JP2008096240A - Force detector - Google Patents

Force detector Download PDF

Info

Publication number
JP2008096240A
JP2008096240A JP2006277279A JP2006277279A JP2008096240A JP 2008096240 A JP2008096240 A JP 2008096240A JP 2006277279 A JP2006277279 A JP 2006277279A JP 2006277279 A JP2006277279 A JP 2006277279A JP 2008096240 A JP2008096240 A JP 2008096240A
Authority
JP
Japan
Prior art keywords
force
point
detection
receiving body
force receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006277279A
Other languages
Japanese (ja)
Inventor
Yutaka Harada
豊 原田
Keiji Kanehara
圭司 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2006277279A priority Critical patent/JP2008096240A/en
Publication of JP2008096240A publication Critical patent/JP2008096240A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost force detector that is of a simple structure and is high in performance. <P>SOLUTION: Single axis force sensors 2-1, 2-2, 2-3 are provided between a support 1 and a force-receiving body 3. The single axis force sensors 2-1, 2-2, 2-3 detect only force F1, F2, F3 in a Z-axis direction (direction vertical with respect to the support 1) operating on detection points P1, P2, P3 with the points P1, P2, P3 obtained by dividing the circumference with a prescribed radius (r) in the same plane, with a connection point (origin O) between the force-receiving body 3 and a force-transmitting body 4 as a center, at an interval of 120° as detection points. With the forces F1, F2, F3 that are detected by the single axis force sensors 2-1, 2-2, 2-3, force components Fx, Fy, Fz in the direction of each axis of the forces X, Y, Z to be detected acting on a force-receiving point P are obtained by a prescribed arithmetic expression. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、受力点に作用する検出対象の力を検出する力検出装置に関するものである。   The present invention relates to a force detection device that detects a force to be detected that acts on a force receiving point.

従来より、この種の力検出装置として、互いに直交するX,Y,Z方向に変位可能な平行板バネによりX,Y方向の十字形状体を構成し、十字各辺の平行板バネ上に歪みゲージを設けた力検出装置が用いられている(例えば、特許文献1参照)。   Conventionally, as a force detection device of this type, a cross-shaped body in the X and Y directions is formed by parallel leaf springs that are displaceable in the X, Y, and Z directions orthogonal to each other, and distortion is applied to the parallel leaf springs on each side of the cross. A force detection device provided with a gauge is used (see, for example, Patent Document 1).

この力検出装置では、十字各辺の平行板バネ上に設けられた歪みゲージの出力より、十字中央に作用する検出対象の力のX,Y,Zの各軸方向の力成分を容易に検出することができる。しかし、この力検出装置は、X,Y,Z方向に変位可能な平行板バネによる十字形状体を必要とし、構造が複雑化するという難点があった。   In this force detection device, the force component in the X, Y, and Z axial directions of the force to be detected acting on the center of the cross is easily detected from the output of the strain gauge provided on the parallel leaf springs on each side of the cross. can do. However, this force detection device requires a cross-shaped body made up of parallel leaf springs that can be displaced in the X, Y, and Z directions, and has a drawback that the structure is complicated.

これに対し、特許文献2に示された力検出装置では、検出対象の力を受ける受力体の下方に支持体を配置し、受力体と支持体との間に少なくとも2本の力伝達体を設け、各力伝達体と支持体との結合部分に設けた静電容量素子式の多軸力センサの静電容量値の変化から、支持体に対して垂直な方向をZ軸方向として、検出対象の力のX,Y,Zの各軸方向の力成分を検出するようにしている。これにより、構造が単純となり、量産に適するものとなる。   On the other hand, in the force detection device disclosed in Patent Document 2, a support body is disposed below the power receiving body that receives the force to be detected, and at least two force transmissions are provided between the power receiving body and the support body. The direction perpendicular to the support is defined as the Z-axis direction from the change in the capacitance value of the capacitive element type multi-axis force sensor provided at the joint between each force transmission body and the support. The force components in the X, Y, and Z axial directions of the detection target force are detected. This makes the structure simple and suitable for mass production.

特開昭61−292029号公報Japanese Patent Application Laid-Open No. 61-292029 特開2004−354049号公報JP 2004-354049 A

しかしながら、上述した特許文献2に示された力検出装置は、構造が単純とはなるが、静電容量素子式の多軸力センサを用いているため、高価となる。また、静電容量素子式の多軸力センサは、電気的なインピーダンスが高いため、ノイズが大きくなったり、周囲温度の影響を受け易い。   However, the force detection device disclosed in Patent Document 2 described above is simple in structure, but is expensive because it uses a capacitive element type multi-axis force sensor. In addition, since the capacitive element type multi-axis force sensor has high electrical impedance, noise is increased and it is easily affected by ambient temperature.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、単純な構造で、かつ性能も高く、安価な力検出装置を提供することにある。   The present invention has been made to solve such a problem, and an object of the present invention is to provide an inexpensive force detection device having a simple structure and high performance.

このような目的を達成するために本発明は、受力点に作用する検出対象の力を力伝達体を介して受ける受力体と、この受力体と支持体との間に設けられ、支持体に対して垂直な方向をZ軸方向として、また受力体の力伝達体との結合点を中心とする同一平面内の所定半径の円周における3個以上の各点を検出点として、これら各検出点に作用するZ軸方向への力のみを検出する力センサと、力センサが検出する力より、所定の演算式を用いて、受力点に作用する検出対象の力の互いに直交するX,Y,Zの各軸方向の力成分を求める力成分演算手段とを設けたものである。   In order to achieve such an object, the present invention is provided between a force receiving body that receives a force to be detected acting on the force receiving point via a force transmitting body, and between the force receiving body and the support body, The direction perpendicular to the support is defined as the Z-axis direction, and three or more points on the circumference of a predetermined radius within the same plane centering on the coupling point of the force receiving body with the force transmitting body are used as detection points. From the force sensor that detects only the force in the Z-axis direction that acts on each of these detection points, and the force that the force sensor detects, the forces of the detection targets that act on the force-receiving point are mutually determined using a predetermined arithmetic expression. Force component calculation means for obtaining force components in the X, Y, and Z axis directions orthogonal to each other is provided.

