JP5060214B2 - lighting equipment - Google Patents

lighting equipment Download PDF

Info

Publication number
JP5060214B2
JP5060214B2 JP2007220987A JP2007220987A JP5060214B2 JP 5060214 B2 JP5060214 B2 JP 5060214B2 JP 2007220987 A JP2007220987 A JP 2007220987A JP 2007220987 A JP2007220987 A JP 2007220987A JP 5060214 B2 JP5060214 B2 JP 5060214B2
Authority
JP
Japan
Prior art keywords
fluorescent lamp
lamp
lighting
luminous flux
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007220987A
Other languages
Japanese (ja)
Other versions
JP2008123998A (en
Inventor
清 斉藤
貴弘 村元
浩和 三枝
寛 秋田
毅 斎藤
由雄 真鍋
隆 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007220987A priority Critical patent/JP5060214B2/en
Publication of JP2008123998A publication Critical patent/JP2008123998A/en
Application granted granted Critical
Publication of JP5060214B2 publication Critical patent/JP5060214B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge Lamp (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

本発明は、照明器具に関するものである。 The present invention relates to a luminaire.

現状、蛍光ランプを光源とする照明器具は広く普及しており(例えば、特許文献1参照)、一般に蛍光ランプの点灯寿命は、フィラメントに被着された電子放射性物質であるエミッタ量に比例することが知られている。
特開2003−297285号公報
At present, lighting fixtures using a fluorescent lamp as a light source are widely used (see, for example, Patent Document 1). Generally, the lighting life of a fluorescent lamp is proportional to the amount of emitter, which is an electron radioactive substance deposited on a filament. It has been known.
JP 2003-297285 A

蛍光ランプには予め定められた定格ランプ電力が定められており、定格ランプ電力を超えて使用した場合は、フィラメントの表面温度が上昇し、エミッタの消耗が早くなって、ランプ寿命が短くなる。そのため、通常は定格ランプ電力以下で使用しており、蛍光ランプ1灯あたりの光出力は定格に比べて低く抑えられていた。   The fluorescent lamp has a predetermined rated lamp power. When the fluorescent lamp is used beyond the rated lamp power, the filament surface temperature rises, the emitter is consumed quickly, and the lamp life is shortened. For this reason, the lamp is normally used at a rated lamp power or less, and the light output per fluorescent lamp is kept low compared to the rating.

そこで、寿命を短くすることなく、ランプ出力を増大可能な蛍光ランプの要望があった。   Therefore, there has been a demand for a fluorescent lamp capable of increasing the lamp output without shortening the lifetime.

本発明は、上記事由に鑑みてなされたものであり、その目的は、従来と略同様のランプ寿命を確保しながらランプ出力を増大させることができる照明器具を提供することにある。 The present invention has been made in view of the above circumstances, an object thereof is to provide a conventional substantially the same lamp life the luminaire Ru can increase the lamp output while ensuring.

請求項1の発明は、ガラスバルブ内面に蛍光体層を形成するとともに、このガラスバルブ内に放電用ガスを封入し、ガラスバルブ内に、電子放射性物質であるエミッタの被着されている少なくとも1つのコイルからなるフィラメントを取り付け、フィラメントを構成する少なくとも1つのコイルの線径は65〜100μmであり、フィラメントに被着されているエミッタの量は5〜11mgである蛍光ランプと、蛍光ランプを点灯させるとともに蛍光ランプへの供給電力を制御可能な点灯ユニットとを備え、点灯ユニットは、蛍光ランプへ電力を供給する点灯装置と、点灯装置への給電時間を蛍光ランプの点灯時間として計時する点灯時間タイマと、蛍光ランプの点灯時間の経過に伴う光束低下を抑制するように、蛍光ランプの光束維持率に基づいて、蛍光ランプへ供給する電力を点灯装置に指示する照度補正装置とを具備し、照度補正装置は、蛍光ランプの光束維持率に基づいて蛍光ランプの入力電力を段階的に増加させ、蛍光ランプの点灯時間に応じて段階的に増加する各入力電力に対応した複数の光束維持率曲線を連続させた線を用いて、光束維持率を算出することを特徴とする。According to a first aspect of the present invention, a phosphor layer is formed on the inner surface of a glass bulb, a discharge gas is enclosed in the glass bulb, and at least one emitter, which is an electron-emitting substance, is deposited in the glass bulb. A filament composed of one coil is attached, the diameter of at least one coil constituting the filament is 65 to 100 μm, the amount of the emitter deposited on the filament is 5 to 11 mg, and the fluorescent lamp is turned on A lighting unit that can control the power supplied to the fluorescent lamp, and the lighting unit is a lighting device that supplies power to the fluorescent lamp, and a lighting time that measures the power supply time to the lighting device as the lighting time of the fluorescent lamp The luminous flux maintenance rate of the fluorescent lamp is controlled so as to suppress the decrease in luminous flux with the lapse of the timer and the lighting time of the fluorescent lamp. And an illuminance correction device that instructs the lighting device to supply power to the fluorescent lamp. The illuminance correction device increases the input power of the fluorescent lamp stepwise based on the luminous flux maintenance factor of the fluorescent lamp, The luminous flux maintenance factor is calculated by using a line in which a plurality of luminous flux maintenance factor curves corresponding to each input power increasing stepwise according to the lamp lighting time is used.

この発明によれば、光束維持率の特性は、実際の蛍光ランプの入力電力に沿ったものとなるので、実際の光束減退に略一致し、照度補正装置は、この光束維持率に基づいて蛍光ランプへ供給する電力を指示するので、蛍光ランプから出力される光束は、点灯時間の経過及び点灯時間の経過に伴う入力電力の変化に関わらず略一定に制御され、照度補正の精度が向上する。また、従来と略同様のランプ寿命を確保しながらランプ出力を増大させることができ、例えば、定格(100%)以上の入力電力を蛍光ランプに供給しても、十分なランプ寿命を得ることが可能となる。 According to the present invention, the characteristic of the luminous flux maintenance factor is in line with the actual input power of the fluorescent lamp, and thus substantially matches the actual luminous flux decline, and the illuminance correction device performs fluorescence based on this luminous flux maintenance factor. Since the power supplied to the lamp is instructed, the luminous flux output from the fluorescent lamp is controlled to be substantially constant regardless of the passage of lighting time and the change in input power with the passage of lighting time, thereby improving the accuracy of illuminance correction. . Further, it is possible to increase the lamp output while ensuring a lamp life substantially the same as that of the prior art. For example, even when input power exceeding the rating (100%) is supplied to the fluorescent lamp, a sufficient lamp life can be obtained. It becomes possible.

以上説明したように、本発明では、光束維持率の特性は、実際の蛍光ランプの入力電力に沿ったものとなるので、実際の光束減退に略一致し、照度補正装置は、この光束維持率に基づいて蛍光ランプへ供給する電力を指示するので、蛍光ランプから出力される光束は、点灯時間の経過及び点灯時間の経過に伴う入力電力の変化に関わらず略一定に制御され、照度補正の精度が向上するという効果がある。また、従来と略同様のランプ寿命を確保しながらランプ出力を増大させることができるという効果があり、例えば、定格(100%)以上の入力電力を蛍光ランプに供給しても、十分なランプ寿命を得ることが可能となる。
As described above, in the present invention, the characteristic of the luminous flux maintenance factor is in line with the actual input power of the fluorescent lamp, and therefore substantially coincides with the actual luminous flux decline. Therefore, the luminous flux output from the fluorescent lamp is controlled to be substantially constant regardless of the lighting time and the change in input power with the lighting time. There is an effect that accuracy is improved. Further, there is an effect that it is possible to increase the lamp output while ensuring traditional and substantially the same lamp life, for example, be supplied with input power exceeding the rated (100%) in the fluorescent lamp, sufficient light A lifetime can be obtained.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図1は、本発明による32W〜45Wの定格ランプ電力を有する直管形蛍光ランプLa1の管端部電極部分の構造を示すものである。2はフィラメントで、2本のリード線4、4間にピンチされ、リード線4,4は管端部の口金から突出したピン9,9に各々接続している。3はエミッタである。5はガラスステム、6は内面に保護膜7、蛍光体層8が形成されたガラスバルブであり、ガラスバルブ6の両端に当該電極部分が構成されている。そして、管内には水銀とアルゴンなどの放電用ガスが封入されている。
(Embodiment 1)
FIG. 1 shows a structure of a tube end electrode portion of a straight tube fluorescent lamp La1 having a rated lamp power of 32 W to 45 W according to the present invention. Reference numeral 2 denotes a filament, which is pinched between two lead wires 4 and 4, and the lead wires 4 and 4 are respectively connected to pins 9 and 9 protruding from a cap at the end of the tube. 3 is an emitter. Reference numeral 5 denotes a glass stem, 6 denotes a glass bulb having a protective film 7 and a phosphor layer 8 formed on the inner surface, and the electrode portions are formed at both ends of the glass bulb 6. A discharge gas such as mercury and argon is sealed in the tube.

図2はフィラメント2の拡大図であり、図3はフィラメント2の一部断面拡大図であり、フィラメント2は、主線2aの外周を細線2bが緩やかに巻回して構成された所謂トリプルコイルで構成され、さらにフィラメント2にはエミッタ3が被着されている。そして本実施形態の蛍光ランプLa1では、従来と略同様のランプ寿命を確保しながらランプ出力を増大させるために、従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプ(例えば、FHF32:高周波点灯専用形、直管形、定格ランプ電力32Wや、FLR40s:ラピッドスタート形、直管形、定格ランプ電力40W等)に比べて、主線2aの線径D1を太くし、さらにエミッタ3の量を増やしている。   FIG. 2 is an enlarged view of the filament 2, FIG. 3 is a partially enlarged view of the filament 2, and the filament 2 is constituted by a so-called triple coil formed by gently winding the outer periphery of the main wire 2a with a thin wire 2b. Furthermore, an emitter 3 is attached to the filament 2. In the fluorescent lamp La1 of the present embodiment, in order to increase the lamp output while ensuring a lamp life substantially the same as the conventional one, a conventional straight fluorescent lamp having a rated lamp power of 32W to 45W (for example, FHF32: Compared with dedicated high-frequency lighting type, straight tube type, rated lamp power of 32W, FLR40s: rapid start type, straight tube type, rated lamp power of 40W, etc., the diameter D1 of the main line 2a is increased, and the amount of emitter 3 is further increased. Is increasing.

まず、主線2aの線径D1について説明する。ランプ出力を増大させると、フィラメントの表面温度が上昇し、エミッタの消耗が早くなって、ランプ寿命が短くなる。したがって、ランプに大電力を入力して光出力を増大させるためには、大出力領域においてフィラメントの表面温度を抑える必要がある。ここで、従来のランプ出力を1.4〜2倍にするとランプ電流は約1.5〜3倍になり、この約1.5〜3倍のランプ電流を流すためには、フィラメント温度がフィラメント抵抗に比例する点を考慮すると、主線2aの線径D1を従来の約1.25〜1.7倍にすれば温度上昇を抑えることができる。そこで、従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプのフィラメントは、その主線の線径が50μm以上65μm未満であることから、本実施形態の蛍光ランプLa1では、フィラメント2の主線2aの線径D1を約65〜100μmにして、フィラメント抵抗を従来よりも低減させている。   First, the wire diameter D1 of the main wire 2a will be described. Increasing the lamp power increases the filament surface temperature, leading to faster emitter wear and shorter lamp life. Therefore, in order to increase the light output by inputting high power to the lamp, it is necessary to suppress the surface temperature of the filament in the high output region. Here, when the conventional lamp output is increased by 1.4 to 2 times, the lamp current is increased by approximately 1.5 to 3 times. Considering the point proportional to the resistance, the temperature rise can be suppressed by making the diameter D1 of the main line 2a about 1.25 to 1.7 times that of the conventional one. Therefore, the filament of a conventional straight tube fluorescent lamp having a rated lamp power of 32 W to 45 W has a main line diameter of 50 μm or more and less than 65 μm. Therefore, in the fluorescent lamp La1 of the present embodiment, the main line of the filament 2 The wire diameter D1 of 2a is set to about 65 to 100 μm, and the filament resistance is reduced as compared with the conventional case.

