JP2008101095A - Exothermic sheet form and method for producing the same - Google Patents

Exothermic sheet form and method for producing the same Download PDF

Info

Publication number
JP2008101095A
JP2008101095A JP2006284301A JP2006284301A JP2008101095A JP 2008101095 A JP2008101095 A JP 2008101095A JP 2006284301 A JP2006284301 A JP 2006284301A JP 2006284301 A JP2006284301 A JP 2006284301A JP 2008101095 A JP2008101095 A JP 2008101095A
Authority
JP
Japan
Prior art keywords
exothermic
papermaking
thiosulfate
electrolyte
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006284301A
Other languages
Japanese (ja)
Other versions
JP5339674B2 (en
Inventor
Takahiro Maezawa
貴浩 前澤
Masataka Ishikawa
雅隆 石川
Toru Ugajin
徹 宇賀神
Takeshi Oka
毅 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2006284301A priority Critical patent/JP5339674B2/en
Publication of JP2008101095A publication Critical patent/JP2008101095A/en
Application granted granted Critical
Publication of JP5339674B2 publication Critical patent/JP5339674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exothermic sheet form which can suppress its own hardening involved in the oxidation reaction progress. <P>SOLUTION: The exothermic sheet form comprises an oxidizable metal, a fibrous material, a water-holding agent, moisture, an electrolyte serving as an oxidation auxiliary, and a thiosulfate; wherein it is preferable that the thiosulfate be contained at 0.5-20 pts.mass based on 100 pts.mass of the oxidizable metal. For this exothermic sheet form, the flexural strength scale factor, the ratio of its flexural strength before exothermic reaction to that after ending exothermic reaction, is 20 or less. This exothermic sheet form is obtained by adding the electrolyte and an aqueous solution of the thiosulfate to an intermediate sheet form comprising the oxidizable metal, the fibrous material and the water-holding agent but containing no electrolyte serving as an oxidation auxiliary. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気中の酸素と被酸化性金属との酸化反応に伴う発熱を利用した発熱抄造体及びその製造方法に関する。   The present invention relates to an exothermic papermaking body using heat generated by an oxidation reaction between oxygen in the air and an oxidizable metal and a method for producing the same.

空気中の酸素と被酸化性金属である鉄粉との酸化反応に伴う発熱を利用した発熱抄造体は、酸化反応の進行に伴って鉄粉が凝結して硬化し、柔軟性が低下するという課題を有している。特に発熱時間が数時間持続する発熱抄造体は柔軟性の低下が顕著である。これは鉄粉の酸化反応が十分に進行するからである。この柔軟性の低下は、発熱抄造体を身体に装着して使用するときに使用者に違和感を生じさせるばかりか、熱を効率よく身体に伝え難くなるため好ましくない。   The exothermic paper making use of the heat generated by the oxidation reaction between oxygen in the air and iron powder, which is an oxidizable metal, causes the iron powder to condense and harden with the progress of the oxidation reaction, resulting in reduced flexibility. Has a problem. In particular, the exothermic paper product having a heat generation time of several hours has a remarkable decrease in flexibility. This is because the oxidation reaction of iron powder proceeds sufficiently. This decrease in flexibility is not preferable because it causes not only a sense of incongruity to the user when the heat-generating paper sheet is worn on the body, but also makes it difficult to efficiently transmit heat to the body.

斯かる柔軟性の低下を防ぐ技術として、鉄粉に代えて亜鉛粉末を用いることで酸化反応が進行しても柔軟性を維持するようにした技術や、発熱層に保水ゲル層を組み合わせて柔軟性を付与した技術が提案されている(下記特許文献1及び2参照)。   As a technology to prevent such a decrease in flexibility, a technology that maintains flexibility even when an oxidation reaction proceeds by using zinc powder instead of iron powder, or a combination of a heat-retaining gel layer and a heat generation layer is flexible. Techniques imparting properties have been proposed (see Patent Documents 1 and 2 below).

しかしながら、特許文献1に記載の技術は、硬化抑制効果の具体的な数値的開示がされてなく、また亜鉛を使用するために発熱量の制御の面で非常に取り扱いが困難である。特許文献2に記載の技術は、発熱層以外に保水ゲル層を設けなければならないため、保水ゲル層の分だけ厚くなり、身体に装着して使用する場合には装着性が悪くなるほか、生産コストも割高となる。   However, the technique disclosed in Patent Document 1 does not disclose a specific numerical value of the effect of suppressing the curing, and is extremely difficult to handle in terms of controlling the amount of heat generated because zinc is used. Since the technology described in Patent Document 2 must provide a water retention gel layer in addition to the heat generation layer, it becomes thicker by the amount of the water retention gel layer, and when it is worn on the body, the wearability becomes worse, Cost is also high.

特開2001−212167号公報JP 2001-212167 A 特開2003−135509号公報JP 2003-135509 A

本発明は、酸化反応の進行に伴う硬化を抑えることができる発熱抄造体及びその製造方法に関する。   The present invention relates to an exothermic papermaking product capable of suppressing curing accompanying the progress of an oxidation reaction and a method for producing the same.

本発明者らは、発熱抄造体中にチオ硫酸塩を含ませると、酸化反応の進行に伴う発熱抄造体の硬化を抑制し得ることを知見し、本発明を完成するに至った。   The present inventors have found that the inclusion of thiosulfate in the exothermic papermaking can suppress the hardening of the exothermic papermaking as the oxidation reaction proceeds, and have completed the present invention.

本発明は、上記知見に基づきなされたものであり、被酸化性金属、保水剤、水分、酸化助剤となる電解質及びチオ硫酸塩を含む発熱抄造体を提供するものである。   The present invention has been made on the basis of the above findings, and provides an exothermic papermaking product containing an oxidizable metal, a water retention agent, moisture, an electrolyte serving as an oxidation aid, and a thiosulfate.

また、本発明は、被酸化性金属、繊維状物及び保水剤を含み、酸化助剤となる電解質を含まない中間抄造体に、酸化助剤となる電解質及びチオ硫酸塩の水溶液を添加する発熱抄造体の製造方法を提供するものである。   In addition, the present invention provides an exothermic solution in which an aqueous solution of an electrolyte and an thiosulfate as an oxidation aid is added to an intermediate papermaking body that includes an oxidizable metal, a fibrous material, and a water retention agent and does not contain an electrolyte as an oxidation aid. The manufacturing method of a papermaking body is provided.

本発明によれば、酸化反応の進行に伴う硬化が抑えられる発熱抄造体が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the exothermic papermaking body by which hardening accompanying progress of an oxidation reaction is suppressed is provided.

以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。   The present invention will be described below based on preferred embodiments with reference to the drawings.

本実施形態の発熱抄造体は、被酸化性金属、繊維状物、保水剤、水分、酸化助剤となる電解質及びチオ硫酸塩を含んでいる。   The exothermic paper product of this embodiment includes an oxidizable metal, a fibrous material, a water retention agent, moisture, an electrolyte that serves as an oxidation aid, and a thiosulfate.

発熱抄造体中の被酸化性金属には、酸化反応熱を発する金属を特に制限無く用いることができる。被酸化性金属としては、例えば、鉄、アルミニウム、マグネシウム、銅、亜鉛等が挙げられる。この中でも、発熱反応の制御のしやすさやコスト等の点から鉄粉を使用するのが望ましい。よって以下においては、本発明を、被酸化性金属として鉄粉を用いた実施形態に基づいて説明する。   As the oxidizable metal in the exothermic paper product, a metal that generates heat of oxidation reaction can be used without any particular limitation. Examples of the oxidizable metal include iron, aluminum, magnesium, copper, and zinc. Among these, it is desirable to use iron powder from the viewpoint of ease of control of the exothermic reaction and cost. Therefore, below, this invention is demonstrated based on embodiment using iron powder as an oxidizable metal.

本実施形態において用いる鉄粉の粒径(以下、本明細書において、粒径というときには、粉体の形態における最大長さ、又は動的光散乱法、レーザー回折法等により測定される平均粒径をいう。)は、0.1〜300μmが好ましく、1〜150μmがより好ましい。鉄粉の粒径が斯かる範囲であると、鉄粉の酸化反応が効率的に行われるため好ましい。また、発熱抄造体に後述の繊維状物を含ませて抄紙による発熱シートとする場合には、当該繊維状物への定着性、反応のコントロールが良好なことから、用いる鉄粉は、粒径が好ましくは0.1〜300μm、より好ましくは0.1〜150μmものを50質量%以上含有するものを用いることが好ましい。   The particle diameter of the iron powder used in the present embodiment (hereinafter referred to as the particle diameter in the present specification, the maximum length in the form of the powder, or the average particle diameter measured by a dynamic light scattering method, a laser diffraction method, etc. Is preferably 0.1 to 300 μm, and more preferably 1 to 150 μm. It is preferable for the particle size of the iron powder to be in such a range because the oxidation reaction of the iron powder is performed efficiently. In addition, when the exothermic paper product contains a fibrous material to be described later to form a heat-generating sheet by papermaking, the iron powder used has a particle size because the fixing property to the fibrous material and control of the reaction are good. Is preferably 0.1 to 300 μm, more preferably 0.1 to 150 μm.

発熱抄造体中の前記鉄粉の含有量は、10〜95質量%であることが好ましく、30〜80質量%であることがより好ましい。該鉄粉の含有量が斯かる範囲であると、得られる発熱抄造体の発熱温度を、所望の温度に上昇させることができる。また、該発熱抄造体が後述の発熱シートの場合には、繊維状物、接着成分(凝集剤等)の量を抑えることができるため、発熱抄造体の通気性が十分なものとなり、その結果発熱抄造体内部まで十分に反応が起こり発熱温度を十分に上昇させることができる。また、発熱時間を十分な長さにできるほか、後述の保水剤による水分供給も十分なものとすることができ、鉄粉の脱落も生じ難い。また、発熱抄造体を構成する後述の繊維状物、接着性分をある程度の量に維持することができるため、曲げ強度や引張強度等の機械的強度を十分なものとすることができる。ここで、発熱抄造体中の鉄粉の含有量は、JIS P8128に準じる灰分試験や、熱重量測定器で求めることができる。他に外部磁場を印加すると磁化が生じる性質を利用して振動試料型磁化測定試験等により定量することができる。   The content of the iron powder in the exothermic paper product is preferably 10 to 95% by mass, and more preferably 30 to 80% by mass. When the content of the iron powder is within such a range, the exothermic temperature of the exothermic papermaking obtained can be raised to a desired temperature. Further, in the case where the exothermic paper sheet is a heat generating sheet described later, the amount of fibrous materials and adhesive components (flocculating agent, etc.) can be suppressed, so that the exothermic paper body has sufficient air permeability. The reaction sufficiently occurs inside the exothermic papermaking body, and the exothermic temperature can be sufficiently increased. Further, the heat generation time can be made sufficiently long, the water supply by a water retention agent described later can be made sufficient, and iron powder is not easily dropped off. Further, since the fibrous material and the adhesive component described later constituting the exothermic papermaking product can be maintained at a certain amount, mechanical strength such as bending strength and tensile strength can be sufficient. Here, the content of the iron powder in the exothermic papermaking product can be obtained by an ash test according to JIS P8128 or a thermogravimetric measuring instrument. In addition, it can be quantified by a vibration sample type magnetization measurement test or the like using the property that magnetization occurs when an external magnetic field is applied.

