JP2008100459A - Polystyrene-based resin laminated foam sheet - Google Patents

Polystyrene-based resin laminated foam sheet Download PDF

Info

Publication number
JP2008100459A
JP2008100459A JP2006286057A JP2006286057A JP2008100459A JP 2008100459 A JP2008100459 A JP 2008100459A JP 2006286057 A JP2006286057 A JP 2006286057A JP 2006286057 A JP2006286057 A JP 2006286057A JP 2008100459 A JP2008100459 A JP 2008100459A
Authority
JP
Japan
Prior art keywords
laminated
thickness
layer
polystyrene
foam sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006286057A
Other languages
Japanese (ja)
Other versions
JP4683562B2 (en
Inventor
Kazuhiko Morita
和彦 森田
Yoshinari Saito
良成 斎藤
Taku Kawada
卓 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2006286057A priority Critical patent/JP4683562B2/en
Publication of JP2008100459A publication Critical patent/JP2008100459A/en
Application granted granted Critical
Publication of JP4683562B2 publication Critical patent/JP4683562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polystyrene-based resin laminated foam sheet which exhibits an excellent thermal moldability and can be thermally molded into moldings with outstanding appearance as a secondary product featuring its printability to a curved surface right after thermal molding. <P>SOLUTION: This laminated foam sheet has a degree of thermal shrinkage at 135°C or below showing not more than 15% in the extrusion direction and not more than 30% in the width direction. In addition, the sheet is composed of a polystyrene-based resin foamed layer and an impact-resistant polystyrene-based resin layer overlying one surface of the foamed layer. Further, in the TMA curve obtained by thermomechanical analysis of a 200 μm thick part from the surface of a non-laminated layer of the foamed layer, at 10°C/min heat-up speed, the ratio (thickness/number of air bubbles in the thickness direction) of the thickness (μm) of the foamed layer to the number of air bubbles (piece), in the thickness direction, of a perpendicular section of the foamed layer, falls within the range of 100 to 180 μm/piece. Besides, the ratio (σ/X) of a standard deviation (σ) of the air bubble diameter, in the horizontal direction, of the air bubble which is present in an optional straight line, in the thickness direction, of a perpendicular section of the foamed layer, for the average air bubble diameter (X), in the horizontal direction, of the air bubble which is present in the described optional straight line, is not more than 0.40. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はポリスチレン系樹脂積層発泡シートに関し、特に丼等の深絞りの熱成形に好適なポリスチレン系樹脂積層発泡シートに関する。   The present invention relates to a polystyrene-based resin laminated foam sheet, and more particularly to a polystyrene-based resin laminated foam sheet suitable for deep-drawing thermoforming such as wrinkles.

ポリスチレン系樹脂積層発泡シートは、熱成形による成形体を得るための成形用シートとして従来から広く利用されてきた。このポリスチレン系樹脂積層発泡シート(以下、単に「積層発泡シート」ともいう。)は、ポリスチレン系樹脂発泡層(以下、単に「発泡層」又は「発泡シート」ともいう。)に耐衝撃性ポリスチレン系樹脂層(以下、単に「HIPS層」ともいう。)が積層されたシートである。該積層発泡シートは、押出機を用いてポリスチレン系樹脂と気泡調整剤等の各種の添加剤と発泡剤とを溶融混練することによって発泡性溶融混合樹脂とし、該発泡性溶融混合樹脂を、高圧のダイ内から大気圧下に押出することによって発泡シートを形成した後、耐衝撃性ポリスチレン系樹脂層を押出ラミネート法により積層したり、発泡性溶融混合樹脂と耐衝撃性ポリスチレン系樹脂の溶融物を共押出すること等によって製造される。   Conventionally, polystyrene-based resin laminated foam sheets have been widely used as molding sheets for obtaining molded articles by thermoforming. This polystyrene-based resin-laminated foam sheet (hereinafter also simply referred to as “laminated foam sheet”) is used as a polystyrene-based resin foam layer (hereinafter also simply referred to as “foam layer” or “foam sheet”). A sheet in which a resin layer (hereinafter, also simply referred to as “HIPS layer”) is laminated. The laminated foam sheet is made into a foamable melt-mixed resin by melt-kneading a polystyrene resin, various additives such as a bubble regulator and a foaming agent using an extruder, After forming a foam sheet by extruding from the inside of the die under atmospheric pressure, an impact-resistant polystyrene resin layer is laminated by an extrusion lamination method, or a melt of a foamable melt-mixed resin and an impact-resistant polystyrene resin It is manufactured by coextrusion.

このようにして得られた積層発泡シートを加熱成形してなる発泡シート成形体(以下、単に「成形体」ともいう。)は、断熱性に優れ、しかも軽量で安価なことからカップ麺容器等に広く使用されている。   A foamed sheet molded body (hereinafter also simply referred to as a “molded body”) obtained by heat-molding the laminated foamed sheet thus obtained is excellent in heat insulation, and is lightweight and inexpensive. Widely used.

このような積層発泡シートは、通常、HIPS層を外側に向けて熱成形され、商品価値を上げるために、その外側のHIPS層に図柄や文字などの曲面印刷が施される。この場合、成形体の外面は平滑で且つ美麗であることが求められる。美麗でなければ商品価値が低くなり、平滑さに欠ければ曲面印刷を施す際に、印刷かすれなどの印刷不良が発生しやすく、印刷不良品は商品価値が無くなってしまう。   Such a laminated foam sheet is usually thermoformed with the HIPS layer facing outward, and in order to increase the commercial value, curved printing such as symbols and characters is applied to the outer HIPS layer. In this case, the outer surface of the molded body is required to be smooth and beautiful. If it is not beautiful, the product value will be low, and if it is not smooth, printing defects such as fading will tend to occur during curved surface printing, and the defective product will lose its product value.

積層発泡シートの外観、印刷性を向上させる方法として、発泡シートの気泡径を小さくして外観を美麗にする方法が一般的に用いられる。しかしながら、気泡径を小さくすると成形性が悪化するので、良好な成形体が得られ難くなる。即ち、気泡径を小さくするためには、通常、気泡調整剤を多量に添加して気泡を多く発生させ、押出直後に急冷することによって気泡の成長を抑制する方法がとられる。しかし、発泡時の急冷によってシート表面に過度な残留歪みが残り、これが原因で熱成形時にシートの伸びが阻害され、良好な成形ができなくなってしまう。   As a method for improving the appearance and printability of the laminated foam sheet, a method for making the appearance beautiful by reducing the bubble diameter of the foam sheet is generally used. However, since the moldability deteriorates when the bubble diameter is reduced, it is difficult to obtain a good molded product. That is, in order to reduce the bubble diameter, a method is generally used in which a large amount of a bubble adjusting agent is added to generate a large amount of bubbles, and quenching is performed immediately after extrusion to suppress bubble growth. However, excessive residual strain remains on the surface of the sheet due to rapid cooling during foaming, which hinders the elongation of the sheet during thermoforming and makes it impossible to perform good molding.

そこで、本出願人は、ポリスチレン系樹脂発泡シート製造過程での急冷によってシート表面に過度な残留歪みが残ることによる熱成形性の低下を改良する方法として、特許文献1に記載の発明を提案した。即ち、特許文献1では、ポリスチレン系樹脂発泡シートの片面に耐衝撃性ポリスチレン系樹脂層が積層された積層発泡シートであって、非積層面の表面から厚み200μmの部分についての昇温速度10℃/minでの熱機械分析により得られるTMA曲線において、押出方向の加熱収縮率の135℃以下におけるピークの頂点の値が0〜15%であり、幅方向の加熱収縮率の135℃以下におけるピークの頂点の値が0〜30%である積層発泡シートを提案した。この積層発泡シートは、優れた熱成形性を有し曲面印刷には優れている。しかし、熱成形直後の曲面印刷性が不十分なものであった。   Therefore, the present applicant has proposed the invention described in Patent Document 1 as a method for improving a decrease in thermoformability due to excessive residual strain remaining on the sheet surface due to rapid cooling in the process of manufacturing a polystyrene resin foam sheet. . That is, in Patent Document 1, a laminated foamed sheet in which an impact-resistant polystyrene-based resin layer is laminated on one side of a polystyrene-based resin foamed sheet, and the rate of temperature increase is 10 ° C. for a portion having a thickness of 200 μm from the surface of the non-laminated surface. In the TMA curve obtained by thermomechanical analysis at / min, the peak value at 135 ° C. or less of the heat shrinkage rate in the extrusion direction is 0 to 15%, and the peak at 135 ° C. or less of the heat shrinkage rate in the width direction A laminated foam sheet having a value of 0 to 30% was proposed. This laminated foam sheet has excellent thermoformability and is excellent for curved surface printing. However, the curved surface printability immediately after thermoforming was insufficient.

尚、前記曲面印刷性とは、耐衝撃性ポリスチレン系樹脂層を外側に向けて熱成形されたカップ麺等の容器の外側の耐衝撃性ポリスチレン系樹脂層の表面に、曲面印刷機により文字や模様等の印刷を施すことをいい、曲面印刷された容器は、カラフルで意匠性に優れるものである。曲面印刷における問題点としては、ベタ印刷部分に斑点ができたり、凹凸が目立ったり、また、文字や模様がにじんだり、かすれたりすること等がある。これらの問題を解決する一の方法としては、曲面印刷のスピードを極端に遅くする方法がある。即ち、一分間当たりの容器印刷のでき高を少なくすれば、印刷性を改善することができる。しかし、このような方法では生産性が極端に低下してしまう。また、印刷性を改善するその他の方法として、容器と印刷ロールとの印圧を上げて、文字や模様等を転写することが行われている。しかし、容器が発泡層を含み、発泡層自体の厚み精度がそれほど高くない上、熱成形時に加熱して二次発泡させるとさらに厚みが変化するため、得られる容器の厚み精度はそれほど高くない。そのため、印刷を良くするために印圧を上げると、容器にシワが生じてしまうという問題が新たに発生する。   The curved surface printability refers to the surface of the impact-resistant polystyrene resin layer outside the container such as cup noodles, which is thermoformed with the impact-resistant polystyrene resin layer facing outward, by a curved surface printing machine. This refers to printing of a pattern or the like, and a curved surface printed container is colorful and excellent in design. Problems with curved surface printing include spots on the solid print portion, concavity and convexity, and blurring and blurring of characters and patterns. As one method for solving these problems, there is a method of extremely slowing the curved surface printing speed. That is, if the height of container printing per minute is reduced, the printability can be improved. However, productivity is extremely reduced by such a method. As another method for improving the printability, characters, patterns, and the like are transferred by increasing the printing pressure between the container and the printing roll. However, the container includes a foamed layer, and the thickness accuracy of the foamed layer itself is not so high, and the thickness is further changed when heated and subjected to secondary foaming during thermoforming, so the thickness accuracy of the resulting container is not so high. For this reason, when the printing pressure is increased to improve printing, a new problem arises that the container is wrinkled.

更に、前記曲面印刷には、熱成形直後であっても印刷できる直後印刷性に優れることが望まれる。直後印刷性とは、熱成形直後であっても曲面印刷が可能であることをいう。一般的に、成形体の曲面印刷性は、成形後の経日によって異なり、成形直後が最も悪く、経日が長くなるにつれて向上し、約5日程で一定となる傾向がある。このことから、容器成形後、時間を長くとれば曲面印刷特性は改善されるが、そのためには印刷前の容器を数日間保管しておかなければならなくなり、生産性が悪くなる。従って、生産性を向上させるためには、直後印刷性に優れる成形体を熱成形可能な積層発泡シートの開発が望まれる。   Furthermore, it is desired that the curved surface printing is excellent in printability immediately after printing, even immediately after thermoforming. Immediately printability means that curved surface printing is possible even immediately after thermoforming. In general, the curved surface printability of a molded product varies depending on the lapse of time after molding, and is worst immediately after molding, and improves as the aging time becomes longer, and tends to be constant in about 5 days. For this reason, if the time is increased after forming the container, the curved surface printing characteristic is improved. However, for this purpose, the container before printing must be stored for several days, and the productivity is deteriorated. Therefore, in order to improve productivity, it is desired to develop a laminated foamed sheet capable of thermoforming a molded article having excellent printability.

前記引用文献1に記載の積層発泡シートは、曲面印刷性には優れているが、熱成形直後の印刷性には劣るものであった。これは、発泡層表面付近はダイ内で充分に冷却されることにより、小さな気泡が数多く存在し且つ残留歪は小さいものの、内部は冷却の効果が十分ではないため気泡の成長が進み、結果として厚み方向での気泡径の内外差が発生することによるものである。   The laminated foam sheet described in the cited document 1 is excellent in curved surface printability, but inferior in printability immediately after thermoforming. This is because the surface of the foam layer is sufficiently cooled in the die, so that many small bubbles exist and the residual strain is small, but the effect of cooling is not sufficient inside, and the growth of the bubbles proceeds. This is due to the occurrence of a difference in the bubble diameter in the thickness direction.

この気泡径の内外差は発泡層の密度の内外差とも相関があり、外側の気泡径が小さく内部が大きいものほど、発泡層外部に対して内部の見掛け密度は小さくなる傾向がある。その結果、成形体の圧縮強度が低下し、成形直後に曲面印刷を行うと、成形体側面が印圧に耐えられずに、前記ベタ印刷部分の斑点や、凹凸や、文字や模様のにじみや、かすれが発生してしまう。この問題は、発泡層の発泡倍率を低くしたり又は/及び耐衝撃性ポリスチレン系樹脂層の厚みを厚くすることにより、解決することができる。しかし、この方法は、得られる成形体の断熱性の低下と、重量増加に繋がるため有効な解決策ではない。   The inside / outside difference of the bubble diameter correlates with the inside / outside difference of the density of the foam layer, and the smaller the outside bubble diameter and the larger the inside, the smaller the apparent density inside the foam layer. As a result, the compression strength of the molded body is reduced, and if the curved surface printing is performed immediately after molding, the side surface of the molded body cannot withstand the printing pressure, and spots of the solid print portion, unevenness, bleeding of characters and patterns, , Fading will occur. This problem can be solved by reducing the expansion ratio of the foam layer or / and increasing the thickness of the impact-resistant polystyrene resin layer. However, this method is not an effective solution because it leads to a decrease in the heat insulating property of the obtained molded body and an increase in weight.