図4は、ランプ電流とフィラメントの主線表面の推定コイル温度との関係を示しており、本実施形態の蛍光ランプLa1の温度曲線Yt1と、従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプの温度曲線Yt2とを比較すると、本実施形態の蛍光ランプLa1は、主線2a(線径D1=約70μm)の表面温度がフィラメント電流の大きい領域で飽和しているが(温度曲線Yt1参照)、従来の蛍光ランプは、主線(線径=約50μm)の表面温度がフィラメント電流の大きい領域でも上昇を続けている(温度曲線Yt2参照)。そして、フィラメント電流の全領域に亘って本実施形態の蛍光ランプLa1のほうが主線の温度が低くなり、特にフィラメント電流が大きい領域で温度差が大きくなっている(図4において、フィラメント電流0.7Aの場合に、本実施形態の蛍光ランプLa1の推定コイル温度は約1300℃、従来の蛍光ランプの推定コイル温度は約1600℃となり、その温度差は約300℃となる)。すなわち、同一のフィラメント電流であれば、本実施形態の蛍光ランプLa1は従来よりもフィラメント温度が低く、エミッタの消耗が抑えられて長寿命となり、また、同一寿命であれば、本実施形態の蛍光ランプLa1は従来よりもランプ出力を増大させることができ、特にフィラメント電流が0.6A以上の領域でこれらの効果が顕著となる。また、フィラメント2はトリプルコイルに限定されず、例えばダブルコイル等の他の構成であってもよいが、この場合もコイルの線径は約65〜100μmに形成される。   FIG. 4 shows the relationship between the lamp current and the estimated coil temperature on the surface of the main line of the filament. The temperature curve Yt1 of the fluorescent lamp La1 of this embodiment and the straight tube type having the conventional rated lamp power of 32W to 45W. Comparing with the temperature curve Yt2 of the fluorescent lamp, the fluorescent lamp La1 of the present embodiment has a surface temperature of the main line 2a (wire diameter D1 = about 70 μm) saturated in a region where the filament current is large (see the temperature curve Yt1). In the conventional fluorescent lamp, the surface temperature of the main line (wire diameter = about 50 μm) continues to rise even in the region where the filament current is large (see temperature curve Yt2). The temperature of the main line is lower in the fluorescent lamp La1 of this embodiment over the entire region of the filament current, and the temperature difference is particularly large in the region where the filament current is large (in FIG. 4, the filament current is 0.7 A). In this case, the estimated coil temperature of the fluorescent lamp La1 of this embodiment is about 1300 ° C., the estimated coil temperature of the conventional fluorescent lamp is about 1600 ° C., and the temperature difference is about 300 ° C.). That is, when the filament current is the same, the fluorescent lamp La1 of the present embodiment has a lower filament temperature than the conventional one, and the consumption of the emitter is suppressed to have a long lifetime. The lamp La1 can increase the lamp output as compared with the prior art, and these effects become remarkable particularly in the region where the filament current is 0.6 A or more. Further, the filament 2 is not limited to a triple coil, and may have another configuration such as a double coil. In this case, the coil wire diameter is formed to be about 65 to 100 μm.

また、フィラメントの細線の線径D2は、32W〜45Wの定格ランプ電力を有する従来の直管形蛍光ランプで20〜25μm程度であり、本実施形態の蛍光ランプLa1では、細線2bの線径D2を従来と同様の20〜25μm、あるいは20〜25μmより大きくすればよい。   In addition, the filament diameter D2 of the filament is about 20 to 25 μm in a conventional straight tube fluorescent lamp having a rated lamp power of 32 W to 45 W. In the fluorescent lamp La1 of the present embodiment, the diameter D2 of the thin line 2b. May be made larger than the conventional 20 to 25 μm, or 20 to 25 μm.

次に、エミッタ3の量について説明する。エミッタ量は蛍光ランプの寿命を決定し、エミッタの消耗率はフィラメント2の表面温度に依存しており、具体的にはフィラメント2表面のケルビン温度(=摂氏温度+273.15[K])に比例してエミッタ3の蒸発量が増大する。図5は、ランプの点灯時間とエミッタの残量との関係を示しており、本実施形態の蛍光ランプLa1の大出力時(出力63W時)のエミッタ残量曲線Yr1と、従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプの定格出力時のエミッタ残量曲線Yr2、従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプの大出力時(出力63W時)のエミッタ残量曲線Yr3とを示す。   Next, the amount of the emitter 3 will be described. The amount of emitter determines the life of the fluorescent lamp, and the consumption rate of the emitter depends on the surface temperature of the filament 2, and is specifically proportional to the Kelvin temperature (= degree Celsius + 273.15 [K]) on the surface of the filament 2. As a result, the amount of evaporation of the emitter 3 increases. FIG. 5 shows the relationship between the lamp lighting time and the remaining amount of the emitter, and the remaining amount curve Yr1 of the fluorescent lamp La1 of this embodiment at the time of large output (when the output is 63W) and the conventional 32W to 45W. Emitter remaining amount curve Yr2 at the rated output of a straight tube fluorescent lamp having a rated lamp power of 5 mm, and the remaining emitter at the time of a large output (at 63 W output) of a conventional straight tube fluorescent lamp having a rated lamp power of 32 W to 45 W A quantity curve Yr3 is shown.

従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプの場合、エミッタ量は5mg未満であり、定格出力では点灯時間が15000時間程度でエミッタが完全になくなり(エミッタ残量曲線Yr2参照)、さらに大出力(63W出力)ではエミッタの消耗が激しく、点灯時間が9000時間程度でエミッタが完全になくなった(エミッタ残量曲線Yr3参照)。   In the case of a conventional straight tube type fluorescent lamp having a rated lamp power of 32 W to 45 W, the amount of emitter is less than 5 mg, and at the rated output, the emitter disappears completely after about 15000 hours of lighting (see the remaining emitter curve Yr2). Furthermore, at a higher output (63 W output), the consumption of the emitter was severe, and the emitter disappeared completely after the lighting time of about 9000 hours (see the remaining emitter curve Yr3).

一方、本実施形態の蛍光ランプLa1は、上記のように主線2aの線径D1を約65〜100μmにして、従来の同定格の蛍光ランプよりフィラメント抵抗を低減させたフィラメント2を用いることで、フィラメント温度を従来よりも下げることができ、エミッタ量を約5mgにした場合に、大出力(63W出力)では、エミッタが完全になくなるまで上記従来のランプより長い11000時間程度かかる。そして、従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプと同一寿命(例えば、18000時間程度)にするために、エミッタ量を約9mgにすると、エミッタが完全になくなるまで20000時間程度かかった(エミッタ残量曲線Yr1参照)。したがって、エミッタ量を約5〜11mgとすれば、実用上従来と略同様のランプ寿命を確保しながら、ランプ出力を定格を超えて増大させることができると考えられる。なお、本実施形態ではフィラメント2にトリプルコイルを採用しており、細線2bにエミッタ3が被着することで、エミッタ3の増量が容易に実現できる。   On the other hand, the fluorescent lamp La1 of the present embodiment uses the filament 2 in which the wire diameter D1 of the main line 2a is set to about 65 to 100 μm as described above, and the filament resistance is reduced from the conventional fluorescent lamp of the same rating. When the filament temperature can be lowered as compared with the conventional case and the amount of emitter is set to about 5 mg, it takes about 11000 hours longer than the conventional lamp until the emitter is completely removed at a large output (63 W output). In order to achieve the same life (for example, about 18000 hours) as a straight tube fluorescent lamp having a rated lamp power of 32 W to 45 W, when the amount of emitter is about 9 mg, about 20000 hours until the emitter is completely eliminated. (Refer to the remaining emitter curve Yr1). Therefore, if the emitter amount is about 5 to 11 mg, it is considered that the lamp output can be increased beyond the rating while practically securing a lamp life substantially the same as that of the conventional one. In the present embodiment, a triple coil is used for the filament 2, and the emitter 3 is attached to the thin wire 2 b, so that the amount of the emitter 3 can be easily increased.

すなわち、本実施形態の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプLa1は、上記のように、フィラメント2の主線2aの線径D1を約65〜100μmにすることで、従来の32W〜45Wの定格ランプ電力を有する直管形蛍光ランプに比べて、エミッタ3の消耗を抑制し、さらにエミッタ3の量を約5〜11mgに増加させているので、従来と略同様のランプ寿命を確保しながらランプ出力を増大させることができるのである。例えば、定格(32W〜45W)以上の入力電力(63W)を蛍光ランプLa1に供給しても、十分なランプ寿命を得ることが可能となる。   That is, the straight tube fluorescent lamp La1 having the rated lamp power of 32W to 45W of the present embodiment has the conventional diameter of 32W by setting the diameter D1 of the main line 2a of the filament 2 to about 65 to 100 μm as described above. Compared to a straight tube fluorescent lamp having a rated lamp power of ˜45 W, the consumption of the emitter 3 is suppressed, and the amount of the emitter 3 is increased to about 5 to 11 mg, so that the lamp life is almost the same as the conventional one. It is possible to increase the lamp output while ensuring it. For example, even if an input power (63 W) of a rating (32 W to 45 W) or higher is supplied to the fluorescent lamp La1, a sufficient lamp life can be obtained.

ここで、フィラメント2の主線2aの線径D1を従来と同じ50μm以上65μm未満として、エミッタ3の量だけを従来に比べて多くした場合、図4の温度曲線Yt2に示すように、線形D1に依存しているフィラメント2の温度上昇がフィラメント電流0.6A以上の領域で著しいため、定格(32W〜45W)以上の入力電力(63W)を蛍光ランプに供給したときにエミッタ3の蒸発量が多く、従来と略同様のランプ寿命を確保することが難しい。   Here, when the wire diameter D1 of the main line 2a of the filament 2 is set to 50 μm or more and less than 65 μm, which is the same as the conventional one, and only the amount of the emitter 3 is increased as compared with the conventional one, as shown in the temperature curve Yt2 of FIG. The temperature rise of the dependent filament 2 is remarkable in the region where the filament current is 0.6 A or more. Therefore, when the input power (63 W) exceeding the rating (32 W to 45 W) is supplied to the fluorescent lamp, the amount of evaporation of the emitter 3 is large. Therefore, it is difficult to ensure a lamp life substantially the same as that of the conventional one.

また、エミッタ3の量を従来と同じ5mg未満として、フィラメント2の主線2aの線径D1だけを従来に比べて太くした場合、定格(32W〜45W)以上の入力電力(63W)を蛍光ランプに供給したときに、エミッタ3の総量が少ないため、従来と略同様のランプ寿命を確保することが難しい。   In addition, when the amount of the emitter 3 is less than 5 mg as in the conventional case and only the wire diameter D1 of the main wire 2a of the filament 2 is thicker than in the conventional case, an input power (63W) higher than the rating (32W to 45W) is applied to the fluorescent lamp. Since the total amount of the emitters 3 is small when supplied, it is difficult to ensure a lamp life substantially the same as that of the conventional one.

而して、本実施形態の蛍光ランプLa1は、32W〜45Wの定格ランプ電力に対して、フィラメント2の主線2aの線径D1を約65〜100μmにして、従来の同定格の蛍光ランプよりフィラメント抵抗を低減させたフィラメント2を用いることで、フィラメント温度を従来よりも下げるとともに、エミッタ3の量を約5〜11mgと増大させることで、従来と略同様のランプ寿命を確保しながらランプ出力を増大させている。すなわち、ランプ寿命の確保と大出力とを両立しているのである。   Thus, the fluorescent lamp La1 according to the present embodiment has a filament diameter D1 of the main line 2a of the filament 2 of about 65 to 100 μm with respect to the rated lamp power of 32 W to 45 W, and is more filament than the conventional fluorescent lamp of the same rating. By using the filament 2 with reduced resistance, the filament temperature is lowered than before, and the amount of the emitter 3 is increased to about 5 to 11 mg, so that the lamp output can be increased while securing the lamp life almost the same as the conventional one. It is increasing. That is, the lamp life is ensured and the large output is compatible.