発熱抄造体中の前記繊維状物の含有量は、1〜50質量%であることが好ましく、3〜40質量%であることがより好ましい。該繊維状物の含有量が斯かる範囲であると、鉄粉、保水剤等の成分の脱落を十分に防止できるほか、発熱抄造体をシートとした場合に十分なものにすることができる。また、発熱抄造体の発熱量に対する熱容量を抑えることができ、温度上昇を十分なものとすることができるほか、得られる発熱抄造体中の該成分の比率をある程度以上に確保できるため、所望の発熱性能を十分に得ることができるので好ましい。   The content of the fibrous material in the exothermic papermaking product is preferably 1 to 50% by mass, and more preferably 3 to 40% by mass. When the content of the fibrous material is within such a range, it is possible to sufficiently prevent the components such as iron powder and water retention agent from falling off, and to make the exothermic paper product sufficient when used as a sheet. In addition, it is possible to suppress the heat capacity with respect to the heat generation amount of the exothermic papermaking, to increase the temperature sufficiently, and to ensure the ratio of the components in the exothermic papermaking obtained to some extent, so that the desired It is preferable because sufficient heat generation performance can be obtained.

前記繊維状物は、そのカナディアン・スタンダード・フリーネス(Canadian Standard Freeness:CSF)が、600ml以下であることが好ましく、450ml以下であることがより好ましい。600ml以下であると繊維状物と前記鉄粉、保水剤等の成分との定着性も十分に良好であり、所定の配合量を保持でき発熱性能を十分に発揮させることができる。また、均一な厚みのシートが得られ、繊維状物と該成分との定着が良好となり、該成分の脱落がし難く、該成分と該繊維状物との絡み合いや水素結合に由来する結合強度を持たせることができる。また、曲げ強度や引張強度等の機械的強度も十分なものとすることができ、加工性も良好である。   The fibrous material preferably has a Canadian Standard Freeness (CSF) of 600 ml or less, and more preferably 450 ml or less. When the amount is 600 ml or less, the fixing property between the fibrous material and the components such as the iron powder and the water retention agent is sufficiently good, the predetermined blending amount can be maintained, and the heat generation performance can be sufficiently exhibited. In addition, a sheet having a uniform thickness is obtained, the fixing between the fibrous material and the component is good, the component is difficult to fall off, and the bond strength derived from the entanglement between the component and the fibrous material or hydrogen bonding Can be given. Further, the mechanical strength such as bending strength and tensile strength can be sufficient, and the workability is also good.

前記繊維状物のCSFは、低い程好ましいが、通常のパルプ繊維のみの抄紙では、繊維状物以外の成分比率が低い場合、CSFが100ml以上であると濾水性が十分に良好であり、脱水も十分に行うことができ均一な厚みの発熱シートが得られ、乾燥時にブリスター破れが生じず成形性も良好となる。本発明においては、繊維状物以外の成分比率が高いことから、濾水性も良好で均一な厚みの発熱シートを得ることができる。また、CSFが低い程、フィブリルが多くなるため、繊維状物と該繊維状物以外の成分との定着性が良好となり、高いシート強度を得ることができる。
繊維状物のCSFの調整は、叩解処理などによって行うことができる。CSFの低い繊維と高い繊維とを混ぜ合わせ、CSFの調整を行っても良い。なお、CSFはJIS P8121(パルプのろ水度試験方法)に示す方法で測定することにより得ることができ、0以上の値を示す繊維状物の水切れの程度を表す指標である。
The lower the CSF of the fibrous material, the better. However, in the case of normal pulp fiber-only papermaking, when the component ratio other than the fibrous material is low, the drainage is sufficiently good when the CSF is 100 ml or more, and dehydration. Can be sufficiently performed, and a heat-generating sheet having a uniform thickness is obtained, and blister breakage does not occur during drying, and the moldability is improved. In the present invention, since the ratio of components other than the fibrous material is high, it is possible to obtain a heat generating sheet with good drainage and uniform thickness. Further, since the CSF is lower as the CSF is lower, the fixability between the fibrous material and components other than the fibrous material is improved, and a high sheet strength can be obtained.
Adjustment of the CSF of the fibrous material can be performed by a beating process or the like. CSF may be adjusted by mixing low and high CSF fibers. In addition, CSF can be obtained by measuring by the method shown in JIS P8121 (pulp freeness test method), and is an index representing the degree of water breakage of a fibrous material having a value of 0 or more.

前記繊維状物は、そのゼータ電位がマイナス(負)であることが好ましい。ここで、ゼータ電位とは、荷電粒子界面と溶液間のずり面におけるみかけの電位をいい、流動電位法、電気泳動法等により測定される。そのゼータ電位がマイナスであると、繊維状物への前記鉄粉、保水剤等の成分の定着が良好であり、所定の配合量を保持できて発熱性能が優れたものとなるほか、排水に多量の該成分が混じることを抑えることができ、生産性、環境保全にも悪影響を及ぼすことがない。   The fibrous material preferably has a negative (negative) zeta potential. Here, the zeta potential is an apparent potential at the shear plane between the charged particle interface and the solution, and is measured by a streaming potential method, an electrophoresis method or the like. If the zeta potential is negative, the components such as the iron powder and water retention agent are well fixed to the fibrous material, the prescribed blending amount can be maintained, and the heat generation performance is excellent. Mixing a large amount of the components can be suppressed, and the productivity and environmental conservation are not adversely affected.

前記繊維状物には、平均繊維長が0.1〜50mmのものを用いることが好ましく、0.2〜20mmのものを用いることがより好ましい。該平均繊維長を斯かる範囲とすることで、得られる発熱抄造体の曲げ強度や引張強度等の機械的強度が十分に確保できるほか、繊維状物の層が密になりすぎず発熱抄造体の通気性が良好となり、酸素供給が良好で発熱性に優れるものとなる。また、発熱抄造体中に該繊維状物を均一に分散できるため、一様な機械的強度が得られるほか、均一な肉厚の発熱抄造体が得られる。また、繊維間隔が広くなりすぎず、繊維による前記鉄粉、保水剤等の成分の保持能力が維持されて該成分が脱落し難くなる。   The fibrous material preferably has an average fiber length of 0.1 to 50 mm, more preferably 0.2 to 20 mm. By setting the average fiber length in such a range, the obtained exothermic paper product can sufficiently ensure mechanical strength such as bending strength and tensile strength, and the fibrous material layer does not become too dense. The air permeability is good, the oxygen supply is good, and the heat generation is excellent. In addition, since the fibrous material can be uniformly dispersed in the exothermic paper, a uniform mechanical strength can be obtained, and an exothermic paper having a uniform thickness can be obtained. In addition, the fiber spacing does not become too large, and the retention capability of the components such as the iron powder and water retention agent by the fibers is maintained, and the components are difficult to fall off.

前記繊維状物としては、例えば、天然繊維状物としては植物繊維(コットン、カボック、木材パルプ、非木材パルプ、落花生たんぱく繊維、とうもろこしたんぱく繊維、大豆たんぱく繊維、マンナン繊維、ゴム繊維、麻、マニラ麻、サイザル麻、ニュージーランド麻、羅布麻、椰子、いぐさ、麦わら等)、動物繊維(羊毛、やぎ毛、モヘア、カシミア、アルカパ、アンゴラ、キャメル、ビキューナ、シルク、羽毛、ダウン、フェザー、アルギン繊維、キチン繊維、ガゼイン繊維等)、鉱物繊維(セピオライト、ワラストナイト、ロックウール等)が挙げられ、合成繊維状物としては、例えば、半合成繊維(アセテート、トリアセテート、酸化アセテート、プロミックス、塩化ゴム、塩酸ゴム等)、金属繊維、炭素繊維、ガラス繊維等が挙げられる。また、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエステル、ポリ塩化ビニリデン、デンプン、ポリビニルアルコール若しくはポリ酢酸ビニル又はこれらの共重合体若しくは変性体等の単繊維、又はこれらの樹脂成分を鞘部に有する芯鞘構造の複合繊維を用いることができる。そしてこれらの中でも、繊維どうしの接着強度が高く、繊維どうしの融着による三次元の網目構造を作り易すく、パルプ繊維の発火点よりも融点が低い点からポリオレフィン、変性ポリエステルが好ましく用いられる。また、枝分かれを有するポリオレフィン等の合成繊維も鉄粉や保水剤との定着性が良好なことから好ましく用いられる。これらの繊維は、単独で又は二種以上を組み合わせて用いることができる。また、これらの繊維は、その回収再利用品を用いることもできる。そして、これらの中でも、鉄粉や保水剤の定着性、得られる発熱抄造体の柔軟性、空隙の存在からくる酸素透過性、製造コスト等の点から、木材パルプ、コットンが好ましく用いられる。   Examples of the fibrous material include, for example, plant fibers (cotton, kabok, wood pulp, non-wood pulp, peanut protein fiber, corn protein fiber, soybean protein fiber, mannan fiber, rubber fiber, hemp, Manila hemp Sisal, New Zealand hemp, Rafu hemp, eggplant, rush, straw, etc.), animal fibers (wool, goat hair, mohair, cashmere, alkapa, Angola, camel, vicuña, silk, feathers, down, feather, algin fiber, chitin Fiber, casein fiber, etc.), mineral fiber (sepiolite, wollastonite, rock wool, etc.), and synthetic fiber materials include, for example, semi-synthetic fibers (acetate, triacetate, oxide acetate, promix, chlorinated rubber, Hydrochloric acid rubber, etc.), metal fibers, carbon fibers, glass fibers, etc. That. Also, polyolefins such as high density polyethylene, medium density polyethylene, low density polyethylene, polypropylene, etc., polyester, polyvinylidene chloride, starch, polyvinyl alcohol or polyvinyl acetate, single fibers such as copolymers or modified products thereof, or these A core-sheath composite fiber having a resin component in the sheath can be used. Among these, polyolefins and modified polyesters are preferably used because they have high adhesive strength between fibers, are easy to form a three-dimensional network structure by fusion of fibers, and have a melting point lower than the ignition point of pulp fibers. Synthetic fibers such as polyolefin having branches are also preferably used because of their good fixability with iron powder and water retention agents. These fibers can be used alone or in combination of two or more. In addition, these fibers can be used in the form of collected and reused. Of these, wood pulp and cotton are preferably used from the viewpoints of fixability of iron powder and water retention agent, flexibility of the resulting exothermic papermaking, oxygen permeability due to the presence of voids, production cost, and the like.