一方、特許文献2及び特許文献3には、ポリスチレン系樹脂発泡層の片面に耐衝撃性ポリスチレン系樹脂が積層された積層発泡シートを用いて、耐衝撃性ポリスチレン系樹脂層を外側にして丼状容器を熱成形し、成形後30分以内に容器外側の曲面印刷が可能な成形体が得られたことが開示されている。   On the other hand, in Patent Document 2 and Patent Document 3, a laminated foamed sheet in which an impact-resistant polystyrene resin is laminated on one side of a polystyrene-based resin foam layer is used, and the impact-resistant polystyrene-based resin layer is placed outside to form a bowl shape. It is disclosed that a molded body capable of printing a curved surface on the outside of the container within 30 minutes after molding is obtained by thermoforming the container.

しかしながら、特許文献2の実施例で実際に製造された積層発泡シートは、その発泡層の発泡倍率が4倍(見掛け密度が0.26g/cm)であり、低発泡倍率のため発泡層の圧縮強度が高い上、耐衝撃性ポリスチレン系樹脂の厚みも発泡層の低発泡倍率の割には厚すぎるものである(133μm)。発泡層の低発泡倍率化は発泡層の断熱性の低下を余儀なくされ、高い断熱性付与のためには発泡層の厚み増が余儀なくされ、重量増加に繋がるため有効な解決策ではない。また、特許文献3の実施例で実際に製造された積層発泡シートは、その発泡層の発泡倍率は9.3〜9.6倍(見掛け密度が0.109〜0.113g/cm)と高発泡倍率であるものの、耐衝撃性ポリスチレン系樹脂の厚みは厚いものであり(140μm)、このように樹脂層を厚くすることにより、直後印刷性を高めているが、このように厚くては重量増加に繋がるため有効な解決策ではない。 However, the laminated foam sheet actually manufactured in the example of Patent Document 2 has a foaming ratio of the foamed layer of 4 times (apparent density is 0.26 g / cm 3 ). In addition to the high compressive strength, the thickness of the impact-resistant polystyrene resin is too thick for the low expansion ratio of the foam layer (133 μm). Lowering the expansion ratio of the foamed layer necessitates a decrease in the heat insulating property of the foamed layer, and in order to impart high heat insulating properties, the thickness of the foamed layer is inevitably increased, leading to an increase in weight, which is not an effective solution. Moreover, the laminated foam sheet actually manufactured in the Example of Patent Document 3 has an expansion ratio of the foam layer of 9.3 to 9.6 times (apparent density is 0.109 to 0.113 g / cm 3 ). Although it has a high expansion ratio, the impact-resistant polystyrene resin has a large thickness (140 μm), and by increasing the thickness of the resin layer in this way, the printability is improved immediately. It is not an effective solution because it leads to an increase in weight.

特開2005−349593号公報JP 2005-349593 A 特開2002−210891号公報JP 2002-210891 A 特開2003−12843号公報Japanese Patent Laid-Open No. 2003-12843

本発明は、熱成形性に優れ、更に得られる成形体の外観に優れる上、熱成形直後の曲面印刷が可能な成形体を熱成形可能なポリスチレン系樹脂積層発泡シートを提供することを目的とする。   An object of the present invention is to provide a polystyrene-based resin-laminated foam sheet that is excellent in thermoformability and further excellent in the appearance of the resulting molded body, and is capable of thermoforming a molded body capable of curved printing immediately after thermoforming. To do.

本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、従来の積層発泡シートにおいては、発泡層表面付近には小さな気泡が数多く存在するものの、内部は冷却の効果が十分ではないため気泡の成長が進み、結果として厚み方向での気泡径サイズの内外差が発生し、これに伴い、気泡径サイズの内外差が大きいものほど、発泡層の内部の見掛け密度が小さくなり、その結果、成形体の圧縮強度が低下していることを発見した。この知見に基づいて、気泡径を小さくすると共に気泡径サイズの内外差を小さくすることによって、外観の良化と圧縮強度の向上を両立させながら、直後印刷性の向上を達成することができるようになり、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that in the conventional laminated foam sheet, although there are many small bubbles near the foam layer surface, the inside is not sufficiently cooled. For this reason, the growth of bubbles progresses, and as a result, the inside / outside difference of the bubble diameter size in the thickness direction occurs, and along with this, the larger the inside / outside difference of the bubble diameter size, the smaller the apparent density inside the foam layer, As a result, it was found that the compression strength of the molded body was lowered. Based on this knowledge, by reducing the bubble diameter and reducing the difference between the inside and outside of the bubble diameter, it is possible to improve the printability immediately while improving both the appearance and the compression strength. Thus, the present invention has been completed.

具体的には、押出発泡させる際、成形体の内側となる発泡シートの表面に相当する発泡性溶融樹脂混合物をダイ内部で冷却することによって、冷却、延伸工程での歪量が低減すること、つまり熱機械分析によって得られるTMA曲線において、押出方向の加熱収縮率及び幅方向の加熱収縮率を低下させることにより、その発泡シートに樹脂層を積層した積層発泡シートは、気泡径を小さくした場合においても十分に成形性に優れるという従来の知見に、ダイ内部の樹脂流路設計を工夫することを組み合わせることにより、得られる発泡シートの厚み方向の気泡径の内外のバラツキを小さくすることを可能とし、その結果、熱成形直後であっても成形体の強度保持が十分になされる事を見出し、本発明を完成させるに至った。   Specifically, when extrusion foaming, by cooling the foamable molten resin mixture corresponding to the surface of the foam sheet that is the inside of the molded body inside the die, the amount of strain in the cooling and stretching process is reduced, In other words, in the TMA curve obtained by thermomechanical analysis, by reducing the heat shrinkage rate in the extrusion direction and the heat shrinkage rate in the width direction, the laminated foam sheet in which the resin layer is laminated on the foam sheet has a reduced cell diameter By combining the conventional knowledge that moldability is sufficiently excellent with the design of the resin flow path inside the die, it is possible to reduce variations in the cell diameter in the thickness direction of the resulting foam sheet. As a result, it has been found that the strength of the molded body can be sufficiently maintained even immediately after thermoforming, and the present invention has been completed.

即ち、本発明によれば、以下に示すポリスチレン系樹脂積層発泡シートが提供される。
〔1〕ポリスチレン系樹脂発泡層と該発泡層の片面に積層された耐衝撃性ポリスチレン系樹脂層とからなり、発泡層の非積層面の表面から厚み200μmの部分についての昇温速度10℃/minでの熱機械分析により得られるTMA曲線において、押出方向の加熱収縮率の135℃以下におけるピークの頂点の値が0〜15%であり、幅方向の加熱収縮率の135℃以下におけるピークの頂点の値が0〜30%である積層発泡シートにおいて、発泡層の垂直断面の厚み方向気泡数(ヶ)に対する発泡層の厚み(μm)の比(厚み/厚み方向気泡数)が100〜180μm/ヶの範囲内にあり、且つ発泡層の垂直断面における厚み方向の任意の直線上に存在する気泡の水平方向平均気泡径(X)に対する該直線上に存在する気泡の水平方向気泡径の標準偏差(σ)の比(σ/X)が0.40以下であることを特徴とするポリスチレン系樹脂積層発泡シート。
〔2〕該耐衝撃性ポリスチレン系樹脂層の厚みが、110〜130μmであることを特徴とする前記〔1〕に記載のポリスチレン系樹脂積層発泡シート。
That is, according to the present invention, the following polystyrene-based resin laminated foam sheet is provided.
[1] A polystyrene-based resin foam layer and an impact-resistant polystyrene-based resin layer laminated on one surface of the foam layer, and a temperature increase rate of 10 ° C./200 μm from the surface of the non-laminated surface of the foam layer. In the TMA curve obtained by thermomechanical analysis at min, the peak value at 135 ° C. or less of the heat shrinkage rate in the extrusion direction is 0 to 15%, and the peak value at 135 ° C. or less of the heat shrinkage rate in the width direction is In a laminated foam sheet having an apex value of 0 to 30%, the ratio (thickness / number of bubbles in the thickness direction) of the thickness (μm) of the foam layer to the number of bubbles in the thickness direction (units) in the vertical section of the foam layer is 100 to 180 μm. Horizontal bubbles of the bubbles existing on the straight line with respect to the horizontal average bubble diameter (X) of the bubbles in the vertical range of the foamed layer and existing on an arbitrary straight line in the thickness direction Polystyrene-based resin laminate foam sheet, wherein the ratio of the standard deviation (σ) (σ / X) is 0.40 or less.
[2] The polystyrene-based resin laminated foam sheet according to [1], wherein the impact-resistant polystyrene-based resin layer has a thickness of 110 to 130 μm.

本発明によれば、発泡層の表面に過度な残留歪みが残っていないことにより成形性に優れ、且つ気泡径が十分に小さいため外観に優れると共に、気泡径の厚み方向におけるバラツキが小さく、見掛け密度のバラツキも小さいため、軽量性、断熱性を維持した上で成形直後の圧縮強度に優れており、直後印刷が可能なポリスチレン系樹脂積層発泡シートが提供される。   According to the present invention, since excessive residual strain does not remain on the surface of the foam layer, the moldability is excellent, and the bubble diameter is sufficiently small so that the appearance is excellent, and the variation in the thickness direction of the bubble diameter is small, and the appearance is small. Since the variation in density is small, there is provided a polystyrene-based resin-laminated foam sheet that is excellent in compressive strength immediately after molding while maintaining light weight and heat insulation, and capable of printing immediately after.

以下、本発明のポリスチレン系樹脂積層発泡シートについて詳細に説明する。
本発明のポリスチレン系樹脂積層発泡シートは、ポリスチレン系樹脂発泡層と該発泡層の片面に積層された耐衝撃性ポリスチレン系樹脂層とからなる。
該発泡層の厚みは、1.8〜3.0mmが好ましく、2.0〜2.9mmがより好ましく、2.1〜2.8mmが更に好ましい。該厚みが1.8mm以上であれば、絞り比が大きい深絞り成形が可能で、得られた成形体に熱湯を入れても、変形する虞がない。一方、厚みが3.0mm以下であれば、厚みが厚すぎることによるナキの発生等の成形不良が発生しにくい。
Hereinafter, the polystyrene resin laminated foam sheet of the present invention will be described in detail.
The polystyrene-based resin laminated foam sheet of the present invention comprises a polystyrene-based resin foam layer and an impact-resistant polystyrene-based resin layer laminated on one side of the foam layer.
The thickness of the foam layer is preferably 1.8 to 3.0 mm, more preferably 2.0 to 2.9 mm, and still more preferably 2.1 to 2.8 mm. If the thickness is 1.8 mm or more, deep drawing with a large drawing ratio is possible, and even if hot water is added to the obtained molded body, there is no risk of deformation. On the other hand, if the thickness is 3.0 mm or less, molding defects such as cracking due to excessive thickness are unlikely to occur.

該発泡層の見掛け密度は、0.085〜0.210g/cmが好ましく、0.090〜0.200g/cmがより好ましく、0.090〜0.190g/cmが更に好ましい。該見掛け密度が0.085g/cm以上であれば、積層発泡シートの圧縮強度や得られる成形体の開口部を上にして圧縮する天地圧縮強度等の機械的強度が十分なものとなる。一方、見掛け密度が0.210g/cm以下であれば、断熱性が確保され、コストが高くなる虞もない。 The apparent density of the foam layer is preferably 0.085~0.210g / cm 3, more preferably 0.090~0.200g / cm 3, more preferably 0.090~0.190g / cm 3. If the apparent density is 0.085 g / cm 3 or more, the mechanical strength such as the compression strength of the laminated foamed sheet and the compression strength of the top and bottom that compresses with the opening of the obtained molded body facing up will be sufficient. On the other hand, if the apparent density is 0.210 g / cm 3 or less, the heat insulating property is ensured and there is no possibility of increasing the cost.

本発明の積層発泡シートの片面には、HIPS層が積層されている。該HIPS層の厚みは、100〜135μmが好ましく、105〜130μmがより好ましく、110〜125μmが更に好ましい。該厚みが100μm以上であれば、HIPS層が薄すぎるということがなく、成形体の機械的強度が優れたものとなり、得られた成形体の外側に印刷を施す場合、充分な印刷適性を得ることができる。一方、厚みが135μm以下であれば、品質が過剰になることがなく、コスト高になる虞れがない。   A HIPS layer is laminated on one side of the laminated foam sheet of the present invention. The thickness of the HIPS layer is preferably 100 to 135 μm, more preferably 105 to 130 μm, and still more preferably 110 to 125 μm. If the thickness is 100 μm or more, the HIPS layer will not be too thin, the mechanical strength of the molded body will be excellent, and sufficient printability will be obtained when printing is performed on the outside of the obtained molded body. be able to. On the other hand, if the thickness is 135 μm or less, the quality will not be excessive and there is no risk of increased costs.

本発明の積層発泡シート全体の坪量は、300〜550g/mが好ましく、320〜450g/mがより好ましく、340〜390g/mが更に好ましい。
該坪量が300g/m以上であれば、樹脂量が充分なことから積層発泡シートの圧縮強度や得られる成形体の天地圧縮強度等の機械的強度が優れたものとなる。一方、該坪量が、550g/m以下であれば、熱成形時に積層発泡シートの自重によるドローダウンが発生する虞がない。
The basis weight of the laminated foam entire sheet of the present invention is preferably 300~550g / m 2, more preferably 320~450g / m 2, 340~390g / m 2 is more preferable.
When the basis weight is 300 g / m 2 or more, since the resin amount is sufficient, the mechanical strength such as the compression strength of the laminated foamed sheet and the top-and-bottom compression strength of the molded article obtained is excellent. On the other hand, when the basis weight is 550 g / m 2 or less, there is no possibility that a drawdown due to the weight of the laminated foam sheet occurs during thermoforming.