この発明によれば、受力点を例えばP点とすると、このP点に作用する検出対象の力が力伝達体を介して受力体に与えられる。この受力体が受ける検出対象の力は、その受力体の力伝達体との結合点(原点O)を中心とする同一平面内の所定半径の円周における各検出点に分散して現れ、各検出点のZ軸方向(支持体に対して垂直な方向)へ作用する力のみが力センサ(単軸力センサ)によって検出される。そして、この力センサが検出する力より、所定の演算式を用いて、受力点(P点)に作用する検出対象の力のX,Y,Zの各軸方向の力成分(Fx,Fy,Fz)が求められる。   According to the present invention, when the force receiving point is, for example, point P, the force to be detected acting on the point P is applied to the force receiving member via the force transmitting member. The force of the detection target received by the force receiving body appears in a distributed manner at each detection point on the circumference of a predetermined radius within the same plane centering on the coupling point (origin O) of the force receiving body with the force transmitting body. Only the force acting in the Z-axis direction (direction perpendicular to the support) at each detection point is detected by a force sensor (single-axis force sensor). Then, based on the force detected by the force sensor, the force components (Fx, Fy) in the X, Y, and Z axial directions of the detection target force acting on the force receiving point (P point) using a predetermined arithmetic expression. , Fz).

なお、本発明において、受力体の力伝達体との結合点の定義には、受力体の力伝達体と接する面を受力体の表面側とした場合、受力体の裏面側に位置する点も含まれるものとする。すなわち、受力体の力伝達体と接する面上の点ではなく、この面に対向する受力体の裏面側の面上の点も本発明でいう結合点のことを指す。   In the present invention, the coupling point of the force receiving body with the force transmitting body is defined by defining the surface of the power receiving body in contact with the force transmitting body as the front side of the power receiving body. Included points are also included. That is, not the point on the surface of the force receiving body that contacts the force transmitting body, but the point on the back surface side of the force receiving body facing this surface also refers to the coupling point in the present invention.

本発明では、例えば、原点Oを中心とする同一平面内の所定半径rの円周を120゜間隔で分割した各検出点をP1,P2,P3とし、力センサによって検出される各検出点P1,P2,P3のZ軸方向へ作用する力をF1,F2,F3とした場合、所定の演算式として下記の(1),(2),(3)式を用いて、受力点Pに作用する検出対象の力のX軸方向の力成分Fx、Y軸方向の力成分Fy、Z軸方向の力成分Fzを求める。なお、下記の(1),(2)式において、Lは原点Oから受力点PまでのZ軸方向への距離とする。   In the present invention, for example, detection points P1, P2, and P3 obtained by dividing the circumference of a predetermined radius r in the same plane centered at the origin O at intervals of 120 ° are detected points P1 detected by the force sensor. , P2 and P3 in the Z-axis direction are F1, F2, and F3, the following formulas (1), (2), and (3) are used as the predetermined calculation formulas. A force component Fx in the X-axis direction, a force component Fy in the Y-axis direction, and a force component Fz in the Z-axis direction of the acting detection target force are obtained. In the following equations (1) and (2), L is the distance from the origin O to the force receiving point P in the Z-axis direction.

Figure 2008096240
Figure 2008096240

なお、本発明では、受力体の各検出点において、その検出点を中心とするモーメント力が生じる場合が考えられる。このようなモーメント力を吸収するために、受力体の検出点毎にその検出点を中心として所定の範囲を薄肉状としたダイアフラム部を設け、このダイアフラム部に力センサの端面を接して設けるようにしたり、受力体の各検出点にボールジョイントを設け、このボールジョイントを介して各検出点に作用するZ軸方向への力を力センサにより検出するようにしたりしてもよい。   In the present invention, it is conceivable that a moment force centered on the detection point is generated at each detection point of the force receiving body. In order to absorb such moment force, a diaphragm portion having a predetermined range thinned around the detection point is provided for each detection point of the force receiving body, and the end surface of the force sensor is provided in contact with the diaphragm portion. Alternatively, a ball joint may be provided at each detection point of the force receiving body, and the force in the Z-axis direction acting on each detection point via this ball joint may be detected by a force sensor.

また、本発明では、力伝達体をワークとし、このワークをハンドで把持して作業を行うような場合、受力点を中心とするモーメント力、特にZ軸回りのモーメント力を受けることが考えられる。このようなモーメント力を吸収するために、力伝達体と受力体との結合部に回転ジョイントを設けるようにしてもよい。さらに、この力伝達体と受力体との結合部へ回転ジョイントを設けることと、受力体の各検出点毎にその検出点を含む所定の範囲を薄肉状とすることとを組み合わせてもよく、受力体の各検出点にボールジョイントを設けることとを組み合わせるようにしてもよい。   Further, in the present invention, when a force transmission body is used as a work and the work is gripped with a hand, a moment force centered on the force receiving point, especially a moment force around the Z axis may be received. It is done. In order to absorb such moment force, a rotary joint may be provided at the coupling portion between the force transmission body and the force receiving body. Further, it is possible to combine the provision of a rotation joint at the coupling portion between the force transmission body and the force receiving body and the thinning of a predetermined range including the detection point for each detection point of the force receiving body. Alternatively, a combination of providing a ball joint at each detection point of the force receiving member may be combined.