発熱抄造体中の前記保水剤の含有量は、1〜60質量%が好ましく、3〜50質量%がより好ましい。斯かる範囲内であると、酸化反応を持続させるために必要な水分を発熱抄造体中に蓄積できる。また、発熱抄造体の通気性が十分に確保されるため、酸素供給が十分に得られて発熱効率が高い発熱抄造体となる。また、得られる発熱量に対する発熱抄造体の熱容量を小さく抑えることができるため、発熱温度上昇が大きくなり、所望の温度上昇が得られる。また、該発熱抄造体が後述の発熱シートの場合には、保水剤の脱落の発生や後述の繊維状物、接着成分の減少が抑えられるため、曲げ強度や引張強度等の機械的強度も十分に得られる。   1-60 mass% is preferable and, as for content of the said water retention agent in an exothermic papermaking body, 3-50 mass% is more preferable. Within such a range, moisture necessary for sustaining the oxidation reaction can be accumulated in the exothermic papermaking. In addition, since the air permeability of the exothermic paper product is sufficiently ensured, the exothermic paper product can be obtained with sufficient oxygen supply and high heat generation efficiency. In addition, since the heat capacity of the exothermic papermaking can be kept small with respect to the heat generation amount obtained, the heat generation temperature rises and a desired temperature rise can be obtained. In addition, when the exothermic paper sheet is a heat generating sheet described later, it is possible to suppress the occurrence of water retention agent drop and the decrease in fibrous materials and adhesive components described later, so that mechanical strength such as bending strength and tensile strength is sufficient. Is obtained.

前記保水剤には、従来からこの種の発熱抄造体に通常用いられている保水剤を特に制限無く用いることができる。例えば、吸水ポリマー、木粉等が挙げられる。また、該保水剤は、水分保持剤として働く他に、鉄粉への酸素保持/供給剤としての機能も有しているものもある。該保水剤としては、例えば、活性炭(椰子殻炭、木炭粉、暦青炭、泥炭、亜炭)、カーボンブラック、アセチレンブラック、黒鉛、ゼオライト、パーライト、バーミキュライト、シリカ、カンクリナイト、フローライト等が挙げられ、これらの中でも保水能、酸素供給能、触媒能を有する点から活性炭が好ましく用いられる。該保水剤には、鉄粉との有効な接触状態を形成できる点から粒径が0.1〜500μmの粉体状のものを用いることが好ましく、0.1〜200μmのものを50質量%以上含有するものを用いることがより好ましい。保水剤には、上述のような粉体状以外の形態のものを用いることもでき、例えば、活性炭繊維等の繊維状の形態のものを用いることもできる。   As the water retentive agent, a water retentive agent that has been conventionally used in this type of exothermic papermaking can be used without any particular limitation. For example, water-absorbing polymer, wood powder and the like can be mentioned. In addition to acting as a water retention agent, some of the water retention agents also have a function as an oxygen retention / supply agent for iron powder. Examples of the water retention agent include activated carbon (coconut husk charcoal, charcoal powder, calendar bituminous coal, peat, lignite), carbon black, acetylene black, graphite, zeolite, perlite, vermiculite, silica, cancrinite, fluorite and the like. Among these, activated carbon is preferably used because it has water retention ability, oxygen supply ability, and catalytic ability. As the water retention agent, it is preferable to use a powdery material having a particle size of 0.1 to 500 μm from the viewpoint that an effective contact state with iron powder can be formed. It is more preferable to use what is contained above. As the water retention agent, a form other than the powder form as described above can be used. For example, a form of fiber form such as activated carbon fiber can also be used.

発熱抄造体中の前記酸化助剤となる電解質の含有量は、発熱抄造体中の対水質量比で0.5〜30質量%であることが好ましく、1〜25質量%であることがより好ましい。該電解質の含有量が斯かる範囲であると、得られる発熱抄造体の酸化反応を十分に進行させることができるため好ましい。また、電解質の析出も起こり難く、発熱抄造体の通気性が良好であり、発熱機能に必要な電解質を確保することができ、十分な水が鉄粉等に供給され、発熱性能に優れ、発熱抄造体に均一に電解質を配合することができるので好ましい。   The content of the electrolyte serving as the oxidation aid in the exothermic papermaking body is preferably 0.5 to 30% by mass, more preferably 1 to 25% by mass, based on the mass ratio of water to the exothermic papermaking body. preferable. It is preferable for the content of the electrolyte to fall within such a range because the oxidation reaction of the resulting exothermic papermaking product can proceed sufficiently. Also, the precipitation of the electrolyte hardly occurs, the air permeability of the exothermic paper product is good, the electrolyte necessary for the heat generation function can be secured, sufficient water is supplied to the iron powder, etc., the heat generation performance is excellent, the heat generation It is preferable because the electrolyte can be uniformly mixed in the papermaking body.

前記電解質には、従来からこの種の発熱抄造体に通常用いられている電解質を特に制限なく用いることができる。該電解質としては、例えば、アルカリ金属、アルカリ土類金属若しくは重金属の硫酸塩、炭酸塩、塩化物又は水酸化物等が挙げられる。そしてこれらの中でも、導電性、化学的安定性、生産コストに優れる点から塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、第1塩化鉄、第2塩化鉄等の各種塩化物が好ましく用いられる。これらの電解質は、単独で又は二種以上を組み合わせて用いることもできる。   As the electrolyte, an electrolyte that has been conventionally used for this type of exothermic papermaking can be used without particular limitation. Examples of the electrolyte include alkali metal, alkaline earth metal or heavy metal sulfates, carbonates, chlorides or hydroxides. Among these, various chlorides such as sodium chloride, potassium chloride, calcium chloride, magnesium chloride, first ferric chloride, second ferric chloride are preferably used from the viewpoint of excellent conductivity, chemical stability, and production cost. These electrolytes can be used alone or in combination of two or more.

前記チオ硫酸塩は、被酸化性金属の酸化に伴う凝結による発熱抄造体の硬化を効果的に抑制できる点から、発熱抄造体中の被酸化性金属100質量部に対し0.5〜20質量部含有させることが好ましく、0.5〜15質量部含有させることがより好ましく、0.5〜10質量部含有させることが更に好ましい。   The thiosulfate is 0.5 to 20 masses per 100 mass parts of the oxidizable metal in the exothermic paper product because the thiosulfate can effectively suppress the curing of the exothermic paper product due to condensation accompanying oxidation of the oxidizable metal. It is preferably contained in an amount of 0.5 to 15 parts by mass, more preferably 0.5 to 10 parts by mass.

前記チオ硫酸塩としては、チオ硫酸ナトリウム、チオ硫酸カリウム、チオ硫酸カルシウム等のチオ硫酸塩が挙げられる。これらの中でも、安価で且つ安全性が高い点からチオ硫酸ナトリウムが好ましい。   Examples of the thiosulfate include thiosulfates such as sodium thiosulfate, potassium thiosulfate, and calcium thiosulfate. Among these, sodium thiosulfate is preferable because it is inexpensive and has high safety.

発熱抄造体の含水率(質量含水率、以下同じ。)は、5〜80%であることが好ましく、10〜60%であることがより好ましい。該含水率が斯かる範囲であると、酸化反応を持続するために必要な水分が十分に確保でき、酸化反応が途中で終了してしまうことを抑えることができるほか、発熱抄造体に均一に水分を供給することができるため、均一な発熱性能を得ることができる。該含水率が80%以下であると得られる発熱抄造体の発熱量に対する熱容量を低く抑えることができ、発熱温度を十分に上昇させることができるほか、発熱抄造体の通気性が十分に得られるため、発熱性能に優れるとともに、保形性や機械的強度も十分に得られる。   The moisture content (mass moisture content, hereinafter the same) of the exothermic paper product is preferably 5 to 80%, and more preferably 10 to 60%. When the moisture content is within such a range, it is possible to sufficiently secure the water necessary for sustaining the oxidation reaction, to prevent the oxidation reaction from being terminated halfway, and to uniformly produce the exothermic paper product. Since moisture can be supplied, uniform heat generation performance can be obtained. When the water content is 80% or less, the heat capacity of the exothermic paper product to be obtained can be kept low, the heat generation temperature can be sufficiently increased, and the air permeability of the exothermic paper product can be sufficiently obtained. Therefore, the heat generation performance is excellent, and shape retention and mechanical strength are sufficiently obtained.

発熱抄造体の原料組成物は被酸化性金属、保水剤、水分、酸化助剤となる電解質及びチオ硫酸塩に限定されず他の組成物が添加されてもよい。例えば、発熱抄造体が後述の発熱シートの場合には、該発熱抄造体には、後述するように凝集剤が添加されていることが好ましい。
また、発熱抄造体には、必要に応じ、サイズ剤、着色剤、紙力増強剤、歩留向上剤、填料、増粘剤、pHコントロール剤、嵩高剤等の抄紙の際に通常用いられる添加物を特に制限無く添加することができる。該添加物の添加量は、添加する添加物に応じて適宜設定することができる。
The raw material composition of the exothermic papermaking product is not limited to an oxidizable metal, a water retention agent, moisture, an electrolyte serving as an oxidation aid, and a thiosulfate, and other compositions may be added. For example, when the exothermic paper product is a heat generating sheet described later, a flocculant is preferably added to the exothermic paper product as described later.
In addition, for exothermic paper products, additives usually used for paper making such as sizing agents, colorants, paper strength enhancers, yield improvers, fillers, thickeners, pH control agents, bulking agents, etc. The product can be added without any particular limitation. The addition amount of the additive can be appropriately set according to the additive to be added.

