JP2008100182A - Emulsification apparatus and apparatus for manufacturing particulate - Google Patents

Emulsification apparatus and apparatus for manufacturing particulate Download PDF

Info

Publication number
JP2008100182A
JP2008100182A JP2006285664A JP2006285664A JP2008100182A JP 2008100182 A JP2008100182 A JP 2008100182A JP 2006285664 A JP2006285664 A JP 2006285664A JP 2006285664 A JP2006285664 A JP 2006285664A JP 2008100182 A JP2008100182 A JP 2008100182A
Authority
JP
Japan
Prior art keywords
liquid
flow
emulsification
flow path
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006285664A
Other languages
Japanese (ja)
Inventor
So Kato
宗 加藤
Zen Ito
禅 伊東
Hidekazu Tsuru
英一 津留
Kiju Endo
喜重 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2006285664A priority Critical patent/JP2008100182A/en
Priority to CN200910254144A priority patent/CN101711961A/en
Priority to CN2007101624731A priority patent/CN101219352B/en
Priority to EP07020543A priority patent/EP1913994A3/en
Publication of JP2008100182A publication Critical patent/JP2008100182A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/411Emulsifying using electrical or magnetic fields, heat or vibrations
    • B01F23/4111Emulsifying using electrical or magnetic fields, heat or vibrations using vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/55Mixing liquids with solids the mixture being submitted to electrical, sonic or similar energy
    • B01F23/551Mixing liquids with solids the mixture being submitted to electrical, sonic or similar energy using vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4521Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through orifices in elements, e.g. flat plates or cylinders, which obstruct the whole diameter of the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/84Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations for material continuously moving through a tube, e.g. by deforming the tube
    • B01F31/841Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations for material continuously moving through a tube, e.g. by deforming the tube with a vibrating element inside the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/811Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles in two or more consecutive, i.e. successive, mixing receptacles or being consecutively arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/813Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles mixing simultaneously in two or more mixing receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/213Measuring of the properties of the mixtures, e.g. temperature, density or colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/2201Control or regulation characterised by the type of control technique used
    • B01F35/2202Controlling the mixing process by feed-back, i.e. a measured parameter of the mixture is measured, compared with the set-value and the feed values are corrected

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Colloid Chemistry (AREA)
  • Accessories For Mixers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable an apparatus for manufacturing particulates to mass-produce particulates with the particle size controlled. <P>SOLUTION: An apparatus 100 for manufacturing particulates has a liquid device 114 which has a fine passage having orifices 203 to 205 and spraying liquids, a passage wall equipped with piezoelectric elements 206 and 607 causing liquids to vibrate actively and a mechanism 111 measuring particle sizes and quantities of particles floating in fluid. The piezoelectric element vibrates in a laterally sliding way in the same direction as the flowing direction of the fluid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原料を乳化する装置または原料を微粒化して微粒子を生成をする微粒子製造装置に関する。   The present invention relates to a device for emulsifying a raw material or a fine particle production device for generating fine particles by atomizing a raw material.

従来の乳化装置の例が、特許文献1に記載されている。この公報に記載のエマルション製造方法では、迅速かつ容易にロジン系化合物を水性エマルション化するために、乳化剤水溶液を高圧吐出型乳化機から高圧でオリフィスに供給し、溶融状のロジン系化合物を他の流路から高速流噴出部に供給し、所定温度範囲の混合温度で衝突させている。そして、混合物を吸収セル多段状に嵌挿した吸収セル部内に導き、エマルション排出部から排出している。   An example of a conventional emulsifying device is described in Patent Document 1. In the emulsion production method described in this publication, in order to quickly and easily make a rosin compound into an aqueous emulsion, an aqueous emulsifier solution is supplied from a high-pressure discharge type emulsifier to an orifice at a high pressure, and the molten rosin compound is supplied to another emulsion. It is supplied from the flow path to the high-speed flow ejection portion and collides at a mixed temperature in a predetermined temperature range. And the mixture is guide | induced in the absorption cell part inserted by the absorption cell multistage shape, and is discharged | emitted from an emulsion discharge | emission part.

従来多用されている攪拌形のエマルション製造方法の例が、特許文献2に記載されている。この公報に記載の攪拌型エマルション製造方法では、25℃の粘度が1万cSt〜
100万cStの高粘度の液状オルガノポリシロキサン100重量部を、イオン性乳化剤水溶液1〜20重量部中に投入して攪拌分散させている。その後、非イオン性乳化剤1〜50重量部を投入し、高せん断攪拌により小粒径化し、最終的に水で希釈している。
An example of a stirring type emulsion production method that has been widely used in the past is described in Patent Document 2. In the stirring emulsion production method described in this publication, the viscosity at 25 ° C. is 10,000 cSt˜
100 parts by weight of 1 million cSt high-viscosity liquid organopolysiloxane is added to 1 to 20 parts by weight of an ionic emulsifier aqueous solution and stirred and dispersed. Thereafter, 1 to 50 parts by weight of a nonionic emulsifier is added, the particle size is reduced by high shear stirring, and finally diluted with water.

さらに他のエマルション製造方法が、特許文献3に記載されている。この公報には、粒径の揃った高品質なエマルションを量産性よく生成するために、複数のインレットおよび1つのアウトレット、これらインレットとアウトレットとの間に多段に形成され各インレットからそれぞれ導入された流体を順次混合してアウトレットに導く複数のチャンネルを、マイクロ乳化器が具備している。そして、各マイクロチャンネルが形成する各段の流路の実行流路断面積が、インレット側からアウトレット側に向けて順次狭くなるようにして、アウトレット側となるほどせん断速度とその分散効果を高くしている。   Still another emulsion production method is described in Patent Document 3. In this publication, in order to produce a high-quality emulsion having a uniform particle size with high productivity, a plurality of inlets and one outlet are formed in multiple stages between these inlets and outlets, and introduced from each inlet. The microemulsifier is equipped with a plurality of channels that sequentially mix and guide the fluid to the outlet. And, the effective flow cross-sectional area of the flow path of each stage formed by each microchannel is gradually reduced from the inlet side to the outlet side, and the shear rate and its dispersion effect are increased toward the outlet side. Yes.