本明細書における積層発泡シートの厚み、発泡層の厚み、HIPS層の厚み、積層発泡シートの坪量、HIPS層の坪量、発泡層の坪量、発泡層の見掛け密度は次の方法に従って測定される。   In this specification, the thickness of the laminated foam sheet, the thickness of the foam layer, the thickness of the HIPS layer, the basis weight of the laminated foam sheet, the basis weight of the HIPS layer, the basis weight of the foam layer, and the apparent density of the foam layer are measured according to the following methods. Is done.

まず、本発明の積層発泡シートから、無作為に選んだ地点において、積層発泡シートの押出方向(以下、単に「MD」ともいう)と一致する方向に50cm、且つ積層発泡シートのMDと直交する幅方向(以下、単に「TD」ともいう)と一致する方向に50cmの正方形のサンプルを切り出す。尚、この際、TDの中央部とサンプル中央部が一致するようにする。   First, at a randomly selected point from the laminated foamed sheet of the present invention, the direction coincides with the direction of extrusion of the laminated foamed sheet (hereinafter also simply referred to as “MD”), and is orthogonal to the MD of the laminated foamed sheet. A 50 cm square sample is cut out in a direction that coincides with the width direction (hereinafter also simply referred to as “TD”). At this time, the central part of the TD and the central part of the sample are made to coincide.

次に、サンプルのTDのいずれか一方の切断面において、片方の端部を基準として5cm間隔で他方の端部に至るまでのTDの両端部を除く合計九箇所の地点について、積層発泡シートの厚みと発泡層の厚みを、顕微鏡で撮影し、その写真より求める。
尚、後述の計算には、上記測定によって得られた小数点以下2桁目までの数値を使用する。
Next, in any one of the cut surfaces of the sample TD, a total of nine points excluding both ends of the TD up to the other end at intervals of 5 cm on the basis of one end of the laminated foam sheet The thickness and the thickness of the foam layer are photographed with a microscope and obtained from the photograph.
In the calculation described later, numerical values up to the second decimal place obtained by the above measurement are used.

本明細書における積層発泡シートの厚みは、上記9点の測定値の相加平均値「F」(mm)を意味する。また、HIPS層の厚み「H」(μm)は、積層発泡シートの厚みの上記9点の測定値の相加平均値「T」(mm)から上記発泡層の相加平均値「F」(mm)を引くことによって得られる値を単位換算(μm)することにより得られる。   The thickness of the laminated foam sheet in this specification means the arithmetic average value “F” (mm) of the measured values of the nine points. In addition, the thickness “H” (μm) of the HIPS layer is calculated from the arithmetic average value “T” (mm) of the measured values of the nine points of the thickness of the laminated foamed sheet to the arithmetic average value “F” ( mm) is obtained by converting the value obtained by subtracting the unit (μm).

次に、サンプルの重量をg単位まで測定し、その測定値を1m当たりの積層発泡シートの重量に換算し、これを積層発泡シートの坪量「t」(g/m)とする。HIPS層の1m当たりの重量であるHIPS層の坪量「h」(g/m)は、HIPS層の密度を便宜上1.05g/mと固定して、該密度に上記HIPS層の厚み「H」(μm)を掛算することによって求められる。また、発泡層の1m当たりの重量である発泡層の坪量「f」(g/m)は、積層発泡シートの坪量「t」(g/m)からHIPS層の坪量「h」(g/m)を引算することによって求められる。 Next, the weight of the sample is measured to the unit of g, and the measured value is converted into the weight of the laminated foamed sheet per 1 m 2 , and this is defined as the basis weight “t” (g / m 2 ) of the laminated foamed sheet. The basis weight of the HIPS layer is the weight per 1 m 2 of the HIPS layer "h" (g / m 2) of, fixed for convenience 1.05 g / m 3 density of HIPS layer, the HIPS layer said seal degree It is obtained by multiplying the thickness “H” (μm). The basis weight “f” (g / m 2 ) of the foam layer, which is the weight per 1 m 2 of the foam layer, is calculated from the basis weight “t” (g / m 2 ) of the laminated foam sheet, h ”(g / m 2 ) is subtracted.

また、発泡層の見掛け密度は、発泡層の坪量「f」(g/m)を上記発泡層の厚み「F」(mm)で割ってg/cmの単位にするために1000で割ることによって求められる。本明細書における発泡層の密度はこの計算値を意味する。 Also, the apparent density of the foam layer is 1000 in order to divide the basis weight “f” (g / m 2 ) of the foam layer by the thickness “F” (mm) of the foam layer to give a unit of g / cm 3. It is calculated by dividing. The density of the foam layer in this specification means this calculated value.

本発明の積層発泡シートにおいて、該発泡層を構成するポリスチレン系樹脂としては、例えば、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−メタクリル酸メチル共重合体、スチレン−アクリル酸共重合体、スチレン−無水マレイン酸共重合体、ポリメチルスチレン、ポリスチレンとポリフェニレンエーテルとの混合物などが挙げられる。   In the laminated foam sheet of the present invention, examples of the polystyrene resin constituting the foam layer include polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-methyl methacrylate copolymer, and styrene-acrylic. Examples include acid copolymers, styrene-maleic anhydride copolymers, polymethylstyrene, and a mixture of polystyrene and polyphenylene ether.

前記した中でも、発泡層を構成するポリスチレン系樹脂としては、スチレンダイマー、スチレントリマーの合計含有量が2000ppm以下のものが好ましく、1500ppm以下のものがより好ましく、1000ppm以下のものが更に好ましい。これらの合計含有量が2000ppmを超えると、熱成形する際、表面が部分的に溶融したり、裂けが発生するので好ましくない。   Among the above, the polystyrene resin constituting the foamed layer preferably has a total content of styrene dimer and styrene trimer of 2000 ppm or less, more preferably 1500 ppm or less, and still more preferably 1000 ppm or less. When the total content exceeds 2000 ppm, the surface is partially melted or cracked during thermoforming, which is not preferable.

更に、スチレンダイマー、スチレントリマーの合計含有量が2000ppm以下のポリスチレン系樹脂の中でも、数平均分子量(Mn)が80000以上、分子量分布(Mw/Mn)が2.9未満のポリスチレン樹脂が好ましい。分子量分布(Mw/Mn)が2.9未満の樹脂は、通常は連続重合法により製造されたものであり、安価に製造できるので好ましい。また、数平均分子量(Mn)が80000以上のポリスチレン系樹脂は、優れた機械的強度を有するので、得られる成形体の圧縮強度、引張強度等の機械的強度も優れたものとなる。   Further, among polystyrene resins having a total content of styrene dimer and styrene trimer of 2000 ppm or less, a polystyrene resin having a number average molecular weight (Mn) of 80000 or more and a molecular weight distribution (Mw / Mn) of less than 2.9 is preferable. A resin having a molecular weight distribution (Mw / Mn) of less than 2.9 is usually produced by a continuous polymerization method and is preferable because it can be produced at a low cost. In addition, since the polystyrene-based resin having a number average molecular weight (Mn) of 80000 or more has excellent mechanical strength, the resulting molded article has excellent mechanical strength such as compression strength and tensile strength.

本発明において、上記Mw、Mnは、いずれもゲル・パーミエーション・クロマトグラフ法(GPC法)により求めた値である。具体的には、積層発泡シートの発泡層をテトラヒドロフラン(THF)20mLに溶解させ(もしもTHFへの不溶分が存在する場合にはろ過して除去した後)、下記に示す機器を用い、下記分析条件にてGPC法により測定し、得られたチャートのスチレン系樹脂によるピーク開始位置(本発明では、便宜上、分子量5.4×10位置を採用)を基準に水平(横軸と平行)にベースラインを引き、標準ポリスチレンを用いて作成した標準較正曲線により、各分子量を計算する。 In the present invention, Mw and Mn are values obtained by gel permeation chromatography (GPC method). Specifically, the foamed layer of the laminated foamed sheet is dissolved in 20 mL of tetrahydrofuran (THF) (if there is an insoluble matter in THF, it is removed by filtration), and the following analysis is performed using the equipment shown below. Measured by GPC method under the conditions, horizontal (parallel to the horizontal axis) on the basis of the peak start position by the styrenic resin of the chart (in the present invention, the molecular weight of 5.4 × 10 6 position is adopted for convenience) A baseline is drawn and each molecular weight is calculated by a standard calibration curve generated using standard polystyrene.

使用機器:株式会社ジーエルサイエンス製GPC仕様高速液体クロマトグラフ。
カラム:昭和電工株式会社製カラム、商品名Shodex GPC KF−806、同KF−805、同KF−803をこの順に直列に連結して使用。
カラム温度:40℃。
溶媒:THF。
流速:1.0mL/分。
濃度:0.15W/V%。
注入量:0.2ml。
検出器:株式会社ジーエルサイエンス製紫外可視検出器、商品名UV702型(測定波長254nm)。
分子量分布の計算に用いた較正曲線の分子量範囲:1.9×10〜5.4×10
Equipment used: GPC high performance liquid chromatograph manufactured by GL Sciences Inc.
Column: Showa Denko Co., Ltd. column, trade name Shodex GPC KF-806, KF-805, KF-803 are connected in series in this order.
Column temperature: 40 ° C.
Solvent: THF.
Flow rate: 1.0 mL / min.
Concentration: 0.15 W / V%.
Injection volume: 0.2 ml.
Detector: UV-visible detector manufactured by GL Sciences Inc., trade name: UV702 type (measurement wavelength: 254 nm).
The molecular weight range of the calibration curve used for the calculation of the molecular weight distribution: 1.9 × 10 7 to 5.4 × 10 3 .

本発明の積層発泡シートを構成する耐衝撃性ポリスチレン系樹脂層の基材樹脂は、スチレン成分とゴム成分とからなり、両者の総和を100重量%とした場合、スチレン成分65〜98重量%、ゴム成分35〜2重量%とからなるスチレン系樹脂で、具体的には例えば次のものが挙げられる。
(1)スチレン成分とゴム成分とからなるランダム共重合体樹脂、ブロック共重合体樹脂、グラフト共重合体樹脂、又はこれら共重合体樹脂の2種以上の混合物。
(2)上記(1)の樹脂とスチレン単独重合体との混合物。
(3)スチレン単独重合体とゴム(熱可塑性エラストマーも含む)との混合物。
(4)上記(1)の樹脂又は(2)の樹脂と、ゴム(熱可塑性エラストマーも含む)との混合物。
但し、樹脂層を構成する樹脂としては、積層発泡シート及びその熱成形体への耐衝撃性付与並びに強度付与の観点から、シャルピー衝撃強さJIS K7111(1996年)において、方法の分類をISO179/1eAとしてその値が3〜20kJ/m、好ましくは6〜16kJ/mのものを使用することが好ましい。
The base resin of the impact-resistant polystyrene resin layer constituting the laminated foam sheet of the present invention comprises a styrene component and a rubber component, and when the total of both is 100% by weight, the styrene component is 65 to 98% by weight, Styrenic resin composed of 35 to 2% by weight of a rubber component. Specific examples include the following.
(1) A random copolymer resin comprising a styrene component and a rubber component, a block copolymer resin, a graft copolymer resin, or a mixture of two or more of these copolymer resins.
(2) A mixture of the resin of (1) above and a styrene homopolymer.
(3) A mixture of styrene homopolymer and rubber (including thermoplastic elastomer).
(4) A mixture of the resin (1) or the resin (2) and rubber (including a thermoplastic elastomer).
However, as the resin constituting the resin layer, from the viewpoint of imparting impact resistance and strength to the laminated foam sheet and its thermoformed body, the Charpy impact strength JIS K7111 (1996) is classified into ISO 179 / It is preferable to use 1eA having a value of 3 to 20 kJ / m 2 , preferably 6 to 16 kJ / m 2 .

本発明においては、発泡層の垂直断面における厚み方向の気泡数(ヶ)に対する発泡層の厚み(μm)の比(厚み/厚み方向の気泡数)が100〜180μm/ヶの範囲内にあることを要し、好ましくは105〜160μm/ヶの範囲内であり、より好ましくは110〜140μm/ヶの範囲内である。比(厚み/厚み方向の気泡数)が100μm/ヶ未満の場合、気泡の膜厚が小さくなり過ぎて、深絞り容器の成形の際に気泡が破断する成形不具合(ナキ)が起きる虞がある。一方、比(厚み/厚み方向の気泡数)が180μm/ヶ超の場合、容器印刷面の平滑性が乏しくなり、印刷時にインキが抜け落ちた部分が発生する印刷ぬけと呼ばれる現象が発生しやすくなる虞がある。   In the present invention, the ratio of the thickness (μm) of the foam layer to the number of bubbles in the thickness direction (number) in the vertical section of the foam layer (thickness / number of cells in the thickness direction) is in the range of 100 to 180 μm / month. Is preferably in the range of 105 to 160 μm / month, and more preferably in the range of 110 to 140 μm / month. If the ratio (thickness / number of bubbles in the thickness direction) is less than 100 μm / month, the film thickness of the bubbles becomes too small, and there is a risk of forming defects (naki) in which the bubbles break when forming a deep-drawn container. . On the other hand, when the ratio (thickness / the number of bubbles in the thickness direction) exceeds 180 μm / month, the smoothness of the container printing surface is poor, and a phenomenon called printing blanking, in which a portion where ink has fallen off during printing, tends to occur. There is a fear.