次に、発熱抄造体の製造方法を、その好ましい実施形態として、前記発熱抄造体をシート状の形態で製造する方法に基づいて説明する。   Next, a method for producing the exothermic papermaking will be described as a preferred embodiment based on a method for producing the exothermic papermaking in a sheet form.

先ず、前記被酸化性金属、前記繊維状物、前記保水剤及び水を含み、酸化助剤となる前記電解質及び前記チオ硫酸塩を含まない原料組成物(スラリー)を調製し、該原料組成物から中間抄造体を抄造する。そして、発熱抄造体は、後述のように中間抄造体に前記電解質及び前記チオ硫酸塩を含有させることによって得られる。   First, a raw material composition (slurry) containing the oxidizable metal, the fibrous material, the water retention agent and water and not containing the electrolyte and the thiosulfate as an oxidation aid is prepared, and the raw material composition The intermediate papermaking is made from And the exothermic papermaking body is obtained by making the intermediate papermaking body contain the said electrolyte and the said thiosulfate as mentioned later.

中間抄造体の原料組成物には、他の成分を含ませることもできる。例えば、前記原料組成物には、前記凝集剤を添加することが好ましい。該凝集剤としては、硫酸バンド、ポリ塩化アルミニウム、塩化第二鉄、ポリ硫酸第二鉄、硫酸第一鉄等の金属塩からなる無機凝集剤;ポリアクリルアミド系、ポリアクリル酸ナトリウム系、ポリアクリルアミドのマンニッヒ変性物、ポリ(メタ)アクリル酸アミノアルキルエステル系、カルボキシメチルセルロースナトリウム系、キトサン系、デンプン系、ポリアミドエピクロヒドリン系等の高分子凝集剤;ジメチルジアリルアンモニウムクロライド系若しくはエチレンイミン系のアルキレンジクロライドとポリアルキレンポリアミンの縮合物、ジシアンジアミド・ホルマリン縮合物等の有機凝結剤;モンモリロナイト、ベントナイト等の粘土鉱物;コロイダルシリカ等の二酸化珪素若しくはその水和物;タルク等の含水ケイ酸マグネシウム等が挙げられる。そして、これら凝集剤の中でもシートの表面性、地合い形成、成形性の向上、鉄
粉、繊維状物、保水剤等の材の定着性、紙力向上の点からアニオン性のコロイダルシリカやベントナイト等とカチオン性のデンプンやポリアクリルアミド等の併用やアニオン性のカルボキシメチルセルロースナトリウム塩やポリアクリルアミドとカチオン性のポリアミドエピクロルヒドリン系やポリアクリルアミド等のカチオン性とアニオン性の薬剤の併用が特に好ましい。上述の組み合わせ以外でも、これらの凝集剤は単独で又は二種以上を併用することもできる。
The raw material composition of the intermediate papermaking product can contain other components. For example, it is preferable to add the flocculant to the raw material composition. Examples of the flocculant include inorganic flocculants composed of metal salts such as sulfate band, polyaluminum chloride, ferric chloride, polyferric sulfate, and ferrous sulfate; polyacrylamide, sodium polyacrylate, polyacrylamide Mannich modified products, poly (meth) acrylic acid aminoalkyl ester-based, carboxymethylcellulose sodium-based, chitosan-based, starch-based, polyamide epichlorohydrin-based polymer flocculants; dimethyldiallylammonium chloride-based or ethyleneimine-based Organic coagulants such as condensates of alkylene dichloride and polyalkylene polyamines, dicyandiamide / formalin condensates; clay minerals such as montmorillonite and bentonite; silicon dioxide such as colloidal silica or hydrates thereof; hydrous magnesium silicate such as talc And the like. Among these flocculants, anionic colloidal silica, bentonite, etc. from the viewpoint of sheet surface properties, texture formation, moldability improvement, iron powder, fibrous materials, fixability of materials such as water retention agents, paper strength improvement, etc. A combination of cationic and anionic agents such as cationic starch and polyacrylamide, anionic carboxymethylcellulose sodium salt, polyacrylamide and cationic polyamide epichlorohydrin, and polyacrylamide are particularly preferred. Besides these combinations, these flocculants may be used alone or in combination of two or more.

前記凝集剤の添加量は、原料組成物の固形分に対して、0.01〜5質量%であることが好ましく、0.05〜1質量%であることがより好ましい。0.01質量%以上であると、凝集効果に優れ、抄造時の鉄粉、繊維状物、保水剤等の成分の脱落も抑えることができ原料組成物が均一となり、肉厚及び組成の均一な発熱抄造体を得ることができる点で優れている。該添加量が5質量%以下であると、乾燥時の乾燥ロールに貼り付き、破れ、焼け、焦げ等の発生を抑えることができ、生産性に優れ、原料組成物の電位バランスを良好に保ち、抄造時の白水への該成分の脱落量も抑えることができる点で優れている。また、発熱抄造体の酸化反応が進行し、発熱特性や強度等の保存安定性に優れる。   The addition amount of the flocculant is preferably 0.01 to 5% by mass and more preferably 0.05 to 1% by mass with respect to the solid content of the raw material composition. When the content is 0.01% by mass or more, the agglomeration effect is excellent, and dropping of components such as iron powder, fibrous material, and water retention agent during papermaking can be suppressed, and the raw material composition becomes uniform, and the thickness and composition are uniform. It is excellent in that a heat-generating papermaking product can be obtained. When the addition amount is 5% by mass or less, it is possible to suppress the occurrence of tearing, burning, scorching, etc., sticking to a drying roll during drying, excellent productivity, and maintaining a good potential balance of the raw material composition. This is excellent in that the amount of the component dropped into the white water during papermaking can be suppressed. Further, the oxidation reaction of the exothermic papermaking proceeds, and the storage stability such as exothermic characteristics and strength is excellent.

前記原料組成物の濃度は、0.05〜10質量%が好ましく、0.1〜2質量%がより好ましい。該濃度が斯かる範囲であると、大量の水を必要とせず、中間抄造体の成形に長時間を要せず、均一な厚みの中間抄造体を成形することができる点で好ましい。また、原料組成物の分散状態も良好であり、最終的に得られる発熱抄造体の表面性にも優れ、均一な厚みの発熱抄造体が得られる点で好ましい。   The concentration of the raw material composition is preferably 0.05 to 10% by mass, and more preferably 0.1 to 2% by mass. When the concentration is in such a range, a large amount of water is not required, and it is preferable in that an intermediate paper product having a uniform thickness can be formed without requiring a long time for forming the intermediate paper product. Moreover, the dispersion state of the raw material composition is good, the surface property of the finally obtained exothermic paper product is excellent, and this is preferable in that an exothermic paper product having a uniform thickness can be obtained.

次に、前記原料組成物を抄紙し、シート状の中間抄造体を製造する。
中間抄造体の抄紙方法には、例えば、連続抄紙式である円網抄紙機、長網抄紙機、ヤンキー抄紙機、ツインワイヤー抄紙機などを用いた抄紙方法、バッチ方式の抄紙方法である手漉法等が挙げられる。更に、前記原料組成物と、該原料組成物と異なる組成の組成物とを用いた複層抄き合わせによって中間抄造体を成形することもできる。また、前記原料組成物を抄紙して得られた中間抄造体どうしを複層に貼り合わせたり、該中間抄造体に該原料組成物と異なる組成を有する組成物から得られたシート状物を貼り合わせることによって中間抄造体を成形することもできる。
Next, the raw material composition is paper-made to produce a sheet-like intermediate paper-making body.
Examples of the papermaking method for the intermediate papermaking include, for example, a papermaking method using a circular papermaking machine, a continuous papermaking machine, a Yankee papermaking machine, a twin-wire papermaking machine, and the like, which are continuous papermaking methods, and a batch papermaking method. Law. Furthermore, an intermediate papermaking product can be formed by multi-layer papermaking using the raw material composition and a composition having a composition different from the raw material composition. In addition, the intermediate paper bodies obtained by papermaking the raw material composition are bonded together in multiple layers, or a sheet-like material obtained from a composition having a composition different from that of the raw material composition is attached to the intermediate paper body. By combining them, an intermediate papermaking product can be formed.

前記中間抄造体は、抄紙後における形態を保つ(保形性)点や、機械的強度を維持する点から、含水率(質量含水率、以下同じ。)が70%以下となるまで脱水させることが好ましく、60%以下となるまで脱水させることがより好ましい。抄紙後の中間抄造体の脱水方法は、例えば、吸引による脱水のほか、加圧空気を吹き付けて脱水する方法、加圧ロールや加圧板で加圧して脱水する方法等が挙げられる。   The intermediate papermaking product is dehydrated until the moisture content (mass moisture content, the same shall apply hereinafter) is 70% or less from the viewpoint of maintaining the shape after papermaking (shape retention) and maintaining the mechanical strength. Is preferable, and it is more preferable to dehydrate it to 60% or less. Examples of the dewatering method of the intermediate papermaking after paper making include dewatering by suction, a method of dehydrating by blowing pressurized air, a method of dehydrating by pressing with a pressure roll or a pressure plate, and the like.

前記鉄粉(通常雰囲気下において加熱反応性を有する)を含有する中間抄造体を、積極的に乾燥させて水分を分離することにより、製造工程中における鉄粉の酸化抑制、長期の保存安定性に優れた中間抄造体を得ることが可能となる。さらに、乾燥後の前記繊維状物への鉄粉の担持力を高めてその脱落を抑える点に加え、熱溶融成分、熱架橋成分の添加による機械的強度の向上が期待できる点から、前記中間抄造体の抄紙後で前記電解質の電解液を含有させる前に該中間抄造体を乾燥させることが好ましい。   The intermediate papermaking containing the iron powder (having heat reactivity under normal atmosphere) is actively dried to separate the water, thereby suppressing iron powder oxidation during the production process and long-term storage stability. It is possible to obtain an intermediate papermaking excellent in the above. Furthermore, in addition to the point of increasing the supporting force of iron powder on the fibrous material after drying and suppressing its falling off, it is possible to expect improvement in mechanical strength by adding a hot-melt component and a thermal crosslinking component. It is preferable to dry the intermediate papermaking after the papermaking and before the electrolytic solution of the electrolyte is contained.