特開2000−210546号公報JP 2000-210546 A 特開平7−173294号公報JP 7-173294 A 特開2004−81924号公報JP 2004-81924 A

従来のエマルション化装置または乳化装置では、小規模の実験室レベルでの生産に成功したものを、事業としていかに量産化するかが課題になっている。上記特許文献1に記載の水性エマルションの製造においては、高圧での250MPaもの高圧での溶液の噴射が必要となり、実機プラントでこのような高圧設備を準備することは、装置の巨大化とコストの増大を招く。また、高圧に耐えられる溶液でないと使用できず、溶液の種類が限定される。   In the conventional emulsification apparatus or emulsification apparatus, there is a problem how to mass-produce what has been successfully produced at a small laboratory level. In the production of the aqueous emulsion described in Patent Document 1, it is necessary to inject a solution at a high pressure of 250 MPa at a high pressure, and preparing such a high-pressure facility in an actual plant is an increase in the size and cost of the apparatus. Incurs an increase. Moreover, it cannot be used unless it is a solution which can endure high pressure, and the kind of solution is limited.

上記特許文献2に記載のエマルション製造方法では、高粘度の第1の溶液を第2の水溶液に投入攪拌し、次いで第3の乳化剤下で高せん断攪拌することが記載されている。しかしながら、この公報に記載の方法では、使用できる溶液が特殊な溶液に限られ、一般の油と水溶液との乳化の必ずしも全てに、適用できるわけではない。   In the emulsion production method described in Patent Document 2, it is described that a high-viscosity first solution is charged and stirred into a second aqueous solution, and then high-shear stirring is performed under a third emulsifier. However, in the method described in this publication, the usable solution is limited to a special solution, and is not necessarily applicable to all emulsification of general oil and aqueous solution.

さらに、特許文献3には水と油のような不混和流体の混合であるエマルションを、マイクロ構造で実現することが記載されている。この方法によれば粒径の揃ったエマルションを作成可能であるが、流す流量により液滴の径が支配されるので、所望の液滴径を得るためには、流す流量を犠牲にせざるを得ない場合もあり、その場合大量に処理しようとすると、装置を大型化するか、処理時間を長くせざるを得ない。他の方法としては、超音波を作用させて、液体中のキャビテーションにより発生する衝撃波を利用する方法もあるが、その場合、高温で失活してしまうたんぱく質など生体高分子材料を含む原料への適用が困難である。   Furthermore, Patent Document 3 describes that an emulsion, which is a mixture of immiscible fluids such as water and oil, is realized with a microstructure. According to this method, an emulsion having a uniform particle size can be prepared. However, since the droplet diameter is governed by the flow rate, the flow rate must be sacrificed in order to obtain a desired droplet size. In some cases, if a large amount of processing is to be performed, the apparatus must be enlarged or the processing time must be lengthened. As another method, there is a method of utilizing a shock wave generated by cavitation in a liquid by applying an ultrasonic wave, but in that case, it is applied to a raw material containing a biopolymer material such as a protein that is deactivated at a high temperature. It is difficult to apply.

本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は、乳化装置におけるエマルションの特性制御が容易であり、かつエマルションを大量生成できるようにすることにある。本発明の他の目的は、微粒子製造装置が、粒径がコントロールされた粒子を大量に生成可能にすることにある。そして本発明は、これらの目的のいずれかを達成することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to make it easy to control the characteristics of an emulsion in an emulsifying apparatus and to produce a large amount of emulsion. Another object of the present invention is to enable a fine particle production apparatus to produce a large amount of particles having a controlled particle size. The present invention aims to achieve any of these objects.

上記目的を達成する本発明の特徴は、装置に、液体を噴流にする微細流路と、液体を能動的に振動させる流路壁を有する流体デバイスを搭載し、能動的に振動させる流路壁は、液体の流れ方向と同じ方向に横滑り振動するものである。そしてこの特徴において、能動的に振動させる流路壁は圧電素子を有し、この圧電素子は液体に接する側の表面に絶縁材をコーティングしてあるのがよい。   A feature of the present invention that achieves the above object is that the apparatus is equipped with a fluid device having a fine channel for jetting a liquid and a channel wall for actively vibrating the liquid, and the channel wall for actively vibrating the device. Oscillates in the same direction as the liquid flow direction. In this feature, the channel wall actively vibrated has a piezoelectric element, and this piezoelectric element is preferably coated with an insulating material on the surface in contact with the liquid.

また上記目的を達成するために、装置が、液体を噴流にする微細流路と、液体を能動的に振動させる流路壁と、流体中に浮遊する粒子の粒径と数量を計測する手段とを有する流体デバイスを搭載している。   In order to achieve the above-mentioned object, the apparatus includes a fine flow path for jetting the liquid, a flow path wall for actively vibrating the liquid, and a means for measuring the particle size and quantity of particles suspended in the fluid. A fluidic device having the above is mounted.

そしてこの特徴において、微細流路は複数段のオリフィスを備え、このオリフィスが噴流および旋回流を発生することが好ましく、能動的に振動させる流路壁は、液体の流れ方向と同じ方向に横滑り振動することが好ましい。また、能動的に振動させる流路壁は圧電素子を有し、この圧電素子は液体に接する側の表面に絶縁材をコーティングしてあるものであってもよく、装置は、乳化装置または微粒子製造装置のいずれかであるのが好ましい。さらに、流体デバイスを複数個並列接続してもよい。   In this feature, the fine flow path includes a plurality of stages of orifices, and it is preferable that the orifices generate a jet flow and a swirl flow, and the flow path wall that vibrates actively slides in the same direction as the liquid flow direction. It is preferable to do. Further, the channel wall actively vibrated has a piezoelectric element, and this piezoelectric element may have an insulating material coated on the surface in contact with the liquid. Preferably any of the devices. Furthermore, a plurality of fluidic devices may be connected in parallel.