更に、本発明の発泡層においては、発泡層の垂直断面における厚み方向の任意の直線上に存在する気泡の水平方向平均気泡径(X)に対する該直線上に存在する気泡の水平方向気泡径の標準偏差(σ)の比(σ/X)が0.40以下であることを要し、好ましくは0.35以下であり、より好ましくは0.30以下である。比(σ/X)の下限は、気泡径のバラツキがないことを意味する0.0が好ましいが、技術的には0.2より小さくすることは困難である。   Further, in the foamed layer of the present invention, the horizontal bubble diameter of the bubbles present on the straight line relative to the horizontal average bubble diameter (X) of the bubbles present on an arbitrary straight line in the thickness direction in the vertical cross section of the foamed layer is determined. The ratio (σ / X) of the standard deviation (σ) needs to be 0.40 or less, preferably 0.35 or less, more preferably 0.30 or less. The lower limit of the ratio (σ / X) is preferably 0.0, which means that there is no variation in bubble diameter, but technically it is difficult to make it smaller than 0.2.

比(σ/X)が0.40超の場合、厚み方向に配列された水平方向の気泡径のバラツキ、ひいては厚み方向に配列された気泡径のバラツキが大きすぎて、発泡層の表層部の見掛け密度に対して、発泡層内部の見掛け密度が小さすぎることになる。その結果、発泡層内部の成形直後の圧縮強度が低くなりすぎて、直後印刷を行うとベタ印刷部分の斑点や、凹凸や、文字や模様のにじみや、かすれが発生する虞がある。
尚、本発明書における直後印刷とは、積層発泡シートの熱成形後30分以内に成形体の外面に印刷を行うことをいう。
When the ratio (σ / X) is more than 0.40, the variation in the horizontal bubble diameter arranged in the thickness direction, and consequently the variation in the bubble diameter arranged in the thickness direction, is too large. The apparent density inside the foam layer is too small relative to the apparent density. As a result, the compressive strength immediately after molding inside the foam layer becomes too low, and if printing is performed immediately after that, there is a possibility that spots of solid print portions, unevenness, bleeding of characters or patterns, or blurring may occur.
In the present invention, “immediate printing” means printing on the outer surface of the molded body within 30 minutes after thermoforming of the laminated foam sheet.

本明細書における積層発泡シートにおける発泡層の比(厚み/厚み方向の気泡数)、水平方向気泡径の標準偏差(σ)、水平方向平均気泡径(X)は次の方法に従って測定、算出される。   In the present specification, the ratio of the foam layer in the laminated foam sheet (thickness / number of bubbles in the thickness direction), the standard deviation (σ) of the horizontal bubble diameter, and the average average bubble diameter (X) are measured and calculated according to the following methods. The

まず、本発明の積層発泡シートから、無作為に選んだ地点において、積層発泡シートの押出方向(MD)と一致する方向且つ垂直方向(厚み方向)にシートを切断する。その切断面を顕微鏡を使用して写真撮影し、写真上の無作為に選んだ地点においてシート厚み方向に一致すると共に発泡層の厚みを縦断する直線を引き、該直線上に位置する気泡数(ヶ)を求める。また、該直線上の発泡層部分の厚み(μm)を、拡大倍率を考慮して計算から求め、[厚み/厚み方向の気泡数]を計算で求める。さらに、該直線上に位置する全ての気泡について気泡の水平方向の最大長さを測定し、これら最大長さの相加平均値を算出し、これを水平方向平均気泡径(X)とする。更に、これら水平方向平均気泡径の算出の根拠となった全ての気泡の水平方向の最大長さについて標準偏差を算出し、これを水平方向気泡径の標準偏差(σ)とし、[水平方向気泡径の標準偏差/水平方向平均気泡径]を計算する。これら測定を、測定する気泡が重複しないように異なる5箇所で行い、それぞれに得られた[厚み/厚み方向の気泡数]、[水平方向気泡径の標準偏差/水平方向平均気泡径]に対してさらに相加平均値を算出することで比(厚み/断面の気泡数)、比(σ/X)の値とする。   First, the sheet is cut in a direction that coincides with the extrusion direction (MD) of the laminated foamed sheet and in a vertical direction (thickness direction) at random points selected from the laminated foamed sheet of the present invention. The cut surface is photographed using a microscope, and at a randomly selected point on the photograph, a straight line that coincides with the sheet thickness direction and runs through the thickness of the foamed layer is drawn, and the number of bubbles located on the straight line ( Request). Further, the thickness (μm) of the foamed layer portion on the straight line is obtained by calculation in consideration of the magnification, and [thickness / number of bubbles in the thickness direction] is obtained by calculation. Further, the maximum horizontal length of the bubbles is measured for all the bubbles located on the straight line, the arithmetic average value of these maximum lengths is calculated, and this is defined as the horizontal average bubble diameter (X). Further, the standard deviation is calculated for the maximum horizontal length of all the bubbles that are the basis for the calculation of the average bubble diameter in the horizontal direction, and this is set as the standard deviation (σ) of the horizontal bubble diameter. The standard deviation of the diameter / the average bubble diameter in the horizontal direction] is calculated. These measurements are performed at five different locations so that the bubbles to be measured do not overlap. For each of [Thickness / Number of bubbles in the thickness direction] and [Standard deviation of horizontal bubble diameter / Horizontal average bubble diameter] obtained respectively. Further, an arithmetic average value is calculated to obtain a ratio (thickness / number of bubbles in a cross section) and a ratio (σ / X).

なお、気泡径の測定に際しては、積層発泡シートの切断面の顕微鏡写真より気泡形状を正確にトレースしたものを使用すると非常に便利である。尚、図1は、後述する実施例1で得られた積層発泡シートの切断面の顕微鏡写真より気泡形状を正確にトレースしたものであり、図2は、後述する比較例2で得られた積層発泡シートの切断面の顕微鏡写真より気泡形状を正確にトレースしたものである。   When measuring the bubble diameter, it is very convenient to use an accurate trace of the bubble shape from a micrograph of the cut surface of the laminated foam sheet. In addition, FIG. 1 is what traced the bubble shape correctly from the microscope picture of the cut surface of the lamination foam sheet obtained in Example 1 mentioned later, and FIG. 2 is the lamination | stacking obtained in Comparative Example 2 mentioned later The cell shape is accurately traced from a micrograph of the cut surface of the foam sheet.

比(厚み/厚み方向の気泡数)、比(σ/X)は、積層発泡シートの押出方向(MD)と一致する方向且つ積層発泡シートの垂直方向(厚み方向)にシートを切断した切断面で観察し測定した場合においても同様に評価することが可能である。しかし、幅方向(TD)と一致する方向且つ積層発泡シートの垂直方向(厚み方向)にシートを切断した場合の方が気泡の視認性に優れ、より正確な測定が可能であることから、シートのTDと一致する方向にシートを切断した断面の測定結果を代表させるものとする。また、気泡径のバラツキについても、気泡の垂直方向の最大長さをもって評価することも可能であるが、発泡層は気泡が水平方向に引き伸ばされていることから、その引き伸ばされた方の相対的に大きな気泡で評価した方が誤差が小さいため、気泡の水平方向の最大長さにより評価する。   Ratio (thickness / number of bubbles in the thickness direction), ratio (σ / X) is a cut surface obtained by cutting the sheet in a direction that coincides with the extrusion direction (MD) of the laminated foamed sheet and in the vertical direction (thickness direction) of the laminated foamed sheet The same evaluation can be made when observed and measured in FIG. However, when the sheet is cut in the direction that coincides with the width direction (TD) and in the vertical direction (thickness direction) of the laminated foam sheet, the visibility of the bubbles is excellent, and more accurate measurement is possible. The measurement result of the cross section obtained by cutting the sheet in the direction that coincides with the TD is represented. It is also possible to evaluate the variation in the bubble diameter with the maximum length of the bubble in the vertical direction. However, since the foam layer is stretched in the horizontal direction, Since the error is smaller when the evaluation is performed with larger bubbles, the evaluation is performed based on the maximum length of the bubbles in the horizontal direction.

本発明の発泡層において、非積層面の表面から厚み200μmの部分の密度(以下、「表層密度」ともいう。)は、0.15〜0.35g/cmが好ましく、0.17〜0.30g/cmがより好ましく、0.19〜0.28g/cmが更に好ましい。該表層密度は高い方が、延伸性に富みナキの発生がでにくい等の成形性に優れているが、0.35g/cmを超えると押出し時に延伸する際の冷却による歪が大きく残るため、成形時の伸びが悪く、ナキが発生する虞がある。一方、該密度が低くなると、積層発泡シートの発泡層における表層の気泡膜厚が薄くなりすぎて得られる成形体の内面に傷がつきやすくなる虞やナキが発生しやすくなる虞れがある。
なお、本明細書において、非積層面の表面とは耐衝撃性ポリスチレン系樹脂層が積層されていない側のポリスチレン系樹脂発泡層の表面をいう。
In the foamed layer of the present invention, the density (hereinafter also referred to as “surface layer density”) having a thickness of 200 μm from the surface of the non-laminated surface is preferably 0.15 to 0.35 g / cm 3 , and 0.17 to 0. more preferably .30g / cm 3, 0.19~0.28g / cm 3 is more preferred. Said surface layer density higher is is excellent in moldability such as hard out squeaking rich in stretchability, since the distortion due to cooling when stretched during extrusion exceeds 0.35 g / cm 3 remains largely The elongation at the time of molding is poor, and there is a risk of cracking. On the other hand, when the density is low, there is a risk that the inner surface of the molded product obtained by the foam layer of the foamed layer of the laminated foam sheet becoming too thin may be easily scratched or cracked.
In addition, in this specification, the surface of a non-laminate surface means the surface of the polystyrene-type resin foam layer of the side by which the impact-resistant polystyrene-type resin layer is not laminated | stacked.

非積層面の表面から200μmの密度の測定は次のように行なう。
非積層面の表面から200μmの部分をスライスし、幅5mm×長さ20mmの試験片に切りそろえるとともに、試験片の重量と厚みを測定する。試験片の重量を試験片の体積(幅×長さ×厚み)で割算し、単位換算して密度を求める。
尚、試験片の長さ方向は、発泡層のMD方向と一致させるものとする。
The density of 200 μm is measured from the surface of the non-laminated surface as follows.
A 200 μm portion is sliced from the surface of the non-laminated surface and cut into test pieces having a width of 5 mm and a length of 20 mm, and the weight and thickness of the test piece are measured. Divide the weight of the test piece by the volume of the test piece (width × length × thickness), and convert the unit to obtain the density.
In addition, the length direction of a test piece shall be made to correspond with MD direction of a foam layer.

本発明の積層発泡シートは、前記発泡層の非積層面の表面から厚み200μmの部分(以下、「表層部」ともいう。)の残留歪みが小さいことから、深絞り成形性に優れるものである。この残留歪みの大きさは、TMAにより評価することができる。具体的には、該表層部について昇温速度10℃/minのTMAの測定により得られるTMA曲線において、MDの加熱収縮率の135℃以下におけるピークの頂点の値が0〜15%であり、TDの加熱収縮率の135℃以下におけるピークの頂点の値が0〜30%である(以下、昇温速度10℃/minのTMAによる、135℃以下の加熱収縮率のピークの頂点の値を「TMA最大収縮率」ともいう)。   The laminated foam sheet of the present invention is excellent in deep drawability because the residual strain of the 200 μm thick portion (hereinafter also referred to as “surface layer part”) from the surface of the non-laminated surface of the foamed layer is small. . The magnitude of this residual strain can be evaluated by TMA. Specifically, in the TMA curve obtained by measuring TMA at a heating rate of 10 ° C./min for the surface layer portion, the peak apex value at 135 ° C. or less of the MD heat shrinkage is 0 to 15%, The value of the peak apex at 135 ° C. or less of the heat shrinkage rate of TD is 0 to 30% (hereinafter, the value of the peak apex of the heat shrinkage rate of 135 ° C. or less by TMA at a heating rate of 10 ° C./min is used. Also referred to as “TMA maximum shrinkage”).

MDのTMA最大収縮率が15%超の場合、熱成形する際に成形体の口縁部付近における周壁にナキが発生する虞がある。即ち、積層発泡シートにおける表面の気泡が伸びに耐えられずに破断し、TDに沿って亀裂が入る現象を引き起こす虞れがある。ナキの発生をよりいっそう防止する観点からは、13%以下が好ましく、11%以下がより好ましい。TDのTMA最大収縮率が30%超の場合、熱成形時に成形体口縁部付近の周壁にナキが発生する虞がある。ナキの発生をよりいっそう防止する観点からは、28%以下が好ましく、26%以下がより好ましい。   When the TMA maximum shrinkage of MD is more than 15%, there is a possibility that cracks may occur on the peripheral wall in the vicinity of the mouth edge of the molded body during thermoforming. That is, there is a possibility that bubbles on the surface of the laminated foam sheet break without being able to withstand the elongation and cause a phenomenon that cracks occur along the TD. From the standpoint of further preventing the occurrence of cracks, it is preferably 13% or less, more preferably 11% or less. When the TD TMA maximum shrinkage ratio is more than 30%, there is a possibility that cracks may occur on the peripheral wall in the vicinity of the edge of the molded body during thermoforming. From the standpoint of further preventing the occurrence of cracks, it is preferably 28% or less, more preferably 26% or less.