上記フィラメント2の主線2aの線径D1、エミッタ3の量は、蛍光ランプLa1の最大電力やランプ寿命に基づいて決められるものであり、例えば、光束維持率70%以上が確保可能なランプ寿命を、Hf蛍光ランプの一般的な寿命に相当する12000時間とした場合またはG−Hf蛍光ランプの一般的な寿命に相当する18000時間とした場合、あるいは最大電力を63Wとした場合または最大電力を63Wより大きくした場合等の各条件に応じて、線径D1:約65〜100μm、エミッタ3の量:約5〜11mgの範囲から決定される。   The diameter D1 of the main wire 2a of the filament 2 and the amount of the emitter 3 are determined based on the maximum power of the fluorescent lamp La1 and the lamp life. When 12000 hours corresponding to the general life of the Hf fluorescent lamp or 18000 hours corresponding to the general life of the G-Hf fluorescent lamp, or when the maximum power is 63 W, or the maximum power is 63 W In accordance with each condition such as a larger case, the diameter is determined from the range of the wire diameter D1: about 65 to 100 μm and the amount of the emitter 3: about 5 to 11 mg.

また、本実施形態の蛍光ランプLa1は、図6に示すように、ガラスバルブ6と蛍光体層8との間に保護膜7を形成している。保護膜7は、例えば酸化アルミニウム(Al)等の金属酸化物からなり、ガラスバルブ6内に封入されている水銀とガラスバルブ6とが反応するのを抑制し高い光束維持率を有することができる。保護膜7は、その膜厚を1〜3μmにすることで光束維持率を改善することができる。また、この保護膜7として酸化アルミニウム以外に二酸化珪素(SiO)、酸化イットリウム(Y)、酸化チタン(TiO)、酸化セリウム(CeO)等の金属酸化物を用いることが好ましい。また、保護膜7として例えば酸化チタン(TiO)、または酸化セリウム(CeO)で形成することにより、水銀から放射される紫外線がガラスバルブ6から漏れないように、当該紫外線を遮断する機能を持たせることもできる。 Further, as shown in FIG. 6, the fluorescent lamp La <b> 1 of the present embodiment has a protective film 7 formed between the glass bulb 6 and the phosphor layer 8. The protective film 7 is made of a metal oxide such as aluminum oxide (Al 2 O 3 ), for example, and suppresses the reaction between mercury enclosed in the glass bulb 6 and the glass bulb 6 and has a high luminous flux maintenance factor. be able to. The protective film 7 can improve the luminous flux maintenance factor by setting the film thickness to 1 to 3 μm. In addition to aluminum oxide, it is preferable to use a metal oxide such as silicon dioxide (SiO 2 ), yttrium oxide (Y 2 O 3 ), titanium oxide (TiO 2 ), or cerium oxide (CeO) as the protective film 7. Further, when the protective film 7 is formed of, for example, titanium oxide (TiO 2 ) or cerium oxide (CeO), it has a function of blocking the ultraviolet rays emitted from the mercury so that the ultraviolet rays emitted from the mercury do not leak from the glass bulb 6. It can also be made.

次に、従来の蛍光ランプLa101を用いた照明と、本実施形態の上記蛍光ランプLa1を用いた照明とを比較する。まず図7(a)は、従来の照明器具100Aの外観を示しており、長尺状の筐体101aと、筐体101aの下面に設けた凹型の反射板101bと、反射板101bの凹部内に並設された1灯の従来の蛍光ランプLa101(例えば、FHF32:高周波点灯専用形、直管形、定格ランプ電力32W)とを備え、筐体101a内には蛍光ランプLa101を点灯制御する点灯ユニット110を収納し、蛍光ランプLa101はソケット101cを介して点灯ユニット110に接続している。反射板101bは、底面を筐体101aの下面に当接させた状態で、蛍光ランプLa101の後方に設けた取り付け孔(図示なし)に取付ねじ101dを挿入して、筐体101aに固定される。そして、筐体101aの短手方向の両側面に沿って鍔部101eが設けられており、鍔部101eの端部を天井面に穿設した設置孔の下面側の開口端に係止させている。   Next, the illumination using the conventional fluorescent lamp La101 and the illumination using the fluorescent lamp La1 of this embodiment will be compared. First, FIG. 7A shows the external appearance of a conventional lighting fixture 100A, and includes a long casing 101a, a concave reflecting plate 101b provided on the lower surface of the casing 101a, and a recess in the reflecting plate 101b. And a conventional fluorescent lamp La101 (for example, FHF32: high-frequency lighting-only type, straight tube type, rated lamp power 32W), and lighting for controlling the lighting of the fluorescent lamp La101 in the housing 101a. The unit 110 is accommodated, and the fluorescent lamp La101 is connected to the lighting unit 110 via the socket 101c. The reflection plate 101b is fixed to the housing 101a by inserting a mounting screw 101d into a mounting hole (not shown) provided behind the fluorescent lamp La101 with the bottom surface in contact with the lower surface of the housing 101a. . And the collar part 101e is provided along the both sides | surfaces of the transversal direction of the housing | casing 101a, and the edge part of the collar part 101e is latched to the opening end of the lower surface side of the installation hole drilled in the ceiling surface. Yes.

一方、図7(b)は本実施形態の蛍光ランプLa1として、入力電力63Wで光束6300lmを出力する4フィート長さの直管形蛍光ランプを用い、当該蛍光ランプLa1を搭載した照明器具1Aの外観を示しており、長尺状の筐体21aと、筐体22aの下面に設けた凹型の反射板21bと、反射板21bの凹部内に配置された1灯の蛍光ランプLa1とを備え、筐体21a内には蛍光ランプLa1を点灯制御する点灯ユニット10を収納し、蛍光ランプLa1はソケット21cを介して点灯ユニット10に接続している。そして、反射板21Bの短手方向の両側面の端部を天井面に穿設した設置孔の下面側の開口端に係止させている。   On the other hand, FIG. 7B shows a fluorescent lamp La1 of the present embodiment, which is a 4-foot long straight tube fluorescent lamp that outputs a luminous flux of 6300 lm with an input power of 63 W. The lighting fixture 1A equipped with the fluorescent lamp La1 is shown in FIG. The external appearance is shown, and includes a long casing 21a, a concave reflecting plate 21b provided on the lower surface of the casing 22a, and a single fluorescent lamp La1 disposed in the recess of the reflecting plate 21b. A lighting unit 10 for controlling lighting of the fluorescent lamp La1 is housed in the housing 21a, and the fluorescent lamp La1 is connected to the lighting unit 10 via a socket 21c. And the edge part of the both sides | surfaces of the transversal direction of the reflecting plate 21B is made to latch to the opening end of the lower surface side of the installation hole drilled in the ceiling surface.

そして、図8は、従来の照明器具100Aを用いて部屋R内を照明した照度分布を示し、図9は、本実施形態の照明器具1Aを用いて部屋R内を照明した照度分布を示す。なお、部屋Rは、長さ19.2m、幅12.8mで、蛍光ランプは高さ2.7mの位置に取り付けられる。また、天井の反射率は50%、壁の反射率は30%、床の反射率は10%とする。   8 shows an illuminance distribution in which the interior of the room R is illuminated using the conventional lighting fixture 100A, and FIG. 9 shows an illuminance distribution in which the interior of the room R is illuminated using the lighting fixture 1A of the present embodiment. The room R has a length of 19.2 m, a width of 12.8 m, and the fluorescent lamp is mounted at a height of 2.7 m. The ceiling reflectance is 50%, the wall reflectance is 30%, and the floor reflectance is 10%.

まず、部屋Rの長さ方向に11列、部屋Rの幅方向に7行の計77個の従来の照明器具100Aを設置し、1灯の蛍光ランプLa101が出力する光束を4950lmとした場合の水平面照度分布(計算面高さ0.7m)は図8に示され、その平均照度は773lx、最小照度は282lx、最大照度は914lx、照度均斉度(最小照度/平均照度)は0.365、照度均斉度(最小照度/最大照度)は0.308となる。   First, a total of 77 conventional lighting fixtures 100A having 11 columns in the length direction of the room R and 7 rows in the width direction of the room R are installed, and the luminous flux output from one fluorescent lamp La101 is 4950 lm. The horizontal illuminance distribution (calculated surface height 0.7 m) is shown in FIG. 8, the average illuminance is 773 lx, the minimum illuminance is 282 lx, the maximum illuminance is 914 lx, the illuminance uniformity (minimum illuminance / average illuminance) is 0.365, The illuminance uniformity (minimum illuminance / maximum illuminance) is 0.308.

また、部屋Rの長さ方向に10列、部屋Rの幅方向に6行の計60個の本実施形態の照明器具1Aを設置し、1灯の蛍光ランプLa1が出力する光束を6300lmとした場合の水平面照度分布(計算面高さ0.7m)は図9に示され、その平均照度は752lx、最小照度は272lx、最大照度は887lx、照度均斉度(最小照度/平均照度)は0.362、照度均斉度(最小照度/最大照度)は0.307となる。   Also, a total of 60 lighting fixtures 1A of the present embodiment having 10 columns in the length direction of the room R and 6 rows in the width direction of the room R are installed, and the luminous flux output from one fluorescent lamp La1 is 6300 lm. The horizontal illuminance distribution (calculated surface height 0.7 m) in this case is shown in FIG. 9, the average illuminance is 752 lx, the minimum illuminance is 272 lx, the maximum illuminance is 887 lx, and the illuminance uniformity (minimum illuminance / average illuminance) is 0. 362, the illuminance uniformity (minimum illuminance / maximum illuminance) is 0.307.

上記照度分布より、77灯の従来の蛍光ランプLa101を設置して、1灯あたり4950lmの光束を出力した場合と、60灯の本実施形態の蛍光ランプLa1を設置して、1灯あたり6300lmの光束を出力させた場合とでは、部屋R内の照度分布はほぼ同じであり、照明システムを新設する場合は、従来の蛍光ランプLa101を用いた構成ではなく、本実施形態の蛍光ランプLa1を用いて1灯あたりの光出力を増加させる構成とすることで、部屋全体の照度分布やランプ寿命を従来に比べて悪化させることなく、蛍光ランプの灯数を削減することができ、低コスト化が可能となる。   From the above illuminance distribution, 77 conventional fluorescent lamps La101 are installed to output a light beam of 4950 lm per lamp, and 60 fluorescent lamps La1 of this embodiment are installed to provide 6300 lm per lamp. When the luminous flux is output, the illuminance distribution in the room R is substantially the same. When a new illumination system is installed, the configuration using the fluorescent lamp La101 is used instead of the conventional fluorescent lamp La101. By increasing the light output per lamp, the number of fluorescent lamps can be reduced without deteriorating the illuminance distribution and the lamp life of the entire room compared to the prior art. It becomes possible.

なお、本実施形態では、直管形の蛍光ランプLa1として、ランプ長4フィート、入力電力63Wで光束6300lmを出力するランプを例示しているが、他のランプ長(2フィート、8フィート等)、入力電力、光束に設定された直管形の蛍光ランプであってもよい。   In the present embodiment, the straight tube fluorescent lamp La1 is exemplified by a lamp that outputs a light beam of 6300 lm with a lamp length of 4 feet and an input power of 63 W, but other lamp lengths (2 feet, 8 feet, etc.) Alternatively, a straight tube fluorescent lamp set to input power and luminous flux may be used.

また、本発明で用いる蛍光ランプは、高周波点灯専用型、スタータ型、ラピッドスタート型のいずれであっても、32W〜45Wの定格ランプ電力に対して、フィラメント2の主線2aの線径D1を約65〜100μmにし、エミッタ3の量を約5〜11mgと増大させることで、ランプ寿命の確保と大出力とを両立させることが可能である。   In addition, the fluorescent lamp used in the present invention is approximately the diameter D1 of the main line 2a of the filament 2 with respect to the rated lamp power of 32 W to 45 W, regardless of the high-frequency lighting dedicated type, starter type, or rapid start type. By increasing the amount of the emitter 3 to about 5 to 11 mg by setting it to 65 to 100 μm, it is possible to achieve both a long lamp life and a large output.

