WO2010018805A1 - Water-in-oil emulsion production method, water-in-oil emulsion production apparatus, and water-in-oil emulsion fuel production apparatus - Google Patents

Water-in-oil emulsion production method, water-in-oil emulsion production apparatus, and water-in-oil emulsion fuel production apparatus Download PDF

Info

Publication number
WO2010018805A1
WO2010018805A1 PCT/JP2009/064105 JP2009064105W WO2010018805A1 WO 2010018805 A1 WO2010018805 A1 WO 2010018805A1 JP 2009064105 W JP2009064105 W JP 2009064105W WO 2010018805 A1 WO2010018805 A1 WO 2010018805A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
water
passage
surfactant
emulsion
Prior art date
Application number
PCT/JP2009/064105
Other languages
French (fr)
Japanese (ja)
Inventor
幸彦 唐澤
Original Assignee
株式会社カラサワ ファイン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カラサワ ファイン filed Critical 株式会社カラサワ ファイン
Publication of WO2010018805A1 publication Critical patent/WO2010018805A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/08Preparation of fuel
    • F23K5/10Mixing with other fluids
    • F23K5/12Preparing emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/414Emulsifying characterised by the internal structure of the emulsion
    • B01F23/4145Emulsions of oils, e.g. fuel, and water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/105Mixing heads, i.e. compact mixing units or modules, using mixing valves for feeding and mixing at least two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/44Mixers in which the components are pressed through slits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/44Mixers in which the components are pressed through slits
    • B01F25/441Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits
    • B01F25/4414Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits the slits being formed between the balls and the seats of a bearing-like construction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/328Oil emulsions containing water or any other hydrophilic phase