一方、MD及びTDのTMA最大収縮率の下限値は、通常、0%であるがあまり0%に近くなりすぎると、熱成形時の加熱の際に発泡シートの露出表面に大きな凹凸が形成されやすくなるので、MDのTMA最大収縮率の下限値は、2%以上が好ましく、4%以上がより好ましい。また、TDのTMA最大収縮率の下限値は、3%以上が好ましく、5%以上がより好ましい。
尚、TMA最大収縮率が0%であるとは、135℃以下で加熱収縮率のピークの頂点がないことを意味する。
On the other hand, the lower limit of the TMA maximum shrinkage of MD and TD is usually 0%, but if it is too close to 0%, large irregularities are formed on the exposed surface of the foam sheet during heating during thermoforming. Since it becomes easy, the lower limit of the TMA maximum shrinkage of MD is preferably 2% or more, and more preferably 4% or more. Further, the lower limit value of the TD TMA maximum shrinkage is preferably 3% or more, and more preferably 5% or more.
The TMA maximum shrinkage of 0% means that there is no peak of heat shrinkage at 135 ° C. or lower.

尚、135℃以下における加熱収縮率のピークの頂点の値を用いて残留歪みの大きさを評価するのは、次の理由によるものである。
前記変位と温度とのTMA曲線には通常2つのピークが観察される(但し、低温側から1つ目のピークの大きさによって2つ目のピークが観察されにくいことがある)。これらの2つのピークの内、低温側のピークは環状ダイから押出された発泡シートが冷却、延伸される工程で生じる歪みによるものであり、高温側のピークはダイ内部で生じる歪みによるものである。成形体の熱成形工程にて積層発泡シートを成形する際に成形を阻害する歪みは、これら2つのピークのうち低温側のピークに関するものが支配的である。従って、135℃以下における加熱収縮率のピークの頂点の値を用いれば、成形性を的確に評価することができる。
The reason for evaluating the magnitude of residual strain using the value of the peak of the heat shrinkage rate at 135 ° C. or lower is as follows.
Two peaks are usually observed in the TMA curve of displacement and temperature (however, the second peak may be difficult to observe depending on the size of the first peak from the low temperature side). Of these two peaks, the peak on the low temperature side is due to strain generated in the process of cooling and stretching the foam sheet extruded from the annular die, and the peak on the high temperature side is due to strain generated in the die. . The distortion that hinders molding when the laminated foam sheet is molded in the thermoforming process of the molded body is predominantly related to the peak on the low temperature side of these two peaks. Therefore, if the value of the peak of the heat shrinkage rate at 135 ° C. or lower is used, the moldability can be accurately evaluated.

本明細書におけるTMAの測定は次のようにして行う。
積層発泡シートにおける発泡層の非積層面の表面から厚み200μmまでの表層部をスライスして、長さ20mm、幅5mm、厚さ200μmの試験片を作製する。この場合、MDのTMA最大収縮率を測定する時は、その試験片の長さ方向を発泡層のMDと一致させる。一方、表層部の幅方向のTMA最大収縮率を測定するときは、その試験片の長さ方向を発泡層の幅方向(TD)と一致させる。次に、図3に示すように、変位を0として支持管と検出棒によってチャック間距離(A)10mm、初期荷重1.0gとして試験片を支持した試料ホルダーを電気炉により25℃から180℃まで昇温速度10℃/minで加熱しながら、検出部によって、該収縮によって生じた寸法変化を検出し、横軸を温度、縦軸を寸法変化の変位としてグラフ化する。
なお、試験片の数(N)はMD、TDともに2とし、その平均値を採用することとする。
The measurement of TMA in this specification is performed as follows.
A surface layer portion from the surface of the non-laminated surface of the foamed layer in the laminated foam sheet to a thickness of 200 μm is sliced to produce a test piece having a length of 20 mm, a width of 5 mm, and a thickness of 200 μm. In this case, when measuring the TMA maximum shrinkage of the MD, the length direction of the test piece is matched with the MD of the foam layer. On the other hand, when measuring the TMA maximum shrinkage in the width direction of the surface layer portion, the length direction of the test piece is matched with the width direction (TD) of the foam layer. Next, as shown in FIG. 3, the sample holder supporting the test piece with a displacement of 0 and a chuck distance (A) of 10 mm and an initial load of 1.0 g by a support tube and a detection rod is set to 25 to 180 ° C. in an electric furnace. While heating at a temperature rising rate of 10 ° C./min until, the detection unit detects a dimensional change caused by the contraction, and graphs the horizontal axis as temperature and the vertical axis as displacement of the dimensional change.
The number (N) of test pieces is 2 for both MD and TD, and the average value is adopted.

TMA測定条件
島津製作所(株) 熱機械分析装置 TMA―50使用
試験片:5mm×15mm チャック間:10mmチャックオフセット:3.0g
初期荷重:1.0g 昇温速度:10℃/min
TMA measurement conditions Shimadzu Corporation Thermomechanical analyzer TMA-50 use Specimen: 5mm x 15mm Chuck spacing: 10mm Chuck offset: 3.0g
Initial load: 1.0 g Temperature increase rate: 10 ° C./min

得られたTMA曲線よりTMA最大収縮率は、当初のチャック間距離10mmに対する、135℃以下における加熱収縮ピークの頂点の変位量の割合を百分率で表示したものである。これを図4と図5を用いて更に詳細に説明する。図4は、後述する実施例1と比較例3の各積層シートの発泡層の非積層面の表面におけるMDのTMA曲線であり、図5は、後述する実施例1と比較例3の各積層シートの発泡層の非積層面の表面におけるTDのTMA曲線である。135℃以下における加熱収縮ピークの頂点は各図に示された位置である。図4の実施例1のケースでは、135℃以下における加熱収縮ピークの頂点の変位量はマイナス540μmであり(マイナスは収縮を、プラスは膨張を意味する)、TMA最大収縮率は、0.54×100÷10=5.4%と計算される。また、図4の比較例3のケースでは、135℃以下における加熱収縮ピークの頂点の変位量はマイナス1640μmであり、TMA最大収縮率は、1.64×100÷10=16.4%と計算される。また、図5の実施例1のケースでは、135℃以下における加熱収縮ピークの頂点の変位量はマイナス1880μmであり、TMA最大収縮率は、1.88×100÷10=18.8%と計算される。また、図5の比較例3のケースでは、135℃以下における加熱収縮ピークの頂点の変位量はマイナス3200μmであり、TMA最大収縮率は、3.20×100÷10=32.0%と計算される。   From the obtained TMA curve, the TMA maximum shrinkage ratio is a percentage of the amount of displacement at the apex of the heat shrinkage peak at 135 ° C. or less with respect to the initial distance between chucks of 10 mm. This will be described in more detail with reference to FIGS. FIG. 4 is a TMA curve of MD on the surface of the non-laminated surface of the foam layer of each laminated sheet of Example 1 and Comparative Example 3 to be described later, and FIG. 5 is each laminated layer of Example 1 and Comparative Example 3 to be described later. It is a TMA curve of TD in the surface of the non-lamination surface of the foam layer of a sheet | seat. The apex of the heat shrinkage peak at 135 ° C. or lower is the position shown in each figure. In the case of Example 1 in FIG. 4, the amount of displacement at the apex of the heat shrinkage peak at 135 ° C. or lower is minus 540 μm (minus means shrinkage, plus means expansion), and the maximum TMA shrinkage rate is 0.54. × 100 ÷ 10 = 5.4% is calculated. Moreover, in the case of the comparative example 3 of FIG. 4, the displacement amount of the peak of the heat shrinkage peak at 135 ° C. or less is minus 1640 μm, and the TMA maximum shrinkage is calculated as 1.64 × 100 ÷ 10 = 16.4%. Is done. In the case of Example 1 in FIG. 5, the amount of displacement at the apex of the heat shrinkage peak at 135 ° C. or lower is minus 1880 μm, and the TMA maximum shrinkage is calculated as 1.88 × 100 ÷ 10 = 18.8%. Is done. In the case of Comparative Example 3 in FIG. 5, the displacement amount at the apex of the heat shrinkage peak at 135 ° C. or lower is minus 3200 μm, and the TMA maximum shrinkage is calculated as 3.20 × 100 ÷ 10 = 32.0%. Is done.

また、加熱収縮ピークの頂点が明確に判断できない場合、例えば図6に示すTMA曲線のように、低温側のピークの下り曲線が高温側のピークの立上り曲線の影響を受けて下り曲線になっていない場合、低温側のピークの立上り曲線の接線Aと、高温側のピークの影響を受けなければ下り曲線になっていると想定される部分(図6の場合では、略水平になっている部分)の接線Bとの交点の温度点(P)を加熱収縮ピークの頂点として採用する。   In addition, when the peak of the heat shrinkage peak cannot be clearly determined, the downward curve of the low temperature side peak is affected by the rising curve of the high temperature side peak as in the TMA curve shown in FIG. 6, for example. If not, the tangent A of the rising curve of the peak on the low temperature side and the portion assumed to be a descending curve if not affected by the peak on the high temperature side (the portion that is substantially horizontal in the case of FIG. 6) ) Is adopted as the apex of the heat shrinkage peak.

次に、本発明の積層発泡シートの製造方法について説明する。
まず、押出機にポリスチレン系樹脂、気泡調節剤等の各種の添加剤を押出機に供給し、加熱、溶融、混練し、発泡剤を圧入して更に混練して発泡性溶融樹脂混合物とし、該発泡性溶融樹脂混合物を発泡適性温度に調整し、押出機の出口に取付けた環状ダイを通して大気中に押出して筒状に発泡させる。次に、得られた筒状発泡体を筒状の冷却装置(以下、単に「マンドレル」ともいう)に沿わせ引取りながら冷却すると共に切り開いてシート状の発泡層を形成する。
Next, the manufacturing method of the laminated foam sheet of this invention is demonstrated.
First, various additives such as polystyrene resin and bubble regulator are supplied to the extruder, heated, melted and kneaded, and the foaming agent is press-fitted and further kneaded to obtain a foamable molten resin mixture, The foamable molten resin mixture is adjusted to a foaming suitable temperature and extruded into the atmosphere through an annular die attached to the outlet of the extruder to be foamed into a cylindrical shape. Next, the obtained cylindrical foam is cooled while being taken along a cylindrical cooling device (hereinafter also simply referred to as “mandrel”), and is cut open to form a sheet-like foam layer.

樹脂層は、押出直後に他の押出機を用いて押出ラミネーション法により積層してもよく、共押出ダイを用いて発泡性溶融樹脂混合物と樹脂層用溶融樹脂混合物を積層してから押出す共押出法により形成してもよい。また、発泡層を形成してから数日後に押出機を用いて押出ラミネーション法により積層してもよければ、フィルムをラミネートしてもよい。   The resin layer may be laminated by an extrusion lamination method using another extruder immediately after extrusion, or a coextrusion die is used to laminate the foamable molten resin mixture and the molten resin mixture for the resin layer and then extrude. You may form by an extrusion method. Alternatively, a film may be laminated if it may be laminated by an extrusion lamination method using an extruder several days after the foam layer is formed.

前記押出機に圧入する発泡剤としては、例えば、揮発性発泡剤、無機ガス系発泡剤、分解型発泡剤等を、それぞれ単独で又は2以上組み合わせたものが用いられる。揮発性発泡剤としては、例えば、プロパン、ノルマルブタン、イソブタン、ペンタン、ヘキサン等の脂肪族炭化水素類、シクロブタン、シクロペンタン等の環式脂肪族炭化水素類、トリクロロフロロメタン、ジクロロジフロロメタン、1,2−ジクロロ−1,1,2,2−テトラフロロエタン、1−クロロ−1,1−ジフロロエタン、1,1−ジフロロエタン、1,1−ジクロロ−2,2,2−トリフロロエタン、メチルクロライド、エチルクロライド、エチレンクロライド等のハロゲン化炭化水素類等が挙げられる。無機ガス系発泡剤としては、二酸化炭素、窒素、空気等の不活性ガスが用いられる。また分解型発泡剤としては、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、アゾビスイソブチロニトリル、重炭酸ナトリウム等が挙げられる。しかしながら、積層発泡シートの熱成形に先立つ加熱時の二次発泡性向上の観点からは、揮発性発泡剤を主たる発泡剤として使用することが望ましい。発泡剤の添加量は、発泡剤の種類、基材樹脂、目的とする発泡倍率等によって異なるため、発泡剤の種類、基材樹脂の種類に応じて目的とする発泡倍率が得られるように添加量を選択する。   As the foaming agent to be press-fitted into the extruder, for example, a volatile foaming agent, an inorganic gas-based foaming agent, a decomposable foaming agent, or the like may be used alone or in combination of two or more. Examples of the volatile blowing agent include aliphatic hydrocarbons such as propane, normal butane, isobutane, pentane, and hexane, cyclic aliphatic hydrocarbons such as cyclobutane and cyclopentane, trichlorofluoromethane, dichlorodifluoromethane, 1,2-dichloro-1,1,2,2-tetrafluoroethane, 1-chloro-1,1-difluoroethane, 1,1-difluoroethane, 1,1-dichloro-2,2,2-trifluoroethane, Examples thereof include halogenated hydrocarbons such as methyl chloride, ethyl chloride, and ethylene chloride. As the inorganic gas-based foaming agent, an inert gas such as carbon dioxide, nitrogen or air is used. Examples of the decomposable foaming agent include azodicarbonamide, dinitrosopentamethylenetetramine, azobisisobutyronitrile, sodium bicarbonate, and the like. However, from the viewpoint of improving secondary foamability during heating prior to thermoforming of the laminated foamed sheet, it is desirable to use a volatile foaming agent as the main foaming agent. The amount of foaming agent added depends on the type of foaming agent, the base resin, the target foaming ratio, etc., so add the foaming agent so that the desired foaming ratio is obtained according to the type of foaming agent and base resin. Select the amount.

前記ポリスチレン系樹脂と共に押出機に供給される気泡調整剤としては、タルク、シリカ等の無機粉末や、多価カルボン酸の酸性塩、多価カルボン酸と炭酸ナトリウム或いは重炭酸ナトリウムとの反応混合物等が挙げられる。気泡調整剤の添加量は、樹脂100重量部当たり、通常は多くても5重量部程度である。   Examples of the air conditioner supplied to the extruder together with the polystyrene resin include inorganic powders such as talc and silica, acidic salts of polyvalent carboxylic acids, reaction mixtures of polyvalent carboxylic acids with sodium carbonate or sodium bicarbonate, etc. Is mentioned. The amount of the bubble regulator added is usually at most about 5 parts by weight per 100 parts by weight of the resin.