(実施形態2)
図10(a)は従来の照明器具100Bの外観を示しており、長尺状の筐体102aと、筐体102aの下面に設けた凹型の反射板102bと、反射板102bの凹部内に並設された2灯の従来の蛍光ランプLa102,La102(例えば、FLR40s:ラピッドスタート形、直管形、定格ランプ電力40W)とを備え、筐体102a内には蛍光ランプLa102を点灯制御する点灯ユニット110を収納し、蛍光ランプLa102はソケット102cを介して点灯ユニット110に接続している。反射板102bは、底面を筐体102aの下面に当接させた状態で、蛍光ランプLa102の後方に設けた取り付け孔(図示なし)に取付ねじ102dを挿入して、筐体102aに固定される。そして、筐体102aの短手方向の両側面に沿って鍔部102eが設けられており、鍔部102eの端部を天井面に穿設した設置孔の下面側の開口端に係止させている。
(Embodiment 2)
FIG. 10A shows the external appearance of a conventional lighting fixture 100B. The long casing 102a, the concave reflecting plate 102b provided on the lower surface of the casing 102a, and the concave portion of the reflecting plate 102b are arranged in parallel. Two conventional fluorescent lamps La102 and La102 (for example, FLR40s: rapid start type, straight tube type, rated lamp power 40W) and a lighting unit for controlling the lighting of the fluorescent lamp La102 in the housing 102a 110 is housed, and the fluorescent lamp La102 is connected to the lighting unit 110 via the socket 102c. The reflecting plate 102b is fixed to the casing 102a by inserting mounting screws 102d into mounting holes (not shown) provided at the rear of the fluorescent lamp La102 with the bottom surface in contact with the lower surface of the casing 102a. . And the collar part 102e is provided along the both sides | surfaces of the transversal direction of the housing | casing 102a, and the edge part of the collar part 102e is latched to the opening end of the lower surface side of the installation hole drilled in the ceiling surface. Yes.

一方、図10(b)は実施形態1と同様に入力電力63Wで光束6300lmを出力する直管形の蛍光ランプLa1を搭載した照明器具1Bの外観を示しており、長尺状の筐体22aと、筐体22aの下面に設けた椀形の反射板22bと、反射板22bの椀部内に配置された1灯の蛍光ランプLa1とを備え、筐体22a内には蛍光ランプLa1を点灯制御する点灯ユニット10を収納し、蛍光ランプLa1はソケット22cを介して点灯ユニット10に接続している。   On the other hand, FIG. 10B shows the appearance of a lighting fixture 1B equipped with a straight tube fluorescent lamp La1 that outputs a luminous flux of 6300 lm with an input power of 63 W, as in the first embodiment, and shows a long casing 22a. And a bowl-shaped reflecting plate 22b provided on the lower surface of the casing 22a, and a single fluorescent lamp La1 disposed in the flange of the reflecting plate 22b, and the lighting control of the fluorescent lamp La1 is performed in the casing 22a. The lighting unit 10 to be stored is accommodated, and the fluorescent lamp La1 is connected to the lighting unit 10 through the socket 22c.

椀形の反射板22bは、底部を平面状に形成した固定部22fを設けており、この平面状の固定部22fを筐体22aの下面に当接させた状態で、蛍光ランプLa1の後方に設けた取り付け孔(図示なし)に取付ねじ22dを挿入して、筐体22aに固定される。固定部22fを平面状に形成したことで、反射板22bを筐体22aに取り付ける際の施工性がよくなっている。また、下方から見たときに取付ねじ22dが蛍光ランプLa1に遮られて見難くなるように、蛍光ランプLa1は反射板22bの固定部22fに近づけて配置されており、意匠性を高めている。さらに、反射板22bの椀部の曲率や、反射板22bと蛍光ランプLa1との距離は、器具効率やグレアカット性を考慮して設定される。そして、筐体22aの短手方向の両側面に沿って鍔部22eが設けられており、鍔部22eの端部を天井面に穿設した設置孔の下面側の開口端に係止させている。   The bowl-shaped reflecting plate 22b is provided with a fixing portion 22f having a flat bottom portion, and the flat fixing portion 22f is in contact with the lower surface of the housing 22a, behind the fluorescent lamp La1. An attachment screw 22d is inserted into the provided attachment hole (not shown) and fixed to the housing 22a. By forming the fixing portion 22f in a planar shape, workability when attaching the reflection plate 22b to the housing 22a is improved. In addition, the fluorescent lamp La1 is disposed close to the fixing portion 22f of the reflector 22b so that the mounting screw 22d is blocked by the fluorescent lamp La1 when viewed from below and is difficult to see, thereby improving the design. . Further, the curvature of the flange portion of the reflecting plate 22b and the distance between the reflecting plate 22b and the fluorescent lamp La1 are set in consideration of the instrument efficiency and the glare cut property. And the collar part 22e is provided along the both sides | surfaces of the transversal direction of the housing | casing 22a, The edge part of the collar part 22e is made to latch on the opening end of the lower surface side of the installation hole drilled in the ceiling surface. Yes.

上記照明器具1Bは、蛍光ランプLa1を1灯のみ備えるので、蛍光ランプLa102を2灯備えた従来の照明器具100Bに比べて、蛍光ランプの灯数を半減することができ、低コスト化が可能となる。また、蛍光ランプLa1は実施形態1と同様に構成されており、点灯ユニット10がランプ出力を増大させた場合でも従来と略同様のランプ寿命を確保でき、例えば、定格(100%)以上の入力電力を蛍光ランプLa1に供給しても、十分なランプ寿命を得ることが可能となる。   Since the lighting fixture 1B includes only one fluorescent lamp La1, the number of fluorescent lamps can be reduced by half compared to the conventional lighting fixture 100B including two fluorescent lamps La102, and the cost can be reduced. It becomes. Further, the fluorescent lamp La1 is configured in the same manner as in the first embodiment, and even when the lighting unit 10 increases the lamp output, it is possible to ensure a lamp life that is substantially the same as that of the conventional one. Even if electric power is supplied to the fluorescent lamp La1, it is possible to obtain a sufficient lamp life.

そして、従来の蛍光ランプLa102を2灯設けた上記照明器具100Bを、部屋Rの長さ方向に9列、部屋Rの幅方向に6行の計54個(108灯の蛍光ランプLa102)設置し、1灯の蛍光ランプLa102が出力する光束を3000lmとした場合の水平面照度分布(計算面高さ0.7m)は図11に示され、その平均照度は754lx、最小照度は185lx、最大照度は998lx、照度均斉度(最小照度/平均照度)は0.245、照度均斉度(最小照度/最大照度)は0.185となる。   The lighting fixture 100B provided with two conventional fluorescent lamps La102 is installed in a total of 54 pieces (108 fluorescent lamps La102) in nine rows in the length direction of the room R and six rows in the width direction of the room R. The horizontal illuminance distribution (calculated surface height 0.7 m) when the luminous flux output from one fluorescent lamp La102 is 3000 lm is shown in FIG. 11, the average illuminance is 754 lx, the minimum illuminance is 185 lx, and the maximum illuminance is 998 lx, the illuminance uniformity (minimum illuminance / average illuminance) is 0.245, and the illuminance uniformity (minimum illuminance / maximum illuminance) is 0.185.

また、本実施形態の蛍光ランプLa1を1灯設けた上記照明器具1Bを、部屋Rの長さ方向に9列、部屋Rの幅方向に6行の計54個(54灯の蛍光ランプLa1)設置し、1灯の蛍光ランプLa1が出力する光束を6300lmとした場合の水平面照度分布(計算面高さ0.7m)は図12に示され、その平均照度は783lx、最小照度は187lx、最大照度は1034lx、照度均斉度(最小照度/平均照度)は0.238、照度均斉度(最小照度/最大照度)は0.180となる。   In addition, the lighting fixture 1B provided with one fluorescent lamp La1 of the present embodiment is a total of 54 pieces (54 fluorescent lamps La1 in 9 rows in the length direction of the room R and 6 rows in the width direction of the room R). The horizontal illuminance distribution (calculated surface height 0.7 m) when installed and the luminous flux output from one fluorescent lamp La1 is 6300 lm is shown in FIG. 12, the average illuminance is 783 lx, the minimum illuminance is 187 lx, the maximum The illuminance is 1034 lx, the illuminance uniformity (minimum illuminance / average illuminance) is 0.238, and the illuminance uniformity (minimum illuminance / maximum illuminance) is 0.180.

上記照度分布より、108灯の従来の蛍光ランプLa102を設置して、1灯あたり3000lmの光束を出力した場合と、54灯の本実施形態の蛍光ランプLa1を設置して、1灯あたり6300lmの光束を出力させた場合とでは、部屋R内の照度分布はほぼ同じであり、既設の照明器具100Bを蛍光ランプLa1を搭載した照明器具1Bに交換して、1灯あたりの光出力を増加させる構成とすることで、部屋全体の照度分布やランプ寿命を従来に比べて悪化させることなく、蛍光ランプの灯数を削減することができ、コスト低減を図ることができる。   From the above illuminance distribution, 108 conventional fluorescent lamps La102 are installed to output a luminous flux of 3000 lm per lamp, and 54 fluorescent lamps La1 of this embodiment are installed to provide 6300 lm per lamp. When the luminous flux is output, the illuminance distribution in the room R is substantially the same, and the existing luminaire 100B is replaced with the luminaire 1B equipped with the fluorescent lamp La1, thereby increasing the light output per lamp. By adopting the configuration, the number of fluorescent lamps can be reduced and the cost can be reduced without deteriorating the illuminance distribution and the lamp life of the entire room as compared with the conventional case.

また、図13に示すように、反射板22bの椀部の曲率や、反射板22bと蛍光ランプLa1との距離を上記照明器具1Bと異なる設定にして、器具の幅を照明器具1Bの略半分とした照明器具1Cを用いても、上記照明器具1Bと同様の効果を得ることができ、さらには設置スペースの縮小化を図ることができる。   Moreover, as shown in FIG. 13, the curvature of the collar part of the reflecting plate 22b and the distance between the reflecting plate 22b and the fluorescent lamp La1 are set differently from the lighting fixture 1B, and the width of the fixture is substantially half that of the lighting fixture 1B. Even when the lighting fixture 1C is used, the same effect as the lighting fixture 1B can be obtained, and further, the installation space can be reduced.

さらに、図14(a)に示すように反射板を兼ねた筐体102hを備えて、従来の蛍光ランプLa102を2灯搭載可能な照明器具100Dを、図14(b)に示すような反射板を省略した筐体22hを備えて、実施形態1の蛍光ランプLa1を1灯搭載可能な照明器具1Dに交換しても、部屋全体の照度分布やランプ寿命を従来に比べて悪化させることなく、蛍光ランプの灯数を削減することができ、コスト低減及び設置スペースの縮小化を図ることができる。   Furthermore, as shown in FIG. 14 (a), a lighting fixture 100D having a housing 102h that also serves as a reflecting plate and capable of mounting two conventional fluorescent lamps La102 is used as a reflecting plate as shown in FIG. 14 (b). Even if the fluorescent lamp La1 of Embodiment 1 is replaced with a lighting fixture 1D capable of mounting one lamp, the illuminance distribution and the lamp life of the entire room are not deteriorated as compared with the conventional case. The number of fluorescent lamps can be reduced, and cost and installation space can be reduced.