前記中間抄造体は、加熱乾燥によって乾燥することが好ましい。この場合、加熱乾燥温度は、60〜300℃であることが好ましく、80〜250℃であることがより好ましい。中間抄造体の加熱乾燥温度を斯かる温度範囲とすることで、乾燥時間を短くできるため、水分の乾燥に伴う鉄粉の酸化反応を抑えることができ、得られる発熱抄造体の発熱性の低下を防ぐことができる。また同時に、鉄粉の酸化による発熱抄造体の変色を防止することができる。さらに保水剤等の性能劣化を抑えることができるため、発熱抄造体の発熱効果を維持することができるほか、中間抄造体内部で急激に水分が気化して発熱抄造体の構造が破壊されたりすることを防ぐことができる。   The intermediate papermaking product is preferably dried by heat drying. In this case, the heat drying temperature is preferably 60 to 300 ° C, more preferably 80 to 250 ° C. By setting the heating temperature of the intermediate papermaking to such a temperature range, the drying time can be shortened, so that the oxidation reaction of iron powder accompanying the drying of moisture can be suppressed, and the exothermic deterioration of the resulting exothermic papermaking is reduced. Can be prevented. At the same time, discoloration of the exothermic papermaking due to iron powder oxidation can be prevented. In addition, since the performance deterioration of the water retaining agent can be suppressed, the exothermic effect of the exothermic papermaking can be maintained, and the structure of the exothermic papermaking can be destroyed due to the rapid evaporation of moisture inside the intermediate papermaking. Can be prevented.

乾燥後における中間抄造体の含水率は、20%以下であることが好ましく、10%以下であることがより好ましい。含水率が20%以下であると長期保存安定性に優れ、例えば巻きロール状態で一時保存しておく場合等においても該ロールの厚み方向で水分の移動が起こり難く、発熱性能、機械的強度に変化がなく、優れている。   The water content of the intermediate papermaking after drying is preferably 20% or less, and more preferably 10% or less. When the moisture content is 20% or less, excellent long-term storage stability, for example, even when temporarily stored in a wound roll state, moisture does not easily move in the thickness direction of the roll, and heat generation performance and mechanical strength are improved. No change and excellent.

乾燥後における中間抄造体の裂断長は、100〜4000mであることが好ましく、200〜3000mであることがより好ましい。該裂断長が斯かる範囲内であると使用時ならびに生産・操業時での取り扱いが容易となるとともに、適度な通気性を有すために発熱抄造体中の鉄粉の酸化を有意に促進することができる。ここで、裂断長は、中間抄造体から長さ150mm×幅15mmの試験片を切り出した後、JIS P8113に準じ、該試験片をチャック間隔100mmで引張試験機に装着し、引張速度20mm/minで引張試験を行い、下記計算式により算出される値である。
裂断長〔m〕=(1/9.8)×(引張強さ〔N/m〕)×106/(試験片坪量〔g/m2〕)
The tear length of the intermediate papermaking after drying is preferably 100 to 4000 m, and more preferably 200 to 3000 m. When the breaking length is within such a range, handling during use, production and operation becomes easy, and since it has appropriate air permeability, the oxidation of iron powder in the exothermic papermaking is significantly accelerated. can do. Here, the breaking length is determined by cutting a test piece 150 mm long × 15 mm wide from the intermediate papermaking, and then mounting the test piece on a tensile tester with a chuck interval of 100 mm according to JIS P8113. It is a value calculated by the following calculation formula after performing a tensile test at min.
Breaking length [m] = (1 / 9.8) × (Tensile strength [N / m]) × 10 6 / (Test piece basis weight [g / m 2 ])

前記電解質及び前記チオ硫酸塩を含まない乾燥後の中間抄造体は、その1枚の坪量が10〜1000g/m2であることが好ましく、50〜600g/m2であることがより好ましい。斯かる範囲の坪量であると、軽くて使用感に優れる上に、生産性や操業性等の点、特に安定した中間抄造体を形成することができる点で好ましい。 The intermediate papermaking after drying that does not contain the electrolyte and the thiosulfate preferably has a basis weight of 10 to 1000 g / m 2 , and more preferably 50 to 600 g / m 2 . A basis weight in such a range is preferable in that it is light and excellent in feeling of use, and is capable of forming a stable intermediate paper product in terms of productivity and operability.

前記中間抄造体は、その一枚の厚みは、0.08〜1.2mmであることが好ましく、0.1〜0.6mmであることがより好ましい。該厚みが斯かる範囲であると、酸化助剤となる電解質を含ませて発熱抄造体とした場合に発熱性能、機械的強度、鉄粉、保水剤等の成分の定着が良好となり、安定した均一の肉厚、組成分布が得られるほか、ピンホールの発生等による中間抄造体の破壊等が発生し難くなり、生産性及び加工性が良好となる。また、発熱抄造体の折曲強度を確保でき、脆性破壊を簡単に起こし難くなるほか、柔軟性も良好であり、特に肘、膝、顔等の身体部位の屈伸する部位に装着した場合、装着性が悪く違和感なく使用できる。また、生産性においても、紙層形成時間や乾燥時間の遅延が起こり難く、操業性も良好となる他、発熱性能が良好で、曲げ等の加工性にも優れる。
前記中間抄造体は、複数枚重ねて使用することができる。複数枚重ねることにより、必要とされる発熱性能を容易に実現できるようになると同時に、発熱抄造体の厚さが厚くても、フレキシブル性が高く、使用感の優れた発熱抄造体を得ることができる。
As for the thickness of the said intermediate papermaking body, it is preferable that it is 0.08-1.2 mm, and it is more preferable that it is 0.1-0.6 mm. When the thickness is within such a range, the exothermic performance, mechanical strength, iron powder, water retention agent, and the like can be well fixed when the exothermic papermaking product is made to contain an electrolyte that serves as an oxidation aid, and is stable. In addition to obtaining a uniform thickness and composition distribution, it becomes difficult to cause destruction of the intermediate papermaking due to the occurrence of pinholes and the like, and productivity and workability are improved. In addition, the bending strength of the exothermic paper can be secured, it is difficult to easily cause brittle fracture, and the flexibility is also good, especially when it is attached to a body part such as the elbow, knee, face, etc. Can be used without any sense of incongruity. In terms of productivity, paper layer formation time and drying time are hardly delayed, operability is good, heat generation performance is good, and workability such as bending is also excellent.
A plurality of the intermediate papermaking products can be used in a stacked manner. By stacking multiple sheets, the required heat generation performance can be easily realized, and at the same time, even if the heat-generating paper sheet is thick, it is possible to obtain a heat-generating paper sheet that has high flexibility and excellent usability. it can.

前記中間抄造体の乾燥方法は、当該中間抄造体の厚さ、乾燥前の中間抄造体の処理方法、乾燥前の含水率、乾燥後の含水率等に応じて適宜選択することができる。該乾燥方法としては、例えば、加熱構造体(発熱体)との接触、加熱空気や蒸気(過熱蒸気)の吹き付け、真空乾燥、電磁波加熱、通電加熱等の乾燥方法が挙げられる。また、前述の脱水方法と組み合わせて同時に実施することもできる。   The method for drying the intermediate papermaking can be appropriately selected according to the thickness of the intermediate papermaking, the method for treating the intermediate papermaking before drying, the moisture content before drying, the moisture content after drying, and the like. Examples of the drying method include drying methods such as contact with a heating structure (heating element), spraying of heated air or steam (superheated steam), vacuum drying, electromagnetic wave heating, and electric heating. Moreover, it can also implement simultaneously with the above-mentioned dehydration method.

前記中間抄造体の成形(脱水、乾燥)は、不活性ガス雰囲気下で行うことが好ましいが、上述のように中間抄造体に酸化助剤となる電解質を含有していないので、必要に応じて通常の空気雰囲気下で成形を行うこともできる。このため、製造設備を簡略化することができる。得られた中間抄造体は、薄くて破れにくいので、必要に応じ、ロール状に巻き取ることができる。   The intermediate papermaking is preferably formed (dehydrated and dried) in an inert gas atmosphere. However, as described above, the intermediate papermaking does not contain an electrolyte that serves as an oxidizing aid. Molding can also be performed in a normal air atmosphere. For this reason, manufacturing equipment can be simplified. Since the obtained intermediate papermaking product is thin and difficult to break, it can be wound up in a roll shape as necessary.

乾燥した中間抄造体には、必要に応じて、クレープ処理、スリット加工、トリミングを施したり、ニードルパンチ加工を行うことにより孔あけを行うこともできる。また、前記原料組成物に熱可塑性樹脂成分や熱水解成分を含有させることにより、ヒートシール加工を施して貼り合わせ等を行い易くすることもできる。   The dried intermediate papermaking product can be pierced by creping, slitting, trimming, or needle punching as necessary. Moreover, by making the raw material composition contain a thermoplastic resin component or a hot water decomposing component, it is possible to perform heat sealing and facilitate bonding.

次に、前記中間抄造体に、前記電解質及び前記チオ硫酸塩を含ませる。中間抄造体にこれら電解質及びチオ硫酸塩を含ませる方法に特に制限はないが、これらの何れも水溶性である点を考慮すると、電解質及びチオ硫酸塩を含む水溶液(以下、混合溶液ともいう。)を調製し、同時に添加することが好ましい。   Next, the electrolyte and the thiosulfate are included in the intermediate papermaking product. There is no particular limitation on the method of including the electrolyte and thiosulfate in the intermediate papermaking body, but considering that both of them are water-soluble, an aqueous solution containing the electrolyte and thiosulfate (hereinafter also referred to as a mixed solution). ) Is preferably prepared and added simultaneously.