本発明によれば、乳化させたい原料(水系の原料と油系の原料)をまず、噴流にともなう高せん断応力によって数十から数百μmレベルのエマルションに乳化し、さらに流路壁面を能動的に振動させ適切なせん断応力を作用させて所望の粒径まで微細かさせるので、微粒子製造装置および乳化装置におけるエマルションの特性制御を容易とさせる。また、本発明によれば、上記、噴流および任意強度のせん断応力を発生させることができる流路を所望の処理量に応じてそのまま並列接続させるので、従来の物理的相似則に基づくスケールアップに伴う問題点を回避して微粒子製造装置および乳化装置における粒径がコントロールされた粒子を大量に生成できる。   According to the present invention, the raw material (water-based raw material and oil-based raw material) to be emulsified is first emulsified into an emulsion of several tens to several hundreds of μm by the high shear stress accompanying the jet, and the channel wall surface is actively formed. Therefore, it is easy to control the characteristics of the emulsion in the fine particle production apparatus and the emulsification apparatus. In addition, according to the present invention, since the above-described flow path capable of generating a jet flow and a shear stress of arbitrary strength is connected in parallel as it is in accordance with a desired processing amount, it is possible to scale up based on the conventional physical similarity law. By avoiding the problems involved, it is possible to generate a large amount of particles having a controlled particle size in the fine particle production apparatus and the emulsification apparatus.

以下、本発明に係る乳化装置または微粒子製造装置の一実施例を、図面を用いて説明する。図1に、微粒子製造装置100のシステムをブロック図で示す。微粒子製造装置100は、乳化させたい原料A(分散相)を貯蔵するタンク101と、原料Aを分散させる原料B(連続相)を貯蔵するタンク102を有している。詳細を後述する乳化デバイス103が、これら原料A,Bを混合して乳化させる。   Hereinafter, an embodiment of an emulsification apparatus or a fine particle production apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a system of the fine particle manufacturing apparatus 100. The fine particle manufacturing apparatus 100 includes a tank 101 that stores a raw material A (dispersed phase) to be emulsified and a tank 102 that stores a raw material B (continuous phase) in which the raw material A is dispersed. An emulsifying device 103, which will be described in detail later, mixes these raw materials A and B to emulsify them.

原料Aのタンク101から配管107を介して乳化デバイス103へ、第1のポンプ
104が送液する。同様に、原料Bのタンク102から配管108を介して乳化デバイス103へ、第2のポンプ105が送液する。乳化された原料Aと原料Bの混合物を、乳化デバイス103から配管109を経てタンク106へ送液し捕集する。
The first pump 104 feeds the raw material A from the tank 101 to the emulsification device 103 via the pipe 107. Similarly, the second pump 105 sends the liquid from the raw material B tank 102 to the emulsification device 103 via the pipe 108. The emulsified raw material A and raw material B mixture is sent from the emulsifying device 103 to the tank 106 via the pipe 109 and collected.

混合物の配管109には、迂回流路110が設けられている。この迂回流路110には、粒度分布計111が設けられている。粒度分布計111は、乳化デバイス103から流出される混合物中の分散相の粒子径をオンラインでモニターすることができる。乳化デバイス103の流路内には、流路を能動的に振動させることができる圧電素子が設けられている。圧電素子は、圧電素子ドライバー回路112で駆動される。   A bypass passage 110 is provided in the piping 109 of the mixture. The bypass flow path 110 is provided with a particle size distribution meter 111. The particle size distribution meter 111 can monitor the particle size of the dispersed phase in the mixture flowing out from the emulsification device 103 online. A piezoelectric element that can actively vibrate the flow path is provided in the flow path of the emulsification device 103. The piezoelectric element is driven by a piezoelectric element driver circuit 112.

第1,第2の送液ポンプ104,105と、圧電素子ドライバー回路112と、粒度分布計111とは、ユーザコンソール113に接続されている。微粒子製造装置100のユーザは、このコンソール113を用いて、現在生成されている混合物の粒度分布をモニターする。そして、第1,第2の送液ポンプ104,105が送液する原料Aと原料Bの送液量比,送液量,乳化デバイス103内の圧電素子の振動強度を調整し、所望の混合物を生成する。乳化デバイス103と粒度分布計111とは、乳化部114を構成する。   The first and second liquid feeding pumps 104 and 105, the piezoelectric element driver circuit 112, and the particle size distribution meter 111 are connected to the user console 113. The user of the fine particle manufacturing apparatus 100 uses the console 113 to monitor the particle size distribution of the mixture that is currently generated. Then, the ratio of the feed amount of the raw material A and the raw material B fed by the first and second liquid feed pumps 104 and 105, the liquid feed amount, and the vibration intensity of the piezoelectric element in the emulsification device 103 are adjusted to obtain a desired mixture. Is generated. The emulsification device 103 and the particle size distribution meter 111 constitute an emulsification unit 114.

図2に、図1に示した微粒子製造装置100が有する乳化デバイス103を、縦断面図で示す。原料タンク101,102から送液ポンプ104,105によって送液された原料はそれぞれ201,202のように乳化デバイス103内の流路208a,208bに流入し、結合流路208cで合流する。さらにオリフィス203,204,205を通過し、圧電素子206,207がその壁面に設けられている拡大部208f、さらに流路
208dを経て209のようにデバイス外部へと流出する。圧電素子206,207は図中の破線で示したように、厚み滑り振動モードで外部からの制御で振動させることができる。
FIG. 2 is a longitudinal sectional view showing the emulsification device 103 included in the fine particle manufacturing apparatus 100 shown in FIG. The raw materials sent from the raw material tanks 101 and 102 by the liquid feed pumps 104 and 105 flow into the flow paths 208a and 208b in the emulsification device 103 as indicated by 201 and 202, respectively, and merge in the coupling flow path 208c. Further, it passes through the orifices 203, 204, 205, and the piezoelectric elements 206, 207 flow out of the device like 209 through the enlarged portion 208f provided on the wall surface and further the flow path 208d. The piezoelectric elements 206 and 207 can be vibrated by external control in the thickness-shear vibration mode, as indicated by broken lines in the figure.

乳化デバイス103の配管との接続、すなわち、原料A,Bの流入口である流路208a,208b、エマルション分散液の流出口である流路208dとの配管接続を考慮すれば、これらの流路断面は円形である方が好ましい。   Considering connection with the piping of the emulsification device 103, that is, piping connection with the flow paths 208a and 208b that are the inlets of the raw materials A and B and the flow path 208d that is the outlet of the emulsion dispersion liquid, these flow paths The cross section is preferably circular.

