurality of regions by a partition wall. . 互いに隣接する前記矢板間の止水性が確保され、前記矢板に包囲された領域から地下水が排除されていることを特徴とする請求項1乃至請求項3のいずれかに記載の構造物基礎の支持構造。   The structure foundation support according to any one of claims 1 to 3, wherein water-stopping between the sheet piles adjacent to each other is ensured, and groundwater is excluded from a region surrounded by the sheet piles. Construction. 少なくとも前記矢板が挿入される箇所の地盤が予め地盤改良されていることを特徴とする請求項5に記載の構造物基礎の支持構造。   6. The structure foundation support structure according to claim 5, wherein at least the ground where the sheet pile is inserted is previously improved. 液状化地盤中に、構築すべき構造物の基礎を包囲するように隣接させながら、前記基礎の周方向に連続させて矢板を挿入する工程と、前記矢板に包囲された領域の、前記基礎の底面までの土砂を排出する工程と、前記基礎の底面以深の、前記矢板に包囲された領域に、地下水から受ける浮力、または水圧を前記基礎の底面に作用させる軽量材を設置、もしくは充填する工程と、前記軽量材の上に前記基礎を構築する工程とを含むことを特徴とする構造物基礎の施工方法。

In the liquefied ground, adjacent to surround the foundation of the structure to be constructed, inserting the sheet pile continuously in the circumferential direction of the foundation, and the area of the foundation surrounded by the sheet pile A step of discharging the earth and sand to the bottom surface, and a step of installing or filling a lightweight material that causes buoyancy received from groundwater or water pressure to act on the bottom surface of the foundation in a region surrounded by the sheet pile deeper than the bottom surface of the foundation And a step of constructing the foundation on the lightweight material.

JP2006284126A 2006-10-18 2006-10-18 Support structure for construction foundation and construction method Active JP4868589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284126A JP4868589B2 (en) 2006-10-18 2006-10-18 Support structure for construction foundation and construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284126A JP4868589B2 (en) 2006-10-18 2006-10-18 Support structure for construction foundation and construction method

Publications (2)

Publication Number Publication Date
JP2008101379A true JP2008101379A (en) 2008-05-01
JP4868589B2 JP4868589B2 (en) 2012-02-01

Family

ID=39435913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284126A Active JP4868589B2 (en) 2006-10-18 2006-10-18 Support structure for construction foundation and construction method

Country Status (1)

Country Link
JP (1) JP4868589B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124511A (en) * 2011-12-15 2013-06-24 Ohbayashi Corp Building foundation structure, and building foundation construction method
CN112064585A (en) * 2020-08-14 2020-12-11 中铁大桥局集团有限公司 Supporting structure on soft foundation of drainage channel and installation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158644A (en) * 1992-11-20 1994-06-07 Kajima Corp Structure for measure against ground liquefaction
JPH0645941B2 (en) * 1986-03-17 1994-06-15 不動建設株式会社 Structural foundation method
JPH06240694A (en) * 1993-02-10 1994-08-30 Taisei Corp Foundation structure
JPH06287965A (en) * 1993-04-05 1994-10-11 Kanegafuchi Chem Ind Co Ltd Foundation for weak ground, and method for constructing foundation in weak ground
JPH11140866A (en) * 1997-11-05 1999-05-25 Tone Geo Tech Co Ltd Underground cutoff wall, method for constructing the same, and cutoff plate made of steel
JP2001262555A (en) * 2000-03-21 2001-09-26 Sumitomo Metal Ind Ltd Liquefaction measures construction method of ground
JP2003041608A (en) * 2001-07-27 2003-02-13 Taisei Corp Structure of underground tank

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645941B2 (en) * 1986-03-17 1994-06-15 不動建設株式会社 Structural foundation method
JPH06158644A (en) * 1992-11-20 1994-06-07 Kajima Corp Structure for measure against ground liquefaction
JPH06240694A (en) * 1993-02-10 1994-08-30 Taisei Corp Foundation structure
JPH06287965A (en) * 1993-04-05 1994-10-11 Kanegafuchi Chem Ind Co Ltd Foundation for weak ground, and method for constructing foundation in weak ground
JPH11140866A (en) * 1997-11-05 1999-05-25 Tone Geo Tech Co Ltd Underground cutoff wall, method for constructing the same, and cutoff plate made of steel
JP2001262555A (en) * 2000-03-21 2001-09-26 Sumitomo Metal Ind Ltd Liquefaction measures construction method of ground
JP2003041608A (en) * 2001-07-27 2003-02-13 Taisei Corp Structure of underground tank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124511A (en) * 2011-12-15 2013-06-24 Ohbayashi Corp Building foundation structure, and building foundation construction method
CN112064585A (en) * 2020-08-14 2020-12-11 中铁大桥局集团有限公司 Supporting structure on soft foundation of drainage channel and installation method thereof

Also Published As

Publication number Publication date
JP4868589B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP6166264B2 (en) How to build a retaining wall
KR102011321B1 (en) Construction method of foundation using rectangular pipe and its foundation
CN104988948B (en) A kind of construction method of fin-plate type retaining wall
JP5124697B1 (en) Liquefaction prevention structure and liquefaction prevention method
JP2019510909A (en) Interlocking stabilization system to stabilize slopes or unconstrained ground surfaces
JP2008190116A (en) Liquefaction countermeasure structure of foundation ground of building
JP4868589B2 (en) Support structure for construction foundation and construction method
JP5681827B2 (en) Vertical shaft construction method
JP6238088B2 (en) Improved ground and ground improvement method
JP6132144B2 (en) Structure liquefaction damage reducing structure and liquefaction damage reducing method
JP7115817B2 (en) Reinforced soil wall using large sandbags and retaining method using large sandbags
JP5896351B2 (en) Foundation structure and foundation construction method
JP5071852B2 (en) Structure subsidence suppression structure
JP2004339894A (en) Aseismic reinforcement structure of pile foundation structure
JP7309147B2 (en) Caisson, pneumatic caisson construction method and structure
JP2003119750A (en) Drag structural body of structure
JP2006342666A (en) Method for antiseismic reinforcement of structure
JP6774774B2 (en) Pile foundation structure
JP6590767B2 (en) Liquefaction countermeasure method
JP2020159006A (en) Retaining wall and its construction method
JP2016145500A (en) Retaining wall, developed land and developing method of developed land
JP6298255B2 (en) Method and jig for preventing floating of underground structure
JP2006077447A (en) Foundation structure of construction
JP3176530B2 (en) Liquefaction countermeasures
JP7358089B2 (en) Lightweight embankment structure and lightweight embankment manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Ref document number: 4868589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250