本発明によれば、受力体の力伝達体との結合点を中心とする同一平面内の所定半径の円周における3個以上の各点を検出点とし、これら各検出点に作用するZ軸方向への力のみを力センサで検出し、この力センサが検出する力より所定の演算式を用いて受力点に作用する検出対象のX,Y,Zの各軸方向の力成分を求めるようにしたので、構造を単純化するとともに、力センサを静電容量素子を用いない単軸力センサとして、コストの低減を図ることができるようになる。また、電気的なインピーダンスを小さくし、ノイズや周囲温度の影響を受け難くして、性能を高めることができるようになる。   According to the present invention, three or more points on the circumference of a predetermined radius in the same plane centering on the coupling point of the force receiving body with the force transmitting body are set as detection points, and Z acting on each of these detection points. Only the force in the axial direction is detected by a force sensor, and the force component in each axial direction of X, Y, and Z to be detected that acts on the force receiving point using a predetermined arithmetic expression from the force detected by the force sensor. Therefore, the structure can be simplified, and the cost sensor can be reduced as a single-axis force sensor that does not use a capacitive element. In addition, it is possible to reduce the electrical impedance, make it less susceptible to noise and ambient temperature, and improve performance.

以下、本発明を図面に基づいて詳細に説明する。
〔実施の形態1〕
図1はこの発明に係る力検出装置の一実施の形態の要部を示す図である。図1(a)は平面図、図1(b)は側面図を示す。同図において、1はベースとなる支持体、2(2−1,2−2,2−3)は単軸力センサ、3は受力体、4は力伝達体、5は力成分演算部である。
Hereinafter, the present invention will be described in detail with reference to the drawings.
[Embodiment 1]
FIG. 1 is a diagram showing a main part of an embodiment of a force detection device according to the present invention. 1A is a plan view and FIG. 1B is a side view. In the figure, 1 is a base support, 2 (2-1, 2-2, 2-3) is a single-axis force sensor, 3 is a force receiving body, 4 is a force transmission body, and 5 is a force component calculation unit. It is.

この例において、力伝達体4は軸体とされており、その上端面4aの点Pが検出対象の力が作用する受力点とされ、その下端面4bが受力体3の中心部に固定されている。また、支持体1および受力体3は円板状とされ、この支持体1と受力体3との間に、その上端面2aを受力体1に接して、その下端面2bを支持体1に接して、単軸力センサ2−1,2−2,2−3が設けられている。   In this example, the force transmission body 4 is a shaft body, the point P of the upper end surface 4 a is the force receiving point where the force to be detected acts, and the lower end surface 4 b is at the center of the force receiving body 3. It is fixed. Further, the support body 1 and the force receiving body 3 are formed in a disk shape, and the upper end surface 2a is in contact with the force receiving body 1 between the support body 1 and the force receiving body 3, and the lower end surface 2b is supported. In contact with the body 1, single-axis force sensors 2-1, 2-2, 2-3 are provided.

単軸力センサ2−1,2−2,2−3は、その軸方向へ作用する力のみを検出する力センサであり、受力体3と力伝達体4との結合点(原点O)を中心とする同一平面内の所定半径rの円周を120゜間隔(等角度間隔)で分割した点P1,P2,P3を検出点とし、この検出点P1,P2,P3に位置するように配置されている。   The single-axis force sensors 2-1, 2-2, 2-3 are force sensors that detect only the force acting in the axial direction, and are the connection points of the force receiving body 3 and the force transmitting body 4 (origin O). The points P1, P2, and P3 obtained by dividing the circumference of the predetermined radius r in the same plane centered at 120 ° intervals (equal angular intervals) are used as detection points, and are positioned at the detection points P1, P2, and P3. Has been placed.

なお、この実施の形態では、受力体3の力伝達体4と接する面を受力体3の表面側とした場合、受力体3の裏面側に位置する点Oを受力体3と力伝達体4との結合点としている。受力体3の力伝達体4と接する面だけではなく、受力体3の厚みも含めて力伝達体4との結合部とみなせば、受力体3の裏面側に位置する点Oは受力体3と力伝達体4との結合点と言える。   In this embodiment, when the surface of the force receiving body 3 that contacts the force transmitting body 4 is the front surface side of the force receiving body 3, the point O located on the back surface side of the force receiving body 3 is defined as the force receiving body 3. The connection point with the force transmission body 4 is used. Considering not only the surface of the force receiving body 3 in contact with the force transmitting body 4 but also the force transmitting body 4 including the thickness of the force receiving body 3, the point O located on the back side of the force receiving body 3 is It can be said that this is a connection point between the force receiving body 3 and the force transmitting body 4.

これにより、単軸力センサ2−1,2−2,2−3は、支持体1に対して垂直な方向をZ軸方向として、検出点P1,P2,P3に作用するZ軸方向への力F1,F2,F3のみを検出する。なお、この実施の形態では、単軸力センサ2(2−1,2−2,2−3)として、変位が極小の歪みゲージ式の力センサを用いている。この単軸力センサ2は、剛体で、受力点PにX,Y,Z方向の力が加わっても変形しない。   As a result, the single-axis force sensors 2-1, 2-2, 2-3 take the direction perpendicular to the support 1 as the Z-axis direction and act on the detection points P1, P2, P3 in the Z-axis direction. Only the forces F1, F2 and F3 are detected. In this embodiment, a strain gauge type force sensor with minimal displacement is used as the single-axis force sensor 2 (2-1, 2-2, 2-3). The single-axis force sensor 2 is a rigid body and does not deform even when a force in the X, Y, and Z directions is applied to the force receiving point P.