前記電解質及びチオ硫酸塩をこれらの混合溶液で含有させる方法は、抄造後における該中間抄造体の処理方法、中間抄造体の厚み等の形態、含水率に応じて適宜選択することができる。例えば、所定濃度の混合溶液を該中間抄造体にスプレー塗工する方法、該混合溶液をシリンジ等で該中間抄造体の一部分に注入し、前記繊維状物の毛管現象を利用して該中間抄造体全体に浸透させる方法、刷毛等で塗工する方法、該混合溶液に中間抄造体を浸漬する方法、グラビアコート法、リバースコート法、ドクターブレード法等が挙げられ、これらの中でも、電解質及びチオ硫酸塩を均一に分布でき、簡便で、設備コストも比較的少なくて済む点からスプレー塗工する方法が好ましい。また、複雑な形状、層構成の商品においては生産性が向上する点や、最終仕上げを別工程とできることにより生産のフレキシブル性が良好となる点、設備が簡便となる点からは、所定濃度の混合溶液をシリンジ等で注入する方法が好ましい。この混合溶液を注入する方法は、複層化したシート状の発熱
抄造体を所定の収容体に収容した後に行うこともできる。
The method of containing the electrolyte and thiosulfate in a mixed solution thereof can be appropriately selected according to the method for treating the intermediate papermaking after papermaking, the form such as the thickness of the intermediate papermaking, and the water content. For example, a method of spray-coating a mixed solution of a predetermined concentration onto the intermediate papermaking body, injecting the mixed solution into a part of the intermediate papermaking body with a syringe or the like, and utilizing the capillary phenomenon of the fibrous material Examples include a method of penetrating the whole body, a method of coating with a brush, a method of immersing the intermediate papermaking in the mixed solution, a gravure coating method, a reverse coating method, a doctor blade method, etc. Among these, electrolyte and thiol A spray coating method is preferred because it can distribute the sulfate uniformly, is simple, and requires relatively little equipment cost. In addition, in the case of products with complicated shapes and layer configurations, the concentration of the specified concentration is improved from the viewpoint that productivity is improved, the final finishing can be performed as a separate process, the production flexibility is improved, and the equipment is simplified. A method of injecting the mixed solution with a syringe or the like is preferable. This method of injecting the mixed solution can also be performed after the multilayered sheet-like exothermic papermaking is stored in a predetermined container.

本発明の発熱抄造体は、スラリー原料組成物から抄造により形成されるものであるために、水溶性であるチオ硫酸塩をスラリー原料組成物に添加させた場合には、抄紙網からの流出する量を考慮すると、多量のチオ硫酸塩が必要となり、さらに脱水時においてもチオ硫酸塩が流出し、歩留まりの面及び硬化抑制効果の面で問題となる。また乾燥時には、添加されたチオ硫酸塩が熱による影響を受け、臭気発生等による作業環境の悪化につながる。   Since the exothermic papermaking of the present invention is formed by papermaking from a slurry raw material composition, when water-soluble thiosulfate is added to the slurry raw material composition, it flows out of the papermaking net. Considering the amount, a large amount of thiosulfate is required, and further, thiosulfate flows out even during dehydration, which causes a problem in terms of yield and curing suppression effect. In addition, during drying, the added thiosulfate is affected by heat, leading to deterioration of the working environment due to generation of odor and the like.

一方、前述のように、中間抄造体に電解質及びチオ硫酸塩を混合溶液で添加させる方法は、上記の問題点が発生しない上、中間抄造体中にチオ硫酸塩を均一に存在させることができる為、良好な発熱性能を有する発熱抄造体を得ることができる。また、チオ硫酸塩の添加量の定量化及び安定化も図ることができる。   On the other hand, as described above, the method of adding the electrolyte and thiosulfate to the intermediate papermaking as a mixed solution does not cause the above-mentioned problems, and allows the thiosulfate to exist uniformly in the intermediate papermaking. Therefore, an exothermic paper product having a good exothermic performance can be obtained. In addition, the amount of thiosulfate added can be quantified and stabilized.

上述のように中間抄造体に混合溶液を含有させた後、必要に応じて含水率を調整し、安定化させて発熱抄造体(発熱シート)とする。そして必要に応じ、透湿性のシートと非透湿性のシートとの間に挟み、トリミング等の処理を施し、所定の大きさに加工することができる。また、必要に応じて、透湿性のシートの間に発熱抄造体を挟んで所定の加工をすることもできる。得られた発熱抄造体は、未使用状態では、例えば、酸素不透過性の包装材で包装されて提供される。   After the mixed paper is contained in the intermediate paper as described above, the moisture content is adjusted as necessary, and stabilized to obtain a heat-generating paper (heat-generating sheet). If necessary, the sheet can be sandwiched between a moisture permeable sheet and a non-moisture permeable sheet, subjected to a process such as trimming, and processed into a predetermined size. In addition, if necessary, a predetermined process can be performed by sandwiching a heat-generating papermaking sheet between moisture-permeable sheets. In the unused state, the obtained exothermic paper product is provided by being packaged with, for example, an oxygen-impermeable packaging material.

発熱抄造体は、その1枚の厚みが0.08〜2.0mmであることが好ましく、0.15〜1.8mmであることがより好ましい。厚みが0.08mm以上であると、発熱性能、機械強度も十分である。厚みが2mm以下であると、柔軟性も十分であり、使用感にも優れる。ここで、発熱抄造体の厚みは、JIS P8118に準じ、発熱抄造体の5点以上を測定し、その平均値を厚みとして算出することができる。   The exothermic paper product preferably has a thickness of 0.08 to 2.0 mm, more preferably 0.15 to 1.8 mm. When the thickness is 0.08 mm or more, heat generation performance and mechanical strength are sufficient. When the thickness is 2 mm or less, the flexibility is sufficient and the feeling of use is excellent. Here, the thickness of the exothermic paper product can be calculated according to JIS P8118 by measuring five or more points of the exothermic paper product and calculating the average value as the thickness.

発熱抄造体は、その1枚の坪量が10〜2000g/m2であることが好ましく、50〜1500g/m2であることがより好ましい。該坪量が10g/m2以上であると、安定した発熱抄造体の形成を行なうことができる。該坪量が2000g/m2以下であると、使用感の点で好ましい。 Heating papermaking product is preferably a basis weight of one that is 10 to 2000 g / m 2, and more preferably 50 to 1500 g / m 2. When the basis weight is 10 g / m 2 or more, a stable exothermic papermaking product can be formed. When the basis weight is 2000 g / m 2 or less, it is preferable from the viewpoint of use feeling.

また、発熱抄造体は、2枚以上を積層して使用することができる。積層された発熱抄造体全体の厚みは0.2〜5mmであることが好ましく、0.5〜3mmであることがより好ましい。厚みが0.2mm以上であると、発熱性能、機械強度も十分である。厚みが5mm以下であると、積層された発熱抄造体全体の柔軟性も十分であり、使用感にも優れる。   Moreover, the exothermic papermaking body can be used by laminating two or more sheets. The thickness of the laminated exothermic papermaking body is preferably 0.2 to 5 mm, and more preferably 0.5 to 3 mm. When the thickness is 0.2 mm or more, heat generation performance and mechanical strength are sufficient. When the thickness is 5 mm or less, the flexibility of the entire exothermic paper laminate is sufficient, and the usability is excellent.

積層された発熱抄造体の坪量が100〜3000g/m2であることが好ましく、200〜2500g/m2であることがより好ましい。該坪量が100〜3000g/m2の範囲であると、発熱性能に優れ、使用初期の使用感にも優れる。 Preferably the basis weight of the laminated heating papermaking product is 100 to 3000 g / m 2, and more preferably 200~2500g / m 2. When the basis weight is in the range of 100 to 3000 g / m 2 , the heat generation performance is excellent and the usability at the initial stage of use is also excellent.

また、積層された発熱抄造体の密度は0.6〜3g/cm3であることが好ましく、0.7〜2g/cm3であることがより好ましい。該密度が0.6g/cm3以上であると被酸化性金属とそれ以外の成分とが十分に密着し、良好な発熱性能ならびに十分な強度を発熱抄造体に付与させることができる。また、構成成分の脱落も殆ど無く、生産性及び加工性の点で優れている。該密度が3g/cm3以下であると、柔軟性の点で好ましく、使用感に優れるほか、酸化反応が進行する際の硬化も和らげることができる。 The density of the laminated heating papermaking product is preferably from 0.6~3g / cm 3, more preferably 0.7~2g / cm 3. When the density is 0.6 g / cm 3 or more, the oxidizable metal and the other components are sufficiently adhered to each other, and good exothermic performance and sufficient strength can be imparted to the exothermic papermaking. Moreover, there is almost no dropout of the constituent components, which is excellent in terms of productivity and workability. When the density is 3 g / cm 3 or less, it is preferable from the viewpoint of flexibility, and it is excellent in feeling of use, and can also be cured when the oxidation reaction proceeds.

発熱抄造体は、発熱反応前の曲げ強度と発熱反応終了時の曲げ強度の比である、曲げ強度倍率が20以下であることが好ましく、10以下であることがより好ましい。ここで、曲げ強度及び曲げ強度倍率は、後述する実施例における測定方法で測定される。   The exothermic papermaking product preferably has a bending strength magnification of 20 or less, more preferably 10 or less, which is the ratio of the bending strength before the exothermic reaction to the bending strength at the end of the exothermic reaction. Here, the bending strength and the bending strength magnification are measured by a measuring method in Examples described later.

本実施形態の発熱抄造体は、前述のように、チオ硫酸塩を含んでいるので、酸化が進行した場合にも硬化が抑制される。また、本発明によれば、発熱反応前と発熱反応終了時の曲げ強度の比である、曲げ強度倍率が20以下の発熱抄造体が提供され、発熱抄造体を身体に装着して使用するときに使用者に違和感を生じさせることがなく、熱を効率良く身体に伝えることができる。   Since the exothermic paper product of the present embodiment contains thiosulfate as described above, curing is suppressed even when oxidation proceeds. In addition, according to the present invention, there is provided an exothermic paper product having a bending strength ratio of 20 or less, which is a ratio of the bending strength before the exothermic reaction and at the end of the exothermic reaction, and when the exothermic paper product is used by being attached to the body. Therefore, the user can efficiently transmit heat to the body without causing the user to feel uncomfortable.

本発明は、前記実施形態に制限されるものではなく、本発明の趣旨を逸脱しない範囲において適宜変更することができる。
例えば、前記実施形態では、シート状の発熱抄造体について説明したが、本発明の発熱抄造体は、立体形状を付与することもできる。例えば、シート状に抄造した中間抄造体に、プレス成形やエンボス加工等によって立体形状を付与したり、或いは従来から知られているパルプモールド成形体のように中間抄造体を立体形状に抄造した後、前記電解質及びチオ硫酸塩を含有させることで、立体的な発熱抄造体とすることもできる。
The present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the spirit of the present invention.
For example, in the above-described embodiment, the sheet-like exothermic paper product has been described. However, the exothermic paper product of the present invention can also have a three-dimensional shape. For example, after giving a three-dimensional shape to the intermediate paper body made into a sheet shape by press molding or embossing, or after making the intermediate paper body into a three-dimensional shape like a conventionally known pulp mold molded body By adding the electrolyte and thiosulfate, a three-dimensional exothermic paper product can be obtained.