Definitions

  • the present invention relates to a method for producing a water-in-oil emulsion, a production apparatus therefor, and a water-in-oil emulsion fuel production apparatus.
  • a stirring device or an ultrasonic dispersing device As a device for producing a water-in-oil emulsion in which water droplets are dispersed in fuel oil, for example, a stirring device or an ultrasonic dispersing device is known.
  • the agitator stirs water and oil kept in a predetermined ratio in a container provided with a stirring blade.
  • a stirring blade not so much shearing force can be expected, but the particle size of water is still considerably small in the vicinity of the stirring blade.
  • large water droplets remain at locations away from the stirring blades. When such large water droplets remain, coalescence of the water droplets starts around the water droplets having a large particle diameter. Water droplets that have become smaller due to the stirring blades also approach large water droplets and coalesce, eventually resulting in an insufficiently dispersed state as a whole.
  • the ultrasonic disperser puts water and oil in a predetermined ratio in a container to which ultrasonic waves are applied, and applies shear energy to the mixed liquid in the container using ultrasonic energy.
  • ultrasonic energy is used in this way, a certain amount of emulsion can be produced, but to that end, a certain amount of energy must be continuously applied for a long time.
  • the mixed solution is put into a container for processing, and so-called batch processing has to be performed.
  • the ultrasonic disperser also has a problem that it is inferior in productivity as described above because it originally has to be subjected to batch processing.
  • it is necessary to increase the energy consumption. Even if emulsion fuel is obtained, it is economically meaningless in total. There is a possibility of becoming. In any case, it was very difficult to stabilize the water-in-oil emulsion with the above-described conventional apparatus.
  • water-in-oil emulsion fuel functions sufficiently as a fuel, since it cannot be stored, it has been practically unbearable.
  • An object of the present invention is to provide a water-in-oil emulsion fuel production apparatus that can produce a stable water-in-oil emulsion over a long period of time while minimizing the amount of surfactant additive. It is.
  • an oil passage to be supplied is formed, oil is ejected while maintaining a constant flow rate in the oil passage, and a turbulent oil flow region is formed in the oil passage.
  • a water supply passage that merges with the oil passage is provided, water is supplied to the water supply passage at a constant flow rate, and a surfactant supply passage that joins the water supply passage is provided.
  • a surfactant at a constant flow rate is supplied to the activator supply passage, water and the surfactant are mixed, and this mixed solution is merged with the turbulent flow area in the oil passage.
  • the mixed water is dispersed in the oil, and then the impact is applied to the dispersion to be discharged from the passage, and the flow ratio of the oil, water, and the surfactant is set to a desired water-in-oil type. Characterized by maintaining the ratio of each component in the emulsion .
  • An apparatus for producing a water-in-oil emulsion includes an oil passage, oil supply means for supplying oil while maintaining a constant flow rate in the oil passage, and generating a turbulent flow area in the oil passage, and the oil passage.
  • a water supply passage that joins the turbulent flow region a water supply means that supplies water at a constant flow rate to the water supply passage, a surfactant supply passage that joins the water supply passage, and a surfactant supply.
  • Surfactant supply means for supplying a constant amount of surfactant to the passage, an oil-water dispersion portion generated at the junction of the turbulent flow area of the oil passage and the water supply passage, and downstream of the oil-water dispersion portion It has a feature in that it is configured to discharge the fluid that has received an impact at the impact acting portion as an emulsion.
  • a manufacturing apparatus is provided with a ball storage portion downstream from the oil-water dispersion portion, and stores a ball in the ball storage portion and forms a gap through which a fluid passes between the ball storage portion and the ball.
  • the present invention is characterized in that the ball accommodating portion and the impact acting portion including the ball are configured.
  • the gap needs to be managed to a size that allows the ball to rotate when the fluid collides with the ball and that the rotation center of the ball does not deviate greatly. This is because, when the center of the ball is greatly deviated, the impact force to the fluid becomes small. Accordingly, the gap in the present invention refers to a gap that does not cause a large shift of the center of the ball.
  • a fourth invention is based on the second invention, and includes a pair of emulsion generation mechanism portions each including the surfactant supply passage, the water supply passage, and the oil passage, and the oil in the pair of emulsion generation mechanism portions.
  • This is characterized in that the impact portion is configured by causing the fluids dispersed in the oil and water in each turbulent flow region to collide with each other in the passage and facing the downstream side of the oil and water dispersion portion.
  • An apparatus for producing a water-in-oil emulsion fuel supplies an oil passage, a fuel oil such as light oil, gasoline, kerosene or heavy oil while maintaining a constant flow rate in the oil passage and turbulence in the oil passage.
  • a fuel oil such as light oil, gasoline, kerosene or heavy oil
  • An oil supply means for generating a basin, a water supply passage that joins the turbulent flow area in the oil passage, a water supply means that supplies a constant flow of water to the water supply passage, and a water supply passage that joins the water supply passage Oil water generated at the junction of the surfactant supply passage, the surfactant supply means for supplying a surfactant at a constant flow rate to the surfactant supply passage, and the turbulent flow area of the oil passage and the water supply passage
  • a large shearing force due to turbulent flow is applied to the oil-water dispersion portion that supplies water into the oil passage while maintaining the target emulsion component ratio. Unevenness in the dispersed state of water droplets to be dispersed can be reduced.
  • an impact force By applying an impact force to such a dispersion, a uniform water-in-oil emulsion in a dispersed state can be produced.
  • the time from the application of the shearing force due to the turbulent flow to the next application of the impact force can be shortened, the coalescence of the droplets can be eliminated and a uniform dispersed state can be obtained efficiently. Therefore, the water-in-oil emulsion produced by this method is stable with little unevenness in the dispersed state, and the quality does not change even during long-term storage.
  • the manufacturing apparatuses of the second to fourth inventions can realize uniform dispersion with a simple structure including an oil passage and a water supply passage that joins a constant flow rate of water to the turbulent passage generated there, Can also be used for mass production of emulsions.
  • the impact acting portion is constituted by the ball that collides with the fluid, and the gap is provided between the ball and the storage portion, so that the ball is rotated by the fluid that collides. In this way, when the fluid collides, the ball rotates, so that the impact force on the ball is alleviated and the ball surface is hardly worn.
  • a large impact force can be easily obtained by causing the oil / water dispersion liquid to collide against each other as compared with a collision wall that is stopped.
  • a stable water-in-oil emulsion fuel can be produced.
  • the amount added can also be minimized by selecting a surfactant with an appropriate HLB value.
  • the amount of expensive surfactant added can be reduced to reduce the production cost, and the surfactant does not adversely affect the combustion performance of the emulsion fuel.
  • the emulsion manufacturing apparatus includes a first pump P1 that supplies oil such as fuel oil, a second pump P2 that supplies water, and a third pump P3 that supplies a surfactant.
  • An oil tank T1 is connected to the suction side of the first pump P1, an oil passage 1 is connected to the discharge side, and an orifice 2 is provided in the oil passage 1.
  • the first pump P1 keeps the pressure upstream of the orifice 2 constant.
  • the flow rate passing through the orifice 2 is kept constant. I'm trying to droop.
  • the oil after passing through the orifice 2 is ejected at a high speed to generate a turbulent flow region 1 a in the oil passage 1 on the downstream side of the orifice 2.
  • the first pump P1 and the orifice 2 constitute oil supply means of the present invention.
  • a pressure control valve may be provided between the first pump P1 and the orifice 2.
  • a water tank T2 is connected to the suction side of the second pump P2, and a water supply passage 4 is connected to the discharge side.
  • the water supply passage 4 is provided with a check valve 5 and an orifice 6 on the downstream side thereof.
  • the orifice 6 and the second pump P2 constitute water supply means of the present invention, and the second pump P2 keeps the pressure upstream of the orifice 6 constant. Thus, the flow rate passing through the orifice 6 is kept constant. Then, the downstream side of the orifice 6 is joined to the turbulent flow area 1a of the oil passage 1, and this joining point is used as the oil-water dispersion portion A of the present invention.
  • Reference numeral 9 denotes an accumulator connected upstream of the check valve 5 for absorbing the pulsation of the second pump P2.
  • the check valve 5 also functions to prevent the high pressure upstream of the orifice 2 in the oil passage 1 from acting on the second pump P2 through the water supply passage 4 due to some cause.
  • a surfactant tank T3 is connected to the suction side of the third pump P3, and a surfactant supply passage 7 is connected to the discharge side.
  • the surfactant supply passage 7 is provided with a check valve 28 and an orifice 8 on the downstream side thereof.
  • the orifice 8 and the third pump P3 constitute the surfactant supply means of the present invention, and the third pump P3 keeps the pressure upstream of the orifice 8 constant so that the flow rate passing through the orifice 6 is constant. Is kept constant.
  • Reference numeral 29 denotes an accumulator connected upstream of the check valve 28 for absorbing pulsation of the third pump P3.
  • the check valve 28 also functions to prevent the high pressure upstream of the orifice 2 of the oil passage 1 from acting on the third pump P3 through the surfactant passage 7 due to some cause. .
  • the downstream side of the orifice 8 in the surfactant supply passage 7 is joined to a junction B between the orifice 6 in the water supply passage 4 and the oil / water dispersion portion A. Accordingly, the surfactant is mixed with water at the junction B, and the mixed solution joins the turbulent flow region 1a of the oil passage 1 at the oil / water dispersion portion A and receives a shearing force due to the turbulent flow.
  • the oil / water dispersion portion A is formed in the turbulent flow area 1a. In the turbulent flow area 1a, the jet flow from the orifice 2 becomes high speed and negative pressure is generated, so that the fluid in the water supply passage 4 can be reliably drawn.
  • the check valves 5 and 28 apply a spring force to the poppet so that the spring force can be adjusted and function as a flow control valve
  • the check valves 5 and 28 can be used without the orifice 6 or the orifice 8.
  • the flow rate of the water supply passage 4 and the surfactant supply passage 7 can be controlled to be constant.
  • the impact force of the fluid on the downstream side has a peak value at a position slightly away from the orifice outlet, not just near the orifice outlet. ing. Therefore, also in the first embodiment, the oil-water dispersion portion A is provided at a position corresponding to any of the impact peak positions in the turbulent flow region 1a, so that a larger shearing force is applied to the drawn fluid. I try to let them.
  • a storage portion 22 for storing the ceramic ball 3 is provided on the downstream side of the oil / water dispersion portion A of the oil passage 1 as an impact acting portion C, and a gap between the storage portion 22 and the ball 3 is discharged. It is connected to the passage 10.
  • the fluid that has collided with the ball 3 is collected in the emulsion collection tank T4 via the discharge passage 10. Since the recovery tank T4 is at atmospheric pressure, the discharge passage 10 does not need to have pressure resistance, and can be constituted by a resin hose or the like. Note that the distance from the oil / water dispersion portion A to the impact acting portion C is shortened to shorten the time from when the oil / water dispersion is generated until the ball 3 collides with the impact force. In this way, the water droplets dispersed in the oil passage 1 are not coalesced and are refined by receiving an impact force.
  • a predetermined flow rate is supplied to each of the supply passages 1, 4, and 7 while keeping the discharge amounts of the first, second, and third pumps P 1, P 2, and P 3 constant.
  • the supply flow from each of the pumps P1, P2, and P3 keeps the ratio at each component ratio of the target emulsion to be produced by this apparatus.
  • the surfactant is supplied to the water supply passage 4 at the junction B, and a mixed liquid of water and the surfactant is generated. This mixed liquid is supplied from the oil / water dispersion portion A on the downstream side of the water supply passage 4 to the turbulent flow region 1 a of the oil supply passage 1.
  • the mixed liquid of the water and the surfactant that have joined the oil turbulent flow region 1a in the oil / water dispersion portion A is drawn into the turbulent flow in the turbulent flow region 1a and receives a shearing force.
  • the fluid that has received a large shearing force due to the turbulent flow collides with the ball 3 constituting the impact action portion C as an oil-water dispersion in which water droplets are dispersed in oil and water droplets are atomized.
  • the fluid which received the impact force in the said impact action part C atomizes a water droplet more, and is collect
  • the water-in-oil emulsion thus produced and collected in the collection tank T4 was merged while maintaining the component ratio of the target emulsion in the oil-water dispersion part A where the turbulent flow area 1a of the oil and water were merged. Since an extremely large shearing force due to turbulent flow is immediately applied, even in the process of miniaturizing water droplets by this shearing force, oil and water cannot be biased. Furthermore, after receiving the turbulent shear force, the impact force due to the collision is received, so that a more uniform dispersion state can be maintained. Therefore, the particle size distribution of the water droplets in the finally produced water-in-oil emulsion is narrow, and a stable emulsion can be obtained over a long period of time. In addition, since the apparatus according to the first embodiment can perform continuous processing, it is easy to increase the supply amount and increase the production amount.
  • FIG. 2 is a cross-sectional view showing the structure of the emulsion generation mechanism E shown by the alternate long and short dash line in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line III-III in FIG. And the same code
  • the emulsion generation mechanism E includes an oil passage 1 having a turbulent region 1 a in a body 13 constituted by a first block 11 and a second block 12, and the turbulent region 1 a.
  • a water supply passage 4 connected to the oil-water dispersion portion A and a surfactant supply passage 7 connected to the water supply passage 4 via a junction B are formed.
  • the first block 11 and the second block 12 are coupled by a bolt (not shown).
  • plug mounting holes 14 are formed on the opening end sides of the passages 1, 4, 7, and plugs 15 are screwed into the three plug mounting holes 14. is doing.
  • these plugs 15 are respectively formed with passages 1, 4 and 7 which are continuous with the passages 1, 4 and 7 formed in the first block 11, respectively, and the downstream end portion and the first body 11 Nozzles 16, 17, 18 and a spacer 19 are interposed between the two.
  • a joint 20 is attached to each of the openings of the plugs 15 attached to the first body 11, and the first, second, and third pumps P1, P2, and P3 are connected to the joints 20, respectively.
  • the three plugs 15, the spacers 19, and the joints 20 have the same shape, but the nozzles 16, 17, and 18 are formed with orifices 2, 6, and 8 having different diameters.
  • Reference numeral 30 in the drawing denotes an O-ring.
  • the orifice 2 of the nozzle 16 provided in the oil passage 1 can supply the oil passage 1 with oil that maintains the flow rate ratio of the oil phase of the emulsion, and can generate a high-speed turbulent flow area 1 a downstream of the orifice 2.
  • the orifice 6 of the nozzle 17 in the water supply passage 4 has a diameter for maintaining a constant flow rate for the water phase of the emulsion
  • the orifice 8 of the nozzle 18 provided in the surfactant supply passage 7 is provided with the surfactant. It has a diameter for maintaining a constant flow rate corresponding to the added amount of.
  • the second block 12 is formed with an oil passage 1 continuous with the oil passage 1 formed in the first block 11 and a plug hole 14 in a direction perpendicular to the oil passage 1.
  • a plug 21 having a discharge passage 10 penetrating in the axial direction is screwed to the plug hole 14.
  • a storage portion 22 for storing the ball 3 is formed between the plug 21 and the second body 12.
  • the storage portion 22 includes a cylindrical portion 22a and a conical portion 22b formed in the second body 12, and a tapered surface formed at the end of the plug 21, and the cylindrical portion 22a and the conical portion are conical.
  • a gap is formed at the boundary between the portion 22 b and the boundary between the cylindrical portion 22 a and the taper surface of the plug 21.
  • the fluid is discharged to the discharge passage 10 through this gap.
  • the diameter of the cross-sectional circle of the cylindrical portion 22a is slightly larger than the outer diameter of the ball 3, so that the ball 3 is rotated by the impact force that the fluid ejected from the turbulent flow area 1a collides with.
  • the ball 3 of the impact acting part C is rotated by the impact of the fluid and the collision surface is changed, only the same surface of the ball 3 is not subjected to the fluid impact. Therefore, the specific surface of the ball 3 can continue to receive the impact of the fluid and wear can be reduced.
  • the ball 3 constituting the impact acting part C is worn, there is a problem that the worn piece is mixed into the emulsion, and the ball 3 needs to be replaced. As in the first embodiment, If the wear of the ball 3 can be reduced, the above-mentioned problems are eliminated.
  • the dimensions of the orifices 2, 6, 8 provided in the passages 1, 4, 7 are as follows.
  • the orifice 2 provided in the oil passage 1 has a diameter of 0.7 [mm] and a length of 1.5 [mm]
  • the orifice 6 provided in the water supply passage 4 has a diameter of 0.46 [mm] and is long.
  • the thickness was 0.9 [mm].
  • the orifice 8 provided in the surfactant supply passage 7 has a diameter of 0.22 [mm] and a length of 0.5 [mm].
  • the pressure of 6.5 [MPa] is maintained by the first pump P1
  • the fuel oil having a flow rate of 140 [l / h] is supplied to the orifice 2 provided in the oil passage 1, and the ejection from the orifice 2 is performed.
  • the turbulent flow area 1a was generated at a flow velocity of about 112 [m / s].
  • the pressure of 0.2 [MPa] is maintained by the second pump P2, and water with a flow rate of 60 [l / h] is supplied to the orifice 6 provided in the water supply passage 4, and the water supply passage 4
  • the flow rate was about 20 [m / s].
  • the pressure of 0.2 [MPa] is maintained by the third pump P3, and a flow rate of about 2 [l / h] is supplied to the orifice 8 provided in the surfactant supply passage 7 to thereby provide the surfactant.
  • the flow velocity in the supply passage 7 was set to about 20 [m / s], and the water supply passage 4 was joined at the junction B.
  • the distance between the oil / water dispersion portion A in the first body 11 and the impact acting portion C in the second body in FIG. 2 is set to about 2.5 [cm].
  • the flow velocity in the turbulent flow area 1a is about 112 [m / s] as described above.
  • the time required for the fluid to reach the impact acting portion C from the oil / water dispersion portion A is a short time of about 2 ⁇ 10 ⁇ 4 [s]. That is, it is almost instantaneous from when the water droplets are dispersed in the oil / water dispersion portion A until the impact acting portion C receives the impact force.
  • the surfactant is drawn into and integrated with the water flow in the water supply passage 4, and the mixed fluid joins at the oil / water dispersion portion A in the turbulent region 1 a of the water passage 1.
  • the fuel oil, water and the sea surface active agent are combined at a ratio of 70: 30: 1.
  • the water droplets are atomized while maintaining the water droplets, and the water droplets are evenly dispersed.
  • the water-in-oil emulsion fuel discharged upon impact at the impact acting part C further progresses to uniform atomization of the water droplets.
  • the impact is reduced.
  • the emulsion fuel produced by the above production apparatus not only can reduce the generation of soot by finely pulverizing the internal water particles during the combustion and atomizing the fuel oil to perform good combustion. It has been experimentally confirmed that the combustion temperature is not inferior to that of fuel oil alone. Furthermore, under the above production conditions, an emulsion fuel of about 200 [l] per hour can be stably produced, so that it can be used for mass production of emulsion fuel.
  • a surfactant having an HLB value of 6.9 was used as the surfactant
  • a surfactant having an HLB value of 3.0 to 10.0 can be used as the surfactant for the water-in-oil emulsion. It has been experimentally confirmed that the optimal surfactant type and amount added differ somewhat depending on the type of oil. However, it has been confirmed that when an oil having an HLB value of around 6.9 is used, a stable emulsion can be obtained using any of different types of fuel oil such as kerosene, light oil, and heavy oil as the oil phase.
  • a large dispersion force due to the turbulent flow in the oil / water dispersion portion A and a shear force due to the impact force in the impact action portion C are applied to the fluid to provide a stable dispersion state. Since it can be produced, the amount of surfactant added can be minimized.
  • FIG. 4 is a cross-sectional view showing the structure of the emulsion production apparatus according to the second embodiment.
  • a pair of emulsion generation mechanism portions E ′ corresponding to the emulsion generation mechanism portion E of the first embodiment is provided, and the turbulent flow areas 1a of these emulsion generation mechanism portions E ′ and E ′ are arranged to face each other.
  • the same reference numerals as those in the first embodiment are used in FIG. 4 for passages and orifices having similar functions even if the arrangement and dimensions are different from those in the first embodiment.
  • the apparatus according to the second embodiment has a line-symmetric configuration around the center line l of the body 23 shown by a one-dot chain line in FIG. 4, and the emulsion generation mechanisms E ′ and E above and below the center line l, respectively. 'I have established.
  • the body 23 has three plug mounting holes 14, an oil passage 1 having a turbulent flow region 1 a continuous in the axial direction of each plug mounting hole 14, and a water supply passage 4.
  • the surfactant supply passage 7 is formed.
  • the surfactant supply passage 7 is joined to the water supply passage 4 at the junction B, and the water supply passage 4 is provided to the turbulent flow area 1a in the oil / water dispersion portion A. I try to merge.
  • the plug mounting hole 14 directly connected to the oil passage 1 is attached with a plug 24 having the oil passage 1 formed at the center, and a nozzle 16 having an orifice 2 formed between the plug 24 and the body 23.
  • a spacer 19 is interposed.
  • the plug 24 is connected to a pump for supplying oil via the joint 20 so that the flow rate through the orifice 2 is controlled to a predetermined value by the pump so as to generate turbulent flow in the turbulent flow area 1a. To do.
  • a plug 25 having a water supply passage 4 formed in the center is attached to the plug mounting hole 14 connected to the water supply passage 4, and a nozzle having an orifice 6 formed between the plug 25 and the body 23. 17 and a spacer 19 are interposed.
  • the plug 25 is connected to a pump for supplying water via the joint 20 so that the flow rate through the orifice 6 is maintained at a predetermined value so that the water supply passage 4 becomes the oil / water dispersion portion A.
  • a plug 26 having a surfactant supply passage 7 formed in the center is attached to the plug attachment hole 14 connected to the surfactant supply passage 7, and an orifice is provided between the plug 26 and the body 23. 8 and the spacer 19 are interposed. Then, a pump for supplying a surfactant is connected to the plug 26 via the joint 20, and the flow rate of the orifice 8 is maintained at a predetermined value to join at the junction B of the water supply passage 4.
  • the emulsion generation mechanism E ′ is arranged symmetrically with respect to the center line l, the turbulent flow areas 1a and 1a of the both emulsion generation mechanisms E ′ and E ′ are opposed to each other, and the fluids collide oppositely.
  • This collision part becomes the impact action part C of this invention.
  • the body 23 is connected to the impact acting portion C, and the discharge passage 10 is formed in a direction orthogonal to the oil passage 1, and a mounting hole 31 continuous with the discharge passage is formed, and the joint attached thereto 27, the emulsion is discharged to the recovery tank T4.
  • the flow-path cross-sectional area of the discharge passage 10 is enlarged so that it can discharge quickly.
  • the recovery tank T4 side is atmospheric pressure, the discharge passage 10 on the downstream side of the joint 27 may be a resin hose or the like.
  • an oil-water dispersion in which uniform water droplets are dispersed in oil is generated in the oil-water dispersion section A of the present invention in each emulsion generation mechanism section E ′.
  • an impact force By applying an impact force, water droplets are uniformly dispersed, and a stable water-in-oil emulsion can be produced.
  • a stable emulsion can be produced when the surfactant, water, and oil are combined, by controlling the flow rate ratio to the component ratio of the target emulsion, as described above.
  • the collision speed is twice the flow velocity, and the impact force received by the fluid is increased compared to the case where the fluid collides with a stationary object. Can do. Therefore, the shearing force acting on the fluid is increased, and water droplets can be further miniaturized.
  • an experiment for producing an emulsion fuel was performed under the same conditions as in the first embodiment. As a result, a uniform dispersion state can be maintained for a long time, and the performance as a fuel is also satisfactory. An emulsion fuel that can be obtained was obtained.