発泡層における非積層面の表面から厚み200μmの部分についてのTMA最大収縮率の調整法としては、ダイ内で発泡性溶融樹脂混合物の流路の外側と内側の内、少なくとも前記発泡層の非積層面側に対応する側を温度調節する方法が挙げられる。ダイを温度調節する方法としては、ダイ温度よりも低温の冷却媒体により、ダイ外周やダイの内部に位置するダイシャフト(心金)をダイ温度よりも低温に温度調節する方法等が挙げられる。この場合の冷却媒体としては、オイルや水などが挙げられる。この場合、ダイの内部に位置するダイシャフト(心金)の壁の温度は発泡性溶融樹脂混合物の温度よりも10〜40℃低めに設定することが好ましい。また、ダイの外周を温度調節する場合は、発泡性溶融樹脂混合物のダイ内流路の外側壁の温度は発泡性溶融樹脂混合物の温度よりも3〜20℃低めに設定することが好ましい。ダイ内流路の外側壁の温度が心金の壁の温度よりも低下させる度合いが小さいのは、押出直後の筒状発泡体の外側は内側に比べて冷却されやすいことによる。
また、前述したようにダイから押出された筒状発泡体をマンドレルまで引き取る過程で、発泡層の表面にエアーを吹きつけて冷却することで、TMA最大収縮率は調整され、エアー温度を低くすること或いは風量を増加させることによりTMA最大収縮率を増加させることができる。
As a method for adjusting the TMA maximum shrinkage ratio for the 200 μm thick part from the surface of the non-laminated surface in the foam layer, at least the foam layer is non-laminated inside and outside the flow path of the foamable molten resin mixture in the die. There is a method of adjusting the temperature of the side corresponding to the surface side. Examples of the method of adjusting the temperature of the die include a method of adjusting the temperature of the die shaft (core metal) positioned on the outer periphery of the die or inside the die to a temperature lower than the die temperature by a cooling medium lower than the die temperature. In this case, examples of the cooling medium include oil and water. In this case, it is preferable to set the temperature of the wall of the die shaft (mandrel) located inside the die to be 10 to 40 ° C. lower than the temperature of the foamable molten resin mixture. Moreover, when temperature-controlling the outer periphery of die | dye, it is preferable to set the temperature of the outer wall of the flow path in die | dye of a foamable molten resin mixture 3-20 degreeC lower than the temperature of a foamable molten resin mixture. The reason why the temperature of the outer wall of the flow path in the die is lower than the temperature of the wall of the mandrel is that the outer side of the cylindrical foam immediately after extrusion is more easily cooled than the inner side.
In addition, as described above, in the process of drawing the cylindrical foam extruded from the die to the mandrel, the TMA maximum shrinkage is adjusted and the air temperature is lowered by blowing air on the surface of the foam layer and cooling it. Alternatively, the TMA maximum contraction rate can be increased by increasing the air volume.

前記比(厚み/厚み方向の気泡数)を100〜180μm/ヶの範囲内に収め、且つ前記比(σ/X)が0.40以下になるように調整することは、前記ダイ内における流路の外側又は/及び内側を温度調節する方法に加えて、ダイ内部の樹脂流路設計により達成することができる。この方法は、本発明者等が従来の積層発泡シートの製造方法の問題点を追求した結果、得られる発泡シートの厚み方向の気泡径のバラツキを小さくできる方法として見出したものである。   Adjusting the ratio (thickness / number of bubbles in the thickness direction) to fall within the range of 100 to 180 μm / month and adjusting the ratio (σ / X) to be 0.40 or less is the flow in the die. In addition to the method of adjusting the temperature of the outside or / and inside of the path, it can be achieved by the resin flow path design inside the die. This method has been found by the present inventors as a method capable of reducing the variation in the cell diameter in the thickness direction of the obtained foamed sheet as a result of pursuing the problems of the conventional method for producing a laminated foamed sheet.

この方法では、ダイ内溶融樹脂流路の樹脂剪断速度と樹脂がダイ内部を移動する時間(以下「滞留時間」)を乗じた値を樹脂が受ける剪断量とし、その大小により得られる気泡径の厚み方向のバラツキを調整する。該剪断量はダイ内部の形状に基づいて、ダイの各部分ごとに(剪断速度×滞留時間)を計算し、各部分の総和として求められる。但し、ダイの心金を支える支持部を含みそれよりも押出機側の部分と、ダイ出口を含むダイ出口付近の滞留時間が1秒未満の部分については、計算が複雑化する反面、気泡径のバラツキに大きく影響する部分ではないため剪断量の積算から省くものとする。   In this method, a value obtained by multiplying the resin shear rate of the molten resin flow path in the die and the time during which the resin moves inside the die (hereinafter referred to as “residence time”) is the shear amount received by the resin, Adjust the thickness variation. The amount of shear is calculated as the sum of each part by calculating (shear rate × dwell time) for each part of the die based on the shape inside the die. However, for the part including the support part that supports the core of the die and the side closer to the extruder, and the part where the residence time near the die outlet including the die outlet is less than 1 second, the calculation is complicated, but the bubble diameter Since this is not a part that greatly affects the variation of the shear, it is omitted from the accumulation of the shear amount.

次に、図7を使用してせん断量の計算方法を示す。図7は、実施例1で使用されたダイの心金支持部を越えたところ(図の左側)からダイの出口部分(図の右側)にかけてのダイの縦断面図であり、ハッチング部が発泡性溶融樹脂の流路を示す。また、図7中の数値の単位は全てmmである。   Next, a method for calculating the shear amount will be described with reference to FIG. FIG. 7 is a vertical cross-sectional view of the die from the portion (left side in the figure) to the die outlet part (right side in the figure) beyond the core support part of the die used in Example 1, and the hatched portion is foamed. 1 shows a flow path of a soluble molten resin. Moreover, the unit of the numerical value in FIG. 7 is all mm.

実施例1においては1時間当たりの押出量が100kgであり、この場合、1秒当たりの押出量は27.8g/秒(100000g÷3600秒)と計算される。また、押出物の大部分はポリスチレン樹脂であるため、押出物をポリスチレン樹脂とみなし、また、溶融時のポリスチレン樹脂の密度を便宜上、常温下での密度1.05g/cmを採用するものとし、実施例1について、1秒当たりの体積流量を計算すると、26.46cm/秒(27.8g/秒÷1.05g/cm)となる。 In Example 1, the extrusion rate per hour is 100 kg, and in this case, the extrusion rate per second is calculated as 27.8 g / second (100,000 g ÷ 3600 seconds). In addition, since most of the extrudate is polystyrene resin, the extrudate is regarded as polystyrene resin, and for the sake of convenience, the density of polystyrene resin at the time of melting shall be 1.05 g / cm 3 at room temperature. For Example 1, the volume flow rate per second is calculated to be 26.46 cm 3 / second (27.8 g / second ÷ 1.05 g / cm 3 ).

実施例1のケースでは、せん断量は図7の(ア)、(イ)及び(ウ)の各流路におけるせん断量を合算することにより求められる。尚、(エ)で示される発泡性溶融樹脂の流路の部分は、滞留時間が1秒未満であるため、せん断量の計算から除外される。
最初に上記(ア)における部分のせん断量を求める。(ア)における部分の樹脂の流路の体積は、長さ138mm、直径100mmの円柱の体積から長さ138mm、直径76mmの円柱の体積を引くことにより、457.8cmと計算される。そして、流路(ア)を通過する発泡性溶融樹脂の滞留時間は、流路(ア)の体積を体積流量で除すことにより17.3秒と計算される(457.8cm÷26.46cm/秒)。
In the case of Example 1, the shearing amount is obtained by adding the shearing amounts in the respective flow paths (a), (b), and (c) in FIG. In addition, since the residence time is less than 1 second, the part of the flow path of the foamable molten resin indicated by (D) is excluded from the calculation of the shear amount.
First, the amount of shear in the part (a) is obtained. The volume of the resin flow path in part (a) is calculated to be 457.8 cm 3 by subtracting the volume of a cylinder having a length of 138 mm and a diameter of 76 mm from the volume of a cylinder having a length of 138 mm and a diameter of 100 mm. The residence time of the foamable molten resin passing through the flow path (A) is calculated as 17.3 seconds by dividing the volume of the flow path (A) by the volume flow rate (457.8 cm 3 ÷ 26. 46 cm 3 / sec).

剪断量を求めるための剪断速度は、流路断面が円環の部分においては、溶融樹脂をニュートン流体とみなし、下記(1)式で表現される。
6Q/π((R+R)(R−R) (1)
但し、Qは体積流量(cm/秒)、Rは円環の外側半径(cm)、Rは円環の内側半径(cm)である。
The shear rate for determining the amount of shear is expressed by the following equation (1), assuming that the molten resin is a Newtonian fluid in a portion where the channel cross section is an annulus.
6Q / π ((R o + R i ) (R o −R i ) 2 ) (1)
Where Q is the volume flow rate (cm 3 / sec), R o is the outer radius (cm) of the ring, and R i is the inner radius (cm) of the ring.

(1)式より、流路(ア)の部分の剪断速度は、3.99秒−1と計算される。また、流路(ア)の部分のせん断量は、流路(ア)の部分の剪断速度と流路(ア)の部分の滞留時間の積であるから、69.0と計算される(3.99秒−1×17.3秒)。 From the equation (1), the shear rate of the channel (A) is calculated to be 3.99 sec- 1 . Further, the amount of shear in the part of the channel (A) is calculated as 69.0 because it is the product of the shear rate of the part of the channel (A) and the residence time of the part of the channel (A) (3 .99 seconds- 1 x 17.3 seconds).

次に、流路(イ)の部分のせん断量を求める。流路の内径と外径が連続して変化する(イ)の部分では、流路(イ)の中点部分の外径と内径とを有する平行二重管とみなし、せん断速度を算出する。また、流路(イ)の体積は、外側の円錐台の体積から、内側の円錐台の体積を差し引くことで求められる。なお、円錐台の体積(V)は下記(2)式により算出される。
V=(A+B+(AB)1/2)×H/3 (2)
但し、Aは円錐台の上面の面積であり、Bは円錐台の下面の面積であり、Hは円錐台の高さである。
Next, the amount of shear in the portion of the flow path (A) is obtained. In the portion (A) where the inner diameter and the outer diameter of the flow path continuously change, it is regarded as a parallel double pipe having the outer diameter and the inner diameter of the middle point portion of the flow path (A), and the shear rate is calculated. Further, the volume of the channel (A) can be obtained by subtracting the volume of the inner truncated cone from the volume of the outer truncated cone. The volume (V) of the truncated cone is calculated by the following equation (2).
V = (A + B + (AB) 1/2 ) × H / 3 (2)
However, A is the area of the upper surface of a truncated cone, B is the area of the lower surface of a truncated cone, and H is the height of a truncated cone.

この場合、流路(イ)の部分の体積は、68.3cmと計算される。そして、流路(イ)を通過する発泡性溶融樹脂の滞留時間は、流路(イ)の体積を体積流量で除すことにより2.58秒と計算される(68.3cm÷26.46cm/秒)。また、流路(イ)の中点部分の外径は86.5mmであり、同内径は68mmと計算されるから、この値を(1)式に代入して得られるせん断速度は7.64秒−1であり、流路(イ)の部分のせん断量は、流路(イ)の部分の剪断速度と流路(イ)の部分の滞留時間の積であるから、19.7と計算される(7.64秒−1×2.58秒)。 In this case, the volume of the portion of the flow path (A) is calculated as 68.3 cm 3 . The residence time of the foamable molten resin passing through the flow path (A) is calculated as 2.58 seconds by dividing the volume of the flow path (A) by the volume flow rate (68.3 cm 3 ÷ 26. 46 cm 3 / sec). Further, the outer diameter of the midpoint portion of the flow path (A) is 86.5 mm, and the inner diameter is calculated as 68 mm. Therefore, the shear rate obtained by substituting this value into the equation (1) is 7.64. in seconds -1 shear amount of part of the flow path (b) is the product of the residence time of the portion of the channel shear rate and the flow path of the portion of (b) (i), 19.7 and calculation (7.64 sec- 1 x 2.58 sec).

次に、流路(ウ)の部分のせん断量を求める。流路(ウ)の部分のせん断量は流路(ア)の部分のせん断量と同様にして求めることができる。同様にして、滞留時間は3.08秒、せん断速度は17.98秒−1と計算され、流路(ウ)の部分のせん断量は55.4と計算される。
流路(ア)、流路(イ)及び流路(ウ)のせん断量を合算すると、144.1(69.0+19.7+55.4)となり、せん断量144が得られる。
Next, the amount of shear at the portion of the flow path (c) is obtained. The amount of shear in the portion of the channel (c) can be obtained in the same manner as the amount of shear in the portion of the channel (a). Similarly, the residence time is calculated as 3.08 seconds, the shear rate is calculated as 17.98 seconds −1, and the shear amount of the flow path (c) portion is calculated as 55.4.
When the shearing amounts of the flow path (A), the flow path (A), and the flow path (C) are added up, the result is 144.1 (69.0 + 19.7 + 55.4), and the shearing quantity 144 is obtained.