結合流路208dと拡大部208fとの間には、3種類のオリフィス203〜205が、互いに間隔をおいて、流れ方向に順に配置されている。第1のオリフィス203は最も上流側に位置し、中央部に孔が形成されたものであり、その開口比が3個のオリフィス
203〜205中で最も大きい。中間に配置される第2のオリフィス204は、上流側の側面の中心部が、下流側に凹んだ円錐形状であり、下流側は乳化流路8dの流れ方向に垂直な面となっている。そして、第2のオリフィス204の中央部に形成される開口の開口比は、第1〜第3のオリフィス203〜205の中で最も小さい。
Three kinds of orifices 203 to 205 are sequentially arranged in the flow direction at intervals between the coupling channel 208d and the enlarged portion 208f. The first orifice 203 is located on the most upstream side and has a hole formed in the center thereof, and the opening ratio thereof is the largest among the three orifices 203 to 205. The second orifice 204 disposed in the middle has a conical shape in which the central portion of the upstream side surface is recessed downstream, and the downstream side is a surface perpendicular to the flow direction of the emulsification channel 8d. The opening ratio of the opening formed in the central portion of the second orifice 204 is the smallest among the first to third orifices 203 to 205.

また、圧電素子が壁面上に設置させてある拡大部208fを通過する際の流速を減速させることで、その箇所(208f部)を通過する時間を稼げる。従って、208f部の断面積は他の流路部より大きくとる場合もある。   In addition, by slowing down the flow velocity when the piezoelectric element passes through the enlarged portion 208f installed on the wall surface, it is possible to earn time for passing through the portion (208f portion). Therefore, the cross-sectional area of the 208f portion may be larger than other flow path portions.

また、拡大部208fにはできるだけ一様な振動的せん断応力を発生させて微粒子の生成を均一化することが好ましいので、他の流路部の断面形状は円形であっても、この流路部分だけは平面状の圧電素子を2枚の対向させた矩形断面形状であることが好ましい。2枚の対向させる圧電素子の間隔は振動周波数や原液の粘性にもよるが、一般的にはできるだけ狭い方がより一様な振動的せん断応力を発生させることができる。   Further, since it is preferable to generate the vibration shear stress as uniform as possible in the enlarged portion 208f to make the generation of fine particles uniform, even if the cross-sectional shape of the other flow path portion is circular, this flow path portion Only a rectangular cross-sectional shape in which two planar piezoelectric elements are opposed to each other is preferable. Although the distance between the two piezoelectric elements facing each other depends on the vibration frequency and the viscosity of the stock solution, generally, the narrower one can generate more uniform vibrational shear stress.

図中には圧電素子207,208とそれらが設置されている流路壁との間に隙間を設け、破線のような横滑り振動の妨げにならないように図示してあるが、この隙間部分に原液が残留し、衛生上問題となる場合には伸縮性の高い弾性素材でこの隙間部分を封止してもよい。   In the figure, a gap is provided between the piezoelectric elements 207 and 208 and the flow path wall on which they are installed so as not to hinder side-slip vibration as shown by a broken line. If this remains and this is a sanitary problem, the gap may be sealed with an elastic material having high stretchability.

図3を用いて、図2に示した乳化デバイス103内の拡大部208fにおける混合流体の挙動を、説明する。図8(a)は、オリフィス203〜205部の流れを説明する図であり、図8(b)は、拡大部208f部の流れを説明する図である。上述したように、第1のオリフィス203のオリフィス径306より第2のオリフィス204のオリフィス径307を小さくしている。   The behavior of the mixed fluid in the enlarged portion 208f in the emulsification device 103 shown in FIG. 2 will be described with reference to FIG. FIG. 8A is a diagram for explaining the flow of the orifices 203 to 205, and FIG. 8B is a diagram for explaining the flow of the enlarged portion 208f. As described above, the orifice diameter 307 of the second orifice 204 is made smaller than the orifice diameter 306 of the first orifice 203.

このようにしたので、原料A,Bの混合流の流量が所定流量以上になると、第1のオリフィス203と第2のオリフィス204間の流路には、旋回流的な2次流れ308が形成される。この2次流れ308により、上流側から第1,第2のオリフィス203,204間に流入してきた原料の分散相(原料A)302と連続相(原料B)301は混合され、比較的大きな液滴309に分散される。   Thus, when the flow rate of the mixed flow of the raw materials A and B exceeds a predetermined flow rate, a swirling secondary flow 308 is formed in the flow path between the first orifice 203 and the second orifice 204. Is done. By this secondary flow 308, the raw material dispersed phase (raw material A) 302 and the continuous phase (raw material B) 301 flowing between the first and second orifices 203 and 204 from the upstream side are mixed, and a relatively large liquid is obtained. Dispersed in drops 309.

さらに第2のオリフィス204では、第1,第3のオリフィス203,205よりオリフィス径307を小さく形成したので、この第2のオリフィス204の下流側に向けて、激しい噴流310が形成される。そして噴流310に伴う強いせん断応力が、第1,第2オリフィス203,204の間で生成された液滴309に作用し微細な液滴311に分裂する。   Further, since the orifice diameter 307 is smaller in the second orifice 204 than in the first and third orifices 203 and 205, a violent jet 310 is formed toward the downstream side of the second orifice 204. A strong shearing stress accompanying the jet 310 acts on the droplet 309 generated between the first and second orifices 203 and 204 and splits into fine droplets 311.

第2のオリフィス204の下流側に向けて生じる噴流310は、下流に行くにしたがい徐々に広がる。そのため、開口が第2のオリフィス204よりも広い第3のオリフィス
205であっても、そのまま通過できず、一部の流れは跳ね返されて、上流側に逆流する2次流れ312を形成する。2次流れ312は、微細な分散相(原料A)と連続相(原料B)とはさらに混合され、第3のオリフィス305の開口部を通過して下流へと流れていく。
The jet 310 generated toward the downstream side of the second orifice 204 gradually spreads as it goes downstream. Therefore, even if the opening is the third orifice 205 wider than the second orifice 204, it cannot pass through as it is, and a part of the flow is rebounded to form a secondary flow 312 that flows back upstream. In the secondary flow 312, the fine dispersed phase (raw material A) and the continuous phase (raw material B) are further mixed and flow downstream through the opening of the third orifice 305.