Abstract

Production of a water-in-oil emulsion that is stable over a long period, while the amount of surfactant added is kept to a minimum, will be possible. An apparatus is configured with an oil passageway (1), an oil supply means (P1) that supplies oil to the oil passageway maintaining a constant flow rate and that also generates a turbulent flow zone in the oil passageway (1), a water supply passageway (4) that merges into the turbulent flow zone (1a) in the oil passageway (1), a water supply means (P2) that supplies water at a constant flow rate to the water supply passageway (4), a surfactant supply passageway (7) that merges into the water supply passageway (4), a surfactant supply means (P3) that supplies surfactant at a constant flow rate to the surfactant supply passageway (7), an oil and water dispersing zone (A) created at the point where the turbulent flow zone (1a) in the oil passageway (1) and the water supply passageway (4) merge, and an impact effect zone (C) provided on the downstream side from the oil and water dispersing zone (A). A fluid subjected to impact in the impact effect zone (C) is discharged as an emulsion.

Description

油中水滴型エマルションの製造方法、油中水滴型エマルションの製造装置、および油中水滴型エマルション燃料の製造装置Method for producing water-in-oil emulsion, apparatus for producing water-in-oil emulsion, and apparatus for producing water-in-oil emulsion fuel
 この発明は、油中水滴型エマルションを製造する方法およびその製造装置と、油中水滴型エマルション燃料製造装置に関する。 The present invention relates to a method for producing a water-in-oil emulsion, a production apparatus therefor, and a water-in-oil emulsion fuel production apparatus.
 従来から、燃料油中に水滴を分散させた油中水滴型エマルションを製造する装置として、例えば、攪拌装置や超音波分散機などが知られている。
 上記攪拌装置は、攪拌羽根を設けた容器中に所定の比率を保った水と油を入れて攪拌する。攪拌羽根による場合は、それほど大きな剪断力を期待できないが、それでも、攪拌羽根の近辺では水の粒径がかなり小さくなる。しかし、攪拌羽根から離れたところでは、大きな水滴が残ってしまう。このように大きな水滴が残ってしまうと、粒径が大きい水滴を中心にして、水滴の合一が始まる。攪拌羽根によって小さくなった水滴も、大きな水滴に近づいて合一し、結局は全体的に不十分な分散状態となってしまう。
Conventionally, as a device for producing a water-in-oil emulsion in which water droplets are dispersed in fuel oil, for example, a stirring device or an ultrasonic dispersing device is known.
The agitator stirs water and oil kept in a predetermined ratio in a container provided with a stirring blade. In the case of using a stirring blade, not so much shearing force can be expected, but the particle size of water is still considerably small in the vicinity of the stirring blade. However, large water droplets remain at locations away from the stirring blades. When such large water droplets remain, coalescence of the water droplets starts around the water droplets having a large particle diameter. Water droplets that have become smaller due to the stirring blades also approach large water droplets and coalesce, eventually resulting in an insufficiently dispersed state as a whole.
 また、超音波分散機は、超音波を作用させる容器中に所定の比率を保った水と油を入れ、超音波のエネルギーを利用して、容器中の混合液に剪断エネルギーを作用させる。
 このように超音波エネルギーを用いれば、ある程度のエマルションを製造できるが、そのためには、ある程度大きなエネルギーを長時間かけ続けなければならなかった。
 また、上記攪拌装置および超音波分散機のいずれの場合にも、混合液を容器に入れて処理するので、いわゆるバッチ処理をせざるをえなかった。
特開2008-013633号公報 特開2008-156438号公報
In addition, the ultrasonic disperser puts water and oil in a predetermined ratio in a container to which ultrasonic waves are applied, and applies shear energy to the mixed liquid in the container using ultrasonic energy.
When ultrasonic energy is used in this way, a certain amount of emulsion can be produced, but to that end, a certain amount of energy must be continuously applied for a long time.
Further, in both cases of the agitator and the ultrasonic disperser, the mixed solution is put into a container for processing, and so-called batch processing has to be performed.
JP 2008-013633 A JP 2008-156438 A
 現在のようにオイルが高騰している折、オイルと水とを混合した油中水滴型エマルション燃料の製造がいろいろ試みられているが、攪拌装置では、バッチ処理をせざるをえず、連続的な処理ができないので、その生産性に劣るという問題があった。
 また、この攪拌装置では、十分な剪断力が得られず、水滴の微粒化ができなので、安定的なエマルジョンを得ようとすると、大量の界面活性剤が必要になる。しかしながら、油中水滴型エマルションの安定化に適した界面活性剤は、油や水などと比べて高価であり、その添加量を多くすることにより、エマルションの製造コストが高くなってしまうという問題が発生する。
 さらに、界面活性剤を多量に添加した場合、その界面活性剤が、エマルション燃料の燃焼性能に悪影響を与えることも考えられる。
Various attempts have been made to produce water-in-oil emulsion fuels, which are a mixture of oil and water, when the oil is soaring as at present, but the agitator must be batch processed and continuously. As a result, the productivity is inferior.
In addition, with this stirring device, sufficient shearing force cannot be obtained and water droplets can be atomized, so that a large amount of surfactant is required to obtain a stable emulsion. However, surfactants suitable for stabilizing water-in-oil emulsions are more expensive than oil and water, and there is a problem that the production cost of the emulsion increases by increasing the amount of addition. appear.
Furthermore, when a surfactant is added in a large amount, the surfactant may adversely affect the combustion performance of the emulsion fuel.
 また、上記超音波分散機も、もともとバッチ処理をせざるをえないので、上記したように生産性に劣るという問題があった。その上、超音波分散機によって大きな剪断力を得るためには消費エネルギーを大きくしなければならず、たとえエマルション燃料が得られたとしても、トータル的にみれば、経済的に意味のないものになってしまう可能性がある。
 いずれの場合にも、上記した従来の装置では、油中水滴型エマルションを安定化させることが非常に難しかった。しかしながら、油中水滴型エマルション燃料は、燃料として十分に機能することは知られているが、それを保存することができないために、ほとんど実用に耐えないというのが現実であった。
The ultrasonic disperser also has a problem that it is inferior in productivity as described above because it originally has to be subjected to batch processing. In addition, in order to obtain a large shearing force with an ultrasonic disperser, it is necessary to increase the energy consumption. Even if emulsion fuel is obtained, it is economically meaningless in total. There is a possibility of becoming.
In any case, it was very difficult to stabilize the water-in-oil emulsion with the above-described conventional apparatus. However, although it is known that water-in-oil emulsion fuel functions sufficiently as a fuel, since it cannot be stored, it has been practically unbearable.
 この発明の目的は、界面活性剤の添加剤量を最小限に抑えながら、長期にわたって安定した油中水滴型エマルションを製造できるようにするとともに、油中水滴型エマルション燃料の製造装置を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide a water-in-oil emulsion fuel production apparatus that can produce a stable water-in-oil emulsion over a long period of time while minimizing the amount of surfactant additive. It is.
 第1の発明の油中水滴型エマルションの製造方法は、供給する油通路を構成し、この油通路内には一定流量を保って油を噴出させて、この油通路内に油の乱流域を生成する一方、上記油通路に合流する水供給通路を設け、この水供給通路には一定流量を保って水を供給させるとともに、この水供給通路に合流する界面活性剤供給通路を設け、この界面活性剤供給通路には一定流量の界面活性剤を供給して、水と界面活性剤とを混合し、この混合液を上記油通路内の乱流域に合流させ、この乱流によって界面活性剤を混合した水を油中に分散させ、その後に、当該分散液に衝撃力を作用させて、上記通路から排出するとともに、上記油、水および界面活性剤の流量比を、目的の油中水滴型エマルション中の各成分比に維持する点に特徴を有する。 In the method for producing a water-in-oil emulsion according to the first aspect of the present invention, an oil passage to be supplied is formed, oil is ejected while maintaining a constant flow rate in the oil passage, and a turbulent oil flow region is formed in the oil passage. A water supply passage that merges with the oil passage is provided, water is supplied to the water supply passage at a constant flow rate, and a surfactant supply passage that joins the water supply passage is provided. A surfactant at a constant flow rate is supplied to the activator supply passage, water and the surfactant are mixed, and this mixed solution is merged with the turbulent flow area in the oil passage. The mixed water is dispersed in the oil, and then the impact is applied to the dispersion to be discharged from the passage, and the flow ratio of the oil, water, and the surfactant is set to a desired water-in-oil type. Characterized by maintaining the ratio of each component in the emulsion .
 第2の発明の油中水滴型エマルションの製造装置は、油通路と、この油通路に一定流量を保って油を供給するとともに油通路内に乱流域を生成する油供給手段と、上記油通路であってその乱流域に合流する水供給通路と、この水供給通路に一定流量の水を供給する水供給手段と、上記水供給通路に合流する界面活性剤供給通路と、この界面活性剤供給通路に一定流量の界面活性剤を供給する界面活性剤供給手段と、上記油通路の乱流域と上記水供給通路との合流部分に生成される油水分散部と、この油水分散部より下流側に設けた衝撃作用部とを備え、この衝撃作用部で衝撃を受けた流体をエマルションとして排出する構成にした点に特徴を有する。 An apparatus for producing a water-in-oil emulsion according to a second aspect of the present invention includes an oil passage, oil supply means for supplying oil while maintaining a constant flow rate in the oil passage, and generating a turbulent flow area in the oil passage, and the oil passage. A water supply passage that joins the turbulent flow region, a water supply means that supplies water at a constant flow rate to the water supply passage, a surfactant supply passage that joins the water supply passage, and a surfactant supply. Surfactant supply means for supplying a constant amount of surfactant to the passage, an oil-water dispersion portion generated at the junction of the turbulent flow area of the oil passage and the water supply passage, and downstream of the oil-water dispersion portion It has a feature in that it is configured to discharge the fluid that has received an impact at the impact acting portion as an emulsion.
 第3の発明の製造装置は、油水分散部より下流側にボール収納部を設け、このボール収納部にボールを収納するとともに、このボール収納部とボールとの間に流体が通過する隙間を形成し、これらボール収納部およびボールからなる衝撃作用部を構成した点に特徴を有する。
 ただし、上記隙間は、流体がボールに衝突したときにボールが回転できる程度の大きさであって、かつ、ボールの回転中心が大きくずれることがない程度の大きさに管理する必要がある。なぜなら、ボールの中心が大きくずれた場合には、流体に対する衝撃力が小さくなってしまうからである。従って、この発明の隙間とは、ボールの中心が大きくずれることがない程度のものをういう。
A manufacturing apparatus according to a third aspect of the present invention is provided with a ball storage portion downstream from the oil-water dispersion portion, and stores a ball in the ball storage portion and forms a gap through which a fluid passes between the ball storage portion and the ball. In addition, the present invention is characterized in that the ball accommodating portion and the impact acting portion including the ball are configured.
However, the gap needs to be managed to a size that allows the ball to rotate when the fluid collides with the ball and that the rotation center of the ball does not deviate greatly. This is because, when the center of the ball is greatly deviated, the impact force to the fluid becomes small. Accordingly, the gap in the present invention refers to a gap that does not cause a large shift of the center of the ball.
 第4の発明は、第2の発明を前提とし、上記界面活性剤供給通路、水供給通路および油通路を一組としたエマルション生成機構部をそれぞれ一対備え、これら一対のエマルション生成機構部の油通路であって上記油水分散部の下流側を対向させて、各乱流域で油水分散された流体を互いに衝突させ上記衝撃部を構成した点に特徴を有する。 A fourth invention is based on the second invention, and includes a pair of emulsion generation mechanism portions each including the surfactant supply passage, the water supply passage, and the oil passage, and the oil in the pair of emulsion generation mechanism portions. This is characterized in that the impact portion is configured by causing the fluids dispersed in the oil and water in each turbulent flow region to collide with each other in the passage and facing the downstream side of the oil and water dispersion portion.
 第5の発明の油中水滴型エマルション燃料の製造装置は、油通路と、この油通路に一定流量を保って、軽油、ガソリン、灯油あるいは重油などの燃料油を供給するとともに油通路内に乱流域を生成する油供給手段と、上記油通路であってその乱流域に合流する水供給通路と、この水供給通路に一定流量の水を供給する水供給手段と、上記水供給通路に合流する界面活性剤供給通路と、この界面活性剤供給通路に一定流量の界面活性剤を供給する界面活性剤供給手段と、上記油通路の乱流域と上記水供給通路との合流点に生成される油水分散部と、この油水分散部より下流側に設けた衝撃作用部と、この衝撃作用部で衝撃を受けた流体をエマルション燃料として排出する排出通路とを備えるとともに、上記界面活性剤のHLB値を3.0~10.0とする点に特徴を有する。 An apparatus for producing a water-in-oil emulsion fuel according to a fifth aspect of the present invention supplies an oil passage, a fuel oil such as light oil, gasoline, kerosene or heavy oil while maintaining a constant flow rate in the oil passage and turbulence in the oil passage. An oil supply means for generating a basin, a water supply passage that joins the turbulent flow area in the oil passage, a water supply means that supplies a constant flow of water to the water supply passage, and a water supply passage that joins the water supply passage Oil water generated at the junction of the surfactant supply passage, the surfactant supply means for supplying a surfactant at a constant flow rate to the surfactant supply passage, and the turbulent flow area of the oil passage and the water supply passage A dispersion part, an impact action part provided downstream from the oil-water dispersion part, and a discharge passage for discharging the fluid impacted by the impact action part as emulsion fuel, and the HLB value of the surfactant 3.0-1 Characterized in that a .0.