本発明者等らは、実験を繰り返し実施した結果、気泡径を均一化するために最適な剪断量の値は概ね100〜210であり、好ましくは110〜200であり、更に好ましくは120〜190であることをつきとめた。剪断量が大きすぎる場合にはダイ内部でのせん断発熱が過大となるため、樹脂温度に内外差が発生して気泡径のバラツキが大きくなる虞があり、逆に剪断量が小さすぎる場合にはダイ内部で発泡が始まってしまうため、生成する気泡の状態が悪化し、逆に気泡径のバラツキが大きくなる虞がある。   As a result of repeating the experiment, the present inventors have found that the optimum shear amount for making the bubble diameter uniform is generally 100 to 210, preferably 110 to 200, and more preferably 120 to 190. I found out. If the amount of shear is too large, the heat generated inside the die will be excessive, so there is a risk that the internal and external differences will occur in the resin temperature and the bubble diameter will vary widely. Conversely, if the amount of shear is too small, Since foaming starts inside the die, the state of the generated bubbles deteriorates, and conversely, there is a possibility that the variation in the bubble diameter becomes large.

本発明の積層発泡シートは、従来公知の成形方法によって成形することができ、特に深絞り成形性に優れている。成形方法としては、真空成形、圧空成形や、これらの応用として、フリードローイング成形、プラグ・アンド・リッジ成形、リッジ成形、マッチド・モールド成形、ストレート成形、ドレープ成形、リバースドロー成形、エアスリップ成形、プラグアシスト成形、プラグアシストリバースロード成形等やこれらを組合せた方法等が採用される。   The laminated foam sheet of the present invention can be formed by a conventionally known forming method, and is particularly excellent in deep drawability. Forming methods include vacuum forming, pressure forming, and applications such as free drawing, plug and ridge forming, ridge forming, matched mold forming, straight forming, drape forming, reverse draw forming, air slip forming, Plug-assist molding, plug-assist reverse load molding, or a combination of these is employed.

本発明の積層発泡シートを用いて成形する成形体の絞り比は、深絞りに好適である観点から0.25以上が好ましく、0.4以上がより好ましく、0.5以上がさらに好ましい。一方、その上限は部分的に薄い箇所が発生する虞れがあるため1.1以下が好ましく、1.0以下がより好ましく、0.9以下がさらに好ましい。また、本発明の積層発泡シートは、深絞りの成形体に好適であるがトレイのように深さが浅い成形体でも成形できる。尚、上記絞り比とは、成形体の開口部の面積と同じ面積の円の直径を成形体の高さで除した値をいう。   The drawing ratio of the molded article formed using the laminated foamed sheet of the present invention is preferably 0.25 or more, more preferably 0.4 or more, and further preferably 0.5 or more from the viewpoint of being suitable for deep drawing. On the other hand, the upper limit is preferably 1.1 or less, more preferably 1.0 or less, and even more preferably 0.9 or less because there is a possibility that a thin portion may be partially generated. The laminated foam sheet of the present invention is suitable for a deep-drawn molded product, but can be molded even with a molded product having a shallow depth such as a tray. In addition, the said drawing ratio means the value which remove | divided the diameter of the circle of the same area as the area of the opening part of a molded object by the height of the molded object.

本発明の積層発泡シートを用いて成形される成形体としては、例えば、トレイ、丼、弁当箱、カップ等が挙げられる。特に、深絞りの丼、カップが優れている。   As a molded object shape | molded using the laminated foam sheet of this invention, a tray, a bowl, a lunch box, a cup etc. are mentioned, for example. In particular, deep-drawn bottles and cups are excellent.

以下、本発明の積層発泡シートについて、実施例により具体的に説明する。但し、本発明は実施例に限定されるものではない。   Hereinafter, the laminated foam sheet of the present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples.

実施例1
発泡シートの製造装置として、バレル内径115mmの第一押出機と、第一押出機に接続されたバレル内径180mmの第二押出機とからなるタンデム型の押出機を用い、第二押出機の出口には前記剪断量が235の管状ダイを取付けた。また、HIPS層のラミネート用の装置として、出口にTダイが取付けられた第三押出機を用いた。
Example 1
As the foam sheet production apparatus, a tandem type extruder comprising a first extruder having a barrel inner diameter of 115 mm and a second extruder having a barrel inner diameter of 180 mm connected to the first extruder is used, and the outlet of the second extruder is used. A tubular die having the shearing amount of 235 was attached to. Moreover, the 3rd extruder by which T-die was attached to the exit was used as an apparatus for the lamination of a HIPS layer.

ポリスチレン系樹脂として、PSジャパン株式会社製G0302(数平均分子量(Mn)11.8×10、分子量分布(Mw/Mn)2.5、スチレンダイマー、スチレントリマーの合計含有量1320ppm)を使用し、該ポリスチレン系樹脂100重量部に対してタルク1.2重量部を配合した原料を上記第一押出機に投入して加熱溶融混練することにより溶融樹脂とし、該溶融樹脂にイソブタン65重量%とノルマルブタン35重量%の混合ブタン発泡剤を圧入して混練し、発泡性溶融混合樹脂とした。発泡剤の添加量は、ポリスチレン系樹脂100重量部に対して3.3重量部とした。 As a polystyrene resin, G0302 (number average molecular weight (Mn) 11.8 × 10 4 , molecular weight distribution (Mw / Mn) 2.5, total content of styrene dimer and styrene trimer, 1320 ppm) manufactured by PS Japan Co., Ltd. is used. A raw material in which 1.2 parts by weight of talc is blended with 100 parts by weight of the polystyrene-based resin is put into the first extruder and heated to melt and knead to obtain a molten resin, and the molten resin contains 65% by weight of isobutane. A mixed butane foaming agent of 35% by weight of normal butane was press-fitted and kneaded to obtain a foamable molten mixed resin. The amount of the foaming agent added was 3.3 parts by weight with respect to 100 parts by weight of the polystyrene resin.

次いで、発泡性溶融混合樹脂を上記第二押出機に送り、上記発泡性溶融混合樹脂をブレーカー部(第二押出機と管状ダイの接合部にブレーカーを設置)の測定温度が156℃となるように搬送しつつ徐々に冷却し、該発泡性溶融混合樹脂を出口間隙0.65mmの環状ダイを通して、押出量1100kg/hrにて押出発泡させ、その直後に内側から温度25℃の冷却エア(風量、1.8m/min)を吹きつけ、同時に外側から温度25℃の冷却エア(風量、1.5m/min)を吹付けながら、円筒状の発泡体とし、該発泡体の内面を直径668mmの円柱状の冷却装置(マンドレル)側面上を通過させながら冷却した後、押出方向に2箇所切開くことにより約1000mm幅の2枚の発泡シートを得、それぞれロール状に巻きとった。マンドレルの直径をダイ出口の口径で割った値のブローアップ比は、4.0とした。尚、使用したダイは心金支持部以降の形状が図7に示された形状の、せん断量が144と計算されるものであった。 Next, the foamable melt-mixed resin is sent to the second extruder, and the measurement temperature of the foamable melt-mixed resin is 156 ° C. at the breaker part (the breaker is installed at the joint between the second extruder and the tubular die). The foamable melt-mixed resin is gradually cooled through an annular die having an outlet gap of 0.65 mm at an extrusion rate of 1100 kg / hr, and immediately after that, cooling air (air volume) at a temperature of 25 ° C. is sent from the inside. , 1.8 m 3 / min) and at the same time cooling air (air volume, 1.5 m 3 / min) at a temperature of 25 ° C. is blown from the outside to form a cylindrical foam, and the inner surface of the foam has a diameter After cooling while passing on the side of a 668 mm cylindrical cooling device (mandrel), two foam sheets with a width of about 1000 mm are obtained by incising two places in the extrusion direction. It was. The blow-up ratio obtained by dividing the mandrel diameter by the die exit diameter was 4.0. In addition, the die | dye used was a shape whose shape after a mandrel support part was shown by FIG.

実施例1においては、ダイの内部に位置するダイシャフト(心金)部分にオイルが循環する流路を設け、流路入口に120℃に設定したオイルを入れ、再び流路出口に戻ってきたオイルを温度調整して温度120℃となるようにして継続的に除熱を行った。一方、ダイの外側壁について該外側壁を覆ったヒーターにより、145℃に調節した。   In Example 1, a flow path through which oil circulates was provided in a die shaft (mandrel) portion located inside the die, oil set at 120 ° C. was put into the flow path inlet, and the flow returned to the flow path outlet again. The heat was continuously removed by adjusting the temperature of the oil to a temperature of 120 ° C. On the other hand, the outer wall of the die was adjusted to 145 ° C. with a heater covering the outer wall.

次に、得られたロール状発泡シートを常温、常圧下で3週間養生してから、発泡シートの片面に耐衝撃性のポリスチレン系樹脂を押出ラミネートした。即ち、耐衝撃性ポリスチレン系樹脂として、PSジャパン株式会社製XL4を上記第三押出機に供給し、加熱、溶融、混練してから、Tダイを通して押出された耐衝撃性ポリスチレン系樹脂溶融物を、上記発泡シートのマンドレル側とは反対側の面(筒状発泡体の外側の面)に押出ラミネートすることにより積層発泡シートを形成した。   Next, after the obtained roll-shaped foam sheet was cured at room temperature and normal pressure for 3 weeks, an impact-resistant polystyrene resin was extrusion laminated on one side of the foam sheet. That is, as an impact-resistant polystyrene resin, PS4 XL4 is supplied to the third extruder, heated, melted and kneaded, and then the impact-resistant polystyrene resin melt extruded through a T-die is used. The laminated foam sheet was formed by extrusion laminating on the surface opposite to the mandrel side of the foam sheet (the outer surface of the cylindrical foam).

得られた積層発泡シートは、外観に優れ、成形性及び成形体の直後印刷性ともに良好であった。   The obtained laminated foam sheet was excellent in appearance, and both the moldability and the printability immediately after the molded body were good.

実施例2
タルクの添加量をポリスチレン系樹脂100重量部に対して1.0重量部とし、発泡剤の添加量を、ポリスチレン系樹脂100重量部に対して3.4重量部としたこと以外は、実施例1と同様に積層発泡シートを形成した。
得られた積層発泡シートは、外観に優れ、成形性及び成形体の直後印刷性ともに十分満足するものであった。
Example 2
Example except that the amount of talc added was 1.0 part by weight with respect to 100 parts by weight of the polystyrene-based resin, and the amount of foaming agent added was 3.4 parts by weight with respect to 100 parts by weight of the polystyrene-based resin. A laminated foam sheet was formed in the same manner as in 1.
The obtained laminated foam sheet was excellent in appearance and sufficiently satisfied both moldability and printability immediately after the molded body.

実施例3
心金支持部以降のせん断量が182と計算されるダイに変更した以外は、実施例1と同様に積層発泡シートを形成した。尚、図7において、(イ)の部分の(ウ)側の終端の流路の内径及び(ウ)の内径を65mmに変更することによりせん断量を182とした。
得られた積層発泡シートは、外観に優れ、成形性及び成形体の直後印刷性ともに十分満足するものであった。
Example 3
A laminated foam sheet was formed in the same manner as in Example 1 except that the die was calculated so that the shear amount after the mandrel support portion was calculated as 182. In FIG. 7, the shear amount was set to 182 by changing the inner diameter of the end flow path on the (c) side and the inner diameter of (c) to 65 mm.
The obtained laminated foam sheet was excellent in appearance and sufficiently satisfied both moldability and printability immediately after the molded body.

比較例1
タルクの添加量をポリスチレン系樹脂100重量部に対して0.6重量部とし、発泡剤の添加量を、ポリスチレン系樹脂100重量部に対して3.6重量部に変更したこと以外は、実施例1と同様に積層発泡シートを形成した。
気泡調節剤のタルクを減量した結果、得られた積層発泡シートは、気泡径が大きいため外観に劣り、成形性は満足するものであったが、成形体の直後印刷性に劣るものであった。
Comparative Example 1
Implementation was performed except that the amount of talc added was 0.6 parts by weight with respect to 100 parts by weight of polystyrene resin and the amount of foaming agent was changed to 3.6 parts by weight with respect to 100 parts by weight of polystyrene resin. A laminated foam sheet was formed in the same manner as in Example 1.
As a result of reducing the amount of talc of the cell regulator, the resulting laminated foam sheet was inferior in appearance due to the large cell diameter and satisfactory in formability, but inferior in printability immediately after the molded article. .

比較例2
ブタンの添加量を3.2重量部とし、心金支持部以降のせん断量が239と計算されるダイに変更した以外は、実施例1と同様に積層発泡シートを形成した。尚、図7において、(イ)の部分の(ウ)側の終端の流路の内径及び(ウ)の内径を68mmに変更することによりせん断量を239とした。
せん断量が多すぎた結果、得られた積層発泡シートは、発泡層のσ/Xが大きくなりすぎ、成形性は満足するものであったが、成形体の直後印刷性に劣るものであった。
Comparative Example 2
A laminated foamed sheet was formed in the same manner as in Example 1 except that the amount of butane added was 3.2 parts by weight and the die was changed so that the shear amount after the mandrel support part was calculated as 239. In FIG. 7, the shear amount was set to 239 by changing the inner diameter of the flow path at the end on the (c) side and the inner diameter of (c) to 68 mm.
As a result of the excessive amount of shear, the obtained laminated foam sheet had a large σ / X of the foam layer, and the moldability was satisfactory, but the printability immediately after the molded body was poor. .

比較例3
ダイ内のダイシャフト(心金)部分にオイルを循環しなかった以外は実施例1と同様に積層発泡シートを形成した。発泡層の非積層面側のダイ内での冷却が不十分であった結果、得られた積層発泡シートは、発泡層の非積層面の表面のTMA最大収縮率がMD、TD共に大きくなりすぎ、成形性に劣るものであった。
Comparative Example 3
A laminated foam sheet was formed in the same manner as in Example 1 except that the oil was not circulated through the die shaft (core) in the die. As a result of insufficient cooling in the die on the non-laminated surface side of the foam layer, the resulting laminated foam sheet has a TMA maximum shrinkage ratio on the surface of the non-laminate surface of the foam layer that is too large for both MD and TD. The moldability was inferior.