以下、本発明の発熱抄造体を実施例によりさらに具体的に説明する。
下記実施例1、2等及び比較例1のようにして、表1に示す固形分含有組成の中間抄造体を作製した。さらに、得られた中間抄造体から下記のようにして発熱抄造体を作製した。得られた発熱抄造体について、酸化反応(発熱反応)前の曲げ強度と酸化反応(発熱反応)終了時の曲げ強度を下記のように測定してその最大曲げ荷重で硬化抑制効果を評価した。また、得られた発熱抄造体について、下記のようにして発熱特性を調べた。それらの結果を表2及び図1に示す。
Hereinafter, the exothermic papermaking of the present invention will be described more specifically with reference to examples.
As in Examples 1 and 2 below and Comparative Example 1, intermediate papermaking compositions having a solid content composition shown in Table 1 were prepared. Further, an exothermic papermaking body was produced from the obtained intermediate papermaking body as follows. About the obtained exothermic papermaking body, the bending strength before the oxidation reaction (exothermic reaction) and the bending strength at the end of the oxidation reaction (exothermic reaction) were measured as follows, and the effect of suppressing the curing was evaluated by the maximum bending load. Further, the exothermic paper obtained was examined for exothermic characteristics as follows. The results are shown in Table 2 and FIG.

〔実施例1〕
<原料組成物配合>
被酸化性金属:鉄粉(粒径100μm、パウダーテック株式会社、商品名「NRD−3K」)、80.7質量%
繊維状物:パルプ繊維(フレッチャー・チャレンジ・カナダ社製、商品名「Mackenzie」)、9.7質量%
保水剤:活性炭(粒径45μm、(日本エンバイロケミカルズ社製、商品名「カルボラフィン」))、9.6質量%
水:工業用水を使用。固形分濃度0.3%となるまで添加した。
上記原料組成物100質量部に対し、凝集剤(カルボキシメチルセルロースナトリウム(第一工業薬品(株)製、商品名「セロゲン HE−1500F」)0.22質量部、及びポリアミドエピクロロヒドリン樹脂(日本PMC(株)製、商品名「WS4020」)0.8質量部)を添加した。
[Example 1]
<Combination of raw material composition>
Oxidizable metal: Iron powder (particle size 100 μm, Powder Tech Co., Ltd., trade name “NRD-3K”), 80.7% by mass
Fibrous material: Pulp fiber (made by Fletcher Challenge Canada, trade name “Mackenzie”), 9.7% by mass
Water retention agent: activated carbon (particle size 45 μm, (manufactured by Nippon Enviro Chemicals, trade name “Carborafine”)), 9.6% by mass
Water: Industrial water is used. It was added until the solid content concentration became 0.3%.
With respect to 100 parts by mass of the raw material composition, 0.22 parts by mass of a flocculant (carboxymethyl cellulose sodium (Daiichi Kogyo Seiyaku Co., Ltd., trade name “Serogen HE-1500F”), and polyamide epichlorohydrin resin (Japan) PMC product, trade name “WS4020”) 0.8 parts by mass) was added.

<抄紙条件>
上記原料組成物を用い、傾斜型短網抄紙機によって、抄紙して湿潤状態の成形シートを作製した。
<Paper making conditions>
Using the raw material composition, a paper sheet was made by a slanted short net paper machine to prepare a wet molded sheet.

<乾燥条件>
フェルトで挟持して加圧脱水し、そのまま140℃の加熱ロール間に通し、含水率が5質量%以下になるまで乾燥した。そして、坪量450g/m2の中間抄造体を得た。
<Drying conditions>
It was sandwiched with felt and dehydrated under pressure, passed through a heating roll at 140 ° C. as it was, and dried until the water content became 5% by mass or less. An intermediate papermaking product having a basis weight of 450 g / m 2 was obtained.

〔粉体の含有量の測定〕
得られた抄造成形体の粉体の含有量及び組成比率は、熱重量測定装置(セイコーインスツルメンツ社製、TG/DTA6200)を用いて測定した。
[Measurement of powder content]
The powder content and composition ratio of the obtained paper-molded molded body were measured using a thermogravimetric apparatus (TG / DTA6200, manufactured by Seiko Instruments Inc.).

<発熱シートの作製>
得られた中間抄造体を98mm×82mmに切り取り、2枚積層する。そして、積層された中間抄造体100質量部に対して塩化ナトリウムを5質量%含有する電解液を42質量部準備し、そこにチオ硫酸ナトリウムを0.5質量部混合し、溶解させる。その後、前記塩化ナトリウムとチオ硫酸ナトリウムを溶解する電解溶液を、該積層させた中間抄造体にシリンジを用いて注入、添加し、毛管現象を利用してシート全体に浸透させて発熱シートを得た。
そして、上記の発熱シートの上下に、下記透湿性のシートと非透湿性のシートを積層し、発熱シートの周りをヒートシールによって接合し、試験体を作製した。
透湿性のシート:ポリエチレン製の微多孔シート、透湿度1000g/(m2・24h)
非透湿性のシート:ポリエチレンシート
<Preparation of exothermic sheet>
The obtained intermediate papermaking product is cut into 98 mm × 82 mm, and two sheets are laminated. Then, 42 parts by mass of an electrolytic solution containing 5% by mass of sodium chloride is prepared with respect to 100 parts by mass of the laminated intermediate sheet, and 0.5 parts by mass of sodium thiosulfate is mixed and dissolved therein. Thereafter, an electrolytic solution for dissolving the sodium chloride and sodium thiosulfate was injected and added to the laminated intermediate sheet using a syringe, and the whole sheet was infiltrated using capillary action to obtain a heat generating sheet. .
And the following moisture-permeable sheet | seat and the moisture-impermeable sheet | seat were laminated | stacked on the upper and lower sides of said heat generating sheet, the circumference | surroundings of the heat generating sheet were joined by heat seal, and the test body was produced.
Moisture-permeable sheet: microporous sheet made of polyethylene, moisture permeability of 1000 g / (m 2 · 24 h)
Non-breathable sheet: Polyethylene sheet

<曲げ強度の測定>
発熱前及び発熱反応終了時の試験体について、スパン間距離50mmで試験体両端を支え、試験体中央部を幅50mm、先端半径5mmの押圧部材にて、クロスヘッドスピード20mm/minで負荷を与えその最大荷重を測定し、曲げ強度とした。また、曲げ強度倍率(=発熱反応終了時曲げ強度/発熱反応前曲げ強度)も得た。それらの結果を表2に示した。
<Measurement of bending strength>
For the test body before heat generation and at the end of the exothermic reaction, both ends of the test body were supported at a span distance of 50 mm, and a load was applied at a crosshead speed of 20 mm / min with a pressing member having a width of 50 mm and a tip radius of 5 mm at the center of the test body. The maximum load was measured and used as the bending strength. Further, the bending strength magnification (= bending strength at the end of exothermic reaction / bending strength before exothermic reaction) was also obtained. The results are shown in Table 2.

<発熱反応評価>
得られた試験体を、JIS S4100に準拠した簡易型温度測定装置を用いて発熱による温度を測定した。簡易型温度測定装置は、厚さ1mmのポリプロピレンシートを6枚、日本薬局方で規定するタイプ1のガーゼを2枚重ね、表面を35℃に保った測定台を水平に設置したものである。該測定装置の上に上記試験体を透湿シートを下面として静置し、その上から「綿100%、テックス番手5.905双糸のネル」を8枚重ねて発熱反応評価を行った。
その結果、38℃以上の発熱が5時間以上継続し、発熱反応終了時の発熱シートは全面において酸化が進行し赤茶色に変色していた。ここで、発熱開始後、12時間経過した時点で発熱反応終了時とみなした。得られた発熱特性を図1に示した。
<Exothermic reaction evaluation>
The obtained specimen was measured for temperature due to heat generation using a simple temperature measuring device in accordance with JIS S4100. The simple type temperature measuring device is a device in which 6 sheets of 1 mm thick polypropylene sheets, 2 sheets of type 1 gauze prescribed by the Japanese Pharmacopoeia are stacked, and a measuring table whose surface is kept at 35 ° C. is installed horizontally. The test specimen was allowed to stand on the measuring apparatus with the moisture permeable sheet as the bottom surface, and eight sheets of “100% cotton, tex count 5.905 twin yarn” were stacked thereon to evaluate the exothermic reaction.
As a result, the heat generation at 38 ° C. or more continued for 5 hours or more, and the heat generation sheet at the end of the heat generation reaction was oxidized on the entire surface and turned reddish brown. Here, the end of the exothermic reaction was regarded as 12 hours after the start of exotherm. The obtained exothermic characteristics are shown in FIG.

〔実施例2〕
実施例1で用いたチオ硫酸ナトリウムの添加量を表1に示すように1質量部にした以外は、実施例1と同様にして発熱抄造体を作製し、実施例1と同様にして発熱特性及び反応前後の硬化抑制の程度を調べた。結果を表2及び図1に示した。
[Example 2]
Except that the amount of sodium thiosulfate used in Example 1 was 1 part by mass as shown in Table 1, an exothermic paper product was prepared in the same manner as in Example 1, and the exothermic characteristics were the same as in Example 1. And the degree of cure inhibition before and after the reaction was examined. The results are shown in Table 2 and FIG.

〔実施例3〕
実施例1で用いたチオ硫酸ナトリウムの添加量を表1に示すように5質量部にした以外は、実施例1と同様にして発熱抄造体を作製し、実施例1と同様にして発熱特性及び反応前後の硬化抑制の程度を調べた。結果を表2及び図1に示した。
Example 3
Except that the amount of sodium thiosulfate used in Example 1 was changed to 5 parts by mass as shown in Table 1, a exothermic paper product was prepared in the same manner as in Example 1, and the exothermic characteristics were the same as in Example 1. And the degree of cure inhibition before and after the reaction was examined. The results are shown in Table 2 and FIG.

〔実施例4〕
実施例1で用いたチオ硫酸ナトリウムの添加量を表1に示すように10質量部にした以外は、実施例1と同様にして発熱抄造体を作製し、実施例1と同様にして発熱特性及び反応前後の硬化抑制の程度を調べた。結果を表2及び図1に示した。
Example 4
Except that the amount of sodium thiosulfate used in Example 1 was changed to 10 parts by mass as shown in Table 1, a exothermic paper product was prepared in the same manner as in Example 1, and the exothermic characteristics were the same as in Example 1. And the degree of cure inhibition before and after the reaction was examined. The results are shown in Table 2 and FIG.