上述したように、第1〜第3のオリフィス203〜205部の下流に形成した拡大部
208fには、圧電素子206,207が対向配置されている。圧電素子206,207は、流路壁面に横滑り振動を発生させ、原料Aと原料Bの混合液の液滴を、さらに細かく分裂させる。ここで、圧電素子206,207を図3(b)に示すように、互いに逆位相で振動させる。すると、2個の圧電素子206,207間に、振動的な流速分布315,316を形成させる。この流速分布315,316によりせん断応力が生じ、このせん断応力が、上流から流れてきた球状の液滴を、流れ方向に引き伸ばした細長い液滴317とし、最終的には細長い液滴317を複数個の球状に近い液滴に細分する。これにより、さらに微細な液滴が発生する。
As described above, the piezoelectric elements 206 and 207 are disposed opposite to the enlarged portion 208f formed downstream of the first to third orifices 203 to 205. The piezoelectric elements 206 and 207 generate a side-slip vibration on the flow path wall surface, and further divide the droplets of the mixed liquid of the raw material A and the raw material B. Here, as shown in FIG. 3B, the piezoelectric elements 206 and 207 are vibrated in mutually opposite phases. Then, vibrational flow velocity distributions 315 and 316 are formed between the two piezoelectric elements 206 and 207. A shear stress is generated by the flow velocity distributions 315 and 316, and the shear stress causes the spherical droplets flowing from the upstream to be elongated droplets 317 stretched in the flow direction, and finally a plurality of elongated droplets 317 are formed. The droplets are subdivided into nearly spherical droplets. Thereby, finer droplets are generated.

この振動的な流速分布の分布状況は、圧電素子206,207の横滑り方向の振動速度318によって制御することができる。つまり、液滴319が圧電素子206,207間を通過する時間と壁面振動の振動数によって、液滴が通過する際に液滴が何回引きちぎられるかが決まる。したがって、原料A,Bの分裂に要するせん断応力と原料A,Bを流す速度に応じて、壁面振動の振動数と振動変位を調整する。これにより、所望の粒子径で、原料A,Bを乳化させることができる。   The distribution state of this oscillatory flow velocity distribution can be controlled by the vibration velocity 318 of the piezoelectric elements 206 and 207 in the skid direction. That is, the number of times the droplet is torn when the droplet passes is determined by the time that the droplet 319 passes between the piezoelectric elements 206 and 207 and the frequency of the wall vibration. Therefore, the frequency and vibration displacement of the wall surface vibration are adjusted according to the shear stress required for splitting the raw materials A and B and the speed at which the raw materials A and B are flowed. Thereby, the raw materials A and B can be emulsified with a desired particle diameter.

なお、通常圧電素子206,207には、高電圧が印加される。したがって、原料A,Bに接する圧電素子206,207の表面は、絶縁されていなければならない。そこで、本実施例では、図示を省略したが、絶縁性であって伸縮性の高い樹脂を、圧電素子206,207の表面に施している。   Note that a high voltage is normally applied to the piezoelectric elements 206 and 207. Therefore, the surfaces of the piezoelectric elements 206 and 207 that are in contact with the raw materials A and B must be insulated. Therefore, in this embodiment, although not shown, an insulating and highly stretchable resin is applied to the surfaces of the piezoelectric elements 206 and 207.

以下の説明においては、第1〜第3のオリフィス203〜205部を受動的乳化部313と称し、拡大部208fを能動的乳化部314と称する。上記実施例では、乳化デバイス103は、受動的乳化部313と能動的乳化部314の両者を有しており、前者313では粗な乳化をし、後者314でより精細な微粒子を生成している。しかしながら、要求される混合状態に応じて、いずれか一方の乳化部だけを、乳化デバイス103が有するようにしてもよい。   In the following description, the first to third orifices 203 to 205 are referred to as a passive emulsification unit 313, and the enlarged portion 208f is referred to as an active emulsification unit 314. In the above embodiment, the emulsifying device 103 has both the passive emulsifying unit 313 and the active emulsifying unit 314, and the former 313 performs rough emulsification and the latter 314 generates finer fine particles. . However, the emulsification device 103 may have only one of the emulsifying units according to the required mixing state.

また、より精細な粒子を生成するために、必要に応じて受動的乳化部313と能動的乳化部314とを複数段設けてもよい。これら乳化部313,314の組み合わせは、乳化処理をしたい原料A,Bの粘性や密度、原料A,B間の界面張力等の物性、および目標とする微粒子の平均粒径や粒度分布等の混合状態に応じて決定する。   Moreover, in order to produce finer particles, a plurality of stages of passive emulsification units 313 and active emulsification units 314 may be provided as necessary. The combination of these emulsifying parts 313 and 314 is a mixture of the viscosity and density of raw materials A and B to be emulsified, physical properties such as interfacial tension between the raw materials A and B, and the average particle size and particle size distribution of the target fine particles. Decide according to the state.

なお、図3(b)では拡大部208fに対向して圧電素子206,207を設け、両者を逆位相で振動させているが、圧電素子を一方だけとしてもよい。この場合でも、乳化流路208dは、流れ方向にほぼ同一断面積とするのがよい。生じるせん断応力の強度は、圧電素子206,207を2個対向させたときに比べて劣るが、能動的乳化部214で消費する電力と圧電素子を駆動するドライバー回路が1個で済む利点がある。せん断応力が弱まる分だけ液滴の通過時間を長くすれば、対向させた場合と同程度の効果が得られるので、比較的処理量が少なくて済む処理において特に有効である。   In FIG. 3B, the piezoelectric elements 206 and 207 are provided opposite to the enlarged portion 208f and are vibrated in opposite phases, but only one piezoelectric element may be provided. Even in this case, it is preferable that the emulsification channel 208d has substantially the same cross-sectional area in the flow direction. The strength of the generated shear stress is inferior to the case where two piezoelectric elements 206 and 207 are opposed to each other, but there is an advantage that only one driver circuit for driving the electric power consumed by the active emulsifying unit 214 and the piezoelectric element is required. . If the passage time of the droplets is increased by the amount by which the shear stress is weakened, the same effect as that obtained when the droplets are made to face each other can be obtained.

