JP2008098108A - Lighting control method, light source, and lighting apparatus - Google Patents

Lighting control method, light source, and lighting apparatus Download PDF

Info

Publication number
JP2008098108A
JP2008098108A JP2006281773A JP2006281773A JP2008098108A JP 2008098108 A JP2008098108 A JP 2008098108A JP 2006281773 A JP2006281773 A JP 2006281773A JP 2006281773 A JP2006281773 A JP 2006281773A JP 2008098108 A JP2008098108 A JP 2008098108A
Authority
JP
Japan
Prior art keywords
light source
lighting
luminous flux
fluorescent lamp
maintenance factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006281773A
Other languages
Japanese (ja)
Other versions
JP4971743B2 (en
Inventor
Kiyoshi Saito
清 斉藤
Takahiro Muramoto
貴弘 村元
Hirokazu Saegusa
浩和 三枝
Hiroshi Akita
寛 秋田
Takeshi Saito
毅 斎藤
Yoshio Manabe
由雄 真鍋
Takashi Ueda
隆 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd, Matsushita Electric Works Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006281773A priority Critical patent/JP4971743B2/en
Publication of JP2008098108A publication Critical patent/JP2008098108A/en
Application granted granted Critical
Publication of JP4971743B2 publication Critical patent/JP4971743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting control method in which accuracy of illumination correction is improved by nearly making coincide an actual luminous flux deterioration and characteristics of luminous flux maintenance factor, to provide a light source, and to provide a lighting apparatus. <P>SOLUTION: The illumination correction device 14 controls electric power to be supplied to a light source based on the luminous flux maintenance factor of a fluorescent lamp La so as to suppress deterioration of luminous flux accompanying the elapse of lighting time of the fluorescent lamp La as the light source, and the luminous flux maintenance factor is calculated corresponding to the lighting time of the fluorescent lamp La and input power of the fluorescent lamp La in the lighting time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、照明制御方法、光源、及び照明器具に関するものである。   The present invention relates to a lighting control method, a light source, and a lighting fixture.

照明器具に用いられる放電ランプ、白熱電球、LED素子等の光源の光束は図26(a)のように点灯時間に伴って低下し、また光源を装着している灯具や光源が時間の経過に伴って汚れることによっても光量は低下するから、このような点灯時間の経過に伴う光量低下を抑制するために照度補正を行っている。ここで、光源の光束の低下は蛍光ランプであれば蛍光体の劣化などが原因になる。照度補正は基本的には光源の点灯時間の経過に伴う光束の低下を補正するものであって、光源の交換直後には光源を調光点灯させておき、光源の点灯時間が経過するのに伴って光源を定格点灯に近付けるように、光源への供給電力を制御するものである。つまり、図26(b)のように光源の点灯時間の経過に伴って光源の入力電力を増加させるのである。したがって、光源の光束が点灯時間の経過に伴って低下するのに対して、点灯時間の経過に伴って光源の入力電力を増加させることで、光源の光出力を略一定に保とうとしている。(例えば、特許文献1参照)
特開2001−15276号公報(段落番号[0022]、図2)
The luminous flux of a light source such as a discharge lamp, incandescent light bulb, or LED element used in a lighting fixture decreases with the lighting time as shown in FIG. 26 (a), and the lamp or light source equipped with the light source passes with time. Since the amount of light also decreases due to contamination, the illuminance correction is performed in order to suppress such a decrease in the amount of light accompanying the passage of lighting time. Here, the decrease in the luminous flux of the light source is caused by the deterioration of the phosphor in the case of a fluorescent lamp. The illuminance correction basically corrects the decrease in luminous flux as the lighting time of the light source elapses.The light source is dimmed immediately after the light source is replaced, and the lighting time of the light source elapses. Accordingly, the power supplied to the light source is controlled so that the light source approaches the rated lighting. That is, as shown in FIG. 26B, the input power of the light source is increased as the lighting time of the light source elapses. Therefore, while the luminous flux of the light source decreases as the lighting time elapses, the light output of the light source is kept substantially constant by increasing the input power of the light source as the lighting time elapses. (For example, see Patent Document 1)
JP 2001-15276 A (paragraph number [0022], FIG. 2)

図26(a)に示すような光束減退の程度が経過時間に伴って初期の値のどの程度に維持されているかを示す割合を、光束維持率という。この光束維持率は、従来、光源への入力電力を一定にして算出されており、例えば光源として32Wの蛍光ランプを用いた場合は、蛍光ランプへの入力電力を32W一定にしてシミュレーションまたは実験で算出される。しかし、実際に光源へ供給される電力は、照度補正のため点灯時間の経過に伴って増加するのに対して、図26(a)に示す従来の光束維持率曲線Yoは、入力電力を一定にした場合の特性であり、入力電力の変化に対応しておらず、実際の光束減退と光束維持率の特性とが一致しないものであった。   A ratio indicating how much of the initial value is maintained with the elapsed time as shown in FIG. 26A is referred to as a luminous flux maintenance factor. Conventionally, the luminous flux maintenance factor is calculated with a constant input power to the light source. For example, when a 32 W fluorescent lamp is used as the light source, the input power to the fluorescent lamp is kept constant at 32 W by simulation or experiment. Calculated. However, the power actually supplied to the light source increases as the lighting time elapses for illuminance correction, whereas the conventional luminous flux maintenance factor curve Yo shown in FIG. Therefore, the characteristics do not correspond to the change of the input power, and the actual light beam decline does not match the characteristics of the light flux maintenance factor.

したがって、従来の光束維持曲線Yoを用いて照度補正を行うと、実際の光束減退とは異なる光束維持率に基づいて光源が点灯制御されるため、光源の光出力が略一定になるようには補正されず、照度補正の精度がよくないものであった。   Therefore, when the illuminance correction is performed using the conventional luminous flux maintenance curve Yo, the light source is controlled to be turned on based on a luminous flux maintenance factor different from the actual luminous flux decline, so that the light output of the light source becomes substantially constant. It was not corrected, and the accuracy of illuminance correction was not good.

本発明は、上記事由に鑑みてなされたものであり、その目的は、実際の光束減退と光束維持率の特性とを略一致させて、照度補正の精度が向上した照明制御方法、光源、及び照明器具を提供することにある。   The present invention has been made in view of the above-mentioned reasons, and the object thereof is to substantially match the actual light beam degradation and the characteristics of the light beam maintenance rate, and to improve the accuracy of illuminance correction, the light source, and It is to provide a luminaire.

請求項1の発明は、光源の点灯時間の経過に伴う光束低下を抑制するように光源の光束維持率に基づいて光源へ供給する電力を制御し、光束維持率は、光源の点灯時間と当該点灯時間における光源の入力電力とに応じて算出されることを特徴とする。   According to the first aspect of the present invention, the power supplied to the light source is controlled based on the luminous flux maintenance factor of the light source so as to suppress the reduction of the luminous flux with the passage of the lighting time of the light source. It is calculated according to the input power of the light source during the lighting time.

この発明によれば、照明制御方法において、光束維持率は、実際の光源の入力電力に沿ったものとなるので、実際の光束減退に略一致し、この光束維持率に基づいて光源へ供給する電力を制御するので、光源から出力される光束は、点灯時間の経過及び点灯時間の経過に伴う入力電力の変化に関わらず略一定に制御され、照度補正の精度が向上する。   According to the present invention, in the illumination control method, the luminous flux maintenance factor is in line with the actual input power of the light source, and therefore substantially matches the actual luminous flux decline, and is supplied to the light source based on this luminous flux maintenance factor. Since the power is controlled, the light flux output from the light source is controlled to be substantially constant regardless of the passage of lighting time and the change in input power with the passage of lighting time, thereby improving the accuracy of illuminance correction.

請求項2の発明は、請求項1において、前記光束維持率を所定期間に亘って予め算出して、当該算出した光束維持率に基づく補正データを記憶手段に格納し、当該格納した補正データに基づいて光源へ供給する電力を制御することを特徴とする。   According to a second aspect of the present invention, in the first aspect, the luminous flux maintenance factor is calculated in advance for a predetermined period, correction data based on the calculated luminous flux maintenance factor is stored in a storage unit, and the stored correction data is stored in the stored correction data. Based on this, the power supplied to the light source is controlled.

この発明によれば、照度補正時に光束維持率の算出過程を設ける必要がなく、光源の点灯制御を簡略化することができる。   According to the present invention, it is not necessary to provide a process for calculating the luminous flux maintenance factor when correcting illuminance, and lighting control of the light source can be simplified.

請求項3の発明は、請求項1において、所定時点における点灯時間、光源の入力電力に応じて、前記所定時点以後の光束維持率を逐次算出し、当該算出された光束維持率に基づいて光源へ供給する電力を制御することを特徴とする。   According to a third aspect of the present invention, in the first aspect, the luminous flux maintenance factor after the predetermined time is sequentially calculated according to the lighting time at the predetermined time and the input power of the light source, and the light source is based on the calculated luminous flux maintenance factor. It controls the power supplied to

この発明によれば、照明器具の使用状態に応じた照度補正を行うことができる。   According to this invention, the illumination intensity correction according to the use condition of a lighting fixture can be performed.

請求項4の発明は、請求項1乃至3いずれかの照明制御方法を用いて点灯制御されることを特徴とする。   According to a fourth aspect of the present invention, lighting control is performed using the illumination control method according to any one of the first to third aspects.

この発明によれば、光源において、光束維持率は、実際の光源の入力電力に沿ったものとなるので、実際の光束減退に略一致し、この光束維持率に基づいて光源へ供給される電力が制御されるので、光源から出力される光束は、点灯時間の経過及び点灯時間の経過に伴う入力電力の変化に関わらず略一定に制御され、照度補正の精度が向上する。   According to the present invention, in the light source, the luminous flux maintenance factor is in line with the actual input power of the light source, and therefore substantially matches the actual luminous flux decline, and the power supplied to the light source based on this luminous flux maintenance factor. Therefore, the light flux output from the light source is controlled to be substantially constant regardless of the passage of lighting time and the change in input power with the passage of lighting time, thereby improving the accuracy of illuminance correction.

請求項5の発明は、光源と、光源へ電力を供給する点灯装置と、点灯装置への給電時間を光源の点灯時間として計時する点灯時間タイマと、光源の点灯時間と当該点灯時間における光源の入力電力とに応じて算出される光束維持率に基づいて、光源の点灯時間の経過に伴う光束低下を抑制するように光源へ供給する電力を点灯装置に指示する照度補正装置とを備えることを特徴とする。   The invention of claim 5 includes a light source, a lighting device that supplies power to the light source, a lighting time timer that counts a power feeding time to the lighting device as a lighting time of the light source, a lighting time of the light source, and a light source at the lighting time. And an illuminance correction device for instructing the lighting device to supply power to the light source so as to suppress a decrease in the luminous flux with the lapse of the lighting time of the light source based on the luminous flux maintenance factor calculated according to the input power. Features.