次に、直管型の蛍光ランプLa1の寸法について説明する。従来、直管型の蛍光ランプの各寸法はJIS C7617−2に規定され、口金の各寸法はJIS C7709−1に規定されている。例えば、従来の蛍光ランプLa102としてFLR40sを用いた場合、図15に示すように、口金面間距離X1[標準値1198.0mm、最大値1199.4mm]、口金面から反対側のピン先端までの距離X2[最小値1204.1mm、最大値1206.5mm]、ランプ全長X3[最大値1213.6mm]、管径[32.5±1.5mm]、口金のピン長さX4[最小値6.60mm、完成ランプでの最大値7.62mm]に規定されている。そして、この蛍光ランプLa102を装着する従来の照明器具100Bのソケット102c間の距離は、蛍光ランプLa102の管端部に設けたピン9がソケット102c,102cに挿入可能な長さに設定されている。   Next, the dimensions of the straight tube fluorescent lamp La1 will be described. Conventionally, each dimension of the straight tube type fluorescent lamp is defined in JIS C7617-2, and each dimension of the base is defined in JIS C7709-1. For example, when the FLR 40s is used as the conventional fluorescent lamp La102, as shown in FIG. 15, the distance between the base surfaces X1 [standard value 198.0 mm, maximum value 1199.4 mm], from the base surface to the pin tip on the opposite side Distance X2 [minimum value 1204.1 mm, maximum value 1206.5 mm], lamp overall length X3 [maximum value 1213.6 mm], tube diameter [32.5 ± 1.5 mm], pin length X4 [minimum value 6. 60 mm, maximum value of 7.62 mm with completed lamp]. The distance between the sockets 102c of the conventional lighting fixture 100B to which the fluorescent lamp La102 is mounted is set to such a length that the pin 9 provided at the tube end of the fluorescent lamp La102 can be inserted into the sockets 102c and 102c. .

一方、本発明の直管型の蛍光ランプLa1は、従来の蛍光ランプLa102(FLR40s)に比べてランプ全長を短くできる。この短くする寸法X5は、従来の蛍光ランプLa102のピン長さX4を2倍した値より大きくしており、例えばX4≒8mmであれば、X5≒20mmに設定する。而して、蛍光ランプLa1のランプ全長X6は、蛍光ランプLa102を装着する従来の照明器具100Bのソケット102c間の距離よりも短くなり、蛍光ランプLa1の一端のピン9を照明器具100Bの一方のソケット102cに挿入した状態では、蛍光ランプLa1の他端のピン9を照明器具100Bの他方のソケット102cに挿入することはできず、本発明の蛍光ランプLa1を従来の照明器具100Bに誤装着することを確実に防止できる。   On the other hand, the straight tube type fluorescent lamp La1 of the present invention can shorten the overall length of the lamp as compared with the conventional fluorescent lamp La102 (FLR40s). This shortened dimension X5 is larger than a value obtained by doubling the pin length X4 of the conventional fluorescent lamp La102. For example, if X4≈8 mm, X5≈20 mm is set. Thus, the total length X6 of the fluorescent lamp La1 is shorter than the distance between the sockets 102c of the conventional lighting fixture 100B to which the fluorescent lamp La102 is mounted, and the pin 9 at one end of the fluorescent lamp La1 is connected to one of the lighting fixtures 100B. In the state inserted into the socket 102c, the pin 9 at the other end of the fluorescent lamp La1 cannot be inserted into the other socket 102c of the lighting fixture 100B, and the fluorescent lamp La1 of the present invention is erroneously attached to the conventional lighting fixture 100B. Can be surely prevented.

また、従来の蛍光ランプLa102の口金面間距離X1は、本発明の蛍光ランプLa1を装着する照明器具1Bのソケット22c間の距離よりも長くなるので、従来の蛍光ランプLa102を本発明の照明器具1Bに装着することも不可能となり、従来の蛍光ランプLa102を、本発明の蛍光ランプLa1と同様の大出力で点灯させることを防止して、安全性を確保できる。   Further, since the distance X1 between the cap surfaces of the conventional fluorescent lamp La102 is longer than the distance between the sockets 22c of the lighting fixture 1B to which the fluorescent lamp La1 of the present invention is attached, the conventional fluorescent lamp La102 is used as the lighting fixture of the present invention. It becomes impossible to mount the fluorescent lamp 1B, and it is possible to prevent the conventional fluorescent lamp La102 from being turned on with the same high output as the fluorescent lamp La1 of the present invention, thereby ensuring safety.

なお、ランプ全長を短くすると光束は低下するが、本発明の蛍光ランプLa1は、フィラメント2の主線2aの線径D1を約65〜100μmに増大させて、フィラメント温度の上昇およびエミッタ3の消耗を従来に比べて抑制し、さらにエミッタ3の量を約5〜11mgに増加させることによって、従来に比べて大出力が可能となっており、ランプ全長を短くしたことによる光束低下を補償した上で、ランプ寿命の確保と大出力とを両立させている。   Although the luminous flux decreases when the total length of the lamp is shortened, the fluorescent lamp La1 of the present invention increases the filament diameter and the consumption of the emitter 3 by increasing the diameter D1 of the main line 2a of the filament 2 to about 65 to 100 μm. Compared to the conventional one, and further increasing the amount of the emitter 3 to about 5 to 11 mg, a large output can be achieved compared to the conventional one. , Ensuring both lamp life and high output.

さらに、蛍光ランプLa1は、従来の蛍光ランプLa102に比べてランプ全長が短いので、本実施形態の照明器具1Bの全長も従来の照明器具100Bより短くできる(図16参照)。したがって、既設の照明器具100Bを本発明の照明器具1Bに交換すれば、天井面の照明器具間の空きスペースSが広くなり、この空きスペースSに、補助光源、人感センサ等の各種センサ、パネル,ルーバ等のオプション取付部材OPを設置でき、従来の照明システムに付加機能を追加したリニューアルが可能となる。   Furthermore, since the fluorescent lamp La1 has a shorter overall lamp length than the conventional fluorescent lamp La102, the overall length of the lighting fixture 1B of the present embodiment can also be shorter than that of the conventional lighting fixture 100B (see FIG. 16). Therefore, if the existing lighting fixture 100B is replaced with the lighting fixture 1B of the present invention, the empty space S between the lighting fixtures on the ceiling surface is widened. In this empty space S, various sensors such as an auxiliary light source and a human sensor, Optional mounting members OP such as panels and louvers can be installed, and a renewal with additional functions added to the conventional lighting system is possible.

(実施形態3)
実施形態1,2では、定格ランプ電力32W〜45Wを有する直管形の蛍光ランプについて説明したが、蛍光ランプの形状は直管形に限らず、環形蛍光ランプ、二重環形蛍光ランプ、コンパクト形蛍光ランプ、スクエア形蛍光ランプ等の他の形状であっても同様に、定格ランプ電力32W〜45Wに対してフィラメントの主線の線径を約70μm、エミッタ量を約9mgにすることで、従来の同定格の蛍光ランプと同様のランプ寿命を確保しながらランプ出力を増大させることができる。
(Embodiment 3)
In the first and second embodiments, a straight tube fluorescent lamp having a rated lamp power of 32 W to 45 W has been described. However, the shape of the fluorescent lamp is not limited to a straight tube, and a ring fluorescent lamp, a double ring fluorescent lamp, and a compact type. Similarly, in the case of other shapes such as a fluorescent lamp and a square fluorescent lamp, the diameter of the main line of the filament is about 70 μm and the amount of emitter is about 9 mg with respect to the rated lamp power of 32 W to 45 W. The lamp output can be increased while ensuring the same lamp life as the fluorescent lamp of the same rating.

例えば、二重環形蛍光ランプを用いた照明器具の場合、図17(a)に示すように、円筒状の筐体103a内に設けた仕切板103bの下面側に、従来の32W〜45Wの定格ランプ電力を有する二重環形の蛍光ランプLa103(例えば、FHD40:高周波点灯専用形、二重環形、定格ランプ電力40W)を2灯搭載した照明器具100Eを、図17(b)に示すような円筒状の筐体23a内に設けた仕切板23bの下面側に本実施形態の二重環形の蛍光ランプLa2(定格ランプ電力:32W〜45W、フィラメントの主線の線径:約70μm、エミッタ量:約9mg)を1灯搭載した照明器具1Eに交換しても、1灯あたりの光出力を増加させることで、部屋全体の照度分布やランプ寿命を従来に比べて悪化させることなく、蛍光ランプの灯数を削減することができ、コスト低減及び設置スペースの縮小化を図ることができる。   For example, in the case of a luminaire using a double ring fluorescent lamp, a conventional rating of 32 W to 45 W is provided on the lower surface side of a partition plate 103 b provided in a cylindrical casing 103 a as shown in FIG. A luminaire 100E equipped with two lamps having a double-ring fluorescent lamp La103 having lamp power (for example, FHD40: dedicated high-frequency lighting type, double-ring type, rated lamp power 40W) is formed into a cylinder as shown in FIG. On the lower surface side of the partition plate 23b provided in the housing 23a, the double-ring fluorescent lamp La2 of this embodiment (rated lamp power: 32 W to 45 W, filament main wire diameter: about 70 μm, emitter amount: about 9 mg) is replaced with a lighting fixture 1E equipped with a single lamp, and the light output per lamp is increased so that the illuminance distribution and the lamp life of the entire room are not deteriorated compared to the conventional one. It is possible to reduce the lighting number of flops, it is possible to achieve a reduction of cost and installation space.

なお、照明器具100Eにおいて、仕切板103bの上面側に配置された点灯ユニット110が蛍光ランプLa103を点灯制御し、筐体103aの下面開口には蓋体103cが覆設されている。また、照明器具1Eにおいて、仕切板23bの上面側に配置された点灯ユニット10が蛍光ランプLa2を点灯制御し、筐体23aの下面開口には蓋体23cが覆設されている。   In the lighting fixture 100E, the lighting unit 110 disposed on the upper surface side of the partition plate 103b controls the lighting of the fluorescent lamp La103, and a cover 103c is covered on the lower surface opening of the housing 103a. Further, in the lighting fixture 1E, the lighting unit 10 disposed on the upper surface side of the partition plate 23b controls the lighting of the fluorescent lamp La2, and the lid 23c is covered on the lower surface opening of the housing 23a.

また、スクエア形蛍光ランプを用いた照明器具の場合、図18(a)に示すような函状の筐体104a内に従来の32W〜45Wの定格ランプ電力を有する二重スクエア形の蛍光ランプLa104を1灯搭載した照明器具100Fを、図18(b)に示すような函状の筐体24a内に本実施形態のスクエア形の蛍光ランプLa3(定格ランプ電力:32W〜45W、フィラメントの主線の線径:約70μm、エミッタ量:約9mg)を1灯搭載した照明器具1Fに交換しても、1灯あたりの光出力を増加させることで、部屋全体の照度分布やランプ寿命を従来に比べて悪化させることなく、蛍光ランプを二重から一重に変更でき、コストが低減される。   In the case of a lighting fixture using a square fluorescent lamp, a double square fluorescent lamp La104 having a conventional rated lamp power of 32 W to 45 W in a box-shaped casing 104a as shown in FIG. A lighting fixture 100F having a single lamp is mounted in a square-shaped fluorescent lamp La3 (rated lamp power: 32 W to 45 W, rated filament power of the present embodiment) in a box-shaped housing 24a as shown in FIG. Even if it is replaced with a lighting fixture 1F equipped with a single lamp (wire diameter: approx. 70 μm, emitter amount: approx. 9 mg), the light output per lamp is increased so that the illuminance distribution and the lamp life of the entire room are compared with the conventional one. The fluorescent lamp can be changed from double to single without deteriorating the cost, thereby reducing the cost.

(実施形態4)
図19(a)は、従来の照明ユニットU100を示しており、照明ユニットU100は、函型のケースK100内に従来の32W〜45Wの定格ランプ電力を有するコンパクト形の蛍光ランプLa105(例えば、FPL36:コンパクト形、定格ランプ電力36W)を1灯備えた照明器具100Gを4つ並設し、計4灯の蛍光ランプLa105を備えている。
(Embodiment 4)
FIG. 19A shows a conventional lighting unit U100. The lighting unit U100 is a compact fluorescent lamp La105 (for example, FPL36) having a conventional rated lamp power of 32 W to 45 W in a box-shaped case K100. : Compact type, rated lamp power 36W), four lighting fixtures 100G provided with one lamp, and a total of four fluorescent lamps La105.