力成分演算部5は、単軸力センサ2−1,2−2,2−3が検出する力F1,F2,F3を入力とし、この力F1,F2,F3より、所定の演算式として下記の(4),(5),(6)の式を用いて、受力点Pに作用する検出対象の力のX軸方向の力成分Fx、Y軸方向の力成分Fy、Z軸方向の力成分Fzを求める機能を有している。   The force component calculation unit 5 receives the forces F1, F2, and F3 detected by the single-axis force sensors 2-1, 2-2, and 2-3, and uses the forces F1, F2, and F3 as a predetermined calculation formula below. Using the equations (4), (5), and (6), the force component Fx in the X-axis direction, the force component Fy in the Y-axis direction, the force component Fy in the Y-axis direction, and the force in the Z-axis direction. It has a function for obtaining the force component Fz.

Figure 2008096240
Figure 2008096240

〔演算式の導出について〕
上記の(4),(5),(6)の演算式は次のようにして導出したものである。
XYZの3次元空間において、検出点P1,P2,P3の座標位置は、下記の(7),(8),(9)式で表される(図2参照)。また、検出対象の力が作用する受力点PをP4とし、原点Oから受力点P4までの距離をLとすると、受力点P4の座標位置は下記の(10)式で表される(図3参照)。
[Derivation of arithmetic expression]
The above equations (4), (5), and (6) are derived as follows.
In the three-dimensional space of XYZ, the coordinate positions of the detection points P1, P2, and P3 are expressed by the following equations (7), (8), and (9) (see FIG. 2). Further, assuming that the force receiving point P at which the force to be detected acts is P4 and the distance from the origin O to the force receiving point P4 is L, the coordinate position of the force receiving point P4 is expressed by the following equation (10). (See FIG. 3).

Figure 2008096240
Figure 2008096240

ここで、各点P1,P2,P3,P4に作用する力をベクトルf1,f2,f3,f4とする。f1,f2,f3のZ軸方向の力成分は単軸力センサ2−1,2−2,2−3が検出する力F1,F2,F3である。この力F1,F2,F3を用いて受力点P4に作用する検出対象の力f4のX軸方向の力成分f4x、Y軸方向の力成分f4y、Z軸方向の力成分f4zを求める式を導出する。   Here, the forces acting on the points P1, P2, P3, and P4 are assumed to be vectors f1, f2, f3, and f4. The force components in the Z-axis direction of f1, f2, and f3 are forces F1, F2, and F3 detected by the single-axis force sensors 2-1, 2-2, and 2-3. Expressions for obtaining the force component f4x in the X-axis direction, the force component f4y in the Y-axis direction, and the force component f4z in the Z-axis direction of the detection target force f4 acting on the force receiving point P4 using the forces F1, F2, and F3 To derive.

この場合、力成分f4x,f4y,f4zの導出には、静力学の力とモーメントの釣り合い関係を用いる。力の釣り合いは下記の(11)式で表される。モーメントの釣り合いは下記の(12)式で表される。なお、(12)式において、Mnは各点Pnを中心として生じるモーメント力であり、Pn×fnは各点Pnに作用する力fnにより原点Oを中心として生じるモーメント力である。   In this case, the balance between static force and moment is used to derive the force components f4x, f4y, and f4z. The balance of force is expressed by the following equation (11). The balance of moment is expressed by the following equation (12). In Equation (12), Mn is a moment force generated around each point Pn, and Pn × fn is a moment force generated around the origin O by the force fn acting on each point Pn.

また、(12)式において、Pn×fnは、Pn点におけるX軸方向の座標位置をPnx、Y軸方向の座標位置をPny、Z軸方向の座標位置をPnz、Pn点に作用するX軸方向の力成分をfnx、Y軸方向の力成分をfny、Z軸方向の力成分をfnzとすると、下記の(13)式で表される。   Further, in the equation (12), Pn × fn is an X axis that acts on the coordinate position in the X axis direction at the point Pn as Pnx, the coordinate position in the Y axis direction as Pny, the coordinate position in the Z axis direction as Pnz, and the Pn point. When the force component in the direction is fnx, the force component in the Y-axis direction is fny, and the force component in the Z-axis direction is fnz, it is expressed by the following equation (13).

Figure 2008096240
Figure 2008096240

ここで、各点Pnにはモーメント力が生じないという条件を追加すると、上記(12)式は下記の(14)式となる。この(14)式において、P1×f1、P2×f2、P3×f3、P4×f4は、上記(13)式より、下記の(15)式で表される。   Here, when a condition that no moment force is generated at each point Pn is added, the above expression (12) becomes the following expression (14). In this equation (14), P1 × f1, P2 × f2, P3 × f3, and P4 × f4 are expressed by the following equation (15) from the above equation (13).

Figure 2008096240
Figure 2008096240

この(15)式において、P1×f1、P2×f2、P3×f3、P4×f4の加算値は0であるから、そのx,y,z成分毎の加算値も0となる。この場合、x,y,z成分毎の加算値は、下記の(16)式で示される。   In this equation (15), since the added values of P1 × f1, P2 × f2, P3 × f3, and P4 × f4 are 0, the added value for each of the x, y, and z components is also 0. In this case, the added value for each x, y, z component is expressed by the following equation (16).