この発明によれば、照明器具において、光束維持率は、実際の光源の入力電力に沿ったものとなるので、実際の光束減退に略一致し、この光束維持率に基づいて光源へ供給する電力を制御するので、光源から出力される光束は、点灯時間の経過及び点灯時間の経過に伴う入力電力の変化に関わらず略一定に制御され、照度補正の精度が向上する。   According to this invention, in the luminaire, the luminous flux maintenance factor is in line with the actual input power of the light source, and therefore substantially matches the actual luminous flux decline, and the power supplied to the light source based on this luminous flux maintenance factor Therefore, the light flux output from the light source is controlled to be substantially constant regardless of the passage of lighting time and the change in input power with the passage of lighting time, and the accuracy of illuminance correction is improved.

以上説明したように、本発明では、実際の光束減退と光束維持率の特性とを略一致させて、照度補正の精度の向上を図ることができるという効果がある。   As described above, according to the present invention, there is an effect that the accuracy of the illuminance correction can be improved by making the actual light beam decline substantially coincide with the characteristics of the light beam maintenance factor.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
本実施形態における照明器具1は、図1に示すように、点灯装置11、点灯時間検出部12、点灯時間タイマ13、照度補正装置14、補正データ記憶部15からなる点灯ユニット10と、光源としての蛍光ランプLaとを備え、蛍光ランプLaは調光制御が可能な点灯装置11の出力によって点灯する。
(Embodiment 1)
As illustrated in FIG. 1, the lighting fixture 1 in the present embodiment includes a lighting unit 10 including a lighting device 11, a lighting time detection unit 12, a lighting time timer 13, an illuminance correction device 14, and a correction data storage unit 15, and a light source. The fluorescent lamp La is lit by the output of the lighting device 11 capable of dimming control.

点灯時間検出部12は、商用電源のような電源ACと点灯装置11との間に設けられて、点灯装置11に通電されているか否かを検出し、点灯時間タイマ13は、点灯時間検出部12により検出された通電期間を計時する。つまり、通電期間を蛍光ランプLaの点灯期間とみなして点灯時間タイマ13により蛍光ランプLaの点灯時間を計時する。   The lighting time detection unit 12 is provided between a power source AC such as a commercial power supply and the lighting device 11, and detects whether the lighting device 11 is energized. The lighting time timer 13 is a lighting time detection unit. 12 counts the energization period detected. That is, the lighting period of the fluorescent lamp La is counted by the lighting time timer 13 by regarding the energization period as the lighting period of the fluorescent lamp La.

ところで、ランプの光束は点灯時間の経過に伴って低下し、またランプを装着している灯具やランプが時間の経過に伴って汚れることによっても光量は低下するから、このような点灯時間の経過に伴う光量低下を抑制するために照明器具1には照度補正装置14が設けられている。ここで、蛍光ランプLaの光束の低下は蛍光体の劣化などが原因になる。照度補正装置14は基本的には蛍光ランプLaの点灯時間の経過に伴う光束の低下を補正するように構成されているものであって、蛍光ランプLaの交換直後には蛍光ランプLaを、ある出力で点灯させておき、蛍光ランプLaの点灯時間が経過するのに伴って、点灯装置11を介して蛍光ランプLaへの供給電力を増加させるものである。つまり、蛍光ランプLaの点灯時間の経過に伴って点灯装置11の出力を増加させるのである。したがって、蛍光ランプLaの光束が点灯時間の経過に伴って低下するのに対して、点灯時間の経過に伴って蛍光ランプLaへの供給電力(蛍光ランプLaの入力電力)を増加させることで、蛍光ランプLaの光出力を略一定に保つことができるのである。   By the way, the luminous flux of the lamp decreases as the lighting time elapses, and the amount of light also decreases when the lamp or the lamp equipped with the lamp becomes dirty as time elapses. The illumination fixture 1 is provided with an illuminance correction device 14 in order to suppress a decrease in the amount of light accompanying the. Here, the decrease in the luminous flux of the fluorescent lamp La is caused by the deterioration of the phosphor. The illuminance correction device 14 is basically configured to correct a decrease in luminous flux with the passage of the lighting time of the fluorescent lamp La, and the fluorescent lamp La is provided immediately after the replacement of the fluorescent lamp La. It is turned on at the output, and the power supplied to the fluorescent lamp La through the lighting device 11 is increased as the lighting time of the fluorescent lamp La elapses. That is, as the lighting time of the fluorescent lamp La elapses, the output of the lighting device 11 is increased. Therefore, while the luminous flux of the fluorescent lamp La decreases as the lighting time elapses, the supply power to the fluorescent lamp La (the input power of the fluorescent lamp La) increases as the lighting time elapses. The light output of the fluorescent lamp La can be kept substantially constant.

以下、本実施形態の照度補正装置14の動作について説明する。   Hereinafter, the operation of the illuminance correction device 14 of the present embodiment will be described.

蛍光ランプLaの光束は点灯時間の経過に伴って減退するが、この光束減退の程度が、経過時間に伴って初期の値のどの程度に維持されているかを示す割合を光束維持率という。そして、蛍光ランプにFHF32(高周波点灯専用形、直管形、定格ランプ電力32W)を用いた場合の光束維持率の変化を入力電力毎に実験で求め、図2は、蛍光ランプ(FHF32)の入力電力を32W,45W,63Wとして実験で求めた各光束維持率曲線をY32e,Y45e,Y63eで示しており、入力電力が大きいほど、点灯時間の経過に伴う光束維持率の低下度合は大きくなる。すなわち、蛍光ランプの光束維持率は入力電力に依存していることが分かる。   The luminous flux of the fluorescent lamp La decreases as the lighting time elapses, and the ratio indicating the degree of the luminous flux reduction maintained at the initial value with the elapsed time is referred to as a luminous flux maintenance factor. Then, a change in luminous flux maintenance factor is obtained for each input power when an FHF32 (high-frequency lighting dedicated type, straight tube type, rated lamp power 32 W) is used for the fluorescent lamp, and FIG. 2 shows the fluorescent lamp (FHF32). The luminous flux maintenance factor curves obtained by experiments with input powers of 32 W, 45 W, and 63 W are indicated by Y32e, Y45e, and Y63e. The larger the input power, the greater the degree of decrease in the luminous flux maintenance factor with the elapse of lighting time. . That is, it can be seen that the luminous flux maintenance factor of the fluorescent lamp depends on the input power.

また、[数1]に示すLehmannの式(J.Electrochem.Soc.:SOLID-STATE SCIENCE AND TECHNOLOGY 130巻、2号(1983)、426〜431頁、Willi Lehmann)による解析から、図3,[数2]に示すように蛍光ランプの寿命定数τと蛍光ランプの入力電力pとはほぼ相関関係を有すると認められ、蛍光ランプの入力電力pが大きくなるに伴い、蛍光ランプの寿命定数τは短くなる。   From the analysis by the Lehmann equation (J. Electrochem. Soc .: SOLID-STATE SCIENCE AND TECHNOLOGY 130, No. 2 (1983), pages 426-431, Willi Lehmann) shown in [Equation 1], FIG. As shown in Equation 2, the lifetime constant τ of the fluorescent lamp and the input power p of the fluorescent lamp are recognized to have a substantially correlation, and as the input power p of the fluorescent lamp increases, the lifetime constant τ of the fluorescent lamp becomes Shorter.

Figure 2008098108
Figure 2008098108

ここで、Iは光度(光源からあらゆる方向に向かう光束の単位立体角当たりの割合)、tは点灯時間、τは蛍光ランプの寿命定数である。 Here, I is the luminous intensity (ratio per unit solid angle of the light flux from the light source in all directions), t is the lighting time, and τ is the lifetime constant of the fluorescent lamp.

Figure 2008098108
Figure 2008098108

次に、図4は蛍光ランプにFHF32を用いて、蛍光ランプ(FHF32)の入力電力を32W,45W,50W,60Wとしたときの各光束維持率曲線Y32s,Y45s,Y50s,Y60sをシミュレーションで求めた結果を示しており、入力電力が大きいほど、点灯時間の経過に伴う光束維持率の低下度合は大きくなる。すなわち、同一の蛍光ランプであっても入力電力によって光束維持率曲線は異なり、入力電力が小さいほど光束維持率の低下度合は小さくなる。   Next, in FIG. 4, FHF32 is used as the fluorescent lamp, and the respective luminous flux maintenance factor curves Y32s, Y45s, Y50s, and Y60s when the input power of the fluorescent lamp (FHF32) is 32 W, 45 W, 50 W, and 60 W are obtained by simulation. The lower the luminous flux maintenance factor with the elapse of the lighting time, the greater the input power. That is, even with the same fluorescent lamp, the luminous flux maintenance factor curve varies depending on the input power, and the lower the input power, the smaller the degree of decrease in the luminous flux maintenance factor.

従来、蛍光ランプにFHF32を用いた場合は、入力電力を32Wとした場合の光束維持率Y32sに基づき、点灯時間の経過に伴って蛍光ランプの入力電力を増加させていた。しかし、実際に蛍光ランプへ供給される電力は、照度補正のため点灯時間の経過に伴って増加するのに対して、光束維持率Y32sは、入力電力を32W一定にした場合の特性であり、従来の光束維持率曲線は入力電力の変化に対応しておらず、実際の光束減退と光束維持率の特性とが一致しないものであった。   Conventionally, when the FHF 32 is used for the fluorescent lamp, the input power of the fluorescent lamp is increased with the passage of lighting time based on the luminous flux maintenance factor Y32s when the input power is 32 W. However, the power actually supplied to the fluorescent lamp increases as the lighting time elapses for illuminance correction, whereas the luminous flux maintenance factor Y32s is a characteristic when the input power is kept constant at 32 W. The conventional luminous flux maintenance factor curve does not correspond to the change in input power, and the actual degradation of the luminous flux does not match the characteristics of the luminous flux maintenance factor.

そこで、本実施形態における照度補正装置14は、図5に示す光束維持率曲線Yaに基づいて蛍光ランプLaへ供給する電力を指示して照度補正を行った。例えばこの光束維持率曲線Yaは、点灯時間0〜T1(2000時間)までは入力電力32W時の光束維持率曲線Y32s、点灯時間T1〜T2(7000時間)までは入力電力45W時の光束維持率曲線Y45s、点灯時間T2〜T3(12000時間)までは入力電力50W時の光束維持率曲線Y50s、点灯時間T3〜は入力電力60W時の光束維持率曲線Y60sで構成されている。すなわち、点灯時間の経過に伴って、蛍光ランプの入力電力を32W → 45W → 50W → 60Wの順に増加させるのであるが、入力電力が変更される度に当該入力電力に対応した光束維持率曲線Y32s,Y45s,Y50s,Y60sに基づいて次の入力電力の変更タイミングを決定しており、これら各入力電力に対応した複数の光束維持率曲線Y32s,Y45s,Y50s,Y60sを連続させて光束維持率曲線Yaを生成している。   Therefore, the illuminance correction device 14 according to the present embodiment performs the illuminance correction by instructing the power supplied to the fluorescent lamp La based on the luminous flux maintenance factor curve Ya shown in FIG. For example, the luminous flux maintenance factor curve Ya includes a luminous flux maintenance factor curve Y32s at an input power of 32 W from lighting time 0 to T1 (2000 hours), and a luminous flux maintenance factor at an input power of 45 W from lighting times T1 to T2 (7000 hours). The curve Y45s and the lighting time T2 to T3 (12000 hours) are configured by a luminous flux maintenance factor curve Y50s at an input power of 50 W, and the lighting time T3 is configured by a luminous flux maintenance factor curve Y60s at an input power of 60 W. That is, as the lighting time elapses, the input power of the fluorescent lamp is increased in the order of 32 W → 45 W → 50 W → 60 W. Every time the input power is changed, the luminous flux maintenance factor curve Y32s corresponding to the input power. , Y45s, Y50s, and Y60s, the next input power change timing is determined, and a plurality of luminous flux maintenance factor curves Y32s, Y45s, Y50s, and Y60s corresponding to each of these input powers are continued to obtain a luminous flux maintenance factor curve. Ya is generated.

而して、光束維持率曲線Yaの特性は、実際の蛍光ランプの入力電力に沿ったものとなるので、実際の光束減退に略一致し、照度補正装置14は、この光束維持率曲線Yaに基づいて蛍光ランプLaへ供給する電力を指示するので、蛍光ランプLaから出力される光束は、点灯時間の経過及び点灯時間の経過に伴う入力電力の変化に関わらず、略一定に制御され、照度補正の精度が向上する。このように、点灯時間に対する入力電力の変更は光束維持率曲線Yaに基づいて任意に行うことができる。   Thus, since the characteristic of the luminous flux maintenance factor curve Ya is in line with the actual input power of the fluorescent lamp, it substantially coincides with the actual reduction of luminous flux, and the illuminance correction device 14 follows this luminous flux maintenance factor curve Ya. Therefore, the luminous flux output from the fluorescent lamp La is controlled to be substantially constant regardless of the lighting time and the change in input power with the lighting time. The accuracy of correction is improved. Thus, the change of the input power with respect to the lighting time can be arbitrarily performed based on the luminous flux maintenance factor curve Ya.

次に、上記光束維持率曲線Yaの算出方法について説明する。   Next, a method for calculating the luminous flux maintenance factor curve Ya will be described.

まず、Lehmann近似によって光束維持率Dは[数3]で表される。   First, the luminous flux maintenance factor D is expressed by [Equation 3] by Lehmann approximation.

Figure 2008098108
Figure 2008098108

ここで、Cは定数、tは点灯時間、τは蛍光ランプの寿命定数、pは蛍光ランプの入力電力である。 Here, C is a constant, t is a lighting time, τ is a lifetime constant of the fluorescent lamp, and p is an input power of the fluorescent lamp.

また、上記[数3]における光束維持率Dの初期値Dは、[数4]に表すように点灯時間t=100h(時間)のときに1となるように設定される。 Further, the initial value D 0 of the luminous flux maintenance factor D in the above [Equation 3] is set to be 1 when the lighting time t = 100 h (hours) as shown in [Equation 4].

Figure 2008098108
Figure 2008098108

ここで、Cはt=100h時における定数、pはt=100h時における入力電力である。 Here, C 0 is a constant at t = 100 h, and p 0 is an input power at t = 100 h.

そして、点灯時間tが時間tのときの光束維持率Dは、[数5]で表される。 Then, the luminous flux maintenance factor D n at a lighting time t time t n is represented by [Equation 5].

Figure 2008098108
Figure 2008098108

ここで、Cはt=t時における定数、pはt=t時における入力電力である(但し、k=0、1、2、...n−1、n、n+1、...)。 Here, C k is a constant at t = t k , and p k is an input power at t = t k (where k = 0, 1, 2,... N-1, n, n + 1,. ..).

上記[数5]では、蛍光ランプLaの入力電力がpのときに次の時間tn+1における光束維持率D(tn+1)を表している。すなわち、入力電力をpからpn+1に変更した場合の点灯時間tn+1における光束維持率が[数5]で表されており、光束維持率を予測することができる。したがって、点灯時間の途中で入力電力を変更した場合でも図5に示す光束維持率曲線Yaを導出することができる。 In the above Equation 5 represents the luminous flux maintenance factor D n (t n + 1) at next time t n + 1 when the input power p n of the fluorescent lamp La. That, and the luminous flux maintenance factor is represented by Equation 5 in the lighting time t n + 1 when the input power is changed from p n to p n + 1, it is possible to predict the luminous flux maintenance factor. Therefore, even when the input power is changed during the lighting time, the luminous flux maintenance factor curve Ya shown in FIG. 5 can be derived.

そして、蛍光ランプLaが出力する光束φと蛍光ランプLaの入力電力pとの関係は、[数6]で表されるので、ある点灯時間tに光束φを出力させる入力電力pは決定される。   Since the relationship between the luminous flux φ output from the fluorescent lamp La and the input power p of the fluorescent lamp La is expressed by [Equation 6], the input power p for outputting the luminous flux φ during a certain lighting time t is determined. .

Figure 2008098108
Figure 2008098108

本実施形態では、上記光束維持率曲線Yaを[数5]に基づき点灯開始から寿命時に亘って予め算出して、光束維持率曲線Yaに基づく蛍光ランプLa1の補正データを補正データ記憶部15に予め格納しており、照度補正装置14は、補正データ記憶部15内の補正データに沿って、点灯時間の経過に伴い蛍光ランプLa1へ供給する電力を指示している。したがって、光束維持率を予め算出して、光束維持率曲線に基づく補正データを予め生成しておくので、照明器具1に光束維持率の算出手段を設ける必要がなく、光源の点灯制御の構成を簡略化することができる。なお、本実施形態において保守率は70%とする。上記図5に示す例では蛍光ランプLaの入力電力を4段階に変更しているが、さらに細かく多段階に変更してもよい。   In the present embodiment, the luminous flux maintenance factor curve Ya is calculated in advance from the lighting start to the lifetime based on [Equation 5], and the correction data of the fluorescent lamp La1 based on the luminous flux maintenance factor curve Ya is stored in the correction data storage unit 15. Stored in advance, the illuminance correction device 14 instructs the power supplied to the fluorescent lamp La1 as the lighting time elapses along the correction data in the correction data storage unit 15. Therefore, since the luminous flux maintenance factor is calculated in advance and correction data based on the luminous flux maintenance factor curve is generated in advance, it is not necessary to provide the lighting fixture 1 with a means for calculating the luminous flux maintenance factor, and the light source lighting control configuration can be realized. It can be simplified. In this embodiment, the maintenance rate is 70%. In the example shown in FIG. 5, the input power of the fluorescent lamp La is changed to four stages, but it may be changed more finely to multiple stages.

図6は、蛍光ランプLaにFHF63(高周波点灯専用形、直管形、定格ランプ電力63W)を用いた場合の補正データを示しており、補正データとして点灯時間毎の光束維持率、入力電力を有する表を補正データ記憶部15に予め格納しておき、表内の補正データにしたがって、点灯時間100時間、1000時間、2000時間、...で蛍光ランプへ供給する電力を徐々に増加させる。   FIG. 6 shows correction data when the fluorescent lamp La uses the FHF 63 (high-frequency lighting dedicated type, straight tube type, rated lamp power 63 W), and the correction data includes the luminous flux maintenance factor and input power for each lighting time. A table having the lighting time 100 hours, 1000 hours, 2000 hours,... According to the correction data in the table. . . The electric power supplied to the fluorescent lamp is gradually increased.

図7は、図6の補正データに基づく光束維持率曲線Yb、及び蛍光ランプLaの入力電力パターンYpとを示しており、点灯時間の経過に伴って入力電力パターンYpを細かく階段状に増加させるのであるが、入力電力が変更される度に当該入力電力に対応した光束維持率曲線に基づいて次の入力電力の変更タイミングを決定しており、これら各入力電力に対応した複数の光束維持率曲線を連続させて光束維持率曲線Ybを生成している。   FIG. 7 shows the luminous flux maintenance factor curve Yb based on the correction data of FIG. 6 and the input power pattern Yp of the fluorescent lamp La, and the input power pattern Yp is finely increased stepwise as the lighting time elapses. However, whenever the input power is changed, the next input power change timing is determined based on the luminous flux maintenance factor curve corresponding to the input power, and a plurality of luminous flux maintenance factors corresponding to each of the input powers are determined. The curve is continued to generate the luminous flux maintenance factor curve Yb.

(実施形態2)
本実施形態の照明器具1は、図8に示すように、実施形態1の補正データ記憶部15の代わりに補正データ演算部16を設けたものであり、補正データ演算部16は、蛍光ランプの点灯制御中に、現時点における点灯時間t、蛍光ランプの入力電力p、光束維持率Dn−1(t)を[数5]に適用して、次の時間tn+1における光束維持率D(tn+1)を逐次算出する。そして、照度補正装置14は、この算出された光束維持率D(tn+1)に基づいて次の時間tn+1に蛍光ランプLaへ供給する電力を指示している。したがって、補正データを予め格納する必要がなく、各照明器具1の使用状態に応じた照度補正を行うことができる。
(Embodiment 2)
As shown in FIG. 8, the lighting fixture 1 of the present embodiment is provided with a correction data calculation unit 16 instead of the correction data storage unit 15 of the first embodiment, and the correction data calculation unit 16 is a fluorescent lamp. During the lighting control, the current lighting time t n , the input power p n of the fluorescent lamp, and the luminous flux maintenance factor D n−1 (t n ) are applied to [Equation 5], and the luminous flux maintenance factor at the next time t n + 1 . D n (t n + 1 ) is calculated sequentially. Then, the illuminance correction device 14 instructs the power to be supplied to the fluorescent lamp La at the next time t n + 1 based on the calculated luminous flux maintenance factor D n (t n + 1 ). Therefore, it is not necessary to store correction data in advance, and illuminance correction according to the usage state of each lighting fixture 1 can be performed.

なお、光束維持率D(tn+1)を逐次算出する補正データ演算部16を用いれば、各照明器具1の使用状態に応じて、点灯時間の経過に伴って蛍光ランプの入力電力を増加させるだけでなく、減少させることもできる。 If the correction data calculation unit 16 that sequentially calculates the luminous flux maintenance factor D n (t n + 1 ) is used, the input power of the fluorescent lamp is increased as the lighting time elapses according to the usage state of each luminaire 1. Not only can it be reduced.

(実施形態3)
本実施形態では、実施形態1または2で光源として用いる蛍光ランプについて説明する。図9は、32W〜45Wの定格ランプ電力を有する直管形蛍光ランプLa1の管端部電極部分の構造を示すものである。2はフィラメントで、2本のリード線4、4間にピンチされている。3はエミッタである。5はガラスステム、6は内面に保護膜7、蛍光体層8が形成されたガラスバルブであり、ガラスバルブ6の両端に当該電極部分が構成されている。そして、管内には水銀とアルゴンなどの放電用ガスが封入されている。
(Embodiment 3)
In the present embodiment, the fluorescent lamp used as the light source in the first or second embodiment will be described. FIG. 9 shows the structure of the tube end electrode portion of a straight tube fluorescent lamp La1 having a rated lamp power of 32W to 45W. A filament 2 is pinched between two lead wires 4 and 4. 3 is an emitter. Reference numeral 5 denotes a glass stem, 6 denotes a glass bulb having a protective film 7 and a phosphor layer 8 formed on the inner surface, and the electrode portions are formed at both ends of the glass bulb 6. A discharge gas such as mercury and argon is sealed in the tube.

図10はフィラメント2の拡大図であり、図11はフィラメント2の一部断面拡大図であり、フィラメント2は、主線2aの外周を細線2bが緩やかに巻回して構成された所謂トリプルコイルで構成され、さらにフィラメント2にはエミッタ3が被着されている。そして本実施形態の蛍光ランプLa1では、従来と略同様のランプ寿命を確保しながらランプ出力を増大させるために、従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプ(例えば、FHF32:高周波点灯専用形、直管形、定格ランプ電力32Wや、FLR40s:ラピッドスタート形、直管形、定格ランプ電力40W等)に比べて、主線2aの線径D1を太くし、さらにエミッタ3の量を増やしている。   FIG. 10 is an enlarged view of the filament 2, and FIG. 11 is a partially enlarged view of the filament 2. The filament 2 is configured by a so-called triple coil formed by gently winding the outer periphery of the main wire 2a with a thin wire 2b. Furthermore, an emitter 3 is attached to the filament 2. In the fluorescent lamp La1 of the present embodiment, in order to increase the lamp output while ensuring a lamp life substantially the same as the conventional one, a conventional straight fluorescent lamp having a rated lamp power of 32W to 45W (for example, FHF32: Compared with dedicated high-frequency lighting type, straight tube type, rated lamp power of 32W, FLR40s: rapid start type, straight tube type, rated lamp power of 40W, etc., the diameter D1 of the main line 2a is increased, and the amount of emitter 3 is further increased. Is increasing.

まず、主線2aの線径D1について説明する。ランプ出力を増大させると、フィラメントの表面温度が上昇し、エミッタの消耗が早くなって、ランプ寿命が短くなる。したがって、ランプに大電力を入力して光出力を増大させるためには、大出力領域においてフィラメントの表面温度を抑える必要がある。ここで、従来のランプ出力を1.4〜2倍にするとランプ電流は約1.5〜3倍になり、この約1.5〜3倍のランプ電流を流すためには、フィラメント温度がフィラメント抵抗に比例する点を考慮すると、主線2aの線径D1を従来の約1.25〜1.7倍にすれば温度上昇を抑えることができる。そこで、従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプのフィラメントは、その主線の線径が約50〜65μmであることから、本実施形態の蛍光ランプLa1では、フィラメント2の主線2aの線径D1を約65〜100μmにして、フィラメント抵抗を従来よりも低減させている。   First, the wire diameter D1 of the main wire 2a will be described. Increasing the lamp power increases the filament surface temperature, leading to faster emitter wear and shorter lamp life. Therefore, in order to increase the light output by inputting high power to the lamp, it is necessary to suppress the surface temperature of the filament in the high output region. Here, when the conventional lamp output is increased by 1.4 to 2 times, the lamp current is increased by approximately 1.5 to 3 times. Considering the point proportional to the resistance, the temperature rise can be suppressed by making the diameter D1 of the main line 2a about 1.25 to 1.7 times that of the conventional one. Therefore, the filament of a conventional straight tube fluorescent lamp having a rated lamp power of 32 W to 45 W has a main line diameter of about 50 to 65 μm. Therefore, in the fluorescent lamp La1 of this embodiment, the main line of the filament 2 is used. The wire diameter D1 of 2a is set to about 65 to 100 μm, and the filament resistance is reduced as compared with the conventional case.

図12は、ランプ電流とフィラメントの主線表面の推定コイル温度との関係を示しており、本実施形態の蛍光ランプLa1の温度曲線Yt1と、従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプの温度曲線Yt2とを比較すると、本実施形態の蛍光ランプLa1は、主線2a(線径D1=約70μm)の表面温度がフィラメント電流の大きい領域で飽和しているが(温度曲線Yt1参照)、従来の蛍光ランプは、主線(線径=約50μm)の表面温度がフィラメント電流の大きい領域でも上昇を続けている(温度曲線Yt2参照)。そして、フィラメント電流の全領域に亘って本実施形態の蛍光ランプLa1のほうが主線の温度が低くなり、特にフィラメント電流が大きい領域で温度差が大きくなっている。すなわち、同一のフィラメント電流であれば、本実施形態の蛍光ランプLa1は従来よりもフィラメント温度が低く、エミッタの消耗が抑えられて長寿命となり、また、同一寿命であれば、本実施形態の蛍光ランプLa1は従来よりもランプ出力を増大させることができるのである。また、フィラメント2はトリプルコイルに限定されず、例えばダブルコイル等の他の構成であってもよいが、この場合もコイルの線径は約65〜100μmに形成される。   FIG. 12 shows the relationship between the lamp current and the estimated coil temperature on the surface of the main line of the filament. The straight tube type having the rated lamp power of 32 W to 45 W of the temperature curve Yt1 of the fluorescent lamp La1 of the present embodiment. Comparing with the temperature curve Yt2 of the fluorescent lamp, the fluorescent lamp La1 of the present embodiment has a surface temperature of the main line 2a (wire diameter D1 = about 70 μm) saturated in a region where the filament current is large (see the temperature curve Yt1). In the conventional fluorescent lamp, the surface temperature of the main line (wire diameter = about 50 μm) continues to rise even in the region where the filament current is large (see temperature curve Yt2). The temperature of the main line is lower in the fluorescent lamp La1 of this embodiment over the entire region of the filament current, and the temperature difference is particularly large in the region where the filament current is large. That is, when the filament current is the same, the fluorescent lamp La1 of the present embodiment has a lower filament temperature than the conventional one, and the consumption of the emitter is suppressed to have a long lifetime. The lamp La1 can increase the lamp output as compared with the prior art. Further, the filament 2 is not limited to a triple coil, and may have another configuration such as a double coil. In this case, the coil wire diameter is formed to be about 65 to 100 μm.

また、フィラメントの細線の線径D2は、32W〜45Wの定格ランプ電力を有する従来の直管形蛍光ランプで20〜25μm程度であり、本実施形態の蛍光ランプLa1では、細線2bの線径D2を従来と同様の20〜25μm、あるいは20〜25μmより大きくすればよい。   In addition, the filament diameter D2 of the filament is about 20 to 25 μm in a conventional straight tube fluorescent lamp having a rated lamp power of 32 W to 45 W. In the fluorescent lamp La1 of the present embodiment, the diameter D2 of the thin line 2b. May be made larger than the conventional 20 to 25 μm, or 20 to 25 μm.

次に、エミッタ3の量について説明する。エミッタ量は蛍光ランプの寿命を決定し、エミッタの消耗率はフィラメント2の表面温度に依存する。図13は、ランプの点灯時間とエミッタの残量との関係を示しており、本実施形態の蛍光ランプLa1の大出力時(出力63W時)のエミッタ残量曲線Yr1と、従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプの定格出力時のエミッタ残量曲線Yr2、従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプの大出力時(出力63W時)のエミッタ残量曲線Yr3とを示す。   Next, the amount of the emitter 3 will be described. The amount of emitter determines the life of the fluorescent lamp, and the consumption rate of the emitter depends on the surface temperature of the filament 2. FIG. 13 shows the relationship between the lamp lighting time and the remaining amount of the emitter. The emitter remaining amount curve Yr1 when the fluorescent lamp La1 of the present embodiment has a large output (output 63W) and the conventional 32W to 45W. Emitter remaining amount curve Yr2 at the rated output of a straight tube fluorescent lamp having a rated lamp power of 5 mm, and the remaining emitter at the time of a large output (at 63 W output) of a conventional straight tube fluorescent lamp having a rated lamp power of 32 W to 45 W A quantity curve Yr3 is shown.

従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプの場合、エミッタ量は約5mgであり、定格出力では点灯時間が15000時間程度でエミッタが完全になくなり(エミッタ残量曲線Yr2参照)、さらに大出力(63W出力)ではエミッタの消耗が激しく、点灯時間が9000時間程度でエミッタが完全になくなった(エミッタ残量曲線Yr3参照)。   In the case of a conventional straight tube type fluorescent lamp having a rated lamp power of 32 W to 45 W, the amount of emitter is about 5 mg, and at the rated output, the emitter disappears completely after about 15000 hours of lighting (see remaining emitter curve Yr2). Furthermore, at a higher output (63 W output), the consumption of the emitter was severe, and the emitter disappeared completely after the lighting time of about 9000 hours (see the remaining emitter curve Yr3).

一方、本実施形態の蛍光ランプLa1は、上記のように主線2aの線径D1を約65〜100μmにして、従来の同定格の蛍光ランプよりフィラメント抵抗を低減させたフィラメント2を用いることで、フィラメント温度を従来よりも下げることができ、エミッタ量を約5mgにした場合に、大出力(63W出力)では、エミッタが完全になくなるまで上記従来のランプより長い11000時間程度かかる。そして、従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプと同一寿命(例えば、18000時間程度)にするために、エミッタ量を約9mgにすると、エミッタが完全になくなるまで20000時間程度かかった(エミッタ残量曲線Yr1参照)。したがって、エミッタ量を約5〜11mgとすれば、実用上従来と略同様のランプ寿命を確保しながらランプ出力を増大させることができると考えられる。   On the other hand, the fluorescent lamp La1 of the present embodiment uses the filament 2 in which the wire diameter D1 of the main line 2a is set to about 65 to 100 μm as described above, and the filament resistance is reduced from the conventional fluorescent lamp of the same rating. When the filament temperature can be lowered as compared with the conventional case and the amount of emitter is set to about 5 mg, it takes about 11000 hours longer than the conventional lamp until the emitter is completely removed at a large output (63 W output). In order to achieve the same life (for example, about 18000 hours) as a straight tube fluorescent lamp having a rated lamp power of 32 W to 45 W, when the amount of emitter is about 9 mg, about 20000 hours until the emitter is completely eliminated. (Refer to the remaining emitter curve Yr1). Therefore, if the emitter amount is about 5 to 11 mg, it is considered that the lamp output can be increased while ensuring a lamp life that is practically the same as that in the past.

すなわち、本実施形態の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプLa1は、上記のように、フィラメント2の主線2aの線径D1を約65〜100μmにすることで、従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプに比べて、エミッタ3の消耗を抑制し、さらにエミッタ3の量を約5〜11mgに増加させているので、従来と略同様のランプ寿命を確保しながらランプ出力を増大させることができるのである。例えば、定格(100%)以上の入力電力を蛍光ランプLa1に供給しても、十分なランプ寿命を得ることが可能となる。   That is, the straight tube fluorescent lamp La1 having the rated lamp power of 32W to 45W of the present embodiment has the conventional diameter of 32W by setting the diameter D1 of the main line 2a of the filament 2 to about 65 to 100 μm as described above. Compared to a straight tube fluorescent lamp having a rated lamp power of ˜45 W, the consumption of the emitter 3 is suppressed, and the amount of the emitter 3 is increased to about 5 to 11 mg, so that the lamp life is almost the same as the conventional one. It is possible to increase the lamp output while ensuring it. For example, it is possible to obtain a sufficient lamp life even if input power having a rating (100%) or more is supplied to the fluorescent lamp La1.

また、本実施形態の蛍光ランプLa1は、図14に示すように、ガラスバルブ6と蛍光体層8との間に保護膜7を形成している。保護膜7は、例えば酸化アルミニウム(Al)等の金属酸化物からなり、ガラスバルブ6内に封入されている水銀とガラスバルブ6とが反応するのを抑制し高い光束維持率を有することができる。保護膜7は、その膜厚を1〜3μmにすることで光束維持率を改善することができる。また、この保護膜7として酸化アルミニウム以外に二酸化珪素(SiO)、酸化イットリウム(Y)、酸化チタン(TiO)、酸化セリウム(CeO)等の金属酸化物を用いることが好ましい。また、保護膜7として例えば酸化チタン(TiO)、または酸化セリウム(CeO)で形成することにより、水銀から放射される紫外線がガラスバルブ6から漏れないように、当該紫外線を遮断する機能を持たせることもできる。 Further, in the fluorescent lamp La1 of the present embodiment, a protective film 7 is formed between the glass bulb 6 and the phosphor layer 8, as shown in FIG. The protective film 7 is made of a metal oxide such as aluminum oxide (Al 2 O 3 ), for example, and suppresses the reaction between mercury enclosed in the glass bulb 6 and the glass bulb 6 and has a high luminous flux maintenance factor. be able to. The protective film 7 can improve the luminous flux maintenance factor by setting the film thickness to 1 to 3 μm. In addition to aluminum oxide, it is preferable to use a metal oxide such as silicon dioxide (SiO 2 ), yttrium oxide (Y 2 O 3 ), titanium oxide (TiO 2 ), or cerium oxide (CeO) as the protective film 7. Further, when the protective film 7 is formed of, for example, titanium oxide (TiO 2 ) or cerium oxide (CeO), it has a function of blocking the ultraviolet rays emitted from the mercury so that the ultraviolet rays emitted from the mercury do not leak from the glass bulb 6. It can also be made.

次に、従来の蛍光ランプLa101を用いた照明と、本実施形態の上記蛍光ランプLa1を用いた照明とを比較する。まず図15(a)は、従来の照明器具100Aの外観を示しており、長尺状の筐体101aと、筐体101aの下面に設けた凹型の反射板101bと、反射板101bの凹部内に並設された1灯の従来の蛍光ランプLa101(例えば、FHF32:高周波点灯専用形、直管形、定格ランプ電力32W)とを備え、筐体101a内には蛍光ランプLa101を点灯制御する点灯ユニット110を収納し、蛍光ランプLa101はソケット101cを介して点灯ユニット110に接続している。反射板101bは、底面を筐体101aの下面に当接させた状態で、蛍光ランプLa101の後方に設けた取り付け孔(図示なし)に取付ねじ101dを挿入して、筐体101aに固定される。そして、筐体101aの短手方向の両側面に沿って鍔部101eが設けられており、鍔部101eの端部を天井面に穿設した設置孔の下面側の開口端に係止させている。   Next, the illumination using the conventional fluorescent lamp La101 and the illumination using the fluorescent lamp La1 of this embodiment will be compared. First, FIG. 15A shows the external appearance of a conventional lighting fixture 100A, which is a long casing 101a, a concave reflecting plate 101b provided on the lower surface of the casing 101a, and a recess in the reflecting plate 101b. And a conventional fluorescent lamp La101 (for example, FHF32: high-frequency lighting-only type, straight tube type, rated lamp power 32W), and lighting for controlling the lighting of the fluorescent lamp La101 in the housing 101a. The unit 110 is accommodated, and the fluorescent lamp La101 is connected to the lighting unit 110 via the socket 101c. The reflection plate 101b is fixed to the housing 101a by inserting a mounting screw 101d into a mounting hole (not shown) provided behind the fluorescent lamp La101 with the bottom surface in contact with the lower surface of the housing 101a. . And the collar part 101e is provided along the both sides | surfaces of the transversal direction of the housing | casing 101a, and the edge part of the collar part 101e is latched to the opening end of the lower surface side of the installation hole drilled in the ceiling surface. Yes.

一方、図15(b)は本実施形態の蛍光ランプLa1を搭載した照明器具1Aの外観を示しており、長尺状の筐体21aと、筐体22aの下面に設けた凹型の反射板21bと、反射板21bの凹部内に配置された1灯の蛍光ランプLa1とを備え、筐体21a内には蛍光ランプLa1を点灯制御する点灯ユニット10を収納し、蛍光ランプLa1はソケット21cを介して点灯ユニット10に接続している。そして、反射板21Bの短手方向の両側面の端部を天井面に穿設した設置孔の下面側の開口端に係止させている。   On the other hand, FIG. 15B shows the external appearance of a lighting fixture 1A equipped with the fluorescent lamp La1 of the present embodiment. A long casing 21a and a concave reflector 21b provided on the lower surface of the casing 22a. And a single fluorescent lamp La1 disposed in the recess of the reflecting plate 21b, the lighting unit 10 for controlling the lighting of the fluorescent lamp La1 is housed in the housing 21a, and the fluorescent lamp La1 is connected via the socket 21c. Are connected to the lighting unit 10. And the edge part of the both sides | surfaces of the transversal direction of the reflecting plate 21B is made to latch to the opening end of the lower surface side of the installation hole drilled in the ceiling surface.

そして、図16は、従来の照明器具100Aを用いて部屋R内を照明した照度分布を示し、図17は、本実施形態の照明器具1Aを用いて部屋R内を照明した照度分布を示す。なお、部屋Rは、長さ19.2m、幅12.8mで、蛍光ランプは高さ2.7mの位置に取り付けられる。また、天井の反射率は50%、壁の反射率は30%、床の反射率は10%とする。   FIG. 16 shows an illuminance distribution obtained by illuminating the interior of the room R using the conventional luminaire 100A, and FIG. 17 shows an illuminance distribution obtained by illuminating the interior of the room R using the illuminator 1A of the present embodiment. The room R has a length of 19.2 m, a width of 12.8 m, and the fluorescent lamp is mounted at a height of 2.7 m. The ceiling reflectance is 50%, the wall reflectance is 30%, and the floor reflectance is 10%.

まず、部屋Rの長さ方向に11列、部屋Rの幅方向に7行の計77個の従来の照明器具100Aを設置し、1灯の蛍光ランプLa101が出力する光束を4950lmとした場合の水平面照度分布(計算面高さ0.7m)は図16に示され、その平均照度は773lx、最小照度は282lx、最大照度は914lx、照度均斉度(最小照度/平均照度)は0.365、照度均斉度(最小照度/最大照度)は0.308となる。   First, a total of 77 conventional lighting fixtures 100A having 11 columns in the length direction of the room R and 7 rows in the width direction of the room R are installed, and the luminous flux output from one fluorescent lamp La101 is 4950 lm. The horizontal illuminance distribution (calculated surface height 0.7 m) is shown in FIG. 16, the average illuminance is 773 lx, the minimum illuminance is 282 lx, the maximum illuminance is 914 lx, the illuminance uniformity (minimum illuminance / average illuminance) is 0.365, The illuminance uniformity (minimum illuminance / maximum illuminance) is 0.308.

また、部屋Rの長さ方向に10列、部屋Rの幅方向に6行の計60個の本実施形態の照明器具1Aを設置し、1灯の蛍光ランプLa1が出力する光束を6300lmとした場合の水平面照度分布(計算面高さ0.7m)は図17に示され、その平均照度は752lx、最小照度は272lx、最大照度は887lx、照度均斉度(最小照度/平均照度)は0.362、照度均斉度(最小照度/最大照度)は0.307となる。   Also, a total of 60 lighting fixtures 1A of the present embodiment having 10 columns in the length direction of the room R and 6 rows in the width direction of the room R are installed, and the luminous flux output from one fluorescent lamp La1 is 6300 lm. The horizontal illuminance distribution (calculated surface height 0.7 m) in this case is shown in FIG. 17. The average illuminance is 752 lx, the minimum illuminance is 272 lx, the maximum illuminance is 887 lx, and the illuminance uniformity (minimum illuminance / average illuminance) is 0. 362, the illuminance uniformity (minimum illuminance / maximum illuminance) is 0.307.

上記照度分布より、77灯の従来の蛍光ランプLa101を設置して、1灯あたり4950lmの光束を出力した場合と、60灯の本実施形態の蛍光ランプLa1を設置して、1灯あたり6300lmの光束を出力させた場合とでは、部屋R内の照度分布はほぼ同じであり、照明システムを新設する場合は、従来の蛍光ランプLa101を用いた構成ではなく、本実施形態の蛍光ランプLa1を用いて1灯あたりの光出力を増加させる構成とすることで、部屋全体の照度分布やランプ寿命を従来に比べて悪化させることなく、蛍光ランプの灯数を削減することができ、低コスト化が可能となる。   From the above illuminance distribution, 77 conventional fluorescent lamps La101 are installed to output a light beam of 4950 lm per lamp, and 60 fluorescent lamps La1 of this embodiment are installed to provide 6300 lm per lamp. When the luminous flux is output, the illuminance distribution in the room R is substantially the same. When a new illumination system is installed, the configuration using the fluorescent lamp La101 is used instead of the conventional fluorescent lamp La101. By increasing the light output per lamp, the number of fluorescent lamps can be reduced without deteriorating the illuminance distribution and the lamp life of the entire room compared to the prior art. It becomes possible.

(実施形態4)
図18(a)は従来の照明器具100Bの外観を示しており、長尺状の筐体102aと、筐体102aの下面に設けた凹型の反射板102bと、反射板102bの凹部内に並設された2灯の従来の蛍光ランプLa102,La102(例えば、FLR40s:ラピッドスタート形、直管形、定格ランプ電力40W)とを備え、筐体102a内には蛍光ランプLa102を点灯制御する点灯ユニット110を収納し、蛍光ランプLa102はソケット102cを介して点灯ユニット110に接続している。反射板102bは、底面を筐体102aの下面に当接させた状態で、蛍光ランプLa102の後方に設けた取り付け孔(図示なし)に取付ねじ102dを挿入して、筐体102aに固定される。そして、筐体102aの短手方向の両側面に沿って鍔部102eが設けられており、鍔部102eの端部を天井面に穿設した設置孔の下面側の開口端に係止させている。
(Embodiment 4)
FIG. 18 (a) shows the appearance of a conventional lighting fixture 100B. The long casing 102a, the concave reflector 102b provided on the lower surface of the casing 102a, and the concave portion of the reflector 102b are arranged in parallel. Two conventional fluorescent lamps La102 and La102 (for example, FLR40s: rapid start type, straight tube type, rated lamp power 40W) and a lighting unit for controlling the lighting of the fluorescent lamp La102 in the housing 102a 110 is housed, and the fluorescent lamp La102 is connected to the lighting unit 110 via the socket 102c. The reflecting plate 102b is fixed to the casing 102a by inserting mounting screws 102d into mounting holes (not shown) provided at the rear of the fluorescent lamp La102 with the bottom surface in contact with the lower surface of the casing 102a. . And the collar part 102e is provided along the both sides | surfaces of the transversal direction of the housing | casing 102a, and the edge part of the collar part 102e is latched to the opening end of the lower surface side of the installation hole drilled in the ceiling surface. Yes.

一方、図18(b)は実施形態3の蛍光ランプLa1を搭載した照明器具1Bの外観を示しており、長尺状の筐体22aと、筐体22aの下面に設けた椀形の反射板22bと、反射板22bの椀部内に配置された1灯の蛍光ランプLa1とを備え、筐体22a内には蛍光ランプLa1を点灯制御する実施形態1または2の点灯ユニット10を収納し、蛍光ランプLa1はソケット22cを介して点灯ユニット10に接続しており、照度補正の精度を向上させている。   On the other hand, FIG. 18B shows the appearance of a lighting fixture 1B equipped with the fluorescent lamp La1 of Embodiment 3, and includes a long housing 22a and a bowl-shaped reflector provided on the lower surface of the housing 22a. 22b and a single fluorescent lamp La1 disposed in the collar portion of the reflector 22b. The lighting unit 10 of the first or second embodiment for controlling the lighting of the fluorescent lamp La1 is housed in the housing 22a. The lamp La1 is connected to the lighting unit 10 via the socket 22c, and the accuracy of illuminance correction is improved.

椀形の反射板22bは、底部を平面状に形成した固定部22fを設けており、この平面状の固定部22fを筐体22aの下面に当接させた状態で、蛍光ランプLa1の後方に設けた取り付け孔(図示なし)に取付ねじ22dを挿入して、筐体22aに固定される。固定部22fを平面状に形成したことで、反射板22bを筐体22aに取り付ける際の施工性がよくなっている。また、下方から見たときに取付ねじ22dが蛍光ランプLa1に遮られて見難くなるように、蛍光ランプLa1は反射板22bの固定部22fに近づけて配置されており、意匠性を高めている。さらに、反射板22bの椀部の曲率や、反射板22bと蛍光ランプLa1との距離は、器具効率やグレアカット性を考慮して設定される。そして、筐体22aの短手方向の両側面に沿って鍔部22eが設けられており、鍔部22eの端部を天井面に穿設した設置孔の下面側の開口端に係止させている。   The bowl-shaped reflecting plate 22b is provided with a fixing portion 22f having a flat bottom portion, and the flat fixing portion 22f is in contact with the lower surface of the housing 22a, behind the fluorescent lamp La1. An attachment screw 22d is inserted into the provided attachment hole (not shown) and fixed to the housing 22a. By forming the fixing portion 22f in a planar shape, workability when attaching the reflection plate 22b to the housing 22a is improved. In addition, the fluorescent lamp La1 is disposed close to the fixing portion 22f of the reflector 22b so that the mounting screw 22d is blocked by the fluorescent lamp La1 when viewed from below and is difficult to see, thereby improving the design. . Further, the curvature of the flange portion of the reflecting plate 22b and the distance between the reflecting plate 22b and the fluorescent lamp La1 are set in consideration of the instrument efficiency and the glare cut property. And the collar part 22e is provided along the both sides | surfaces of the transversal direction of the housing | casing 22a, The edge part of the collar part 22e is made to latch on the opening end of the lower surface side of the installation hole drilled in the ceiling surface. Yes.

上記照明器具1Bは、蛍光ランプLa1を1灯のみ備えるので、蛍光ランプLa102を2灯備えた従来の照明器具100Bに比べて、蛍光ランプの灯数を半減することができ、低コスト化が可能となる。また、蛍光ランプLa1は実施形態3と同様に構成されており、点灯ユニット10がランプ出力を増大させた場合でも従来と略同様のランプ寿命を確保でき、例えば、定格(100%)以上の入力電力を蛍光ランプLa1に供給しても、十分なランプ寿命を得ることが可能となる。   Since the lighting fixture 1B includes only one fluorescent lamp La1, the number of fluorescent lamps can be reduced by half compared to the conventional lighting fixture 100B including two fluorescent lamps La102, and the cost can be reduced. It becomes. In addition, the fluorescent lamp La1 is configured in the same manner as in the third embodiment, and even when the lighting unit 10 increases the lamp output, it is possible to ensure a lamp life that is substantially the same as that of the conventional one. Even if electric power is supplied to the fluorescent lamp La1, it is possible to obtain a sufficient lamp life.

そして、従来の蛍光ランプLa102を2灯設けた上記照明器具100Bを、部屋Rの長さ方向に9列、部屋Rの幅方向に6行の計54個(108灯の蛍光ランプLa102)設置し、1灯の蛍光ランプLa102が出力する光束を3000lmとした場合の水平面照度分布(計算面高さ0.7m)は図19に示され、その平均照度は754lx、最小照度は185lx、最大照度は998lx、照度均斉度(最小照度/平均照度)は0.245、照度均斉度(最小照度/最大照度)は0.185となる。   The lighting fixture 100B provided with two conventional fluorescent lamps La102 is installed in a total of 54 pieces (108 fluorescent lamps La102) in nine rows in the length direction of the room R and six rows in the width direction of the room R. The horizontal illuminance distribution (calculated surface height 0.7 m) when the luminous flux output from one fluorescent lamp La102 is 3000 lm is shown in FIG. 19, the average illuminance is 754 lx, the minimum illuminance is 185 lx, and the maximum illuminance is 998 lx, the illuminance uniformity (minimum illuminance / average illuminance) is 0.245, and the illuminance uniformity (minimum illuminance / maximum illuminance) is 0.185.

また、本実施形態の蛍光ランプLa1を1灯設けた上記照明器具1Bを、部屋Rの長さ方向に9列、部屋Rの幅方向に6行の計54個(54灯の蛍光ランプLa1)設置し、1灯の蛍光ランプLa1が出力する光束を6300lmとした場合の水平面照度分布(計算面高さ0.7m)は図20に示され、その平均照度は783lx、最小照度は187lx、最大照度は1034lx、照度均斉度(最小照度/平均照度)は0.238、照度均斉度(最小照度/最大照度)は0.180となる。   In addition, the lighting fixture 1B provided with one fluorescent lamp La1 of the present embodiment is a total of 54 pieces (54 fluorescent lamps La1 in 9 rows in the length direction of the room R and 6 rows in the width direction of the room R). The horizontal illuminance distribution (calculated surface height 0.7 m) when installed and the luminous flux output from one fluorescent lamp La1 is 6300 lm is shown in FIG. 20, the average illuminance is 783 lx, the minimum illuminance is 187 lx, the maximum The illuminance is 1034 lx, the illuminance uniformity (minimum illuminance / average illuminance) is 0.238, and the illuminance uniformity (minimum illuminance / maximum illuminance) is 0.180.

上記照度分布より、108灯の従来の蛍光ランプLa102を設置して、1灯あたり3000lmの光束を出力した場合と、54灯の本実施形態の蛍光ランプLa1を設置して、1灯あたり6300lmの光束を出力させた場合とでは、部屋R内の照度分布はほぼ同じであり、既設の照明器具100Bを蛍光ランプLa1を搭載した照明器具1Bに交換して、1灯あたりの光出力を増加させる構成とすることで、部屋全体の照度分布やランプ寿命を従来に比べて悪化させることなく、蛍光ランプの灯数を削減することができ、コスト低減を図ることができる。   From the above illuminance distribution, 108 conventional fluorescent lamps La102 are installed to output a luminous flux of 3000 lm per lamp, and 54 fluorescent lamps La1 of this embodiment are installed to provide 6300 lm per lamp. When the luminous flux is output, the illuminance distribution in the room R is substantially the same, and the existing luminaire 100B is replaced with the luminaire 1B equipped with the fluorescent lamp La1, thereby increasing the light output per lamp. By adopting the configuration, the number of fluorescent lamps can be reduced and the cost can be reduced without deteriorating the illuminance distribution and the lamp life of the entire room as compared with the conventional case.

また、図21に示すように、反射板22bの椀部の曲率や、反射板22bと蛍光ランプLa1との距離を上記照明器具1Bと異なる設定にして、器具の幅を照明器具1Bの略半分とした照明器具1Cを用いても、上記照明器具1Bと同様の効果を得ることができ、さらには設置スペースの縮小化を図ることができる。   Further, as shown in FIG. 21, the curvature of the flange portion of the reflecting plate 22b and the distance between the reflecting plate 22b and the fluorescent lamp La1 are set differently from the lighting fixture 1B, and the width of the fixture is substantially half that of the lighting fixture 1B. Even when the lighting fixture 1C is used, the same effect as the lighting fixture 1B can be obtained, and further, the installation space can be reduced.

さらに、図22(a)に示すように反射板を兼ねた筐体102hを備えて、従来の蛍光ランプLa102を2灯搭載した照明器具100Dを、図22(b)に示すような反射板を省略した筐体22hを備えて、実施形態1の蛍光ランプLa1を1灯搭載した照明器具1Dに交換しても、部屋全体の照度分布やランプ寿命を従来に比べて悪化させることなく、蛍光ランプの灯数を削減することができ、コスト低減及び設置スペースの縮小化を図ることができる。   Furthermore, as shown in FIG. 22 (a), a lighting fixture 100D having a housing 102h that also serves as a reflector and mounting two conventional fluorescent lamps La102 is replaced with a reflector as shown in FIG. 22 (b). Even if the omitted housing 22h is provided and the fluorescent lamp La1 of the first embodiment is replaced with a lighting fixture 1D, the fluorescent lamp can be obtained without deteriorating the illuminance distribution and the lamp life of the entire room as compared with the conventional case. The number of lamps can be reduced, and the cost and installation space can be reduced.

(実施形態5)
実施形態3,4では、定格ランプ電力32W〜45Wを有する直管形の蛍光ランプについて説明したが、光源たる蛍光ランプの形状は直管形に限らず、環形蛍光ランプ、二重環形蛍光ランプ、コンパクト形蛍光ランプ、スクエア形蛍光ランプ等であっても同様に、定格ランプ電力32W〜45Wに対してフィラメントの主線の線径を約70μm、エミッタ量を約9mgにすることで、従来の同定格の蛍光ランプと同様のランプ寿命を確保しながらランプ出力を増大させることができる。
(Embodiment 5)
In the third and fourth embodiments, a straight tube fluorescent lamp having a rated lamp power of 32 W to 45 W has been described. However, the shape of the fluorescent lamp as a light source is not limited to a straight tube, and an annular fluorescent lamp, a double ring fluorescent lamp, Similarly for compact fluorescent lamps, square fluorescent lamps, etc., the diameter of the main wire of the filament is about 70 μm and the emitter amount is about 9 mg with respect to the rated lamp power of 32 W to 45 W. The lamp output can be increased while ensuring the same lamp life as that of the fluorescent lamp.

例えば、二重環形蛍光ランプを用いた照明器具の場合、図23(a)に示すように、円筒状の筐体103a内に設けた仕切板103bの下面側に、従来の32W〜45Wの定格ランプ電力を有する二重環形の蛍光ランプLa103(例えば、FHD40:高周波点灯専用形、二重環形、定格ランプ電力40W)を2灯搭載した照明器具100Eを、図23(b)に示すような円筒状の筐体23a内に設けた仕切板23bの下面側に本実施形態の二重環形の蛍光ランプLa2(定格ランプ電力:32W〜45W、フィラメントの主線の線径:約70μm、エミッタ量:約9mg)を1灯搭載した照明器具1Eに交換しても、1灯あたりの光出力を増加させることで、部屋全体の照度分布やランプ寿命を従来に比べて悪化させることなく、蛍光ランプの灯数を削減することができ、コスト低減及び設置スペースの縮小化を図ることができる。   For example, in the case of a luminaire using a double ring fluorescent lamp, a conventional rating of 32 W to 45 W is provided on the lower surface side of a partition plate 103 b provided in a cylindrical housing 103 a as shown in FIG. A lighting fixture 100E equipped with two lamps having a double-ring fluorescent lamp La103 having lamp power (for example, FHD40: dedicated high-frequency lighting type, double-ring type, rated lamp power 40W) is formed into a cylinder as shown in FIG. On the lower surface side of the partition plate 23b provided in the housing 23a, the double-ring fluorescent lamp La2 of this embodiment (rated lamp power: 32 W to 45 W, filament main wire diameter: about 70 μm, emitter amount: about 9 mg) is replaced with a lighting fixture 1E equipped with a single lamp, and the light output per lamp is increased so that the illuminance distribution and the lamp life of the entire room are not deteriorated compared to the conventional one. It is possible to reduce the lighting number of flops, it is possible to achieve a reduction of cost and installation space.

なお、照明器具100Eにおいて、仕切板103bの上面側に配置された点灯ユニット110が蛍光ランプLa103を点灯制御し、筐体103aの下面開口には蓋体103cが覆設されている。また、照明器具1Eにおいて、仕切板23bの上面側に配置された実施形態1または2の点灯ユニット10が蛍光ランプLa2を点灯制御して照度補正の精度を向上させており、さらに筐体23aの下面開口には蓋体23cが覆設されている。   In the lighting fixture 100E, the lighting unit 110 disposed on the upper surface side of the partition plate 103b controls the lighting of the fluorescent lamp La103, and a cover 103c is covered on the lower surface opening of the housing 103a. Further, in the lighting fixture 1E, the lighting unit 10 of Embodiment 1 or 2 arranged on the upper surface side of the partition plate 23b controls the lighting of the fluorescent lamp La2, thereby improving the accuracy of illuminance correction. A lid 23c is provided over the lower surface opening.

また、スクエア形蛍光ランプを用いた照明器具の場合、図24(a)に示すような函状の筐体104a内に従来の32W〜45Wの定格ランプ電力を有する二重スクエア形の蛍光ランプLa104を1灯搭載した照明器具100Fを、図24(b)に示すような函状の筐体24a内に本実施形態のスクエア形の蛍光ランプLa3(定格ランプ電力:32W〜45W、フィラメントの主線の線径:約70μm、エミッタ量:約9mg)を1灯搭載した照明器具1Fに交換しても、1灯あたりの光出力を増加させることで、部屋全体の照度分布やランプ寿命を従来に比べて悪化させることなく、蛍光ランプを二重から一重に変更でき、コストが低減される。   In the case of a lighting fixture using a square fluorescent lamp, a double square fluorescent lamp La104 having a conventional rated lamp power of 32 W to 45 W in a box-shaped casing 104a as shown in FIG. A lighting fixture 100F having a single lamp is mounted in a square-shaped fluorescent lamp La3 (rated lamp power: 32 W to 45 W, rated filament power of the present embodiment) in a box-shaped housing 24a as shown in FIG. Even if it is replaced with a lighting fixture 1F equipped with a single lamp (wire diameter: approx. 70 μm, emitter amount: approx. 9 mg), the light output per lamp is increased so that the illuminance distribution and the lamp life of the entire room are compared with the conventional one. The fluorescent lamp can be changed from double to single without deteriorating the cost, thereby reducing the cost.

(実施形態6)
図25(a)は、従来の照明ユニットU100を示しており、照明ユニットU100は、函型のケースK100内に従来の32W〜45Wの定格ランプ電力を有するコンパクト形の蛍光ランプLa105(例えば、FPL36:コンパクト形、定格ランプ電力36W)を1灯備えた照明器具100Gを4つ並設し、計4灯の蛍光ランプLa105を備えている。
(Embodiment 6)
FIG. 25A shows a conventional lighting unit U100. The lighting unit U100 is a compact fluorescent lamp La105 (for example, FPL36) having a rated lamp power of 32 W to 45 W in a box-shaped case K100. : Compact type, rated lamp power 36W), four lighting fixtures 100G provided with one lamp, and a total of four fluorescent lamps La105.

図25(b)は、本実施形態の照明ユニットU1を示しており、照明ユニットU1は、函型のケースK1内に本実施形態のコンパクト形の蛍光ランプLa4(定格ランプ電力:32W〜45W、フィラメントの主線の線径:約70μm、エミッタ量:約9mg)を1灯備えた照明器具1Gを2つ並設し、計2灯の蛍光ランプLa4を備えている。そして、ケースK1の寸法は、ケースK100と同一に形成されており、天井面等に既に設置されている従来の照明ユニットU100を取り外した後に、本実施形態の照明ユニットU1を容易に取り付けることができる。   FIG. 25 (b) shows the illumination unit U1 of the present embodiment. The illumination unit U1 includes a compact fluorescent lamp La4 (rated lamp power: 32 W to 45 W of this embodiment) in a box-shaped case K1. Two lighting fixtures 1G each having one main filament diameter: about 70 μm and emitter amount: about 9 mg) are provided side by side, and a total of two fluorescent lamps La4 are provided. The dimensions of the case K1 are the same as those of the case K100. After the conventional lighting unit U100 already installed on the ceiling surface or the like is removed, the lighting unit U1 of this embodiment can be easily attached. it can.

したがって、既設の照明ユニットU100を照明ユニットU1に交換して1灯あたりの光出力を増加させることで、部屋全体の照度分布やランプ寿命を従来に比べて悪化させることなく、蛍光ランプの灯数を削減することができ、コスト低減を図ることができる。   Therefore, by replacing the existing lighting unit U100 with the lighting unit U1 and increasing the light output per lamp, the number of fluorescent lamps can be reduced without deteriorating the illuminance distribution and the lamp life of the entire room as compared with the prior art. The cost can be reduced.

また、照明器具1Gは実施形態1または2の点灯ユニット10を搭載して蛍光ランプLa4を点灯制御しており、照度補正の精度を向上させている。   Moreover, the lighting fixture 1G mounts the lighting unit 10 of Embodiment 1 or 2 and controls the lighting of the fluorescent lamp La4, thereby improving the accuracy of illuminance correction.

なお、上記実施形態1〜6では、光源として蛍光ランプを用いているが、水銀灯やナトリウムランプ等の他の放電ランプ、白熱電球、LED素子等の光源であっても同様の照度補正を行うことで、照度補正の精度を向上させることができる。   In the first to sixth embodiments, a fluorescent lamp is used as a light source. However, the same illuminance correction is performed even for a light source such as another discharge lamp such as a mercury lamp or a sodium lamp, an incandescent lamp, or an LED element. Thus, the accuracy of illuminance correction can be improved.

実施形態1の照明器具の構成を示すブロック図である。It is a block diagram which shows the structure of the lighting fixture of Embodiment 1. FIG. 光束維持率の入力電力依存性の実験結果を示す図である。It is a figure which shows the experimental result of the input power dependence of a luminous flux maintenance factor. 蛍光ランプの入力電力と寿命定数との関係を示す図である。It is a figure which shows the relationship between the input electric power of a fluorescent lamp, and a lifetime constant. 光束維持率の入力電力依存性のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the input power dependence of a luminous flux maintenance factor. 実施形態1の光束維持率の特性を示す図である。It is a figure which shows the characteristic of the light beam maintenance factor of Embodiment 1. 同上の照度補正に用いる表を示す図である。It is a figure which shows the table | surface used for illumination intensity correction same as the above. 同上の照度補正の制御パターンを示す図である。It is a figure which shows the control pattern of illumination intensity correction same as the above. 実施形態2の照明器具の構成を示すブロック図である。It is a block diagram which shows the structure of the lighting fixture of Embodiment 2. FIG. 実施形態3の蛍光ランプの管端部電極部分の構造を示す一部破断斜視図である。It is a partially broken perspective view which shows the structure of the tube end part electrode part of the fluorescent lamp of Embodiment 3. 同上のフィラメントを示す正面図である。It is a front view which shows a filament same as the above. 同上のフィラメントを示す一部断面拡大図である。It is a partial cross section enlarged view which shows a filament same as the above. 同上のランプ電流と推定コイル温度との関係を示す図である。It is a figure which shows the relationship between lamp current same as the above and estimated coil temperature. 同上の点灯時間とエミッタ残量との関係を示す図である。It is a figure which shows the relationship between lighting time same as the above and remaining amount of emitters. 同上の蛍光ランプの部分拡大断面図である。It is a partial expanded sectional view of a fluorescent lamp same as the above. (a)は従来の照明器具を示す断面図であり、(b)は実施形態3の照明器具を示す断面図である。(A) is sectional drawing which shows the conventional lighting fixture, (b) is sectional drawing which shows the lighting fixture of Embodiment 3. FIG. 従来の照度分布を示す平面図である。It is a top view which shows the conventional illuminance distribution. 実施形態3の照度分布を示す平面図である。It is a top view which shows the illumination intensity distribution of Embodiment 3. (a)は従来の照明器具を示す側面図及びZ1−Z1’断面図であり、(b)は実施形態4の照明器具を示す側面図及びZ2−Z2’断面図である。(A) is the side view and Z1-Z1 'sectional view which show the conventional lighting fixture, (b) is the side view and Z2-Z2' sectional view which shows the lighting fixture of Embodiment 4. 従来の照度分布を示す平面図である。It is a top view which shows the conventional illuminance distribution. 実施形態4の照度分布を示す平面図である。It is a top view which shows the illumination intensity distribution of Embodiment 4. 実施形態4の別の照明器具を示す断面図である。It is sectional drawing which shows another lighting fixture of Embodiment 4. (a)は従来の照明器具を示す側面図及びZ4−Z4’断面図であり、(b)は実施形態4の別の照明器具を示す側面図及びZ5−Z5’断面図である。(A) is the side view and Z4-Z4 'sectional view which show the conventional lighting fixture, (b) is the side view and Z5-Z5' sectional view which shows another lighting fixture of Embodiment 4. (a)は従来の照明器具を示す側面図及び断面図であり、(b)は実施形態5の照明器具を示す側面図及び断面図である。(A) is the side view and sectional drawing which show the conventional lighting fixture, (b) is the side view and sectional drawing which show the lighting fixture of Embodiment 5. (a)は従来の照明器具を示す側面図及び断面図であり、(b)は実施形態5の別の照明器具を示す側面図及び断面図である。(A) is the side view and sectional drawing which show the conventional lighting fixture, (b) is the side view and sectional drawing which show another lighting fixture of Embodiment 5. FIG. (a)は従来の照明ユニットを示す側面図及び断面図であり、(b)は実施形態6の照明ユニットを示す側面図及び断面図である。(A) is the side view and sectional drawing which show the conventional lighting unit, (b) is the side view and sectional drawing which show the lighting unit of Embodiment 6. (a)は従来の光束維持率曲線を示す図であり、(b)は(a)に基づく照度補正を示す図である。(A) is a figure which shows the conventional light beam maintenance factor curve, (b) is a figure which shows the illumination intensity correction based on (a).

符号の説明Explanation of symbols

1 照明器具
10 点灯ユニット
11 点灯装置
12 点灯時間検出部
13 点灯時間タイマ
14 照度補正装置
15 補正データ記憶部
La 蛍光ランプ
AC 商用電源
DESCRIPTION OF SYMBOLS 1 Lighting fixture 10 Lighting unit 11 Lighting device 12 Lighting time detection part 13 Lighting time timer 14 Illuminance correction apparatus 15 Correction data storage part La Fluorescent lamp AC Commercial power supply

Claims (5)

光源の点灯時間の経過に伴う光束低下を抑制するように光源の光束維持率に基づいて光源へ供給する電力を制御し、光束維持率は、光源の点灯時間と当該点灯時間における光源の入力電力とに応じて算出されることを特徴とする照明制御方法。 The power supplied to the light source is controlled based on the luminous flux maintenance factor of the light source so as to suppress the luminous flux decrease with the passage of the lighting time of the light source, and the luminous flux maintenance factor is determined by the lighting time of the light source and the input power of the light source at the lighting time. The illumination control method is calculated according to the above. 前記光束維持率を所定期間に亘って予め算出して、当該算出した光束維持率に基づく補正データを記憶手段に格納し、当該格納した補正データに基づいて光源へ供給する電力を制御することを特徴とする請求項1記載の照明制御方法。 Calculating the luminous flux maintenance factor in advance for a predetermined period, storing correction data based on the calculated luminous flux maintenance factor in a storage unit, and controlling power supplied to the light source based on the stored correction data. The illumination control method according to claim 1, wherein: 所定時点における点灯時間、光源の入力電力に応じて、前記所定時点以後の光束維持率を逐次算出し、当該算出された光束維持率に基づいて光源へ供給する電力を制御することを特徴とする請求項1記載の照明制御方法。 A light flux maintenance factor after the predetermined time is sequentially calculated according to a lighting time at a predetermined time and an input power of the light source, and power supplied to the light source is controlled based on the calculated light flux maintenance factor. The illumination control method according to claim 1. 請求項1乃至3いずれかの照明制御方法を用いて点灯制御されることを特徴とする光源。 4. A light source characterized in that lighting control is performed using the illumination control method according to any one of claims 1 to 3. 光源と、光源へ電力を供給する点灯装置と、点灯装置への給電時間を光源の点灯時間として計時する点灯時間タイマと、光源の点灯時間と当該点灯時間における光源の入力電力とに応じて算出される光束維持率に基づいて、光源の点灯時間の経過に伴う光束低下を抑制するように光源へ供給する電力を点灯装置に指示する照度補正装置とを備えることを特徴とする照明器具。 Calculated according to the light source, the lighting device that supplies power to the light source, the lighting time timer that counts the power supply time to the lighting device as the lighting time of the light source, and the lighting time of the light source and the input power of the light source at the lighting time An illuminator comprising: an illuminance correction device that instructs the lighting device to supply power to the light source so as to suppress a decrease in the luminous flux associated with the lapse of the lighting time of the light source based on the luminous flux maintenance factor.
JP2006281773A 2006-10-16 2006-10-16 Lighting control method, light source, and lighting fixture Active JP4971743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281773A JP4971743B2 (en) 2006-10-16 2006-10-16 Lighting control method, light source, and lighting fixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281773A JP4971743B2 (en) 2006-10-16 2006-10-16 Lighting control method, light source, and lighting fixture

Publications (2)

Publication Number Publication Date
JP2008098108A true JP2008098108A (en) 2008-04-24
JP4971743B2 JP4971743B2 (en) 2012-07-11

Family

ID=39380724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281773A Active JP4971743B2 (en) 2006-10-16 2006-10-16 Lighting control method, light source, and lighting fixture

Country Status (1)

Country Link
JP (1) JP4971743B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274657A (en) * 2008-05-16 2009-11-26 Toshiba Lighting & Technology Corp Illuminating device
US10741107B2 (en) 2013-12-31 2020-08-11 Ultravision Technologies, Llc Modular display panel
US10891881B2 (en) 2012-07-30 2021-01-12 Ultravision Technologies, Llc Lighting assembly with LEDs and optical elements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489287A (en) * 1987-09-30 1989-04-03 Toshiba Electric Equip Illumination control system
JPH07211462A (en) * 1994-01-14 1995-08-11 Matsushita Electric Works Ltd Variable color lighting device and variable color lighting system
JPH0997683A (en) * 1995-09-29 1997-04-08 Toshiba Lighting & Technol Corp Illumination control device and lighting system
JP2000348876A (en) * 1999-05-31 2000-12-15 Matsushita Electric Works Ltd Lighting system
JP2001015276A (en) * 1999-06-25 2001-01-19 Matsushita Electric Works Ltd Lighting system
JP2006066347A (en) * 2004-08-30 2006-03-09 Matsushita Electric Works Ltd Discharge lamp lighting device and illumination device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489287A (en) * 1987-09-30 1989-04-03 Toshiba Electric Equip Illumination control system
JPH07211462A (en) * 1994-01-14 1995-08-11 Matsushita Electric Works Ltd Variable color lighting device and variable color lighting system
JPH0997683A (en) * 1995-09-29 1997-04-08 Toshiba Lighting & Technol Corp Illumination control device and lighting system
JP2000348876A (en) * 1999-05-31 2000-12-15 Matsushita Electric Works Ltd Lighting system
JP2001015276A (en) * 1999-06-25 2001-01-19 Matsushita Electric Works Ltd Lighting system
JP2006066347A (en) * 2004-08-30 2006-03-09 Matsushita Electric Works Ltd Discharge lamp lighting device and illumination device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274657A (en) * 2008-05-16 2009-11-26 Toshiba Lighting & Technology Corp Illuminating device
US10891881B2 (en) 2012-07-30 2021-01-12 Ultravision Technologies, Llc Lighting assembly with LEDs and optical elements
US10741107B2 (en) 2013-12-31 2020-08-11 Ultravision Technologies, Llc Modular display panel

Also Published As

Publication number Publication date
JP4971743B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
EP0917180B1 (en) High pressure discharge lamp, lighting optical apparatus using the same as light source, and image display system
US7390106B2 (en) Lighting apparatus
US7178944B2 (en) Lighting apparatus
JP5060214B2 (en) lighting equipment
CN1441456A (en) Metal halogen lamp and lighting system
JP4971743B2 (en) Lighting control method, light source, and lighting fixture
US20100181892A1 (en) Lighting apparatus
US8680756B2 (en) Optical system for a luminaire
JP6457162B2 (en) High pressure discharge lamp and lighting device
JP5118677B2 (en) Fluorescent lamp
JP2008004398A (en) Compact self-ballasted fluorescent lamp, and luminaire
US7748871B2 (en) Lighting apparatus
JP2006049007A (en) Lamp
US7973479B2 (en) Discharge lamp
JP2009158180A (en) Electrodeless lamp retainer, and lighting fixture
JP4670390B2 (en) Lighting equipment
TWI753555B (en) Low pressure mercury lamp unit
JP2005108677A (en) Illumination fixture
JP3122276U (en) Small portable electric light
JP2008034143A (en) Embedded lighting equipment
JP4210180B2 (en) Incandescent lamp
JP4404037B2 (en) Compact fluorescent lamp and lighting fixture
JP2005026212A (en) Fluorescent lamp and lighting equipment
JP2006012559A (en) Fluorescent lamp device and lighting fixture
JP2005019024A (en) Luminaire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090608

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4971743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150