〔実施例5〕
実施例1で用いたチオ硫酸ナトリウムの添加量を表1に示すように20質量部にした以外は、実施例1と同様にして発熱抄造体を作製し、実施例1と同様にして発熱特性を調べた。結果を図1に示した。
Example 5
Except that the amount of sodium thiosulfate used in Example 1 was 20 parts by mass as shown in Table 1, a exothermic paper product was prepared in the same manner as in Example 1, and the exothermic characteristics were the same as in Example 1. I investigated. The results are shown in FIG.

〔比較例1〕
チオ硫酸ナトリウムを添加しなかった以外は、実施例1と同様にして発熱抄造体を作製し、発熱特性及び反応前後の硬化抑制の程度を調べた。結果を表2及び図1に示した。
[Comparative Example 1]
Exothermic papermaking was prepared in the same manner as in Example 1 except that sodium thiosulfate was not added, and the exothermic characteristics and the degree of curing inhibition before and after the reaction were examined. The results are shown in Table 2 and FIG.

Figure 2008101095
Figure 2008101095

Figure 2008101095
Figure 2008101095

表2に示したように、実施例の発熱抄造体は、比較例のものに比べて酸化反応後において曲げ強度が低く、硬化が抑制されていることが確認できた。また、図1に示したように、チオ硫酸ナトリウムの含有量が5質量部程度までは、実施例の発熱抄造体は、比較例のものと比べて同等の発熱性能が得られることが確認できた。また図1に示したように、チオ硫酸ナトリウムの含有量が10〜20質量部程度では、最高温度が多少低下するが、長時間に渡って安定した発熱性能が得られることが確認できた。なお全実施例において、チオ硫酸ナトリウムを添加することにより、保存中の発熱抄造体からの水素発生を抑える効果があることも確認できた。   As shown in Table 2, it was confirmed that the exothermic paper products of the examples had lower bending strength after the oxidation reaction than those of the comparative examples, and the curing was suppressed. In addition, as shown in FIG. 1, it can be confirmed that the exothermic papermaking material of the example can obtain the same exothermic performance as compared with the comparative example up to about 5 parts by mass of sodium thiosulfate. It was. Further, as shown in FIG. 1, it was confirmed that when the content of sodium thiosulfate is about 10 to 20 parts by mass, the maximum temperature is somewhat lowered, but stable heat generation performance can be obtained for a long time. In all the examples, it was also confirmed that the addition of sodium thiosulfate had an effect of suppressing hydrogen generation from the exothermic papermaking during storage.

本発明の発熱抄造体は、薄く、使用前後において硬化を抑制できるため、柔軟性を有し、短時間で高い発熱が得られる特性を利用することによって、例えば、おしぼり、蒸気発生体、パック等の顔、身体の洗浄、除菌、保湿、メイク落とし等のスキンケア用途、洗浄・除菌、ワックス徐放、芳香、消臭等の諸機能剤と組み合わせ、フローリング、畳み等の建物の内外装品及びインテリア用品や、レンジ周り、換気扇等の調理器具等の手入れといったいわゆるハウスケア用途、車等の洗浄、ワックスかけ等のカーケア用途にも適用することができる。また本発明の発熱抄造体は、蒸気を発生させたい方向に透湿面を配置することにより蒸気発生体としても用いることができる。このように蒸気を利用することにより、温熱効果ならびに洗浄効果の向上が可能となる。   The exothermic paper-making body of the present invention is thin and can suppress curing before and after use, and therefore has flexibility and, for example, a wet towel, a steam generator, a pack, etc. Face and body washing, sterilization, moisturizing, makeup remover and other skin care applications, cleaning and sterilization, wax release, aroma, deodorant, etc. It can also be applied to so-called house care applications such as interior goods, around the range, and care for cooking utensils such as ventilation fans, and car care applications such as car washing and waxing. The exothermic papermaking of the present invention can also be used as a steam generator by disposing a moisture permeable surface in a direction in which steam is desired to be generated. By using steam in this way, it is possible to improve the thermal effect and the cleaning effect.

実施例及び比較例の発熱抄造体の発熱特性を示す図あり、(a)は実施例1〜3における発熱特性を示す図、(b)は実施例4、5及び比較例1における発熱特性を示す図である。It is a figure which shows the exothermic characteristic of the exothermic papermaking of an Example and a comparative example, (a) is a figure which shows the exothermic characteristic in Examples 1-3, (b) is the exothermic characteristic in Examples 4, 5 and Comparative Example 1. FIG.

Claims (5)

被酸化性金属、繊維状物、保水剤、水分、酸化助剤となる電解質及びチオ硫酸塩を含む発熱抄造体。   An exothermic paper product comprising an oxidizable metal, a fibrous material, a water retention agent, moisture, an electrolyte serving as an oxidation aid, and a thiosulfate. 前記チオ硫酸塩を前記発熱抄造体中の被酸化性金属100質量部に対して0.5〜20質量部含有する請求項1に記載の発熱抄造体。   The exothermic papermaking of Claim 1 which contains 0.5-20 mass parts of said thiosulfate with respect to 100 mass parts of oxidizable metals in the said exothermic papermaking. 発熱反応前の曲げ強度と発熱反応終了時の曲げ強度の比である、曲げ強度倍率が20以下である請求項1又は2に記載の発熱抄造体。   The exothermic papermaking according to claim 1 or 2, wherein the bending strength magnification, which is the ratio of the bending strength before the exothermic reaction and the bending strength at the end of the exothermic reaction, is 20 or less. 被酸化性金属、繊維状物、保水剤を含み、酸化助剤となる電解質を含まない中間抄造体に、該電解質及びチオ硫酸塩の水溶液を添加する発熱抄造体の製造方法。   A method for producing an exothermic papermaking, comprising adding an aqueous solution of the electrolyte and thiosulfate to an intermediate papermaking containing an oxidizable metal, a fibrous material, and a water retention agent, and not containing an electrolyte as an oxidation aid. 前記チオ硫酸塩を被酸化性金属100質量部に対して0.5〜20質量部添加させる請求項4に記載の発熱抄造体の製造方法。   The manufacturing method of the exothermic papermaking of Claim 4 which adds 0.5-20 mass parts of said thiosulfate with respect to 100 mass parts of oxidizable metals.
JP2006284301A 2006-10-18 2006-10-18 Exothermic papermaking method and manufacturing method thereof Active JP5339674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284301A JP5339674B2 (en) 2006-10-18 2006-10-18 Exothermic papermaking method and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284301A JP5339674B2 (en) 2006-10-18 2006-10-18 Exothermic papermaking method and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008101095A true JP2008101095A (en) 2008-05-01
JP5339674B2 JP5339674B2 (en) 2013-11-13

Family

ID=39435675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284301A Active JP5339674B2 (en) 2006-10-18 2006-10-18 Exothermic papermaking method and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5339674B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136269A (en) * 2009-12-28 2011-07-14 Kao Corp Coating method and coater
JP2013183932A (en) * 2012-03-08 2013-09-19 Ferric Inc Exothermic composition and heating material using the same
CN109414341A (en) * 2016-06-27 2019-03-01 尤妮佳股份有限公司 Warming piece

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129182A (en) * 1977-04-18 1978-11-10 Taisho Pharmaceut Co Ltd Heaing composition
JPS53137438A (en) * 1977-05-07 1978-11-30 Taisho Pharmaceutical Co Ltd Heating elements
JPS5556180A (en) * 1978-10-20 1980-04-24 Nippon Jiyunsuiso Kk Heat-producing composition
JP2003102761A (en) * 2001-09-28 2003-04-08 Kao Corp Method of manufacturing heating compact
JP2005319049A (en) * 2004-05-07 2005-11-17 Kao Corp Heating compact
WO2006006665A1 (en) * 2004-07-14 2006-01-19 Mycoal Products Corporation Exothermic composition and heating element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129182A (en) * 1977-04-18 1978-11-10 Taisho Pharmaceut Co Ltd Heaing composition
JPS53137438A (en) * 1977-05-07 1978-11-30 Taisho Pharmaceutical Co Ltd Heating elements
JPS5556180A (en) * 1978-10-20 1980-04-24 Nippon Jiyunsuiso Kk Heat-producing composition
JP2003102761A (en) * 2001-09-28 2003-04-08 Kao Corp Method of manufacturing heating compact
JP2005319049A (en) * 2004-05-07 2005-11-17 Kao Corp Heating compact
WO2006006665A1 (en) * 2004-07-14 2006-01-19 Mycoal Products Corporation Exothermic composition and heating element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136269A (en) * 2009-12-28 2011-07-14 Kao Corp Coating method and coater
JP2013183932A (en) * 2012-03-08 2013-09-19 Ferric Inc Exothermic composition and heating material using the same
CN109414341A (en) * 2016-06-27 2019-03-01 尤妮佳股份有限公司 Warming piece

Also Published As

Publication number Publication date
JP5339674B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP4749028B2 (en) Paper-molded molded body, method for producing the same, and exothermic molded body
WO2007018211A1 (en) Heating element and heating intermediate
WO2004041135A1 (en) Molded sheet
JP4233380B2 (en) Exothermic molded body
JP3703469B2 (en) Molded sheet
JP5339674B2 (en) Exothermic papermaking method and manufacturing method thereof
JP3992689B2 (en) Sheet heating device
JP3992693B2 (en) Heating equipment
JP5025456B2 (en) Sheet heating element, sheet heating intermediate and heating sheet
JP4073406B2 (en) Laminated sheet
JP4458869B2 (en) Exothermic sheet
JP5019820B2 (en) Heating element and heat generating intermediate
JP2008220788A (en) Oxidizable sheet and oxidizable article
JP3874783B2 (en) Manufacturing method of heat generating sheet
JP2005319049A (en) Heating compact
JP4076511B2 (en) Sheet-like exothermic molded body
JP2005111180A (en) Heating compact
JP2005224316A (en) Sheet warmer
JP2005224314A (en) Sheet formed heating body
JP2005307050A (en) Molded product
JP2005058248A (en) Heat generating sheet
JP2007144407A (en) Oxygen scavenger, oxygen scavenger intermediate, oxygen scavenger composite body and its production method
JP2005224317A (en) Sheet warmer
JP2005224313A (en) Heating sheet
JP4420914B2 (en) Heating equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R151 Written notification of patent or utility model registration

Ref document number: 5339674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250