図19(b)は、本実施形態の照明ユニットU1を示しており、照明ユニットU1は、函型のケースK1内に本実施形態のコンパクト形の蛍光ランプLa4(定格ランプ電力:32W〜45W、フィラメントの主線の線径:約70μm、エミッタ量:約9mg)を1灯備えた照明器具1Gを2つ並設し、計2灯の蛍光ランプLa4を備えている。そして、ケースK1の寸法は、ケースK100と同一に形成されており、天井面等に既に設置されている従来の照明ユニットU100を取り外した後に、本実施形態の照明ユニットU1を容易に取り付けることができる。   FIG. 19B shows the illumination unit U1 of the present embodiment, and the illumination unit U1 is a compact fluorescent lamp La4 (rated lamp power: 32 W to 45 W of this embodiment) in a box-shaped case K1. Two lighting fixtures 1G each having one main filament diameter: about 70 μm and emitter amount: about 9 mg) are provided side by side, and a total of two fluorescent lamps La4 are provided. The dimensions of the case K1 are the same as those of the case K100. After the conventional lighting unit U100 already installed on the ceiling surface or the like is removed, the lighting unit U1 of this embodiment can be easily attached. it can.

したがって、既設の照明ユニットU100を照明ユニットU1に交換して1灯あたりの光出力を増加させることで、部屋全体の照度分布やランプ寿命を従来に比べて悪化させることなく、蛍光ランプの灯数を削減することができ、コスト低減を図ることができる。   Therefore, by replacing the existing lighting unit U100 with the lighting unit U1 and increasing the light output per lamp, the number of fluorescent lamps can be reduced without deteriorating the illuminance distribution and the lamp life of the entire room as compared with the prior art. The cost can be reduced.

(実施形態5)
本実施形態における照明器具1は、図20に示すように、点灯装置11、点灯時間検出部12、点灯時間タイマ13、照度補正装置14、補正データ記憶部15からなる点灯ユニット10と、蛍光ランプLa1とを備え、蛍光ランプLa1は調光制御が可能な点灯装置11の出力によって点灯する。
(Embodiment 5)
As shown in FIG. 20, the lighting fixture 1 in this embodiment includes a lighting unit 10 including a lighting device 11, a lighting time detection unit 12, a lighting time timer 13, an illuminance correction device 14, and a correction data storage unit 15, and a fluorescent lamp. The fluorescent lamp La1 is lit by the output of the lighting device 11 capable of dimming control.

点灯時間検出部12は、商用電源のような電源ACと点灯装置11との間に設けられて、点灯装置11に通電されているか否かを検出し、点灯時間タイマ13は、点灯時間検出部12により検出された通電期間を計時する。つまり、通電期間を蛍光ランプLa1の点灯期間とみなして点灯時間タイマ13により蛍光ランプLa1の点灯時間を計時する。   The lighting time detection unit 12 is provided between a power source AC such as a commercial power supply and the lighting device 11, and detects whether the lighting device 11 is energized. The lighting time timer 13 is a lighting time detection unit. 12 counts the energization period detected. That is, the lighting period of the fluorescent lamp La1 is counted by the lighting time timer 13 by regarding the energization period as the lighting period of the fluorescent lamp La1.

ところで、ランプの光束は点灯時間の経過に伴って低下し、またランプを装着している灯具やランプが時間の経過に伴って汚れることによっても光量は低下するから、このような点灯時間の経過に伴う光量低下を抑制するために照明器具1には照度補正装置14が設けられている。ここで、蛍光ランプLa1の光束の低下は蛍光体の劣化などが原因になる。照度補正装置14は基本的には蛍光ランプLa1の点灯時間の経過に伴う光束の低下を補正するように構成されているものであって、蛍光ランプLa1の交換直後には蛍光ランプLa1を、ある出力で点灯させておき、蛍光ランプLa1の点灯時間が経過するのに伴って、点灯装置11を介して蛍光ランプLa1への供給電力を増加させるものである。つまり、蛍光ランプLa1の点灯時間の経過に伴って点灯装置11の出力を増加させるのである。したがって、蛍光ランプLa1の光束が点灯時間の経過に伴って低下するのに対して、点灯時間の経過に伴って蛍光ランプLa1への供給電力(蛍光ランプLa1の入力電力)を増加させることで、蛍光ランプLa1の光出力を略一定に保つことができるのである。   By the way, the luminous flux of the lamp decreases as the lighting time elapses, and the amount of light also decreases when the lamp or the lamp equipped with the lamp becomes dirty as time elapses. The illumination fixture 1 is provided with an illuminance correction device 14 in order to suppress a decrease in the amount of light accompanying the. Here, the decrease in the luminous flux of the fluorescent lamp La1 is caused by the deterioration of the phosphor. The illuminance correction device 14 is basically configured to correct a decrease in luminous flux with the passage of lighting time of the fluorescent lamp La1, and the fluorescent lamp La1 is provided immediately after the replacement of the fluorescent lamp La1. It is turned on at the output, and the power supplied to the fluorescent lamp La1 is increased via the lighting device 11 as the lighting time of the fluorescent lamp La1 elapses. That is, the output of the lighting device 11 is increased as the lighting time of the fluorescent lamp La1 elapses. Therefore, by increasing the power supplied to the fluorescent lamp La1 (the input power of the fluorescent lamp La1) as the lighting time elapses, the luminous flux of the fluorescent lamp La1 decreases as the lighting time elapses. The light output of the fluorescent lamp La1 can be kept substantially constant.

さらに、本実施形態では、蛍光ランプLa1が実施形態1と同様に構成されており、従来と略同様のランプ寿命を確保しながらランプ出力を増大させることができる。   Further, in the present embodiment, the fluorescent lamp La1 is configured in the same manner as in the first embodiment, and the lamp output can be increased while ensuring a lamp life substantially the same as that of the conventional one.

以下、本実施形態の照度補正装置14の動作について説明する。   Hereinafter, the operation of the illuminance correction device 14 of the present embodiment will be described.

蛍光ランプの光束は点灯時間の経過に伴って減退するが、この光束減退の程度が、経過時間に伴って初期の値のどの程度に維持されているかを示す割合を光束維持率という。そして、蛍光ランプにFHF32(高周波点灯専用形、直管形、定格ランプ電力32W)を用いた場合の光束維持率の変化を入力電力毎に実験で求め、図21は、蛍光ランプ(FHF32)の入力電力を32W,45W,63Wとして実験で求めた各光束維持率曲線をY32e,Y45e,Y63eで示しており、入力電力が大きいほど、点灯時間の経過に伴う光束維持率の低下度合は大きくなる。すなわち、蛍光ランプの光束維持率は入力電力に依存していることが分かる。   The luminous flux of the fluorescent lamp decreases as the lighting time elapses, and the ratio indicating the degree of the decrease in the luminous flux is maintained at the initial value with the elapsed time is referred to as a luminous flux maintenance factor. Then, a change in the luminous flux maintenance factor when FHF32 (high-frequency lighting dedicated type, straight tube type, rated lamp power 32 W) is used for the fluorescent lamp is experimentally determined for each input power, and FIG. 21 shows the fluorescent lamp (FHF32). The luminous flux maintenance factor curves obtained by experiments with input powers of 32 W, 45 W, and 63 W are indicated by Y32e, Y45e, and Y63e. The larger the input power, the greater the degree of decrease in the luminous flux maintenance factor with the elapse of lighting time. . That is, it can be seen that the luminous flux maintenance factor of the fluorescent lamp depends on the input power.

また、[数1]に示すLehmannの式(J.Electrochem.Soc. SOLID-STATE SCIENCE ANDTECHNOLOGY 130巻、2号(1983)、426〜431頁、Willi Lehmann)による解析から、図22,[数2]に示すように蛍光ランプの寿命定数τと蛍光ランプの入力電力pとはほぼ相関関係を有すると認められ、蛍光ランプの入力電力pが大きくなるに伴い、蛍光ランプの寿命定数τは短くなる。   Further, from the analysis by the Lehmann equation shown in [Equation 1] (J. Electrochem. Soc. SOLID-STATE SCIENCE AND TECHNOLOGY 130, No. 2 (1983), pages 426 to 431, Willi Lehmann), FIG. ], It is recognized that the life constant τ of the fluorescent lamp and the input power p of the fluorescent lamp are substantially correlated, and the life constant τ of the fluorescent lamp becomes shorter as the input power p of the fluorescent lamp increases. .

Figure 0005060214
Figure 0005060214

ここで、Iは光度(光源からあらゆる方向に向かう光束の単位立体角当たりの割合)、tは点灯時間、τは蛍光ランプの寿命定数である。 Here, I is the luminous intensity (ratio per unit solid angle of the light flux from the light source in all directions), t is the lighting time, and τ is the lifetime constant of the fluorescent lamp.

Figure 0005060214
Figure 0005060214

次に、図23は蛍光ランプにFHF32を用いて、蛍光ランプ(FHF32)の入力電力を32W,45W,50W,60Wとしたときの各光束維持率曲線Y32s,Y45s,Y50s,Y60sをシミュレーションで求めた結果を示しており、入力電力が大きいほど、点灯時間の経過に伴う光束維持率の低下度合は大きくなる。すなわち、同一の蛍光ランプであっても入力電力によって光束維持率曲線は異なり、入力電力が小さいほど光束維持率の低下度合は小さくなる。   Next, in FIG. 23, FHF32 is used as the fluorescent lamp, and the respective luminous flux maintenance factor curves Y32s, Y45s, Y50s, and Y60s when the input power of the fluorescent lamp (FHF32) is 32 W, 45 W, 50 W, and 60 W are obtained by simulation. The lower the luminous flux maintenance factor with the elapse of the lighting time, the greater the input power. That is, even with the same fluorescent lamp, the luminous flux maintenance factor curve varies depending on the input power, and the lower the input power, the smaller the degree of decrease in the luminous flux maintenance factor.

従来、蛍光ランプにFHF32を用いた場合は、入力電力を32Wとした場合の光束維持率Y32sに基づき、点灯時間の経過に伴って蛍光ランプの入力電力を増加させていた。しかし、実際に蛍光ランプへ供給される電力は、照度補正のため点灯時間の経過に伴って増加するのに対して、光束維持率Y32sは、入力電力を32W一定にした場合の特性であり、従来の光束維持率曲線は入力電力の変化に対応しておらず、実際の光束減退と光束維持率の特性とが一致しないものであった。   Conventionally, when the FHF 32 is used for the fluorescent lamp, the input power of the fluorescent lamp is increased with the passage of lighting time based on the luminous flux maintenance factor Y32s when the input power is 32 W. However, the power actually supplied to the fluorescent lamp increases as the lighting time elapses for illuminance correction, whereas the luminous flux maintenance factor Y32s is a characteristic when the input power is kept constant at 32 W. The conventional luminous flux maintenance factor curve does not correspond to the change in input power, and the actual degradation of the luminous flux does not match the characteristics of the luminous flux maintenance factor.

そこで、本実施形態における照度補正装置14は、図24に示す光束維持率曲線Yaに基づいて蛍光ランプLa1へ供給する電力を指示して照度補正を行った。例えばこの光束維持率曲線Yaは、点灯時間0〜T1(2000時間)までは入力電力32W時の光束維持率曲線Y32s、点灯時間T1〜T2(7000時間)までは入力電力45W時の光束維持率曲線Y45s、点灯時間T2〜T3(12000時間)までは入力電力50W時の光束維持率曲線Y50s、点灯時間T3〜は入力電力60W時の光束維持率曲線Y60sで構成されている。すなわち、点灯時間の経過に伴って、蛍光ランプの入力電力を32W → 45W → 50W → 60Wの順に増加させるのであるが、入力電力が変更される度に当該入力電力に対応した光束維持率曲線Y32s,Y45s,Y50s,Y60sに基づいて次の入力電力の変更タイミングを決定しており、これら各入力電力に対応した複数の光束維持率曲線Y32s,Y45s,Y50s,Y60sを連続させて光束維持率曲線Yaを生成している。   Therefore, the illuminance correction device 14 in the present embodiment performs illuminance correction by instructing the power supplied to the fluorescent lamp La1 based on the luminous flux maintenance factor curve Ya shown in FIG. For example, the luminous flux maintenance factor curve Ya includes a luminous flux maintenance factor curve Y32s at an input power of 32 W from lighting time 0 to T1 (2000 hours), and a luminous flux maintenance factor at an input power of 45 W from lighting times T1 to T2 (7000 hours). The curve Y45s and the lighting time T2 to T3 (12000 hours) are configured by a luminous flux maintenance factor curve Y50s at an input power of 50 W, and the lighting time T3 is configured by a luminous flux maintenance factor curve Y60s at an input power of 60 W. That is, as the lighting time elapses, the input power of the fluorescent lamp is increased in the order of 32 W → 45 W → 50 W → 60 W. Every time the input power is changed, the luminous flux maintenance factor curve Y32s corresponding to the input power. , Y45s, Y50s, and Y60s, the next input power change timing is determined, and a plurality of luminous flux maintenance factor curves Y32s, Y45s, Y50s, and Y60s corresponding to each of these input powers are continued to obtain a luminous flux maintenance factor curve. Ya is generated.