比較例4
タルクの添加量をポリスチレン系樹脂100重量部に対して1.7重量部とし、発泡剤の添加量を、ポリスチレン系樹脂100重量部に対して3.1重量部に変更したこと以外は、実施例1と同様に積層発泡シートを形成した。
気泡調節剤のタルクを増量した結果、得られた積層発泡シートは、気泡径が小さくなりすぎ、成形性及び直後印刷性に劣るものであった。
Comparative Example 4
Implementation was performed except that the amount of talc added was 1.7 parts by weight with respect to 100 parts by weight of polystyrene resin, and the amount of foaming agent was changed to 3.1 parts by weight with respect to 100 parts by weight of polystyrene resin. A laminated foam sheet was formed in the same manner as in Example 1.
As a result of increasing the amount of the talc of the cell regulator, the resulting laminated foam sheet had a too small cell diameter, and was inferior in moldability and immediately printability.

実施例、比較例の発泡シートを得る際のせん断量、実施例、比較例で得られた発泡層の見掛け密度、発泡層の厚み、発泡層の非積層面の表層密度、HIPS層の厚み、全体の坪量、水平方向平均気泡径(X)、水平方向気泡径のバラツキ(σ)、比(σ/X)、TMAの最大収縮率(%)、成形性、直後印刷性及び総合評価を表1に示す。また、実施例1と比較例3の各例で得られた積層発泡シートの発泡層の非積層面側の表面についてMDとTDのそれぞれに対して測定したTMA曲線を図4(MD)、図5(TD)に示す。   Examples, shear amount when obtaining foam sheets of comparative examples, apparent density of foam layers obtained in examples, comparative examples, thickness of foam layers, surface layer density of non-laminated surfaces of foam layers, thickness of HIPS layers, Total basis weight, horizontal average bubble diameter (X), variation in horizontal bubble diameter (σ), ratio (σ / X), maximum shrinkage (%) of TMA, formability, immediately printability and comprehensive evaluation Table 1 shows. Moreover, the TMA curve measured with respect to each of MD and TD about the surface by the side of the non-lamination surface of the foaming layer of the laminated foam sheet obtained in each example of Example 1 and Comparative Example 3 is shown in FIG. 5 (TD).

Figure 2008100459
Figure 2008100459

成形性の評価
実施例、比較例で得られた積層発泡シートについて、浅野研究所製 品番 FKS−0631−10の成形機を用いて、HIPS層側のヒーター温度を325℃とし、発泡層の非積層面側のヒーター温度を275℃とし、積層シートを14秒間加熱した後、プラグアシスト法によりHIPS層が積層された面を外面側に位置するように熱成形して、開口部が直径141mmの円形、深さ73mm、絞り比0.52の丼形状の成形体を成形し、成形体の口縁部付近の周壁におけるナキの発生状況を観察した。結果を表1に示した。
Evaluation of moldability About the laminated foamed sheets obtained in Examples and Comparative Examples, the heater temperature on the HIPS layer side was set to 325 ° C. using a molding machine manufactured by Asano Laboratory, product number FKS-0631-10, and the non-foamed layer The heater temperature on the laminated surface side was set to 275 ° C., and the laminated sheet was heated for 14 seconds, and then the surface on which the HIPS layer was laminated was thermoformed so as to be positioned on the outer surface side by a plug assist method, and the opening portion had a diameter of 141 mm. A round shaped molded body having a depth of 73 mm and a drawing ratio of 0.52 was molded, and the occurrence of cracks on the peripheral wall near the mouth edge of the molded body was observed. The results are shown in Table 1.

ナキが発生しなかった場合を○とし、ナキが発生した場合を×とした。発生した不具合については評価とともに併記した。   The case where no pricking occurred was marked with ◯, and the case where pricking occurred was marked with x. The problems that occurred were listed together with the evaluation.

印刷性の評価
容器の印刷性の判定は、熱成形した直後(成形終了後30分後)に曲面印刷をして、印刷不具合の発生の有無を評価した。容器の強度が十分で印圧に負けてしわを発生させること無く、印刷ぬけ、印刷かすれが無く鮮明に印刷がなされている場合を○とし、しわの発生、印刷ぬけ、かすれのいずれか一つでもある場合を×とした。○の評価のうち、特に表面が平滑で外観に優れるものを◎とした。発生した不具合については評価とともに併記した。
Evaluation of printability In order to determine the printability of a container, curved surface printing was performed immediately after thermoforming (30 minutes after completion of molding), and the presence or absence of printing defects was evaluated. The case where the strength of the container is sufficient, the printing pressure is not lost due to the printing pressure, and there is no printing, no printing fading, and clear printing is marked as ○, and any one of wrinkling, printing, and fading However, the case where it was was made into x. Among the evaluations of ◯, those having a smooth surface and excellent appearance were rated as ◎. The problems that occurred were listed together with the evaluation.

総合評価
成形性、直後印刷性、成形体強度の評価に基づいて以下の通りに評価した。
○・・・全て○
×・・・×がある
Comprehensive evaluation It evaluated as follows based on evaluation of a moldability, immediately printability, and a molded object strength.
○ ・ ・ ・ All ○
There is × ・ ・ ・ ×

図1は、実施例1で得られた積層発泡シートのTDと一致する方向の垂直切断面の顕微鏡写真より気泡形状を正確にトレースした図面である。FIG. 1 is a drawing obtained by accurately tracing a bubble shape from a micrograph of a vertical cut surface in a direction corresponding to TD of the laminated foamed sheet obtained in Example 1. 図2は、比較例2で得られた積層発泡シートのTDと一致する方向の垂直切断面の顕微鏡写真より気泡形状を正確にトレースした図面である。FIG. 2 is a drawing in which the bubble shape is accurately traced from a micrograph of a vertical cut surface in a direction corresponding to the TD of the laminated foamed sheet obtained in Comparative Example 2. 図3は、熱機械分析(TMA)測定装置の概略説明図である。FIG. 3 is a schematic explanatory diagram of a thermomechanical analysis (TMA) measuring device. 図4は、実施例1、比較例3で得られた積層発泡シートの非積層面の表面のMDにおけるTMA曲線である。FIG. 4 is a TMA curve in MD of the surface of the non-laminated surface of the laminated foamed sheet obtained in Example 1 and Comparative Example 3. 図5は、実施例1、比較例3で得られた積層発泡シートの非積層面の表面のTDにおけるTMA曲線である。FIG. 5 is a TMA curve in TD of the surface of the non-laminated surface of the laminated foamed sheet obtained in Example 1 and Comparative Example 3. 図6は、加熱収縮ピークの頂点が分かりにくいTMA曲線の一例である。FIG. 6 is an example of a TMA curve in which the peak of the heat shrinkage peak is difficult to understand. 図7は、心金後のダイ内溶融樹脂流路からせん断量を求める方法を説明するための説明図である。FIG. 7 is an explanatory diagram for explaining a method for obtaining a shearing amount from the molten resin flow path in the die after the mandrel.

Claims (2)

ポリスチレン系樹脂発泡層と該発泡層の片面に積層された耐衝撃性ポリスチレン系樹脂層とからなり、発泡層の非積層面の表面から厚み200μmの部分についての昇温速度10℃/minでの熱機械分析により得られるTMA曲線において、押出方向の加熱収縮率の135℃以下におけるピークの頂点の値が0〜15%であり、幅方向の加熱収縮率の135℃以下におけるピークの頂点の値が0〜30%である積層発泡シートにおいて、発泡層の垂直断面の厚み方向の気泡数(ヶ)に対する発泡層の厚み(μm)の比(厚み/厚み方向の気泡数)が100〜180μm/ヶの範囲内にあり、且つ発泡層の垂直断面における厚み方向の任意の直線上に存在する気泡の水平方向平均気泡径(X)に対する該直線上に存在する気泡の水平方向気泡径の標準偏差(σ)の比(σ/X)が0.40以下であることを特徴とするポリスチレン系樹脂積層発泡シート。   It consists of a polystyrene-based resin foam layer and an impact-resistant polystyrene-based resin layer laminated on one side of the foam layer, and a temperature increase rate of 10 ° C./min for a portion having a thickness of 200 μm from the surface of the non-laminated surface of the foam layer. In the TMA curve obtained by thermomechanical analysis, the value of the peak apex at 135 ° C. or less of the heat shrinkage rate in the extrusion direction is 0 to 15%, and the value of the peak apex at 135 ° C. or less of the heat shrinkage rate in the width direction. In a laminated foam sheet having a thickness of 0 to 30%, the ratio of the thickness (μm) of the foam layer to the number of cells in the thickness direction of the vertical section of the foam layer (μm) (thickness / number of cells in the thickness direction) is 100 to 180 μm / The horizontal bubble diameter of the bubbles existing on the straight line with respect to the average bubble diameter in the horizontal direction (X) of the bubbles existing on the straight line in the thickness direction in the vertical cross section of the foam layer Polystyrene-based resin laminate foam sheet, wherein the ratio of the standard deviation (σ) (σ / X) is 0.40 or less. 該耐衝撃性ポリスチレン系樹脂層の厚みが、110〜130μmであることを特徴とする請求項1に記載のポリスチレン系樹脂積層発泡シート。   2. The polystyrene-based resin laminated foam sheet according to claim 1, wherein the impact-resistant polystyrene-based resin layer has a thickness of 110 to 130 μm.
JP2006286057A 2006-10-20 2006-10-20 Polystyrene resin laminated foam sheet Active JP4683562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006286057A JP4683562B2 (en) 2006-10-20 2006-10-20 Polystyrene resin laminated foam sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006286057A JP4683562B2 (en) 2006-10-20 2006-10-20 Polystyrene resin laminated foam sheet

Publications (2)

Publication Number Publication Date
JP2008100459A true JP2008100459A (en) 2008-05-01
JP4683562B2 JP4683562B2 (en) 2011-05-18

Family

ID=39435146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286057A Active JP4683562B2 (en) 2006-10-20 2006-10-20 Polystyrene resin laminated foam sheet

Country Status (1)

Country Link
JP (1) JP4683562B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011495A (en) * 2018-07-20 2020-01-23 株式会社ジェイエスピー Polystyrene-based resin laminated foam sheet and container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150610A (en) * 1999-11-25 2001-06-05 Jsp Corp Polystyrenic resin multilayered foamed sheet for thermoforming
JP2002210891A (en) * 2001-01-19 2002-07-31 Sekisui Plastics Co Ltd Foamed styrene resin laminate and molding using the sane
JP2003012843A (en) * 2001-06-29 2003-01-15 Sekisui Plastics Co Ltd Polystyrene-resin foamed material and production method thereof
JP2005349593A (en) * 2004-06-08 2005-12-22 Jsp Corp Polystyrenic resin-laminated foamed sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150610A (en) * 1999-11-25 2001-06-05 Jsp Corp Polystyrenic resin multilayered foamed sheet for thermoforming
JP2002210891A (en) * 2001-01-19 2002-07-31 Sekisui Plastics Co Ltd Foamed styrene resin laminate and molding using the sane
JP2003012843A (en) * 2001-06-29 2003-01-15 Sekisui Plastics Co Ltd Polystyrene-resin foamed material and production method thereof
JP2005349593A (en) * 2004-06-08 2005-12-22 Jsp Corp Polystyrenic resin-laminated foamed sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011495A (en) * 2018-07-20 2020-01-23 株式会社ジェイエスピー Polystyrene-based resin laminated foam sheet and container
JP7010782B2 (en) 2018-07-20 2022-02-10 株式会社ジェイエスピー Polystyrene resin laminated foam sheet and container

Also Published As

Publication number Publication date
JP4683562B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP4084209B2 (en) Foam molded body and method for producing the same
JP2007154172A (en) Polypropylene-based resin foamed sheet, laminated foamed sheet, method of manufacturing polypropylene-based resin foamed sheet, and formed article therefrom
JP2010167628A (en) Polyolefinic resin foamed blow molding
JP4258769B2 (en) Polystyrene resin laminated foam sheet
JP2012126032A (en) Polystyrene based resin laminate foamed sheet
JP4683562B2 (en) Polystyrene resin laminated foam sheet
JP4942080B2 (en) Styrenic resin laminated foam sheet and styrene resin foam container.
JP5932568B2 (en) Polystyrene resin laminated foam sheet
JP4979293B2 (en) Thermoplastic resin foam sheet and container made of this foam sheet
JP4008904B2 (en) Polystyrene resin laminated foam sheet
JP4484184B2 (en) Polystyrene resin foam sheet, thermoplastic resin laminated foam sheet, and containers thereof
JP3749409B2 (en) Polystyrene resin multilayer foam sheet for thermoforming
JP5793386B2 (en) Polystyrene resin foam sheet and molded product
JP2017122184A (en) Styrenic resin foam sheet and method for producing the same, and food packaging container
JP4925290B2 (en) Polystyrene resin laminated foam sheet and molded product thereof
JP6715149B2 (en) Method for producing resin foam sheet and resin foam molded article
JP6212422B2 (en) Polystyrene resin foam plate and method for producing the same
JP2003231169A (en) Method for manufacturing foamed sheet of polystyrene resin for heat molding and foamed sheet of polystyrene resin
JP4545860B2 (en) Multilayer foam sheet and container
JP7496678B2 (en) Polystyrene resin foam sheet and container
JP2012011639A (en) Foamed polystyrene resin sheet, foamed polystyrene resin laminated sheet, molding formed from laminated sheet, and method for producing foamed polystyrene resin sheet
JP6892297B2 (en) Polystyrene resin laminated foam sheet and polystyrene resin multilayer foam sheet
JP4523350B2 (en) Polystyrene resin laminated foam sheet
JP4990585B2 (en) Polystyrene resin foam sheet
JP2019210312A (en) Method for producing polystyrene-based resin foam sheet, polystyrene-based resin foam sheet, polystyrene-based resin foam sheet roll material, and container for microwave heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4683562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250