Figure 2008096240
Figure 2008096240

この(16)式から、受力点P4に作用する力f4のX軸方向の力成分f4xとY軸方向の力成分f4yは、下記の(17)式および(18)式で表されるものとなる。また、(11)式より、受力点P4に作用する力f4のZ軸方向の力成分f4zは、下記の(19)式で表されるものとなる。   From this equation (16), the force component f4x in the X-axis direction and the force component f4y in the Y-axis direction of the force f4 acting on the force receiving point P4 are expressed by the following equations (17) and (18). It becomes. Further, from the equation (11), the force component f4z in the Z-axis direction of the force f4 acting on the force receiving point P4 is represented by the following equation (19).

Figure 2008096240
Figure 2008096240

ここで、受力点P4に作用する力f4のX軸方向の力成分f4xをFx、Y軸方向の力成分f4yをFy、Z軸方向の力成分f4zをFzとすると、f1zは単軸力センサ2−1が検出する検出点P1に作用するZ軸方向の力F1、f2zは単軸力センサ2−2が検出する検出点P2に作用するZ軸方向の力F2、f3zは単軸力センサ2−3が検出する検出点P3に作用するZ軸方向の力F3であるから、(17)式は(4)式として表され、(18)式は(5)式として表され、(19)式は(6)式として表される。   Here, when the force component f4x in the X-axis direction of the force f4 acting on the force receiving point P4 is Fx, the force component f4y in the Y-axis direction is Fy, and the force component f4z in the Z-axis direction is Fz, f1z is a single-axis force. Forces F1 and f2z in the Z-axis direction acting on the detection point P1 detected by the sensor 2-1 are forces F2 and f3z in the Z-axis direction acting on the detection point P2 detected by the single-axis force sensor 2-2 and are uniaxial forces. Since it is the force F3 in the Z-axis direction acting on the detection point P3 detected by the sensor 2-3, the expression (17) is expressed as an expression (4), the expression (18) is expressed as an expression (5), ( The equation 19) is expressed as the equation (6).

このようにして、本実施の形態では、単軸力センサ2−1、2−2、2−3が検出する検出点P1、P2、P3に作用するZ軸方向の力F1、F2、F3から受力点P(P4)に作用する検出対象の力のX軸方向の力成分Fx、Y軸方向の力成分Fy、Z軸方向の力成分Fzを求める演算式(4),(5),(6)を導出している。   Thus, in the present embodiment, from the forces F1, F2, and F3 in the Z-axis direction acting on the detection points P1, P2, and P3 detected by the single-axis force sensors 2-1, 2-2, and 2-3. Formulas (4), (5), and (4) for obtaining a force component Fx in the X-axis direction, a force component Fy in the Y-axis direction, and a force component Fz in the Z-axis direction of the force to be detected acting on the force receiving point P (P4). (6) is derived.

〔動作〕
この力検出装置において、受力点Pに作用する検出対象の力は、力伝達体4を介して受力体3に与えられる。この受力体3が受ける検出対象の力は、受力体3と力伝達体4との結合点(原点O)を中心とする所定半径rの円周を120゜間隔で分割した検出点P1,P2,P3に分散して現れ、検出点P1,P2,P3のZ軸方向へ作用する力F1,F2,F3のみが単軸力センサ2−1,2−2,2−3によって検出され、力成分演算部5へ送られる。
[Operation]
In this force detection device, the force to be detected acting on the force receiving point P is applied to the force receiving body 3 via the force transmitting body 4. The detection target force received by the force receiving body 3 is a detection point P1 obtained by dividing the circumference of a predetermined radius r centering on the coupling point (origin O) between the force receiving body 3 and the force transmitting body 4 at intervals of 120 °. , P2 and P3, and only the forces F1, F2 and F3 acting in the Z-axis direction at the detection points P1, P2 and P3 are detected by the single-axis force sensors 2-1, 2-2 and 2-3. To the force component calculation unit 5.

力成分演算部5は、単軸力センサ2−1,2−2,2−3から送られてくる力F1,F2,F3より、上記の演算式(4),(5),(6)を用いて、受力点Pに作用する検出対象の力のX軸方向の力成分Fx、Y軸方向の力成分Fy、Z軸方向の力成分Fzを求める。   The force component calculation unit 5 uses the above formulas (4), (5), (6) from the forces F1, F2, F3 sent from the single-axis force sensors 2-1, 2-2, 2-3. Is used to determine the force component Fx in the X-axis direction, the force component Fy in the Y-axis direction, and the force component Fz in the Z-axis direction of the force to be detected acting on the force receiving point P.

このようにして、本実施の形態では、単軸力センサ2−1,2−2,2−3が検出する力F1,F2,F3から受力点Pに作用する検出対象のX,Y,Zの各軸方向の力成分Fx,Fy,Fzを求めるようにしているので、静電容量素子式の多軸力センサを用いる従来の方式と比較し、コストの低減を図ることができるようになる。また、電気的なインピーダンスを小さくし、ノイズや周囲温度の影響を受け難くして、性能を高めることができるようになる。   In this way, in the present embodiment, the detection target X, Y, and Y acting on the force receiving point P from the forces F1, F2, and F3 detected by the single-axis force sensors 2-1, 2-2, and 2-3. Since the force components Fx, Fy, and Fz in the Z-axis directions are obtained, the cost can be reduced as compared with the conventional method using the capacitive element type multi-axis force sensor. Become. In addition, it is possible to reduce the electrical impedance, make it less susceptible to noise and ambient temperature, and improve performance.