而して、光束維持率曲線Yaの特性は、実際の蛍光ランプの入力電力に沿ったものとなるので、実際の光束減退に略一致し、照度補正装置14は、この光束維持率曲線Yaに基づいて蛍光ランプLa1へ供給する電力を指示するので、蛍光ランプLa1から出力される光束は、点灯時間の経過及び点灯時間の経過に伴う入力電力の変化に関わらず略一定に制御され、照度補正の精度が向上する。このように、点灯時間に対する入力電力の変更は光束維持率曲線Yaに基づいて任意に行うことができる。   Thus, since the characteristic of the luminous flux maintenance factor curve Ya is in line with the actual input power of the fluorescent lamp, it substantially coincides with the actual reduction of luminous flux, and the illuminance correction device 14 follows this luminous flux maintenance factor curve Ya. Since the power supplied to the fluorescent lamp La1 is instructed based on the above, the luminous flux output from the fluorescent lamp La1 is controlled to be substantially constant regardless of the lighting time and the change in input power with the lighting time. Improves accuracy. Thus, the change of the input power with respect to the lighting time can be arbitrarily performed based on the luminous flux maintenance factor curve Ya.

次に、上記光束維持率曲線Yaの算出方法について説明する。   Next, a method for calculating the luminous flux maintenance factor curve Ya will be described.

まず、Lehmann近似によって光束維持率Dは[数3]で表される。   First, the luminous flux maintenance factor D is expressed by [Equation 3] by Lehmann approximation.

Figure 0005060214
Figure 0005060214

ここで、Cは定数、tは点灯時間、τは蛍光ランプの寿命定数、pは蛍光ランプの入力電力である。 Here, C is a constant, t is a lighting time, τ is a lifetime constant of the fluorescent lamp, and p is an input power of the fluorescent lamp.

また、上記[数3]における光束維持率Dの初期値Dは、[数4]に表すように点灯時間t=100h(時間)のときに1となるように設定される。 Further, the initial value D 0 of the luminous flux maintenance factor D in the above [Equation 3] is set to be 1 when the lighting time t = 100 h (hours) as shown in [Equation 4].

Figure 0005060214
Figure 0005060214

ここで、Cはt=100h時における定数、pはt=100h時における入力電力である。 Here, C 0 is a constant at t = 100 h, and p 0 is an input power at t = 100 h.

そして、点灯時間tが時間tのときの光束維持率Dは、[数5]で表される。 Then, the luminous flux maintenance factor D n at a lighting time t time t n is represented by [Equation 5].

Figure 0005060214
Figure 0005060214

ここで、Cはt=t時における定数、pはt=t時における入力電力である(但し、k=0、1、2、...n−1、n、n+1、...)。 Here, C k is a constant at t = t k , and p k is an input power at t = t k (where k = 0, 1, 2,... N-1, n, n + 1,. ..).

上記[数5]では、蛍光ランプLa1の入力電力がpのときに次の時間tn+1における光束維持率D(tn+1)を表している。すなわち、入力電力をpからpn+1に変更した場合の点灯時間tn+1における光束維持率が[数5]で表されており、光束維持率を予測することができる。したがって、点灯時間の途中で入力電力を変更した場合でも図24に示す光束維持率曲線Yaを導出することができる。 In the above Equation 5 represents the luminous flux maintenance factor D n (t n + 1) at next time t n + 1 when the input power p n of the fluorescent lamp La1. That, and the luminous flux maintenance factor is represented by Equation 5 in the lighting time t n + 1 when the input power is changed from p n to p n + 1, it is possible to predict the luminous flux maintenance factor. Therefore, even when the input power is changed during the lighting time, the luminous flux maintenance factor curve Ya shown in FIG. 24 can be derived.

そして、蛍光ランプLa1が出力する光束φと蛍光ランプLa1の入力電力pとの関係は、[数6]で表されるので、ある点灯時間tに光束φを出力させる入力電力pは決定される。   Since the relationship between the luminous flux φ output from the fluorescent lamp La1 and the input power p of the fluorescent lamp La1 is expressed by [Equation 6], the input power p for outputting the luminous flux φ during a certain lighting time t is determined. .

Figure 0005060214
Figure 0005060214

そして、図25は、1灯の蛍光ランプが出力する最大光束を6300lm、保守率を70%とした場合に上記照度補正を行った場合の光束の時間特性であり、実施形態1と同様の構成を備えて32W〜45Wの定格ランプ電力を有する本発明の蛍光ランプLa1を用いた場合の特性Yk1、32W〜45Wの定格ランプ電力を有する従来の蛍光ランプを用いた場合の特性Yk2を各々示す。   FIG. 25 shows the time characteristics of the luminous flux when the above illuminance correction is performed when the maximum luminous flux output from one fluorescent lamp is 6300 lm and the maintenance rate is 70%. And Yk1 when using the fluorescent lamp La1 of the present invention having a rated lamp power of 32W to 45W, and Yk2 when using a conventional fluorescent lamp having a rated lamp power of 32W to 45W.

まず、従来の蛍光ランプは、特性Yk2に示すように、上記光束維持率曲線Yaに基づく照度補正によって光束を4410lm一定に制御しても、エミッタの消耗が早いために、光束4410lmを維持可能な点灯時間は12000時間程度が限界であり、12000時間を超えた時点から光束は徐々に低下する。   First, as shown in the characteristic Yk2, the conventional fluorescent lamp can maintain the luminous flux 4410lm because the emitter is consumed quickly even if the luminous flux is controlled to be constant at 4410lm by illuminance correction based on the luminous flux maintenance factor curve Ya. The lighting time is limited to about 12000 hours, and the luminous flux gradually decreases from the time when it exceeds 12000 hours.

一方、蛍光ランプLa1は、フィラメント2の主線2aの線径D1を約65〜100μmに増大させて、フィラメント温度の上昇およびエミッタ3の消耗を従来に比べて抑制し、さらにエミッタ3の量を約5〜11mgに増加させており、特性Yk1に示すように、上記光束維持率曲線Yaに基づく照度補正によって光束を4410lm一定に制御した場合、光束4410lmを維持可能な点灯時間は12000時間を越えて18000時間以上にまで達し、長寿命化を実現している。   On the other hand, the fluorescent lamp La1 increases the diameter D1 of the main line 2a of the filament 2 to about 65 to 100 μm, thereby suppressing the rise in the filament temperature and the consumption of the emitter 3 as compared with the conventional one, and further reducing the amount of the emitter 3 by about When the luminous flux is controlled to be constant at 4410 lm by illuminance correction based on the luminous flux maintenance factor curve Ya as shown by the characteristic Yk1, the lighting time capable of maintaining the luminous flux 4410 lm exceeds 12000 hours. The service life has been extended to over 18000 hours.

本実施形態では、上記光束維持率曲線Yaを[数5]に基づき点灯開始から寿命時に亘って予め算出して、光束維持率曲線Yaに基づく蛍光ランプLa1の補正データ(所定の点灯時間毎の光束維持率、入力電力)を補正データ記憶部15に予め格納しており、照度補正装置14は、補正データ記憶部15内の補正データに沿って、点灯時間の経過に伴い蛍光ランプLa1へ供給する電力を指示している。したがって、光束維持率を予め算出して、光束維持率曲線に基づく補正データを予め生成しておくので、照明器具1に光束維持率の算出手段を設ける必要がなく、光源の点灯制御の構成を簡略化することができる。なお、本実施形態において保守率は70%とする。   In the present embodiment, the luminous flux maintenance factor curve Ya is calculated in advance from the lighting start to the lifetime based on [Equation 5], and correction data for the fluorescent lamp La1 based on the luminous flux maintenance factor curve Ya (for each predetermined lighting time). Luminous flux maintenance factor, input power) is stored in advance in the correction data storage unit 15, and the illuminance correction device 14 supplies the fluorescent lamp La1 with the passage of lighting time along the correction data in the correction data storage unit 15. Instructing the power to do. Therefore, since the luminous flux maintenance factor is calculated in advance and correction data based on the luminous flux maintenance factor curve is generated in advance, it is not necessary to provide the lighting fixture 1 with a means for calculating the luminous flux maintenance factor, and the light source lighting control configuration can be realized. It can be simplified. In this embodiment, the maintenance rate is 70%.

また、上記図24に示す例では蛍光ランプLa1の入力電力を4段階に変更しているが、さらに細かく多段階に変更してもよい。図26は、補正データに基づく光束維持率曲線Yb、及び蛍光ランプLa1の入力電力パターンYpを示しており、点灯時間の経過に伴って入力電力パターンYpを細かく階段状に増加させるのであるが、入力電力が変更される度に当該入力電力に対応した光束維持率曲線に基づいて次の入力電力の変更タイミングを決定しており、これら各入力電力に対応した複数の光束維持率曲線を連続させて光束維持率曲線Ybを生成している。   In the example shown in FIG. 24, the input power of the fluorescent lamp La1 is changed to four stages, but it may be changed more finely to multiple stages. FIG. 26 shows the luminous flux maintenance factor curve Yb based on the correction data and the input power pattern Yp of the fluorescent lamp La1, and the input power pattern Yp is finely increased stepwise as the lighting time elapses. Each time the input power is changed, the next input power change timing is determined based on the luminous flux maintenance factor curve corresponding to the input power, and a plurality of luminous flux maintenance factor curves corresponding to the respective input powers are continued. Thus, a luminous flux maintenance factor curve Yb is generated.

そして、蛍光ランプLa1が実施形態1と同様に構成されているので、蛍光ランプLa1へ供給する電力を定格値(100%)以上に増加させることが可能であり、照明システムとして蛍光ランプLa1の灯数を従来に比べて削減することができる。   And since fluorescent lamp La1 is comprised similarly to Embodiment 1, it is possible to increase the electric power supplied to fluorescent lamp La1 more than a rated value (100%), and the lamp | ramp of fluorescent lamp La1 is used as an illumination system. The number can be reduced compared to the conventional one.

また、本実施形態では実施形態1で説明した蛍光ランプLa1を使用したが、蛍光ランプLa1と同様に、定格ランプ電力:32W〜45W、フィラメントの主線の線径:約65〜100μm、エミッタ量:約5〜11mgの蛍光ランプであればよい。あるいは、上記蛍光ランプLa2〜La4であってもよい。   Further, in the present embodiment, the fluorescent lamp La1 described in the first embodiment is used. However, similarly to the fluorescent lamp La1, the rated lamp power: 32 W to 45 W, the filament main wire diameter: about 65 to 100 μm, the emitter amount: A fluorescent lamp of about 5 to 11 mg may be used. Alternatively, the fluorescent lamps La2 to La4 may be used.