 第1~第5の発明では、油通路中に水を供給する油水分散部において、目的のエマルションの成分比率を維持しながら乱流による大きな剪断力を作用させるようにしているので、油中に分散される水滴の分散状態に偏りを少なくできる。このような分散液にさらに衝撃力を作用させることによって、分散状態の均一な油中水滴型エマルションを製造することができる。特に、乱流による剪断力を作用させてから次に衝撃力を作用させるまでの時間を短くできるので、液滴の合一をなくし、効率よく均一な分散状態を得ることができる。
 そのため、この方法で製造された油中水滴型エマルションは、分散状態に偏りが少なく安定していて、長期の保存にも品質が変化することがない。
In the first to fifth inventions, a large shearing force due to turbulent flow is applied to the oil-water dispersion portion that supplies water into the oil passage while maintaining the target emulsion component ratio. Unevenness in the dispersed state of water droplets to be dispersed can be reduced. By applying an impact force to such a dispersion, a uniform water-in-oil emulsion in a dispersed state can be produced. In particular, since the time from the application of the shearing force due to the turbulent flow to the next application of the impact force can be shortened, the coalescence of the droplets can be eliminated and a uniform dispersed state can be obtained efficiently.
Therefore, the water-in-oil emulsion produced by this method is stable with little unevenness in the dispersed state, and the quality does not change even during long-term storage.
 第2~第4の発明の製造装置は、油通路と、そこに生成した乱流路に、一定の流量の水を合流させる水供給通路を備えた単純な構造で、均一分散を実現でき、エマルションの量産にも対応できる。
 第3の発明によれば、衝撃作用部を、流体を衝突させるボールで構成し、そのボールと収納部との間に隙間を設けているので、ボールが衝突する流体によって回転することになる。このように、流体が衝突したときボールが回転するので、ボールに対する衝撃力が緩和され、ボール表面が磨耗し難くなる。しかも、ボールが回転して衝突面がそのつど変化するので、ボールの一箇所だけが集中的に磨耗したりせず、衝撃作用部の寿命を長く保つことができる。
 第4の発明によれば、油水の分散液を対向衝突させることによって、停止している衝突壁などに衝突させるよりも、大きな衝撃力を簡単に得ることができる。
The manufacturing apparatuses of the second to fourth inventions can realize uniform dispersion with a simple structure including an oil passage and a water supply passage that joins a constant flow rate of water to the turbulent passage generated there, Can also be used for mass production of emulsions.
According to the third aspect of the invention, the impact acting portion is constituted by the ball that collides with the fluid, and the gap is provided between the ball and the storage portion, so that the ball is rotated by the fluid that collides. In this way, when the fluid collides, the ball rotates, so that the impact force on the ball is alleviated and the ball surface is hardly worn. In addition, since the ball rotates and the collision surface changes each time, only one part of the ball is not intensively worn, and the life of the impacting portion can be kept long.
According to the fourth aspect of the present invention, a large impact force can be easily obtained by causing the oil / water dispersion liquid to collide against each other as compared with a collision wall that is stopped.
 また、第5の発明によれば、安定した油中水滴型エマルション燃料を製造することができる。そのうえで、適切なHLB値を有する界面活性剤を選択することによって、その添加量を最小限にすることもできる。高価な界面活性剤の添加量を少なくして、製造コストを抑えることができるととも、界面活性剤によってエマルション燃料の燃焼性能に悪影響を与えることもない。 Further, according to the fifth invention, a stable water-in-oil emulsion fuel can be produced. In addition, the amount added can also be minimized by selecting a surfactant with an appropriate HLB value. The amount of expensive surfactant added can be reduced to reduce the production cost, and the surfactant does not adversely affect the combustion performance of the emulsion fuel.
 第1実施形態の油中水滴型エマルションの製造装置を図1~図3に示す。
 まず、図1の回路図を用いて、この第1実施形態のエマルション製造装置のエマルション生成原理を説明する。
 このエマルション製造装置は、燃料油などの油を供給する第1ポンプP1、水を供給する第2ポンプP2、界面活性剤を供給する第3ポンプP3を備えている。
An apparatus for producing a water-in-oil emulsion according to the first embodiment is shown in FIGS.
First, the principle of emulsion generation of the emulsion production apparatus according to the first embodiment will be described with reference to the circuit diagram of FIG.
The emulsion manufacturing apparatus includes a first pump P1 that supplies oil such as fuel oil, a second pump P2 that supplies water, and a third pump P3 that supplies a surfactant.
  第1ポンプP1の吸引側には油タンクT1を接続し、吐出側には油通路1を接続し、この油通路1にはオリフィス2を設けている。そして、上記第1ポンプP1は、オリフィス2の上流側の圧力を一定に保つもので、このようにオリフィス2の上流側の圧力を一定に保つことよって、オリフィス2を通過する流量が一定に保たれるようにしている。また、上記オリフィス2を通過した後の油は高速で噴出して、オリフィス2の下流側における油通路1内に乱流域1aを生成する。
 なお、上記第1ポンプP1とオリフィス2とでこの発明の油供給手段を構成している。
 また、上記油通路1の圧力を一定に保つために、第1ポンプP1とオリフィス2との間に圧力制御弁を設けるようにしてもよい。
An oil tank T1 is connected to the suction side of the first pump P1, an oil passage 1 is connected to the discharge side, and an orifice 2 is provided in the oil passage 1. The first pump P1 keeps the pressure upstream of the orifice 2 constant. Thus, by keeping the pressure upstream of the orifice 2 constant, the flow rate passing through the orifice 2 is kept constant. I'm trying to droop. Further, the oil after passing through the orifice 2 is ejected at a high speed to generate a turbulent flow region 1 a in the oil passage 1 on the downstream side of the orifice 2.
The first pump P1 and the orifice 2 constitute oil supply means of the present invention.
In order to keep the pressure of the oil passage 1 constant, a pressure control valve may be provided between the first pump P1 and the orifice 2.
 一方、第2ポンプP2の吸引側には水タンクT2を接続し、吐出側には水供給通路4を接続している。この水供給通路4には、逆止弁5を設けるとともに、その下流側にはオリフィス6を設けている。このオリフィス6と上記第2ポンプP2とによってこの発明の水供給手段を構成し、上記第2ポンプP2は、オリフィス6の上流側の圧力を一定に保つもので、このようにオリフィス6の上流側の圧力を一定に保つことよって、オリフィス6を通過する流量が一定に保たれるようにしている。
 そして、上記オリフィス6の下流側を、上記油通路1の乱流域1aに合流させ、この合流点をこの発明の油水分散部Aとしている。
 なお、符号9は逆止弁5の上流に接続したアキュームレータで、第2ポンプP2の脈動を吸収するためのものである。また、上記逆止弁5は、油通路1のオリフィス2の上流側の高圧が何らかの原因で、水供給通路4を介して第2ポンプP2に作用してしまうことを防止する機能を発揮する。
On the other hand, a water tank T2 is connected to the suction side of the second pump P2, and a water supply passage 4 is connected to the discharge side. The water supply passage 4 is provided with a check valve 5 and an orifice 6 on the downstream side thereof. The orifice 6 and the second pump P2 constitute water supply means of the present invention, and the second pump P2 keeps the pressure upstream of the orifice 6 constant. Thus, the flow rate passing through the orifice 6 is kept constant.
Then, the downstream side of the orifice 6 is joined to the turbulent flow area 1a of the oil passage 1, and this joining point is used as the oil-water dispersion portion A of the present invention.
Reference numeral 9 denotes an accumulator connected upstream of the check valve 5 for absorbing the pulsation of the second pump P2. The check valve 5 also functions to prevent the high pressure upstream of the orifice 2 in the oil passage 1 from acting on the second pump P2 through the water supply passage 4 due to some cause.
 さらに、上記第3ポンプP3の吸引側には界面活性剤タンクT3を接続し、吐出側には界面活性剤供給通路7を接続している。この界面活性剤供給通路7には、逆止弁28を設けるとともに、その下流側にはオリフィス8を設けている。このオリフィス8と上記第3ポンプP3とによってこの発明の界面活性剤供給手段を構成し、上記第3ポンプP3は、オリフィス8の上流側の圧力を一定に保つことによって、オリフィス6を通過する流量が一定に保たれるようにしている。
 なお、符号29は逆止弁28の上流に接続したアキュームレータで、第3ポンプP3の脈動を吸収するためのものである。また、上記逆止弁28は、油通路1のオリフィス2の上流側の高圧が何らかの原因で、界面活性剤通路7を介して第3ポンプP3に作用してしまうことを防止する機能を発揮する。
Further, a surfactant tank T3 is connected to the suction side of the third pump P3, and a surfactant supply passage 7 is connected to the discharge side. The surfactant supply passage 7 is provided with a check valve 28 and an orifice 8 on the downstream side thereof. The orifice 8 and the third pump P3 constitute the surfactant supply means of the present invention, and the third pump P3 keeps the pressure upstream of the orifice 8 constant so that the flow rate passing through the orifice 6 is constant. Is kept constant.
Reference numeral 29 denotes an accumulator connected upstream of the check valve 28 for absorbing pulsation of the third pump P3. The check valve 28 also functions to prevent the high pressure upstream of the orifice 2 of the oil passage 1 from acting on the third pump P3 through the surfactant passage 7 due to some cause. .
 また、上記界面活性剤供給通路7におけるオリフィス8の下流側を、上記水供給通路4におけるオリフィス6と上記油水分散部Aとの間の合流点Bに合流させている。従って、上記合流点Bで水に界面活性剤が混合され、その混合液が、上記油水分散部Aで油通路1の乱流域1aに合流して乱流による剪断力を受けることになる。油水分散部Aは、乱流域1aに形成されるが、この乱流域1aはオリフィス2からの噴出流が高速になって負圧を生じ、水供給通路4の流体を確実に引き込むことができる。ただし、上記オリフィス6やオリフィス9を流れる流量は、上記第2ポンプP2および第3ポンプP3によって一定に制御されるので、上記油水分散部Aにおいて水供給通路4から引き込まれる流量は一定に保たれる。 Further, the downstream side of the orifice 8 in the surfactant supply passage 7 is joined to a junction B between the orifice 6 in the water supply passage 4 and the oil / water dispersion portion A. Accordingly, the surfactant is mixed with water at the junction B, and the mixed solution joins the turbulent flow region 1a of the oil passage 1 at the oil / water dispersion portion A and receives a shearing force due to the turbulent flow. The oil / water dispersion portion A is formed in the turbulent flow area 1a. In the turbulent flow area 1a, the jet flow from the orifice 2 becomes high speed and negative pressure is generated, so that the fluid in the water supply passage 4 can be reliably drawn. However, since the flow rate flowing through the orifice 6 and the orifice 9 is controlled to be constant by the second pump P2 and the third pump P3, the flow rate drawn from the water supply passage 4 in the oil / water dispersion portion A is kept constant. It is.
 なお、上記逆止弁5,28が、ポペットにばね力を作用させて、そのばね力を調整可能にし、流量制御弁として機能する場合には、上記オリフィス6やオリフィス8が無くても、上記水供給通路4や界面活性剤供給通路7の流量を一定に制御することができる。
 また、オリフィスから流体を噴出させた場合、その下流側における流体の衝撃力には、オリフィス出口の直近ではなく、少し離れた位置とさらに離れた位置とに、ピーク値があることが一般に知られている。そこで、この第1実施形態でも、上記油水分散部Aを、乱流域1a中のいずれかの衝撃のピーク位置に合わせた位置に設けるようにして、引き込まれた流体に、より大きな剪断力を作用させるようにしている。
In the case where the check valves 5 and 28 apply a spring force to the poppet so that the spring force can be adjusted and function as a flow control valve, the check valves 5 and 28 can be used without the orifice 6 or the orifice 8. The flow rate of the water supply passage 4 and the surfactant supply passage 7 can be controlled to be constant.
In addition, when fluid is ejected from the orifice, it is generally known that the impact force of the fluid on the downstream side has a peak value at a position slightly away from the orifice outlet, not just near the orifice outlet. ing. Therefore, also in the first embodiment, the oil-water dispersion portion A is provided at a position corresponding to any of the impact peak positions in the turbulent flow region 1a, so that a larger shearing force is applied to the drawn fluid. I try to let them.
 さらに、上記油通路1の油水分散部Aの下流側には、セラミック製のボール3を収納する収納部22を設け、衝撃作用部Cとするとともに、収納部22とボール3との隙間を排出通路10に接続している。そして、上記ボール3に衝突した流体が、排出通路10を介してエマルションの回収タンクT4に回収されるようにしている。
 この回収タンクT4は大気圧になっているので、上記排出通路10は耐圧性を備えている必要はなく、樹脂ホースなどで構成することができる。
 なお、上記油水分散部Aから上記衝撃作用部Cまでの距離を短くして、油水分散液が生成されてから、ボール3に衝突して衝撃力を受けるまでの時間を短くしている。このようにすれば、油通路1中に分散された水滴が合一する間も無く、衝撃力を受けて微細化されることになる。
Further, a storage portion 22 for storing the ceramic ball 3 is provided on the downstream side of the oil / water dispersion portion A of the oil passage 1 as an impact acting portion C, and a gap between the storage portion 22 and the ball 3 is discharged. It is connected to the passage 10. The fluid that has collided with the ball 3 is collected in the emulsion collection tank T4 via the discharge passage 10.
Since the recovery tank T4 is at atmospheric pressure, the discharge passage 10 does not need to have pressure resistance, and can be constituted by a resin hose or the like.
Note that the distance from the oil / water dispersion portion A to the impact acting portion C is shortened to shorten the time from when the oil / water dispersion is generated until the ball 3 collides with the impact force. In this way, the water droplets dispersed in the oil passage 1 are not coalesced and are refined by receiving an impact force.
 次に、この装置の作用を説明する。
 第1、第2、第3ポンプP1,P2,P3の吐出量を、それぞれ一定に保って各供給通路1,4,7に所定の流量を供給する。このとき、各ポンプP1,P2,P3からの供給流は、その比率を、この装置で製造する目的のエマルションの各成分比率に保つ。
 上記のように、各供給通路に流体が供給されたら、水供給通路4には、合流点Bで界面活性剤が供給され、水と界面活性剤の混合液が生成される。この混合液が、水供給通路4の下流側の油水分散部Aから油供給通路1の乱流域1aに供給される。
Next, the operation of this apparatus will be described.
A predetermined flow rate is supplied to each of the supply passages 1, 4, and 7 while keeping the discharge amounts of the first, second, and third pumps P 1, P 2, and P 3 constant. At this time, the supply flow from each of the pumps P1, P2, and P3 keeps the ratio at each component ratio of the target emulsion to be produced by this apparatus.