本発明に係る微粒子製造装置の他の実施例を、図4を用いて説明する。上記実施例では2つの原料A,Bを混合して乳化させていたが、本実施例では3個以上の原料A,B,C,…を乳化させる、いわゆるダブルエマルションを生成している。この図4では、理解を容易にするために、3種の原料A,B,Cを用いている。3種の原料A,B,Cを用いる場合には、乳化デバイス103bを1個だけ追加する。   Another embodiment of the fine particle production apparatus according to the present invention will be described with reference to FIG. In the above embodiment, the two raw materials A and B are mixed and emulsified, but in this embodiment, a so-called double emulsion is produced in which three or more raw materials A, B, C,. In FIG. 4, three kinds of raw materials A, B, and C are used for easy understanding. When three kinds of raw materials A, B, and C are used, only one emulsification device 103b is added.

図4(a)に、ダブルエマルションを生成する微粒子製造装置100bをブロック図で示す。なお、この図4(a)では、ユーザコンソールおよびユーザコンソールへの接続線の図示を省略している。乳化部114bは、2個の乳化デバイス103,103bを有している。乳化デバイス103から、原料A(分散相)および原料B(連続相)の混合液
402が生成される。追加した乳化デバイス103bでは、原料A,Bの混合液に原料Cを導いて分散させ、最終的にA/B/Cのダブルエマルション404を生成する。なお、ダブルエマルションを捕集するために、タンク106を追加した乳化デバイス130bの下流に設けている。
FIG. 4A is a block diagram showing a fine particle manufacturing apparatus 100b that generates a double emulsion. In FIG. 4A, illustration of the user console and connection lines to the user console is omitted. The emulsifying unit 114b has two emulsifying devices 103 and 103b. From the emulsification device 103, a mixed liquid 402 of the raw material A (dispersed phase) and the raw material B (continuous phase) is generated. In the added emulsification device 103b, the raw material C is guided and dispersed in the mixed liquid of the raw materials A and B, and finally an A / B / C double emulsion 404 is generated. In addition, in order to collect a double emulsion, it has provided in the downstream of the emulsification device 130b which added the tank 106. FIG.

図4(a)内の乳化部114bにおける、各原料A〜Cの混合状態を、模式的に図4
(b)示す。上流側で、原料Aと原料Cを混合し、下流側でこの混合した原料A,Bに原料Cを混合する。この手順を順次重ねることにより、4種以上の原料のエマルションが可能になる。その際、微粒子の径はオリフィスや圧電素子への通電電力等によって変化させることができる。
FIG. 4 schematically shows the mixed state of the raw materials A to C in the emulsifying unit 114b in FIG.
(B) It shows. The raw material A and the raw material C are mixed on the upstream side, and the raw material C is mixed with the mixed raw materials A and B on the downstream side. By sequentially repeating this procedure, emulsions of four or more raw materials can be obtained. At that time, the diameter of the fine particles can be changed by the electric power supplied to the orifice or the piezoelectric element.

上記各実施例によれば、エマルションの粒径を容易に制御できるとともに、エマルションの多重構造を容易に生成できる。実験室レベルからプラント化して量産化する場合には、乳化ユニットのブロックを並列に他列接続する。実験室レベルでは、乳化ユニット1個ないし数個を用いて、所望のエマルションを生成しているが、プラントによる量産レベルに移行する際には、乳化ユニットを処理量に応じて並列化する。この手順により、従来の相似則に基づくスケールアップの課題を回避することができる。以上、本発明の例を説明したが、本発明は上述の例に限定されるものではない。本発明の真の精神は、特許請求の範囲の記載による。   According to each of the above embodiments, the particle size of the emulsion can be easily controlled, and a multiple structure of the emulsion can be easily generated. When planting from the laboratory level for mass production, blocks of emulsification units are connected in parallel in other rows. At the laboratory level, one or several emulsification units are used to produce a desired emulsion, but when shifting to the mass production level by the plant, the emulsification units are paralleled according to the throughput. By this procedure, the problem of scale-up based on the conventional similarity law can be avoided. As mentioned above, although the example of this invention was demonstrated, this invention is not limited to the above-mentioned example. The true spirit of the invention resides in the claims.

本発明に係る微粒子製造装置の一実施例のブロック図である。It is a block diagram of one Example of the fine particle manufacturing apparatus which concerns on this invention. 図1に示した微粒子製造装置が有する乳化デバイスの流路構造を説明する図である。It is a figure explaining the flow-path structure of the emulsification device which the microparticle manufacturing apparatus shown in FIG. 図1に示した微粒子製造装置が有する乳化デバイスの流路構造を説明する図である。It is a figure explaining the flow-path structure of the emulsification device which the microparticle manufacturing apparatus shown in FIG. ダブルエマルションの生成を説明する図である。It is a figure explaining the production | generation of a double emulsion.

符号の説明Explanation of symbols

100,100b 微粒子製造装置(乳化装置)
203〜205 オリフィス
206,207 圧電素子
208a,208b 流路
208c 接続流路
208d 乳化流路
208f 拡大部
313 受動的乳化部
314 能動的乳化部

100,100b Fine particle production device (emulsification device)
203-205 Orifices 206, 207 Piezoelectric elements 208a, 208b Channel 208c Connection channel 208d Emulsification channel 208f Enlargement unit 313 Passive emulsification unit 314 Active emulsification unit

Claims (8)

液体を噴流にする微細流路と、液体を能動的に振動させる流路壁を有する流体デバイスを搭載し、前記能動的に振動させる流路壁は、液体の流れ方向と同じ方向に横滑り振動することを特徴とする装置。   A fluid device having a fine flow path for jetting a liquid and a flow path wall for actively vibrating the liquid is mounted, and the flow path wall for actively vibrating vibrates in the same direction as the liquid flow direction. A device characterized by that. 前記能動的に振動させる流路壁は圧電素子を有し、この圧電素子は液体に接する側の表面に絶縁材をコーティングしてあることを特徴とする請求項1に記載の装置。   2. The apparatus according to claim 1, wherein the actively vibrating flow path wall includes a piezoelectric element, and the piezoelectric element is coated with an insulating material on a surface in contact with the liquid. 液体を噴流にする微細流路と、液体を能動的に振動させる流路壁と、流体中に浮遊する粒子の粒径と数量を計測する手段とを有する流体デバイスを搭載したことを特徴とする装置。   Equipped with a fluid device having a fine channel for jetting a liquid, a channel wall for actively vibrating the liquid, and a means for measuring the particle size and quantity of particles floating in the fluid apparatus. 前記微細流路は複数段のオリフィスを備え、このオリフィスが噴流および旋回流を発生することを特徴とする請求項3に記載の装置。   The apparatus according to claim 3, wherein the fine flow path includes a plurality of stages of orifices, and the orifices generate a jet flow and a swirl flow. 前記能動的に振動させる流路壁は、液体の流れ方向と同じ方向に横滑り振動することを特徴とする請求項3に記載の装置。   4. The apparatus according to claim 3, wherein the actively vibrating channel wall vibrates in the same direction as a liquid flow direction. 前記能動的に振動させる流路壁は圧電素子を有し、この圧電素子は液体に接する側の表面に絶縁材をコーティングしてあることを特徴とする請求項3に記載の装置。   4. The apparatus according to claim 3, wherein the actively vibrating channel wall includes a piezoelectric element, and the piezoelectric element is coated with an insulating material on a surface in contact with the liquid. 前記装置は、乳化装置または微粒子製造装置のいずれかであることを特徴とする請求項3ないし請求項6のいずれか1項に記載の装置。   The device according to any one of claims 3 to 6, wherein the device is either an emulsifying device or a fine particle manufacturing device. 前記流体デバイスを複数個並列接続したことを特徴とする請求項7に記載の装置。
The apparatus according to claim 7, wherein a plurality of the fluid devices are connected in parallel.
JP2006285664A 2006-10-20 2006-10-20 Emulsification apparatus and apparatus for manufacturing particulate Withdrawn JP2008100182A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006285664A JP2008100182A (en) 2006-10-20 2006-10-20 Emulsification apparatus and apparatus for manufacturing particulate
CN200910254144A CN101711961A (en) 2006-10-20 2007-10-15 Fine-grain manufacturing apparatus
CN2007101624731A CN101219352B (en) 2006-10-20 2007-10-15 Emulsification apparatus and fine-grain manufacturing apparatus
EP07020543A EP1913994A3 (en) 2006-10-20 2007-10-19 Emulsification apparatus and fine-grain manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285664A JP2008100182A (en) 2006-10-20 2006-10-20 Emulsification apparatus and apparatus for manufacturing particulate

Publications (1)

Publication Number Publication Date
JP2008100182A true JP2008100182A (en) 2008-05-01

Family

ID=38926158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285664A Withdrawn JP2008100182A (en) 2006-10-20 2006-10-20 Emulsification apparatus and apparatus for manufacturing particulate

Country Status (3)

Country Link
EP (1) EP1913994A3 (en)
JP (1) JP2008100182A (en)
CN (2) CN101219352B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095577A1 (en) * 2009-02-17 2010-08-26 株式会社日立製作所 Atomizer
JP2010531730A (en) * 2007-07-03 2010-09-30 イーストマン コダック カンパニー Generation of monodisperse droplets
JP2012516952A (en) * 2010-01-13 2012-07-26 ザ プロクター アンド ギャンブル カンパニー Method for producing fabric softening composition
JP2019506286A (en) * 2015-12-17 2019-03-07 ユニベルシテ ドゥ ナント Device and method for the continuous emulsion of two immiscible liquids
JP2020536728A (en) * 2017-10-12 2020-12-17 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Equipment and methods for low temperature grinding using a merging jet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5212313B2 (en) * 2009-08-24 2013-06-19 株式会社日立プラントテクノロジー Emulsifying device
AU2011288927B2 (en) * 2010-08-13 2016-11-03 Orica International Pte Ltd Process for the production of intermediate emulsions for use in emulsion explosives
CN107519775A (en) * 2017-09-14 2017-12-29 华北电力大学 A kind of emulsifier unit
CN113101847B (en) * 2021-05-10 2022-02-15 浙江师范大学 Double-vibrator driven active-passive piezoelectric micro mixer
CN113617326B (en) * 2021-08-13 2023-01-31 中北大学 Preparation device and preparation method for high-stability O/W nano emulsion

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272134U (en) * 1985-10-24 1987-05-08
JPH0486388A (en) * 1990-07-27 1992-03-18 Seiko Epson Corp Passage structure of piezoelectric micropump
JPH08266887A (en) * 1995-03-31 1996-10-15 Fuji Photo Film Co Ltd Method and device for automatically measuring and controlling grain size in production of microcapsule
JPH11347392A (en) * 1998-06-11 1999-12-21 Hitachi Ltd Stirrer
JP2000167368A (en) * 1998-12-07 2000-06-20 F Hoffmann La Roche Ag Method for mixing or dispersing liquid
JP2003071720A (en) * 2001-06-21 2003-03-12 M Fsi Kk Device for mixing and supplying slurry and method for mixing and supplying slurry
JP2003260343A (en) * 2002-03-08 2003-09-16 Taihei Kiko:Kk Method for preparing emulsifying dispersion
JP2004085418A (en) * 2002-08-28 2004-03-18 Matsushita Electric Ind Co Ltd Chemical analysis apparatus
JP2004313995A (en) * 2003-04-18 2004-11-11 Tacmina Corp Fluid mixing apparatus
US20040228212A1 (en) * 2003-05-16 2004-11-18 De Goor Tom Van Devices and methods for fluid mixing
JP2005205407A (en) * 2003-12-26 2005-08-04 Nikkiso Co Ltd Fluid mixing apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE952763C (en) * 1952-07-23 1956-11-22 Siemens Ag Device for homogenizing or the like of liquids, in particular milk, by means of vibration treatment
BE788197A (en) * 1971-08-31 1973-02-28 Eastman Kodak Co METHOD AND APPARATUS FOR DETERMINING THE TRANSMISSION SPECTRUM OF A PRACTICALLY TRANSPARENT MEDIUM
JPS5827626A (en) * 1981-08-07 1983-02-18 Nikko Aamuzu Kk Apparatus for mixing fluids
WO2000054874A1 (en) * 1999-03-16 2000-09-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Active micromixer
DE60015287T2 (en) * 2000-02-01 2006-02-02 Apv Homogenisers As Intelligent quality measurement and monitoring system
WO2003015923A1 (en) * 2001-08-20 2003-02-27 Biomicro Systems, Inc. Fluid mixing in low aspect ratio chambers
US6939032B2 (en) * 2001-10-25 2005-09-06 Erie Scientific Company Cover slip mixing apparatus
DE10206083B4 (en) * 2002-02-13 2009-11-26 INSTITUT FüR MIKROTECHNIK MAINZ GMBH A method for producing monodisperse nanotubes and microfluidic reactor for carrying out the method
US20040066703A1 (en) * 2002-10-03 2004-04-08 Protasis Corporation Fluid-handling apparatus and methods
JP4804718B2 (en) * 2003-04-28 2011-11-02 富士フイルム株式会社 Fluid mixing device and fluid mixing system
DE102004038555B3 (en) * 2004-08-06 2005-08-04 Plinke Gmbh Microreactor for nitration with a mixture of nitric and sulfuric acids comprises polytetrafluoroethylene components that can be connected to polytetrafluoroethylene tubes with clamping nuts
JP4543312B2 (en) * 2004-08-10 2010-09-15 横河電機株式会社 Microreactor
DE102005000835B3 (en) * 2005-01-05 2006-09-07 Advalytix Ag Method and device for dosing small quantities of liquid
US8475145B2 (en) * 2005-02-21 2013-07-02 Koninklijke Philips Electronics N.V. Micro-fluidic systems based on actuator elements

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272134U (en) * 1985-10-24 1987-05-08
JPH0486388A (en) * 1990-07-27 1992-03-18 Seiko Epson Corp Passage structure of piezoelectric micropump
JPH08266887A (en) * 1995-03-31 1996-10-15 Fuji Photo Film Co Ltd Method and device for automatically measuring and controlling grain size in production of microcapsule
JPH11347392A (en) * 1998-06-11 1999-12-21 Hitachi Ltd Stirrer
JP2000167368A (en) * 1998-12-07 2000-06-20 F Hoffmann La Roche Ag Method for mixing or dispersing liquid
JP2003071720A (en) * 2001-06-21 2003-03-12 M Fsi Kk Device for mixing and supplying slurry and method for mixing and supplying slurry
JP2003260343A (en) * 2002-03-08 2003-09-16 Taihei Kiko:Kk Method for preparing emulsifying dispersion
JP2004085418A (en) * 2002-08-28 2004-03-18 Matsushita Electric Ind Co Ltd Chemical analysis apparatus
JP2004313995A (en) * 2003-04-18 2004-11-11 Tacmina Corp Fluid mixing apparatus
US20040228212A1 (en) * 2003-05-16 2004-11-18 De Goor Tom Van Devices and methods for fluid mixing
JP2005205407A (en) * 2003-12-26 2005-08-04 Nikkiso Co Ltd Fluid mixing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531730A (en) * 2007-07-03 2010-09-30 イーストマン コダック カンパニー Generation of monodisperse droplets
WO2010095577A1 (en) * 2009-02-17 2010-08-26 株式会社日立製作所 Atomizer
JP2010188265A (en) * 2009-02-17 2010-09-02 Hitachi Ltd Droplet atomizing device
JP2012516952A (en) * 2010-01-13 2012-07-26 ザ プロクター アンド ギャンブル カンパニー Method for producing fabric softening composition
JP2019506286A (en) * 2015-12-17 2019-03-07 ユニベルシテ ドゥ ナント Device and method for the continuous emulsion of two immiscible liquids
JP2020536728A (en) * 2017-10-12 2020-12-17 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Equipment and methods for low temperature grinding using a merging jet
JP7273811B2 (en) 2017-10-12 2023-05-15 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Apparatus and method for cryogenic pulverization using confluent jet

Also Published As

Publication number Publication date
EP1913994A3 (en) 2009-12-02
CN101219352A (en) 2008-07-16
CN101219352B (en) 2011-07-27
EP1913994A2 (en) 2008-04-23
CN101711961A (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP2008100182A (en) Emulsification apparatus and apparatus for manufacturing particulate
EP2411134B1 (en) Droplet generation
US6557834B2 (en) Device and method for fluid aeration via gas forced through a liquid within an orifice of a pressure chamber
JP5212313B2 (en) Emulsifying device
US6443610B1 (en) Processing product components
Sauret et al. Fluctuation-induced dynamics of multiphase liquid jets with ultra-low interfacial tension
US6196525B1 (en) Device and method for fluid aeration via gas forced through a liquid within an orifice of a pressure chamber
US20100020632A1 (en) Apparatus And Method for Mixing by Producing Shear, Turbulence and/or Cavitation
US9789451B2 (en) Method and electro-fluidic device to produce emulsions and particle suspensions
JP4798174B2 (en) Emulsifying device
US20090246086A1 (en) Microfluidic network and method
EP2016996A1 (en) High-performance method and device for generating drops and bubbles
Ji et al. Fast oil-in-water emulsification in microchannel using head-on impinging configuration: Effect of swirl motion
WO2010018805A1 (en) Water-in-oil emulsion production method, water-in-oil emulsion production apparatus, and water-in-oil emulsion fuel production apparatus
JP5143942B2 (en) Refinement mixing equipment
Wu et al. Dual-stream of monodisperse droplet generator
JP2011529384A (en) Method and apparatus for phase inversion using static mixer / aggregator
CN115445681A (en) Taylor flow and liquid drop preparation system based on pulse airflow
JP4640017B2 (en) Emulsifying device
JP4879232B2 (en) Refinement mixing equipment
JP2002248328A (en) Emulsifying/dispersing device
WO2017010451A1 (en) Wet disperser
RU2248251C1 (en) Multipurpose hydrodynamic homogenizing dispenser
CN117483022A (en) High-viscosity micro-droplet generation device and method based on three-dimensional micro-channel structure
KR20070096677A (en) Fluid treating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110401