図4はこの力検出装置をロボットのアーム部の先端に適用した例を示す図である。この例では、力伝達体4をワークとし、このワーク4をハンド6で把持して、不図示の穴に挿入させる作業をロボットに行わせるようにしている。この場合、ワーク4はハンド6の内部に入り込み、その下端面4bが受力体3の中心部に当接することによって、受力点Pに作用する検出対象の力を受力体3に伝える。   FIG. 4 is a diagram showing an example in which this force detection device is applied to the tip of a robot arm. In this example, the force transmission body 4 is a work, and the work 4 is gripped by the hand 6 and is inserted into a hole (not shown) so that the robot can perform the work. In this case, the work 4 enters the inside of the hand 6, and the lower end surface 4 b abuts against the center of the force receiving body 3, thereby transmitting the detection target force acting on the force receiving point P to the force receiving body 3.

このロボットへの適用例において、ワーク4と受力体3とは固定されておらず、作業が終了するとワーク4が受力体3から離れるが、ワーク4が受力体3に当接した状態も含めて、本発明では力伝達体と受力体とが結合された状態にあるものとする。すなわち、ワーク4が受力体3に固定された状態だけではなく、ワーク4が受力体3に当接した状態も結合状態であるとみなす。単軸力センサ2と支持体1および受力体3との結合も同様である。   In this application example to the robot, the work 4 and the force receiving body 3 are not fixed, and when the work is finished, the work 4 is separated from the force receiving body 3, but the work 4 is in contact with the force receiving body 3. In the present invention, it is assumed that the force transmission body and the force receiving body are in a coupled state. That is, not only the state in which the work 4 is fixed to the force receiving body 3 but also the state in which the work 4 is in contact with the force receiving body 3 is regarded as a coupled state. The same applies to the coupling of the single-axis force sensor 2 with the support 1 and the force receiving body 3.

〔実施の形態2〕
実施の形態1では、検出点P1,P2,P3にはモーメント力が生じないということを条件として、上記の演算式(4),(5),(6)を導出した。この場合、検出点P1,P2,P3にモーメント力が生じると、力成分演算部5で求められる受力点Pに作用する検出対象の力のX,Y,Zの各軸方向の力成分Fx,Fy,Fzに誤差が生じる。
[Embodiment 2]
In the first embodiment, the above arithmetic expressions (4), (5), and (6) are derived on the condition that no moment force is generated at the detection points P1, P2, and P3. In this case, when a moment force is generated at the detection points P1, P2, and P3, the force component Fx in the X, Y, and Z axial directions of the detection target force acting on the force receiving point P obtained by the force component calculation unit 5 is obtained. , Fy, and Fz have errors.

そこで、実施の形態2では、検出点P1,P2,P3に生じるモーメント力を吸収するために、図5に示すように、受力体3の検出点P1,P2,P3毎にその検出点を中心として所定の範囲を薄肉状としたダイアフラム部3a,3b,3cを設け、このダイアフラム部3a,3b,3cに単軸力センサ2−1,2−2,2−3の端面を接して設けるようにする。   Therefore, in the second embodiment, in order to absorb the moment force generated at the detection points P1, P2, and P3, as shown in FIG. 5, the detection point is set for each of the detection points P1, P2, and P3 of the force receiving body 3. Diaphragm portions 3a, 3b, and 3c having a predetermined thickness as a center are provided, and the diaphragm portions 3a, 3b, and 3c are provided in contact with the end surfaces of the single-axis force sensors 2-1, 2-2, and 2-3. Like that.

この場合、検出点P1,P2,P3に生じるモーメント力は、ダイアフラム部3a,3b,3cの変形によって吸収され、力成分演算部5で求められる受力点Pに作用する検出対象の力のX,Y,Zの各軸方向の力成分Fx,Fy,Fzに誤差が生じ難くなる。   In this case, the moment force generated at the detection points P1, P2, P3 is absorbed by the deformation of the diaphragm portions 3a, 3b, 3c, and the detection target force X acting on the force receiving point P determined by the force component calculation unit 5 is obtained. , Y, Z axial force components Fx, Fy, Fz are less likely to cause errors.

〔実施の形態3〕
実施の形態2では、検出点P1,P2,P3に生じるモーメント力を吸収するために受力体3にダイアフラム部3a,3b,3cを設けたが、図6に示すように、検出点P1,P2,P3にボールジョイント7−1,7−2,7−3を設け、検出点P1,P2,P3に作用するZ軸方向への力をボールジョイント7−1,7−2,7−3を介して単軸力センサ2−1,2−2,2−3によって検出するようにしてもよい。
[Embodiment 3]
In the second embodiment, the diaphragm 3a, 3b, 3c is provided on the force receiving body 3 in order to absorb the moment force generated at the detection points P1, P2, P3. However, as shown in FIG. Ball joints 7-1, 7-2, 7-3 are provided at P2, P3, and the forces in the Z-axis direction acting on the detection points P1, P2, P3 are applied to the ball joints 7-1, 7-2, 7-3. May be detected by the single-axis force sensors 2-1, 2-2, 2-3.

この場合、検出点P1,P2,P3に生じるモーメント力は、ボールジョイント7−1,7−2,7−3の滑りによって吸収され、力成分演算部5で求められる受力点Pに作用する検出対象の力のX,Y,Zの各軸方向の力成分Fx,Fy,Fzに誤差が生じ難くなる。   In this case, the moment force generated at the detection points P 1, P 2, P 3 is absorbed by the slip of the ball joints 7-1, 7-2, 7-3 and acts on the force receiving point P determined by the force component calculation unit 5. Errors are less likely to occur in the force components Fx, Fy, and Fz in the X, Y, and Z axial directions of the force to be detected.

〔実施の形態4〕
図4に示されるように、力伝達体4をワークとし、このワーク4をハンド6で把持して作業を行うような場合、受力点Pを中心とするモーメント力、特にZ軸回りのモーメント力を受けることが考えられる。そこで、実施の形態4では、このようなモーメント力を吸収するために、図7に示すように、ワーク4と受力体3との結合部に回転ジョイント8を設けるようにする。
[Embodiment 4]
As shown in FIG. 4, when the work is performed with the force transmission body 4 as a work and the work 4 is held by the hand 6, the moment force around the force receiving point P, particularly the moment about the Z axis. It is possible to receive power. Therefore, in the fourth embodiment, in order to absorb such moment force, as shown in FIG. 7, a rotary joint 8 is provided at a joint portion between the workpiece 4 and the force receiving body 3.

回転ジョイント8は、回転軸受とスラスト軸受で構成され、Z軸方向の荷重を受けつつ、Z軸周りのモーメント力を受けたときには回転する。これによって、受力点Pを中心とするZ軸回りのモーメント力が吸収され、力成分演算部5で求められる受力点Pに作用する検出対象の力のX,Y,Zの各軸方向の力成分Fx,Fy,Fzに誤差が生じ難くなる。   The rotary joint 8 is composed of a rotary bearing and a thrust bearing, and rotates when receiving a moment force around the Z axis while receiving a load in the Z axis direction. As a result, the moment force around the Z axis centered on the force receiving point P is absorbed, and the X, Y, and Z axial directions of the detection target force acting on the force receiving point P determined by the force component calculation unit 5 An error is less likely to occur in the force components Fx, Fy, and Fz.

なお、実施の形態2(図5)や実施の形態3(図6)においても、実施の形態4と同様に、ワーク4と受力体3との結合部に回転ジョイント8を設けるようにしてもよい。   In the second embodiment (FIG. 5) and the third embodiment (FIG. 6), as in the fourth embodiment, the rotary joint 8 is provided at the joint between the workpiece 4 and the force receiving body 3. Also good.

また、上述した実施の形態1〜4では、受力体3の原点Oを中心とする所定半径rの円周を120゜間隔で分割した点P1,P2,P3を検出点としたが、検出点P1,P2,P3は必ずしも120゜間隔(等角度間隔)で設けなくてもよい。すなわち、検出点P1,P2,P3を所定半径rの円周上に、不等角度間隔で設けるようにしてもよい。また、検出点はP1,P2,P3の3つに限られるものではなく、さらにその数を増やすようにしてもよい。   In the first to fourth embodiments described above, the points P1, P2, and P3 obtained by dividing the circumference of the predetermined radius r around the origin O of the force receiving member 3 at intervals of 120 ° are used as detection points. The points P1, P2, and P3 are not necessarily provided at intervals of 120 ° (equal angular intervals). That is, the detection points P1, P2, and P3 may be provided on the circumference of the predetermined radius r at unequal angular intervals. Further, the number of detection points is not limited to three of P1, P2, and P3, and the number thereof may be further increased.

上記(11)式と(12)式を一般化してX,Y,Zの各成分からFx,Fy,Fzを求めると、下記に示す(20)式が導出できる。この式から、複数の検出点を原点Oの同一平面上に自由に配置しても、理論的には受力点Pの力の3軸成分を求めることが可能である。但し、各検出点でモーメントを生じない事が条件となる。   When Fx, Fy, and Fz are obtained from the X, Y, and Z components by generalizing the above equations (11) and (12), the following equation (20) can be derived. From this equation, even if a plurality of detection points are freely arranged on the same plane of the origin O, the three-axis component of the force at the force receiving point P can theoretically be obtained. However, the condition is that no moment is generated at each detection point.

Figure 2008096240
Figure 2008096240

但し、この(20)式において、力検出点の数:N個、力検出点の座標:(Pnx,Pny,0)、力検出点の力:(fnx,fny,fnz)、受力点Pの座標:(0,0,L),L≠0、受力点Pの力:(Fx,Fy,Fz)、力検出点および受力点P回りのモーメント:0、とする。   However, in this equation (20), the number of force detection points: N, the coordinates of the force detection points: (Pnx, Pny, 0), the force of the force detection points: (fnx, fny, fnz), the force receiving point P Coordinates: (0, 0, L), L ≠ 0, force at force receiving point P: (Fx, Fy, Fz), force detection point and moment around force receiving point P: 0.

本発明に係る力検出装置の一実施の形態の要部を示す平面図および側面図である。It is the top view and side view which show the principal part of one Embodiment of the force detection apparatus which concerns on this invention. この力検出装置における検出点P1,P2,P3の座標位置を示す図である。It is a figure which shows the coordinate position of detection point P1, P2, P3 in this force detection apparatus. この力検出装置における検出点P4の座標位置を示す図である。It is a figure which shows the coordinate position of the detection point P4 in this force detection apparatus. この力検出装置をロボットのアーム部の先端に適用した例(実施の形態1)を示す図である。It is a figure which shows the example (Embodiment 1) which applied this force detection apparatus to the front-end | tip of the arm part of a robot. 受力体の検出点にダイアフラム部を設けた例(実施の形態2)を示す図である。It is a figure which shows the example (Embodiment 2) which provided the diaphragm part in the detection point of the power receiving body. 受力体の検出点にボールジョインとを設けた例(実施の形態3)を示す図である。It is a figure which shows the example (Embodiment 3) which provided the ball join in the detection point of the power receiving body. ワーク(力伝達体)と受力体との結合部に回転ジョインとを設けた例(実施の形態4)を示す図である。It is a figure which shows the example (Embodiment 4) which provided the rotation join in the coupling | bond part of a workpiece | work (force transmission body) and a power receiving body.

符号の説明Explanation of symbols

1…支持体、2(2−1,2−2,2−3)…単軸力センサ、2a…上端面、2b…下端面、3…受力体、3a,3b,3c…ダイアフラム部、4…力伝達体(ワーク)、4a…上端面、4b…下端面、5…力成分演算部、O…結合点(原点)、P(P4)…受力点、P1,P2,P3…検出点、6…ハンド、7(7−1,7−2,7−3)…ボールジョイント、8…回転ジョイント。   DESCRIPTION OF SYMBOLS 1 ... Support body, 2 (2-1, 2-2, 2-3) ... Single-axis force sensor, 2a ... Upper end surface, 2b ... Lower end surface, 3 ... Power receiving body, 3a, 3b, 3c ... Diaphragm part, 4 ... Force transmission body (work), 4a ... Upper end surface, 4b ... Lower end surface, 5 ... Force component calculation unit, O ... Connection point (origin), P (P4) ... Power receiving point, P1, P2, P3 ... Detection Point, 6 ... hand, 7 (7-1, 7-2, 7-3) ... ball joint, 8 ... rotary joint.

Claims (5)

受力点に作用する検出対象の力を力伝達体を介して受ける受力体と、
この受力体と支持体との間に設けられ、前記支持体に対して垂直な方向をZ軸方向として、また前記受力体の前記力伝達体との結合点を中心とする同一平面内の所定半径の円周における3個以上の各点を検出点として、これら各検出点に作用する前記Z軸方向への力のみを検出する力センサと、
前記力センサが検出する力より、所定の演算式を用いて、前記受力点に作用する前記検出対象の力の互いに直交するX,Y,Zの各軸方向の力成分を求める力成分演算手段と
を備えることを特徴とする力検出装置。
A force receiving body that receives a force to be detected acting on the force receiving point via a force transmitting body;
Provided between the force receiving body and the support body, the direction perpendicular to the support body is set as the Z-axis direction, and the force receiving body is within the same plane centering on the coupling point with the force transmitting body. A force sensor for detecting only the force in the Z-axis direction acting on each detection point, with each of three or more points on the circumference of the predetermined radius as detection points;
Force component calculation for obtaining force components in the X, Y, and Z axial directions of the detection target force acting on the force receiving point, which are orthogonal to each other, from a force detected by the force sensor. And a force detecting device.
請求項1に記載された力検出装置において、
前記受力体における各検出点は、前記所定半径の円周を等角度間隔で分割した各点とされている
ことを特徴とする力検出装置。
The force detection device according to claim 1,
Each detection point in the force receiving body is a point obtained by dividing the circumference of the predetermined radius at equal angular intervals.
請求項1に記載された力検出装置において、
前記受力体は、前記検出点毎にその検出点を中心として所定の範囲を薄肉状としたダイアフラム部を有し、
前記力センサは、前記受力体のダイアフラム部にその端面を接して設けられている
ことを特徴とする力検出装置。
The force detection device according to claim 1,
The force receiving body has a diaphragm portion in which a predetermined range is thinned around the detection point for each detection point;
The force sensor is provided such that an end surface thereof is in contact with a diaphragm portion of the force receiving body.
請求項1に記載された力検出装置において、
前記受力体は、前記各検出点にボールジョイントを備え、
前記力センサは、前記検出点に作用する前記Z軸方向への力を前記ボールジョイントを介して検出する
ことを特徴とする力検出装置。
The force detection device according to claim 1,
The force receiving body includes a ball joint at each detection point,
The force sensor detects a force in the Z-axis direction acting on the detection point via the ball joint.
請求項1〜4の何れか1項に記載された力検出装置において、
前記力伝達体と前記受力体との結合部に回転ジョイントが設けられている
ことを特徴とする力検出装置。
In the force detection apparatus described in any one of Claims 1-4,
A force detection device, wherein a rotation joint is provided at a coupling portion between the force transmission body and the force receiving body.
JP2006277279A 2006-10-11 2006-10-11 Force detector Pending JP2008096240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006277279A JP2008096240A (en) 2006-10-11 2006-10-11 Force detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006277279A JP2008096240A (en) 2006-10-11 2006-10-11 Force detector

Publications (1)

Publication Number Publication Date
JP2008096240A true JP2008096240A (en) 2008-04-24

Family

ID=39379236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006277279A Pending JP2008096240A (en) 2006-10-11 2006-10-11 Force detector

Country Status (1)

Country Link
JP (1) JP2008096240A (en)

Similar Documents

Publication Publication Date Title
EP2707684B1 (en) Force sensor
JP5243988B2 (en) Multi-axis force sensor and acceleration sensor
JP6092326B2 (en) Torque sensor
JP4907050B2 (en) Force detection device
JP4909104B2 (en) Force sensor
US8776616B2 (en) Multiaxial force-torque sensors
JP5568771B2 (en) Force detection device
JP2014163815A (en) Force detection device, and robot
JP2008039646A (en) Force sensor chip
WO2016170848A1 (en) Multiaxial force sensor
US8904884B2 (en) Torque sensor
JP2013064706A (en) Sensor
US11781928B2 (en) Torque sensor attachment structure
JP2023534074A (en) Multi-DOF Force/Torque Sensors and Robots
JP2008096240A (en) Force detector
WO2020115982A1 (en) Detecting device
JP2008096230A (en) Strain gauge type sensor
JP2017058337A (en) Inner force sensor
US20050120809A1 (en) Robotic force sensing device
JP2011033607A (en) Force or motion sensor and manufacturing method thereof
JP2008126331A (en) Structure of finger of robot hand, force feeling sensor, and robot hand
CN106932123B (en) A kind of wrist sensor
JP6366760B1 (en) 3-axis force detector
JP2023183228A (en) torque sensor
JP2006105182A (en) Bearing device for wheel