As described above, when the fluid is supplied to each supply passage, the surfactant is supplied to the water supply passage 4 at the junction B, and a mixed liquid of water and the surfactant is generated. This mixed liquid is supplied from the oil / water dispersion portion A on the downstream side of the water supply passage 4 to the turbulent flow region 1 a of the oil supply passage 1.
 油水分散部Aで油の乱流域1aに合流した水と界面活性剤との混合液は、乱流域1aの乱流に引き込まれて剪断力を受ける。乱流による大きな剪断力を受けた流体は、油中に水滴が分散するとともに水滴が微粒化された油水分散液として衝撃作用部Cを構成するボール3に衝突する。
 そして、上記衝撃作用部Cで衝撃力を受けた流体は、水滴をより微粒化し、ボール3の周囲の隙間から排出通路10を介してエマルション回収タンクT4へ回収される。
The mixed liquid of the water and the surfactant that have joined the oil turbulent flow region 1a in the oil / water dispersion portion A is drawn into the turbulent flow in the turbulent flow region 1a and receives a shearing force. The fluid that has received a large shearing force due to the turbulent flow collides with the ball 3 constituting the impact action portion C as an oil-water dispersion in which water droplets are dispersed in oil and water droplets are atomized.
And the fluid which received the impact force in the said impact action part C atomizes a water droplet more, and is collect | recovered by the emulsion collection | recovery tank T4 through the discharge passage 10 from the clearance gap around the ball | bowl 3. FIG.
 このようにして製造され、回収タンクT4に回収された油中水滴型エマルションは、油の乱流域1aと水とを合流させる油水分散部Aにおいて、目的のエマルションの成分比を維持して合流した瞬間に、直ちに乱流による非常に大きい剪断力を受けるので、この剪断力によって水滴を微小化する過程においても、油と水の偏りができない。さらに、乱流の剪断力を受けた後に、衝突による衝撃力を受けるので、より均一な分散状態を維持できる。従って、最終的に製造された油中水滴型エマルション中の水滴の粒度分布は狭く、長期にわたって安定したエマルションが得られることになる。
 また、この第1実施形態の装置では、連続処理ができるので、供給流量を増やして製造量を多くすることは簡単である。
The water-in-oil emulsion thus produced and collected in the collection tank T4 was merged while maintaining the component ratio of the target emulsion in the oil-water dispersion part A where the turbulent flow area 1a of the oil and water were merged. Since an extremely large shearing force due to turbulent flow is immediately applied, even in the process of miniaturizing water droplets by this shearing force, oil and water cannot be biased. Furthermore, after receiving the turbulent shear force, the impact force due to the collision is received, so that a more uniform dispersion state can be maintained. Therefore, the particle size distribution of the water droplets in the finally produced water-in-oil emulsion is narrow, and a stable emulsion can be obtained over a long period of time.
In addition, since the apparatus according to the first embodiment can perform continuous processing, it is easy to increase the supply amount and increase the production amount.
 以下に、上記エマルション製造装置の具体的構成を、図2,3を用いて説明する。
 図2は、図1中、一点鎖線で示したエマルション生成機構部Eの構造を示す断面図であり、図3は図2のIII-III線断面図である。そして、図1の回路図に相当する箇所には、同じ符号をつけている。
 図2、図3に示すように、エマルション生成機構部Eは、第1ブロック11と第2ブロック12とで構成されるボディ13内に、乱流域1aを有する油通路1と、この乱流域1aに油水分散部Aにおいて接続する水供給通路4、この水供給通路4に合流点Bを介して接続する界面活性剤供給通路7を形成している。第1ブロック11と第2ブロック12とは、図示しないボルトによって結合している。
Below, the specific structure of the said emulsion manufacturing apparatus is demonstrated using FIG.
FIG. 2 is a cross-sectional view showing the structure of the emulsion generation mechanism E shown by the alternate long and short dash line in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line III-III in FIG. And the same code | symbol is attached | subjected to the location equivalent to the circuit diagram of FIG.
As shown in FIGS. 2 and 3, the emulsion generation mechanism E includes an oil passage 1 having a turbulent region 1 a in a body 13 constituted by a first block 11 and a second block 12, and the turbulent region 1 a. A water supply passage 4 connected to the oil-water dispersion portion A and a surfactant supply passage 7 connected to the water supply passage 4 via a junction B are formed. The first block 11 and the second block 12 are coupled by a bolt (not shown).
 また、第1ブロック11であって、上記各通路1,4,7の開口端側には、プラグ取付穴14を形成し、この3つのプラグ取付穴14のそれぞれには、プラグ15をねじ結合している。但し、これらのプラグ15には、第1ブロック11内に形成した上記各通路1,4,7に連続する通路1,4,7をそれぞれ形成し、その下流側端部と第1ボディ11との間には、それぞれノズル16,17,18と、スペーサ19とを介在させている。
 また、第1ボディ11に取り付けた各プラグ15の開口のそれぞれには、継手20を取り付け、それぞれ、第1、第2、第3ポンプP1,P2,P3を接続している。
Further, in the first block 11, plug mounting holes 14 are formed on the opening end sides of the passages 1, 4, 7, and plugs 15 are screwed into the three plug mounting holes 14. is doing. However, these plugs 15 are respectively formed with passages 1, 4 and 7 which are continuous with the passages 1, 4 and 7 formed in the first block 11, respectively, and the downstream end portion and the first body 11 Nozzles 16, 17, 18 and a spacer 19 are interposed between the two.
A joint 20 is attached to each of the openings of the plugs 15 attached to the first body 11, and the first, second, and third pumps P1, P2, and P3 are connected to the joints 20, respectively.
 なお、上記3つのプラグ15、スペーサ19、継手20は、全て同一形状であるが、ノズル16,17,18には、径の異なるオリフィス2,6,8を形成している。また、図中符号30は、Oリングである。
 上記油通路1中に設けられるノズル16のオリフィス2は、エマルションの油相分の流量比を保った油を、油通路1に供給し、オリフィス2の下流側に高速の乱流域1aを生成できる寸法である。また、水供給通路4中のノズル17のオリフィス6は、エマルションの水相分の一定流量を保つための直径を備え、界面活性剤供給通路7中に設けるノズル18のオリフィス8は、界面活性剤の添加量に相当する一定流量を保つための直径を備えている。
The three plugs 15, the spacers 19, and the joints 20 have the same shape, but the nozzles 16, 17, and 18 are formed with orifices 2, 6, and 8 having different diameters. Reference numeral 30 in the drawing denotes an O-ring.
The orifice 2 of the nozzle 16 provided in the oil passage 1 can supply the oil passage 1 with oil that maintains the flow rate ratio of the oil phase of the emulsion, and can generate a high-speed turbulent flow area 1 a downstream of the orifice 2. Dimensions. The orifice 6 of the nozzle 17 in the water supply passage 4 has a diameter for maintaining a constant flow rate for the water phase of the emulsion, and the orifice 8 of the nozzle 18 provided in the surfactant supply passage 7 is provided with the surfactant. It has a diameter for maintaining a constant flow rate corresponding to the added amount of.
 さらに、第2ブロック12には、第1ブロック11に形成した油通路路1と連続する油通路1と、この油通路1と直交する方向にプラグ穴14を形成している。このプラグ穴14には、軸方向に貫通する排出通路10を形成したプラグ21をねじ結合している。
 また、このプラグ21と第2ボディ12との間に、上記ボール3を収納する収納部22を形成している。上記収納部22は、図3に示すように、第2ボディ12に形成した円筒部22aと円錐部22bと、プラグ21の端部に形成したテーパー面とで構成され、上記円筒部22aと円錐部22bとの境界部や、円筒部22aとプラグ21のテーパー面との境界部に、隙間が形成されるようにしている。この隙間を介して、流体が排出通路10へ排出される。
 さらに、上記円筒部22aの断面円の直径をボール3の外径よりもわずかに大きくして、乱流域1aから噴射される流体が衝突する衝撃力によってボール3が回転するようにしている。
Further, the second block 12 is formed with an oil passage 1 continuous with the oil passage 1 formed in the first block 11 and a plug hole 14 in a direction perpendicular to the oil passage 1. A plug 21 having a discharge passage 10 penetrating in the axial direction is screwed to the plug hole 14.
A storage portion 22 for storing the ball 3 is formed between the plug 21 and the second body 12. As shown in FIG. 3, the storage portion 22 includes a cylindrical portion 22a and a conical portion 22b formed in the second body 12, and a tapered surface formed at the end of the plug 21, and the cylindrical portion 22a and the conical portion are conical. A gap is formed at the boundary between the portion 22 b and the boundary between the cylindrical portion 22 a and the taper surface of the plug 21. The fluid is discharged to the discharge passage 10 through this gap.
Further, the diameter of the cross-sectional circle of the cylindrical portion 22a is slightly larger than the outer diameter of the ball 3, so that the ball 3 is rotated by the impact force that the fluid ejected from the turbulent flow area 1a collides with.
 このように、衝撃作用部Cのボール3が流体の衝撃によって回転し、衝突面が変化するようにしているため、ボール3の同一面のみが流体の衝撃を受けるのではない。そのため、ボール3の特定の面が流体の衝撃を受け続けて磨耗を低減できる。衝撃作用部Cを構成するボール3が磨耗してしまうと、その磨耗片がエマルションに混入してしまうという問題があるうえ、ボール3の交換が必要となるが、この第1実施形態のように、ボール3の磨耗を低減できれば、上記のような問題もなくなる。 Thus, since the ball 3 of the impact acting part C is rotated by the impact of the fluid and the collision surface is changed, only the same surface of the ball 3 is not subjected to the fluid impact. Therefore, the specific surface of the ball 3 can continue to receive the impact of the fluid and wear can be reduced. When the ball 3 constituting the impact acting part C is worn, there is a problem that the worn piece is mixed into the emulsion, and the ball 3 needs to be replaced. As in the first embodiment, If the wear of the ball 3 can be reduced, the above-mentioned problems are eliminated.
 上記第1実施形態のエマルション製造装置で、油中水滴型エマルション燃料を製造する実験を行なったので、その実験を以下に説明する。
 この実験では、油として灯油などの燃料油を用い、界面活性剤は、HLB値が6.9のものを用いた。
 そして、油:水の比率を、約7:3とし、界面活性剤の添加量を約1%とした油中水滴型エマルションを製造した。
Since an experiment for producing a water-in-oil emulsion fuel was conducted with the emulsion production apparatus of the first embodiment, the experiment will be described below.
In this experiment, fuel oil such as kerosene was used as the oil, and a surfactant having an HLB value of 6.9 was used.
A water-in-oil emulsion with an oil: water ratio of about 7: 3 and a surfactant addition amount of about 1% was produced.
 なお、各通路1,4,7に設けたオリフィス2,6,8の寸法は以下の通りである。
 油通路1に設けたオリフィス2は、直径を0.7[mm]、長さ1.5[mm]とし、水供給通路4中に設けたオリフィス6は、直径0.46[mm]、長さ0.9[mm]とした。また、界面活性剤供給通路7中に設けたオリフィス8は、直径0.22[mm]、長さ0.5[mm]としている。
The dimensions of the orifices 2, 6, 8 provided in the passages 1, 4, 7 are as follows.
The orifice 2 provided in the oil passage 1 has a diameter of 0.7 [mm] and a length of 1.5 [mm], and the orifice 6 provided in the water supply passage 4 has a diameter of 0.46 [mm] and is long. The thickness was 0.9 [mm]. The orifice 8 provided in the surfactant supply passage 7 has a diameter of 0.22 [mm] and a length of 0.5 [mm].
 そして、第1ポンプP1によって6.5[MPa]の圧力を維持して、油通路1に設けたオリフィス2に、流量140[l/h]の燃料油を供給し、オリフィス2からの噴出時の流速を約112[m/s]として乱流域1aを生成した。
 一方、第2ポンプP2によって0.2[MPa]の圧力を維持して、水供給通路4に設けた上記オリフィス6に、流量60[l/h]の水を供給し、水供給通路4における流速を約20[m/s]とした。
Then, the pressure of 6.5 [MPa] is maintained by the first pump P1, the fuel oil having a flow rate of 140 [l / h] is supplied to the orifice 2 provided in the oil passage 1, and the ejection from the orifice 2 is performed. The turbulent flow area 1a was generated at a flow velocity of about 112 [m / s].
On the other hand, the pressure of 0.2 [MPa] is maintained by the second pump P2, and water with a flow rate of 60 [l / h] is supplied to the orifice 6 provided in the water supply passage 4, and the water supply passage 4 The flow rate was about 20 [m / s].
 さらに、第3ポンプP3によって、圧力0.2[MPa]を維持して、界面活性剤供給通路7に設けた上記オリフィス8に、約2[l/h]の流量を供給し、界面活性剤供給通路7における流速を約20[m/s]とし、合流点Bで水供給通路4と合流させた。
 さらにまた、図2の第1ボディ11内の油水分散部Aと第2ボディ内の衝撃作用部Cとの距離を約2.5[cm]にした。一方、上記乱流域1aにおける流速は、上記したように約112[m/s]である。従って、流体が油水分散部Aから衝撃作用部Cに到達する時間は約2×10-4[s]という短時間となる。つまり、油水分散部Aで水滴が分散されてから衝撃作用部Cで衝撃力を受けるまでは、ほとんど瞬間である。
Further, the pressure of 0.2 [MPa] is maintained by the third pump P3, and a flow rate of about 2 [l / h] is supplied to the orifice 8 provided in the surfactant supply passage 7 to thereby provide the surfactant. The flow velocity in the supply passage 7 was set to about 20 [m / s], and the water supply passage 4 was joined at the junction B.
Furthermore, the distance between the oil / water dispersion portion A in the first body 11 and the impact acting portion C in the second body in FIG. 2 is set to about 2.5 [cm]. On the other hand, the flow velocity in the turbulent flow area 1a is about 112 [m / s] as described above. Accordingly, the time required for the fluid to reach the impact acting portion C from the oil / water dispersion portion A is a short time of about 2 × 10 −4 [s]. That is, it is almost instantaneous from when the water droplets are dispersed in the oil / water dispersion portion A until the impact acting portion C receives the impact force.
 上記合流点Bでは、水供給通路4の水流に界面活性剤が引き込まれて一体となり、その混合流体が、水通路1の乱流域1aの上記油水分散部Aで合流する。
 この油水分散部Aにおいて、燃料油と水と海面活性剤とは70:30:1の割合で合流するので、燃料油の乱流による大きな剪断力を受けた流体は70:30:1の割合を保って水滴を微粒化し、水滴は偏りなく分散される。さらに、衝撃作用部Cで衝撃を受けて排出された油中水滴型エマルション燃料は、水滴の均一な微粒化がさらに進むが、上記したように、油水分散部Aで水滴が分散されてから衝撃作用部Cに達するまでの時間は、約2×10-4[s]なので、その間に水滴の合一も無く、ほとんど瞬間的に、安定した油中水滴型エマルション燃料を製造することができる。
 このようにして製造されたエマルション燃料は、その状態を長期にわたって維持し、製造半年後にも相分離していないことを確認できた。
At the junction B, the surfactant is drawn into and integrated with the water flow in the water supply passage 4, and the mixed fluid joins at the oil / water dispersion portion A in the turbulent region 1 a of the water passage 1.
In this oil / water dispersion section A, the fuel oil, water and the sea surface active agent are combined at a ratio of 70: 30: 1. The water droplets are atomized while maintaining the water droplets, and the water droplets are evenly dispersed. Further, the water-in-oil emulsion fuel discharged upon impact at the impact acting part C further progresses to uniform atomization of the water droplets. However, as described above, after the water drops are dispersed at the oil / water dispersion part A, the impact is reduced. Since the time to reach the action part C is about 2 × 10 −4 [s], there is no coalescence of water droplets during that time, and a stable water-in-oil emulsion fuel can be produced almost instantaneously.
It was confirmed that the emulsion fuel produced in this way maintained its state over a long period of time and did not phase separate even after half a year of production.
 また、上記製造装置によって製造されたエマルション燃料は、燃焼時に内部の微細な水粒子が爆発的に蒸発して燃料油を霧化させて良好な燃焼が行なわれ、煤の発生を少なくできるだけでなく、燃料油単体の場合と比べて燃焼温度にも遜色がないことを実験的に確認している。
 さらに、上記製造条件では、1時間に約200[l]のエマルション燃料を、安定的に製造できるので、エマルション燃料の量産にも対応できる。
In addition, the emulsion fuel produced by the above production apparatus not only can reduce the generation of soot by finely pulverizing the internal water particles during the combustion and atomizing the fuel oil to perform good combustion. It has been experimentally confirmed that the combustion temperature is not inferior to that of fuel oil alone.
Furthermore, under the above production conditions, an emulsion fuel of about 200 [l] per hour can be stably produced, so that it can be used for mass production of emulsion fuel.
 なお、界面活性剤として、HLB値6.9のものを用いたが、油中水滴型エマルション用の界面活性剤としては、HLB値が3.0~10.0の界面活性剤が使用でき、油の種類によって、最適な界面活性剤の種類や添加量は多少異なることを実験的に確認している。ただし、HLB値が6.9付近のものを用いた場合に、灯油、軽油、重油など種類の異なるいずれの燃料油を油相としても、安定なエマルションを得られることを確認している。
 また、上記第1実施形態のエマルション製造装置においては、上記油水分散部Aにおける乱流による大きな剪断力と、衝撃作用部Cにおける衝撃力による剪断力を流体に作用させて、安定な分散状態を生成できるため、界面活性剤の添加量を最小限にすることができる。
Although a surfactant having an HLB value of 6.9 was used as the surfactant, a surfactant having an HLB value of 3.0 to 10.0 can be used as the surfactant for the water-in-oil emulsion. It has been experimentally confirmed that the optimal surfactant type and amount added differ somewhat depending on the type of oil. However, it has been confirmed that when an oil having an HLB value of around 6.9 is used, a stable emulsion can be obtained using any of different types of fuel oil such as kerosene, light oil, and heavy oil as the oil phase.
In the emulsion manufacturing apparatus of the first embodiment, a large dispersion force due to the turbulent flow in the oil / water dispersion portion A and a shear force due to the impact force in the impact action portion C are applied to the fluid to provide a stable dispersion state. Since it can be produced, the amount of surfactant added can be minimized.
 図4は、第2実施形態のエマルション製造装置の構造を示す断面図である。
 この第2実施形態では、上記第1実施形態のエマルション生成機構部Eに相当するエマルション生成機構部E’を一対備え、これらエマルション生成機構部部E’、E’の乱流域1aを対向配置している点が特徴である。
 上記第1実施形態とは、配置や寸法が異なっても、同様の機能を有する通路やオリフィスには、図4においても第1実施形態と同じ符号を用いている。
FIG. 4 is a cross-sectional view showing the structure of the emulsion production apparatus according to the second embodiment.
In the second embodiment, a pair of emulsion generation mechanism portions E ′ corresponding to the emulsion generation mechanism portion E of the first embodiment is provided, and the turbulent flow areas 1a of these emulsion generation mechanism portions E ′ and E ′ are arranged to face each other. This is a feature.
The same reference numerals as those in the first embodiment are used in FIG. 4 for passages and orifices having similar functions even if the arrangement and dimensions are different from those in the first embodiment.
 すなわち、この第2実施形態の装置は、図4において一点鎖線で示したボディ23の中心線lを中心にした線対称の構成で、中心線lの上下にそれぞれエマルション生成機構部E’,E’を設けている。
 一方のエマルション生成機構部E’を構成するため、ボディ23には、3つのプラグ取付穴14と、各プラグ取付穴14の軸方向に連続する乱流域1aを有する油通路1、水供給通路4、界面活性剤供給通路7とを形成している。そして、上記第1実施形態と同様に、上記水供給通路4には、合流点Bにおいて界面活性剤供給通路7を合流させ、上記乱流域1aには、油水分散部Aにおいて水供給通路4を合流させるようにしている。
That is, the apparatus according to the second embodiment has a line-symmetric configuration around the center line l of the body 23 shown by a one-dot chain line in FIG. 4, and the emulsion generation mechanisms E ′ and E above and below the center line l, respectively. 'I have established.
In order to constitute one emulsion generation mechanism E ′, the body 23 has three plug mounting holes 14, an oil passage 1 having a turbulent flow region 1 a continuous in the axial direction of each plug mounting hole 14, and a water supply passage 4. The surfactant supply passage 7 is formed. As in the first embodiment, the surfactant supply passage 7 is joined to the water supply passage 4 at the junction B, and the water supply passage 4 is provided to the turbulent flow area 1a in the oil / water dispersion portion A. I try to merge.
 上記油通路1に直接接続しているプラグ取付穴14には、中心に油通路1を形成したプラグ24取り付けるとともに、このプラグ24とボディ23との間には、オリフィス2を形成したノズル16とスペーサ19とを介在させている。そして、このプラグ24には継手20を介して油を供給するためのポンプを接続し、このポンプで上記オリフィス2の通過流量を所定値に制御して乱流域1aに乱流を生成させるようにする。 The plug mounting hole 14 directly connected to the oil passage 1 is attached with a plug 24 having the oil passage 1 formed at the center, and a nozzle 16 having an orifice 2 formed between the plug 24 and the body 23. A spacer 19 is interposed. The plug 24 is connected to a pump for supplying oil via the joint 20 so that the flow rate through the orifice 2 is controlled to a predetermined value by the pump so as to generate turbulent flow in the turbulent flow area 1a. To do.
 また、水供給通路4に接続しているプラグ取付穴14には、中央に水供給通路4を形成したプラグ25取り付けるとともに、このプラグ25とボディ23との間には、オリフィス6を形成したノズル17とスペーサ19とを介在させている。そして、このプラグ25には継手20を介して水を供給するためのポンプを接続し、上記オリフィス6の通過流量を所定値に維持して、水供給通路4を上記油水分散部Aとなる位置で上記乱流域1aに合流させる。 A plug 25 having a water supply passage 4 formed in the center is attached to the plug mounting hole 14 connected to the water supply passage 4, and a nozzle having an orifice 6 formed between the plug 25 and the body 23. 17 and a spacer 19 are interposed. The plug 25 is connected to a pump for supplying water via the joint 20 so that the flow rate through the orifice 6 is maintained at a predetermined value so that the water supply passage 4 becomes the oil / water dispersion portion A. To join the turbulent flow area 1a.
 さらに、上記界面活性剤供給通路7に接続しているプラグ取付穴14には、中央に界面活性剤供給通路7を形成したプラグ26取り付けるとともに、このプラグ26とボディ23との間には、オリフィス8を形成したノズル18とスペーサ19とを介在させている。そして、このプラグ26には継手20を介して界面活性剤を供給するためのポンプを接続し、上記オリフィス8の通過流量を所定値に維持して、上記水供給通路4の合流点Bで合流させる。 Further, a plug 26 having a surfactant supply passage 7 formed in the center is attached to the plug attachment hole 14 connected to the surfactant supply passage 7, and an orifice is provided between the plug 26 and the body 23. 8 and the spacer 19 are interposed. Then, a pump for supplying a surfactant is connected to the plug 26 via the joint 20, and the flow rate of the orifice 8 is maintained at a predetermined value to join at the junction B of the water supply passage 4. Let
 そして、上記のエマルション生成機構部E’を、上記中心線lを介して線対称に配置し、両エマルション生成機構部E’,E’の乱流域1a,1a同士を対向させ、流体を対向衝突させる。この衝突部が、この発明の衝撃作用部Cとなる。
 さらに、ボディ23には、上記衝撃作用部Cに接続し、上記油通路1と直交する方向に排出通路10を形成し、この排出通路に連続する取付穴31を形成し、そこに取り付けた継手27を介して回収タンクT4にエマルションを排出する。なお、排出通路10には、両エマルション生成機構部E’,E’からの合計流量が排出されるので、排出通路10の流路断面積を大きくして速やかに排出できるようにしている。また、回収タンクT4側は大気圧なので、継手27より下流側の排出通路10は樹脂ホースなどで足りる。
Then, the emulsion generation mechanism E ′ is arranged symmetrically with respect to the center line l, the turbulent flow areas 1a and 1a of the both emulsion generation mechanisms E ′ and E ′ are opposed to each other, and the fluids collide oppositely. Let This collision part becomes the impact action part C of this invention.
Further, the body 23 is connected to the impact acting portion C, and the discharge passage 10 is formed in a direction orthogonal to the oil passage 1, and a mounting hole 31 continuous with the discharge passage is formed, and the joint attached thereto 27, the emulsion is discharged to the recovery tank T4. In addition, since the total flow rate from both emulsion production | generation mechanism parts E 'and E' is discharged | emitted by the discharge passage 10, the flow-path cross-sectional area of the discharge passage 10 is enlarged so that it can discharge quickly. Further, since the recovery tank T4 side is atmospheric pressure, the discharge passage 10 on the downstream side of the joint 27 may be a resin hose or the like.
 上記第2実施形態のエマルション製造装置も、各エマルション生成機構部E’におけるこの発明の油水分散部Aにおいて、油に対して均一な水滴が分散した油水分散液が生成され、さらに衝撃作用部Cで衝撃力を作用させることによって水滴が均一に分散し、安定な油中水滴型エマルションを製造できる。このように、安定したエマルションが製造できるのは、上記した通り、界面活性剤、水、油を合流させる際に、それぞれの流量比率を目的のエマルションの成分比に制御することによって合流流体中の成分の偏りを少なくしながら、油に水を合流させる際に、オリフィス2からの噴射流による負圧で水を引き込み、直ちに、乱流による十分な剪断力を作用させて水滴を微粒化するとともに、さらに衝撃力を作用させているからである。 In the emulsion production apparatus of the second embodiment, an oil-water dispersion in which uniform water droplets are dispersed in oil is generated in the oil-water dispersion section A of the present invention in each emulsion generation mechanism section E ′. By applying an impact force, water droplets are uniformly dispersed, and a stable water-in-oil emulsion can be produced. As described above, a stable emulsion can be produced when the surfactant, water, and oil are combined, by controlling the flow rate ratio to the component ratio of the target emulsion, as described above. When the water is joined to the oil while reducing the component bias, the water is drawn by the negative pressure due to the jet flow from the orifice 2, and immediately, sufficient shear force due to the turbulent flow is applied to atomize the water droplets. This is because a further impact force is applied.
 特に、この第2実施形態では、衝撃作用部Cで流体が対向衝突するので、衝突速度が、流速の2倍となり、静止物体に衝突する場合と比べて、流体が受ける衝撃力を大きくすることができる。従って、流体に作用させる剪断力が大きくなり、水滴のさらなる微細化が可能になる。
 この第2実施形態の装置においても、上記第1実施形態と同様の条件で、エマルション燃料を製造する実験を行なったところ、均一な分散状態を長時間維持できるるともに、燃料としての性能も満足するエマルション燃料を得ることができた。
In particular, in the second embodiment, since the fluid collides oppositely at the impact acting portion C, the collision speed is twice the flow velocity, and the impact force received by the fluid is increased compared to the case where the fluid collides with a stationary object. Can do. Therefore, the shearing force acting on the fluid is increased, and water droplets can be further miniaturized.
Also in the apparatus of the second embodiment, an experiment for producing an emulsion fuel was performed under the same conditions as in the first embodiment. As a result, a uniform dispersion state can be maintained for a long time, and the performance as a fuel is also satisfactory. An emulsion fuel that can be obtained was obtained.
第1実施形態の回路図である。It is a circuit diagram of a 1st embodiment. 第1実施形態のエマルション生成機構部の構造を示す断面図である。It is sectional drawing which shows the structure of the emulsion production | generation mechanism part of 1st Embodiment. 図2のIII-III線断面図である。It is the III-III sectional view taken on the line of FIG. 第2実施形態のエマルション生成機構部の構造を示す断面図である。It is sectional drawing which shows the structure of the emulsion production | generation mechanism part of 2nd Embodiment.
1   油通路
1a  乱流域
2   オリフィス
3   ボール
4   水供給通路
6   オリフィス
7   界面活性剤供給通路
8   オリフィス
10  排出通路
16,17,18  ノズル
22  収納部
A   油水分散部
C   衝撃部
E,E’ エマルション生成機構部
P1  第1ポンプ
P2  第2ポンプ
P3  第3ポンプ
DESCRIPTION OF SYMBOLS 1 Oil path 1a Turbulent flow area 2 Orifice 3 Ball 4 Water supply path 6 Orifice 7 Surfactant supply path 8 Orifice 10 Discharge path 16, 17, 18 Nozzle 22 Storage part A Oil-water dispersion part C Impact part E, E 'Emulsion generation mechanism Part P1 First pump P2 Second pump P3 Third pump

Claims (5)

  1.  油中水滴型エマルションの製造方法であって、上記エマルションの油相を構成する油を供給する油通路を構成し、この油通路内には一定流量を保って油を噴出させて、この油通路内に油の乱流域を生成する一方、上記油通路に合流する水供給通路を設け、この水供給通路には一定流量を保って水を供給させるとともに、この水供給通路に合流する界面活性剤供給通路を設け、この界面活性剤供給通路には一定流量の界面活性剤を供給して、水と界面活性剤とを混合し、この混合液を上記油通路内の乱流域に合流させ、この乱流によって界面活性剤を混合した水を油中に分散させ、その後に、当該分散液に衝撃力を作用させて、上記通路から排出するとともに、上記油、水および界面活性剤の流量比を、目的の油中水滴型エマルション中の各成分比に維持する油中水滴型エマルションの製造方法。 A method for producing a water-in-oil emulsion, comprising an oil passage for supplying oil constituting the oil phase of the emulsion, wherein oil is ejected while maintaining a constant flow rate in the oil passage. A water supply passage that joins the oil passage is provided while generating a turbulent flow region of oil in the inside, and the water supply passage is maintained at a constant flow rate to supply water, and the surfactant that joins the water supply passage A supply passage is provided, a surfactant having a constant flow rate is supplied to the surfactant supply passage, water and the surfactant are mixed, and the mixed solution is joined to the turbulent region in the oil passage. Water in which the surfactant is mixed by turbulent flow is dispersed in the oil, and then the impact is applied to the dispersion to be discharged from the passage, and the flow ratio of the oil, water, and surfactant is increased. Each in the desired water-in-oil emulsion Oil manufacturing method of water-emulsion to keep the amount ratio.
  2.  油通路と、この油通路に一定流量を保って油を供給するとともに油通路内に乱流域を生成する油供給手段と、上記油通路であってその乱流域に合流する水供給通路と、この水供給通路に一定流量の水を供給する水供給手段と、上記水供給通路に合流する界面活性剤供給通路と、この界面活性剤供給通路に一定流量の界面活性剤を供給する界面活性剤供給手段と、上記油通路の乱流域と上記水供給通路との合流部分に生成される油水分散部と、この油水分散部より下流側に設けた衝撃作用部とを備え、この衝撃作用部で衝撃を受けた流体をエマルションとして排出する構成にした油中水滴型エマルションの製造装置。 An oil passage, an oil supply means for supplying oil at a constant flow rate to the oil passage and generating a turbulent flow region in the oil passage, a water supply passage which is the oil passage and joins the turbulent flow region, A water supply means for supplying a constant flow of water to the water supply passage, a surfactant supply passage that merges with the water supply passage, and a surfactant supply for supplying a constant flow of surfactant to the surfactant supply passage Means, and an oil / water dispersion part generated at a confluence of the turbulent flow area of the oil passage and the water supply passage, and an impact action part provided downstream of the oil / water dispersion part. For producing a water-in-oil emulsion, wherein the received fluid is discharged as an emulsion.
  3.  油水分散部より下流側にボール収納部を設け、このボール収納部にボールを収納するとともに、このボール収納部とボールとの間に流体が通過する隙間を形成し、これらボール収納部およびボールからなる衝撃作用部を構成してなる請求項2記載の油中水滴型エマルションの製造装置。 A ball storage portion is provided downstream from the oil-water dispersion portion, and the ball is stored in the ball storage portion, and a gap is formed between the ball storage portion and the ball to allow fluid to pass between the ball storage portion and the ball. The apparatus for producing a water-in-oil emulsion according to claim 2, wherein the impact acting part is constituted.
  4.  上記界面活性剤供給通路、水供給通路および油通路を一組としたエマルション生成機構部をそれぞれ一対備え、これら一対のエマルション生成機構部の油通路であって上記油水分散部の下流側を対向させて、各乱流域で油水分散された流体を互いに衝突させ上記衝撃部を構成した請求項2に記載の油中水滴型エマルションの製造装置。 Each of the surfactant generation passage, the water supply passage, and the oil passage includes a pair of emulsion generation mechanism sections, and the oil passages of the pair of emulsion generation mechanism sections are opposed to the downstream side of the oil-water dispersion section. The apparatus for producing a water-in-oil emulsion according to claim 2, wherein the impact portion is configured by causing fluids dispersed in oil and water in each turbulent region to collide with each other.
  5.  油通路と、この油通路に一定流量を保って、軽油、ガソリン、灯油あるいは重油などの燃料油を供給するとともに油通路内に乱流域を生成する油供給手段と、上記油通路であってその乱流域に合流する水供給通路と、この水供給通路に一定流量の水を供給する水供給手段と、上記水供給通路に合流する界面活性剤供給通路と、この界面活性剤供給通路に一定流量の界面活性剤を供給する界面活性剤供給手段と、上記油通路の乱流域と上記水供給通路との合流点に生成される油水分散部と、この油水分散部より下流側に設けた衝撃作用部と、この衝撃作用部で衝撃を受けた流体をエマルション燃料として排出する排出通路とを備えるとともに、上記界面活性剤のHLB値を3.0~10.0とする油中水滴型エマルション燃料の製造装置。 An oil passage, an oil supply means for maintaining a constant flow rate in the oil passage, supplying fuel oil such as light oil, gasoline, kerosene or heavy oil, and generating a turbulent flow area in the oil passage, and the oil passage, A water supply passage that joins the turbulent flow region, a water supply means that supplies a constant flow of water to the water supply passage, a surfactant supply passage that joins the water supply passage, and a constant flow rate to the surfactant supply passage Surfactant supplying means for supplying the surfactant, an oil-water dispersion portion generated at the junction of the turbulent flow area of the oil passage and the water supply passage, and an impact action provided downstream of the oil-water dispersion portion And a discharge passage for discharging the fluid impacted by the impact acting portion as an emulsion fuel, and a water-in-oil emulsion fuel having an HLB value of 3.0 to 10.0 for the surfactant. Manufacturing equipment.
PCT/JP2009/064105 2008-08-15 2009-08-10 Water-in-oil emulsion production method, water-in-oil emulsion production apparatus, and water-in-oil emulsion fuel production apparatus WO2010018805A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008209270A JP2010043212A (en) 2008-08-15 2008-08-15 Manufacturing method of water-in-oil emulsion, manufacturing apparatus of water-in-oil emulsion, and manufacturing apparatus of water-in-oil emulsion fuel
JP2008-209270 2008-08-15

Publications (1)

Publication Number Publication Date
WO2010018805A1 true WO2010018805A1 (en) 2010-02-18

Family

ID=41668949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064105 WO2010018805A1 (en) 2008-08-15 2009-08-10 Water-in-oil emulsion production method, water-in-oil emulsion production apparatus, and water-in-oil emulsion fuel production apparatus

Country Status (2)

Country Link
JP (1) JP2010043212A (en)
WO (1) WO2010018805A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433078A (en) * 2018-11-30 2019-03-08 南昌大学 A kind of preparation facilities and preparation method thereof of high interior phase camellia fat liquor
EP3581261A1 (en) * 2018-06-14 2019-12-18 Tetra Laval Holdings & Finance S.A. Homogenizer for liquid food

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG177790A1 (en) * 2010-07-20 2012-02-28 Kok Loon Ng A method of designing and sizing the parts of an emulsifier for producing water-in-fuel emulsions
JP5943455B2 (en) 2011-08-19 2016-07-05 国立研究開発法人海洋研究開発機構 Method for producing emulsion
JP6540120B2 (en) * 2015-03-16 2019-07-10 住友ベークライト株式会社 Mixing device
DE102016101232A1 (en) * 2016-01-25 2017-07-27 Instillo Gmbh Process for producing emulsions
JP6124485B2 (en) * 2016-05-20 2017-05-10 国立研究開発法人海洋研究開発機構 Emulsion production equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138529A (en) * 1984-12-10 1986-06-26 Idemitsu Petrochem Co Ltd Production of emulsified solution for sizing
JPS6448894A (en) * 1987-07-28 1989-02-23 British Petroleum Co Manufacture and combustion of fuel oil emulsion
JPH0448925A (en) * 1990-06-15 1992-02-18 Kanebo Ltd Fine emulsion composition
JPH05115762A (en) * 1991-10-29 1993-05-14 Isei Ryo Device for producing homogeneouslly intermixed liquids
JP2004123947A (en) * 2002-10-03 2004-04-22 Sanyo Chem Ind Ltd Emulsifier for emulsified fuel
JP2006341146A (en) * 2005-06-07 2006-12-21 Kao Corp Method for preparing oil-in-water emultion composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138529A (en) * 1984-12-10 1986-06-26 Idemitsu Petrochem Co Ltd Production of emulsified solution for sizing
JPS6448894A (en) * 1987-07-28 1989-02-23 British Petroleum Co Manufacture and combustion of fuel oil emulsion
JPH0448925A (en) * 1990-06-15 1992-02-18 Kanebo Ltd Fine emulsion composition
JPH05115762A (en) * 1991-10-29 1993-05-14 Isei Ryo Device for producing homogeneouslly intermixed liquids
JP2004123947A (en) * 2002-10-03 2004-04-22 Sanyo Chem Ind Ltd Emulsifier for emulsified fuel
JP2006341146A (en) * 2005-06-07 2006-12-21 Kao Corp Method for preparing oil-in-water emultion composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3581261A1 (en) * 2018-06-14 2019-12-18 Tetra Laval Holdings & Finance S.A. Homogenizer for liquid food
WO2019238862A1 (en) * 2018-06-14 2019-12-19 Tetra Laval Holdings & Finance S.A. Homogenizer for liquid food and method of homogenizing
CN109433078A (en) * 2018-11-30 2019-03-08 南昌大学 A kind of preparation facilities and preparation method thereof of high interior phase camellia fat liquor
CN109433078B (en) * 2018-11-30 2023-05-02 南昌大学 Preparation device and preparation method of high internal phase camellia oil emulsion

Also Published As

Publication number Publication date
JP2010043212A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
WO2010018805A1 (en) Water-in-oil emulsion production method, water-in-oil emulsion production apparatus, and water-in-oil emulsion fuel production apparatus
JP6487041B2 (en) Atomizer nozzle
JP3773975B2 (en) High efficiency nozzle for fluid catalytic cracking
JP3429508B2 (en) Production of emulsion
JP6023697B2 (en) Real-time inline water-fuel emulsion equipment, processes and systems
JP2008086868A (en) Microbubble generator
AU605650B2 (en) Emulsification method and apparatus
JP2006272189A (en) Drop spraying nozzle
JP5080789B2 (en) Nozzle device and method for forming atomization mechanism thereof
JP6449531B2 (en) Microbubble generator
JP2006167599A (en) Two-fluid nozzle
JP2000210599A (en) Gas-liquid nixing sprayer
US20130181063A1 (en) Liquid Atomizing Device and Liquid Atomizing Method
EP3599028B1 (en) Fluid tip
JP4266239B1 (en) Two-fluid atomizing nozzle
JP3930036B1 (en) Atomization method, atomization apparatus and atomization system
JP2003117442A (en) Method for atomizing liquid and nozzle used for the same
KR20120113943A (en) Emulsion generating apparatus and burner using the same
CN212017437U (en) Liquid fuel emulsifying device
JP2006111666A (en) Method for producing emulsion fuel, apparatus for producing emulsion fuel and emulsion fuel-using equipment equipped with the apparatus for producing emulsion fuel
JP5285231B2 (en) Mixing equipment
JPS63218274A (en) Liquid atomizer
GB2326356A (en) Preparing emulsions by reflecting a liquid mixture
JP2003305384A (en) Spray device
JPWO2005051550A1 (en) Injection disperser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 09806696

Country of ref document: EP

Kind code of ref document: A1