(実施形態6)
本実施形態の照明器具1は、図27に示すように、実施形態5の補正データ記憶部15の代わりに補正データ演算部16を設けたものであり、補正データ演算部16は、蛍光ランプの点灯制御中に、現時点における点灯時間t、蛍光ランプの入力電力p、光束維持率Dn−1(t)を[数5]に適用して、次の時間tn+1における光束維持率D(tn+1)を逐次算出する。そして、照度補正装置14は、この算出された光束維持率D(tn+1)に基づいて次の時間tn+1に蛍光ランプLa1へ供給する電力を指示している。したがって、補正データを予め格納する必要がなく、各照明器具1の使用状態に応じた照度補正を行うことができる。
(Embodiment 6)
As shown in FIG. 27, the lighting apparatus 1 of the present embodiment is provided with a correction data calculation unit 16 instead of the correction data storage unit 15 of the fifth embodiment, and the correction data calculation unit 16 is a fluorescent lamp. During the lighting control, the current lighting time t n , the input power p n of the fluorescent lamp, and the luminous flux maintenance factor D n−1 (t n ) are applied to [Equation 5], and the luminous flux maintenance factor at the next time t n + 1 . D n (t n + 1 ) is calculated sequentially. Then, the illuminance correction device 14 instructs the power to be supplied to the fluorescent lamp La1 at the next time t n + 1 based on the calculated luminous flux maintenance factor D n (t n + 1 ). Therefore, it is not necessary to store correction data in advance, and illuminance correction according to the usage state of each lighting fixture 1 can be performed.

なお、光束維持率D(tn+1)を逐次算出する補正データ演算部16を用いれば、各照明器具1の使用状態に応じて、点灯時間の経過に伴って蛍光ランプの入力電力を増加させるだけでなく、減少させることもできる。 If the correction data calculation unit 16 that sequentially calculates the luminous flux maintenance factor D n (t n + 1 ) is used, the input power of the fluorescent lamp is increased as the lighting time elapses according to the usage state of each luminaire 1. Not only can it be reduced.

実施形態1の蛍光ランプの管端部電極部分の構造を示す一部破断斜視図である。2 is a partially broken perspective view showing a structure of a tube end electrode portion of the fluorescent lamp of Embodiment 1. FIG. 同上のフィラメントを示す正面図である。It is a front view which shows a filament same as the above. 同上のフィラメントを示す一部断面拡大図である。It is a partial cross section enlarged view which shows a filament same as the above. 同上のランプ電流と推定コイル温度との関係を示す図である。It is a figure which shows the relationship between lamp current same as the above and estimated coil temperature. 同上の点灯時間とエミッタ残量との関係を示す図である。It is a figure which shows the relationship between lighting time same as the above and remaining amount of emitters. 同上の蛍光ランプの部分拡大断面図である。It is a partial expanded sectional view of a fluorescent lamp same as the above. (a)は従来の照明器具を示す断面図であり、(b)は実施形態1の照明器具を示す断面図である。(A) is sectional drawing which shows the conventional lighting fixture, (b) is sectional drawing which shows the lighting fixture of Embodiment 1. FIG. 従来の照度分布を示す平面図である。It is a top view which shows the conventional illuminance distribution. 実施形態1の照度分布を示す平面図である。FIG. 3 is a plan view showing an illuminance distribution according to Embodiment 1. (a)は従来の照明器具を示す側面図及びZ1−Z1’断面図であり、(b)は実施形態2の照明器具を示す側面図及びZ2−Z2’断面図である。(A) is the side view and Z1-Z1 'sectional view which show the conventional lighting fixture, (b) is the side view and Z2-Z2' sectional view which shows the lighting fixture of Embodiment 2. 従来の照度分布を示す平面図である。It is a top view which shows the conventional illuminance distribution. 実施形態2の照度分布を示す平面図である。10 is a plan view showing an illuminance distribution of Embodiment 2. FIG. 実施形態2の別の照明器具を示す側面図及びZ3−Z3’断面図である。It is the side view and Z3-Z3 'sectional drawing which show another lighting fixture of Embodiment 2. FIG. (a)は従来の照明器具を示す側面図及びZ4−Z4’断面図であり、(b)は実施形態2の別の照明器具を示す側面図及びZ5−Z5’断面図である。(A) is the side view and Z4-Z4 'sectional view which show the conventional lighting fixture, (b) is the side view and Z5-Z5' sectional view which shows another lighting fixture of Embodiment 2. 直管型の蛍光ランプの寸法を示す平面図である。It is a top view which shows the dimension of a straight tube | pipe type fluorescent lamp. 従来の照明器具から実施形態2の照明器具への交換を示す図である。It is a figure which shows replacement | exchange from the conventional lighting fixture to the lighting fixture of Embodiment 2. FIG. (a)は従来の照明器具を示す側面図及び断面図であり、(b)は実施形態3の照明器具を示す側面図及び断面図である。(A) is the side view and sectional drawing which show the conventional lighting fixture, (b) is the side view and sectional drawing which show the lighting fixture of Embodiment 3. (a)は従来の照明器具を示す側面図及び断面図であり、(b)は実施形態3の別の照明器具を示す側面図及び断面図である。(A) is the side view and sectional drawing which show the conventional lighting fixture, (b) is the side view and sectional drawing which shows another lighting fixture of Embodiment 3. FIG. (a)は従来の照明ユニットを示す側面図及び断面図であり、(b)は実施形態4の照明ユニットを示す側面図及び断面図である。(A) is the side view and sectional drawing which show the conventional lighting unit, (b) is the side view and sectional drawing which show the lighting unit of Embodiment 4. 実施形態5の照明器具の構成を示すブロック図である。It is a block diagram which shows the structure of the lighting fixture of Embodiment 5. 光束維持率の入力電力依存性の実験結果を示す図である。It is a figure which shows the experimental result of the input power dependence of a luminous flux maintenance factor. 蛍光ランプの入力電力と寿命定数との関係を示す図である。It is a figure which shows the relationship between the input electric power of a fluorescent lamp, and a lifetime constant. 光束維持率の入力電力依存性のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the input power dependence of a luminous flux maintenance factor. 実施形態5の光束維持率の特性を示す図である。It is a figure which shows the characteristic of the light beam maintenance factor of Embodiment 5. 同上の光束の時間特性を示す図である。It is a figure which shows the time characteristic of the light beam same as the above. 同上の蛍光ランプの制御パターンを示す図である。It is a figure which shows the control pattern of the fluorescent lamp same as the above. 実施形態6の照明器具の構成を示すブロック図である。It is a block diagram which shows the structure of the lighting fixture of Embodiment 6. FIG.

符号の説明Explanation of symbols

La1 蛍光ランプ
2 フィラメント
3 エミッタ
4 リード線
5 ガラスステム
6 ガラスバルブ
7 保護膜
8 蛍光体層
9 ピン
La1 fluorescent lamp 2 filament 3 emitter 4 lead wire 5 glass stem 6 glass bulb 7 protective film 8 phosphor layer 9 pin

Claims (1)

ガラスバルブ内面に蛍光体層を形成するとともに、このガラスバルブ内に放電用ガスを封入し、ガラスバルブ内に、電子放射性物質であるエミッタの被着されている少なくとも1つのコイルからなるフィラメントを取り付け、フィラメントを構成する少なくとも1つのコイルの線径は65〜100μmであり、フィラメントに被着されているエミッタの量は5〜11mgである蛍光ランプと、蛍光ランプを点灯させるとともに蛍光ランプへの供給電力を制御可能な点灯ユニットとを備え、
点灯ユニットは、蛍光ランプへ電力を供給する点灯装置と、点灯装置への給電時間を蛍光ランプの点灯時間として計時する点灯時間タイマと、蛍光ランプの点灯時間の経過に伴う光束低下を抑制するように、蛍光ランプの光束維持率に基づいて、蛍光ランプへ供給する電力を点灯装置に指示する照度補正装置とを具備し、
照度補正装置は、蛍光ランプの光束維持率に基づいて蛍光ランプの入力電力を段階的に増加させ、蛍光ランプの点灯時間に応じて段階的に増加する各入力電力に対応した複数の光束維持率曲線を連続させた線を用いて、光束維持率を算出する
ことを特徴とする照明器具。
A phosphor layer is formed on the inner surface of the glass bulb, a discharge gas is enclosed in the glass bulb, and a filament comprising at least one coil to which an emitter, which is an electron-emitting substance, is attached is attached in the glass bulb. The diameter of at least one coil constituting the filament is 65 to 100 μm, the amount of the emitter deposited on the filament is 5 to 11 mg, and the fluorescent lamp is turned on and supplied to the fluorescent lamp With a lighting unit that can control power,
The lighting unit suppresses a decrease in luminous flux with the passage of the lighting time of the fluorescent lamp, a lighting device that supplies power to the fluorescent lamp, a lighting time timer that counts the power supply time to the lighting device as the lighting time of the fluorescent lamp, and And an illuminance correction device that instructs the lighting device to supply power to the fluorescent lamp based on the luminous flux maintenance factor of the fluorescent lamp,
The illuminance correction device increases the input power of the fluorescent lamp stepwise based on the luminous flux maintenance factor of the fluorescent lamp, and a plurality of luminous flux maintenance factors corresponding to each input power that increases stepwise according to the lighting time of the fluorescent lamp Calculate the luminous flux maintenance factor using a continuous line of curves
A lighting apparatus characterized by that.
JP2007220987A 2006-10-16 2007-08-28 lighting equipment Expired - Fee Related JP5060214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007220987A JP5060214B2 (en) 2006-10-16 2007-08-28 lighting equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006281772 2006-10-16
JP2006281772 2006-10-16
JP2007220987A JP5060214B2 (en) 2006-10-16 2007-08-28 lighting equipment

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2009220081A Division JP5118678B2 (en) 2006-10-16 2009-09-25 lighting equipment
JP2009220082A Division JP5118679B2 (en) 2006-10-16 2009-09-25 Lighting equipment and fluorescent lamp
JP2009220080A Division JP5118677B2 (en) 2006-10-16 2009-09-25 Fluorescent lamp

Publications (2)

Publication Number Publication Date
JP2008123998A JP2008123998A (en) 2008-05-29
JP5060214B2 true JP5060214B2 (en) 2012-10-31

Family

ID=39508495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007220987A Expired - Fee Related JP5060214B2 (en) 2006-10-16 2007-08-28 lighting equipment

Country Status (1)

Country Link
JP (1) JP5060214B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5118678B2 (en) * 2006-10-16 2013-01-16 パナソニック株式会社 lighting equipment
JP4796099B2 (en) * 2008-07-22 2011-10-19 パナソニック株式会社 Fluorescent lamp
JP5141703B2 (en) * 2010-03-10 2013-02-13 ウシオ電機株式会社 Light source device
JP2016004750A (en) * 2014-06-19 2016-01-12 日立アプライアンス株式会社 Fluorescent lamp

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142028A (en) * 1993-11-22 1995-06-02 Matsushita Electron Corp Fluorescent lamp and its manufacture
JP3809747B2 (en) * 1999-06-25 2006-08-16 松下電工株式会社 Lighting device
JP2002298785A (en) * 2001-03-30 2002-10-11 Toshiba Lighting & Technology Corp Fluorescent lamp and compact self-ballasted fluorescent lamp

Also Published As

Publication number Publication date
JP2008123998A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
EP0917180B1 (en) High pressure discharge lamp, lighting optical apparatus using the same as light source, and image display system
US20070041200A1 (en) Lighting apparatus
JP5060214B2 (en) lighting equipment
US4281267A (en) High intensity discharge lamp with coating on arc discharge tube
US7178944B2 (en) Lighting apparatus
JP4971743B2 (en) Lighting control method, light source, and lighting fixture
US8680756B2 (en) Optical system for a luminaire
JP5118678B2 (en) lighting equipment
TW200537551A (en) Fluorescent lamp for emitting visible radiation
JP6457162B2 (en) High pressure discharge lamp and lighting device
JP2004099220A (en) Lighting system of elevator
US20040135489A1 (en) Fluorescent lamp
JP2006049007A (en) Lamp
JP4611283B2 (en) Fluorescent lamp and extension means assembly
US7893619B2 (en) High intensity discharge lamp
JP4670390B2 (en) Lighting equipment
JP3122276U (en) Small portable electric light
JP2007525804A (en) Low pressure mercury vapor discharge lamp
JP4199656B2 (en) Metal vapor discharge lamp and lighting device
JP2001126663A (en) High-pressure discharge lamp
KR100731155B1 (en) Electrodeless xenon phosphor lamp
KR100731152B1 (en) Electrodeless xenon phosphor lamp
JP4210180B2 (en) Incandescent lamp
KR101066754B1 (en) Fluorescent lamps with reflectors to prevent blackening
JPH0969355A (en) High-pressure discharge lamp, lighting device and lighting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees