WO2016170848A1 - Multiaxial force sensor - Google Patents

Multiaxial force sensor Download PDF

Info

Publication number
WO2016170848A1
WO2016170848A1 PCT/JP2016/056324 JP2016056324W WO2016170848A1 WO 2016170848 A1 WO2016170848 A1 WO 2016170848A1 JP 2016056324 W JP2016056324 W JP 2016056324W WO 2016170848 A1 WO2016170848 A1 WO 2016170848A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
sensor
axis
pressure sensor
pressure
Prior art date
Application number
PCT/JP2016/056324
Other languages
French (fr)
Japanese (ja)
Inventor
アレクサンダー シュミッツ
ソフォン ソムロア
リチャード ハルタント
重樹 菅野
Original Assignee
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学 filed Critical 学校法人早稲田大学
Publication of WO2016170848A1 publication Critical patent/WO2016170848A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/165Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in capacitance

Definitions

  • the present invention relates to a multi-axis force sensor capable of detecting force components in the multi-axis direction of an applied external force.
  • a robot hand includes a six-axis force sensor that detects translational forces acting in the three orthogonal axes directions and a moment around the three orthogonal axes, and a tactile sensor that detects pressing force and shear force acting on the surface.
  • a six-axis force sensor that detects translational forces acting in the three orthogonal axes directions and a moment around the three orthogonal axes
  • a tactile sensor that detects pressing force and shear force acting on the surface.
  • the six-axis force sensor includes a strain gauge type force sensor and a capacitance type force sensor, as described in Patent Documents 1 and 2.
  • the conventional strain gauge type force sensor has a complicated structure and lacks compactness. Therefore, the degree of freedom of installation is small. For example, many sensors are arranged on a robot arm or robot hand. It is difficult to do. Therefore, Patent Documents 1 and 2 propose a capacitive force sensor as a six-axis force sensor applied to a robot.
  • Patent Document 3 discloses a tactile sensor in which three dielectric layers that react corresponding to the directions of three orthogonal axes are stacked, and two external shearing forces and one compressive force are detected with respect to the applied external force. Has been proposed.
  • the tactile sensor of Patent Document 3 must have three dielectric layers that become anisotropic sensors having different characteristics depending on the deformation in each axial direction, and this stacked structure reduces the size of the sensor. Not only is this difficult to achieve, but the spatial resolution is reduced, making it difficult to obtain a quick response.
  • the present invention has been devised in order to solve the above-described problems, and an object of the present invention is to detect a force component with respect to an external force applied from the surroundings with high accuracy and to make the entire configuration compact.
  • An object of the present invention is to provide a multi-axis force sensor that can be used.
  • the present invention mainly includes a sensor unit provided with a plurality of pressure sensors capable of detecting a pressing force in one direction and an external force that is provided around the sensor unit and acts on the sensor unit.
  • the sensor unit includes: The pressure sensors are arranged so as to be able to detect pressing forces from different directions, and even when an external force is applied to the cover from any of the three orthogonal axes, at least a part of the pressure sensors is used. The configuration is such that the pressure can be detected.
  • FIG. 1, FIG. 3 (A), or FIG. The standard. That is, unless otherwise specified, “front” means the near side in the x-axis direction of the coordinate axes of each figure, “rear” means the same depth side in the x-axis direction, and “right” Means the same right side (front side) in the same y-axis direction, “left” means the same left side (same depth side) in the same y-axis direction, and “upper” means the same in the same z-axis direction. “Lower” means the lower side in the z-axis direction.
  • the detection surfaces of the pressure sensors are arranged on different spaces so that the pressing forces from different directions can be detected.
  • each pressure sensor can be arranged in a compact manner, and a reduction in manufacturing cost can be expected.
  • the detection surfaces of the pressure sensors are set on different spaces so that the pressing force can be detected by at least a part of each pressure sensor. Since it can arrange
  • the pressure sensor is arranged so as to stand upright at a predetermined angle with respect to the base, and in accordance with the external force applied to the cover, the base is separated from the base with the joint portion as a fixed end.
  • a triaxial force sensor for obtaining a triaxial force component consisting of two orthogonal shear forces on a predetermined plane and a pressing force on the predetermined plane.
  • FIG. 1 is an overall configuration diagram including a schematic perspective view of a six-axis force sensor according to a first embodiment.
  • FIG. (A) is the schematic sectional drawing which looked at FIG. 1 from the right side (A direction in the figure)
  • (B) is the schematic sectional drawing which looked at the figure from back (B direction in the figure).
  • (C) is the schematic sectional drawing which looked at the figure from the upper part (A direction in the figure).
  • (A) is a schematic perspective view of the sensor unit which comprises the 6-axis force sensor of FIG. 1
  • (B) is a partial exploded perspective view of (A).
  • the schematic perspective view of the pressure sensor which comprises the said sensor unit.
  • the whole block diagram including the schematic perspective view which decomposed
  • FIG. 6 is a partial cross-sectional view of FIG. 5 viewed from the rear.
  • (A) is a whole block diagram including a schematic perspective view of a three-axis force sensor according to the third embodiment, and
  • (B) is a schematic perspective view of a sensor unit constituting the three-axis force sensor of (A). is there.
  • FIG. 1 shows an overall configuration diagram including a schematic perspective view of a six-axis force sensor according to the first embodiment.
  • FIG. 2 (A) shows FIG. 1 from the right side (A direction in FIG. 1). It is the schematic sectional drawing seen, the figure (B) is the schematic sectional drawing seen from the back (same B direction), and the figure (C) is the schematic sectional view seen from the same upper direction (same A direction) FIG.
  • the 6-axis force sensor 10 is configured to calculate the force component in the 6-axis direction of the applied external force, that is, the respective translational force in the orthogonal 3-axis direction (xyz axis direction in FIG. 1). Each moment around each axis is provided so as to be detectable.
  • the rear end side of the six-axis force sensor 10 is attached to an end effector of a robot such as a robot fingertip or a robot arm (not shown) via a connecting member J. .
  • the six-axis force sensor 10 includes a sensor unit 11 that detects a pressing force for the applied external force in each of the three axis directions, a cover 12 that is disposed so as to surround the outside of the sensor unit 11, and detection of the sensor unit 11. Based on the results, a calculation unit 13 is provided that calculates force components in the six-axis directions of external forces by calculation.
  • the sensor unit 11 is arranged at an inner support 15 (see FIG. 3B) having a T-shaped block shape in plan view and at a plurality of locations on the surface of the inner support 15.
  • the pressure sensor 16 is configured to detect a pressing force in one direction.
  • the internal support 15 is connected to the front at a substantially rectangular center position in the left-right direction of the first part 15A in the shape of a rectangular parallelepiped located on the rear side, and the width in the left-right direction is the first part 15A. And a second portion 15B having a cubic shape formed to be approximately half the size.
  • the pressure sensor 16 includes a lower fixed electrode 18 in FIG. 4 and a movable electrode 19 on the upper side in FIG.
  • a capacitance type pressure sensor having the following is used. That is, in this pressure sensor 16, the movable electrode 19 is arranged with a gap with respect to the fixed electrode 18, and the static electrode corresponding to the difference in the separation distance from the fixed electrode 18 based on the pressing force to the movable electrode 19 is provided. The pressing force can be detected by changing the electric capacity.
  • the movable electrode 19 is made of beryllium copper capable of optimizing sensitivity, and a cylindrical button-shaped protrusion 19A is formed on the surface of the movable electrode 19. Is adopted.
  • the projecting portion 19A displaces the movable electrode 19 substantially parallel to the opposed surface of the fixed electrode 18, so that crosstalk can be minimized.
  • the pressure sensor 16 is fixedly disposed at 12 locations on the outer surface of the internal support 15 so as to be able to detect pressing force from the top, bottom, left, and right and front and rear. .
  • the first and second sensors S1, S2 arranged in two places on the upper surface of the first portion 15A in the left-right direction
  • the third sensor S3 is disposed at one location on the upper surface of the portion 15B.
  • the first and second portions 15A are opposed to the first, second and third sensors S1, S2 and S3.
  • 15B, fourth, fifth and sixth sensors S4, S5, S6 are opposed to the first, second and third sensors S1, S2 and S3.
  • the fourth, fifth and sixth sensors S4, S5, S6 are relatively arranged in the vertical direction
  • the second and fifth sensors S2, S5 are relatively arranged in the vertical direction.
  • the third and sixth sensors S3 and S6 are relatively arranged in the vertical direction.
  • the seventh sensor S7 disposed on the left side surface of the first portion 15A and the left side surface of the second portion 15B are disposed on the left side surface.
  • the first and second portions 15A and 15B are arranged so as to be symmetrical to the seventh and eighth sensors S7 and S8. It is comprised by 9th and 10th sensor S9, S10 arrange
  • the seventh and ninth sensors S7, S9 are relatively arranged in the left-right direction
  • the eighth and tenth sensors S8, S10 are relatively arranged in the left-right direction. ing.
  • the pressure sensor 16 for detecting the pressing force from the front is constituted by an eleventh sensor S11 disposed at one place on the front surface of the second portion 15B.
  • a twelfth sensor disposed at one place on the rear surface of the first portion 15A and disposed symmetrically relative to the eleventh sensor S11.
  • S12 is comprised.
  • the cover 12 is not particularly limited, but has a substantially rectangular parallelepiped outer shape as shown in FIG. 1 and the like, and as shown in FIG. A space 12A is formed to be accommodated in a state where the protrusions 19A (see FIG. 4) of the 11 pressure sensors 16 are in contact with each other. That is, the cover 12 covers the sensor unit 11 while supporting the sensor unit 11 so as not to be relatively movable. Therefore, even when an external force is applied to each outer surface of the cover 12 from any one of the front, rear, left, and right directions, the pressing force based on the external force is detected by any one of the pressure sensors 16.
  • the calculation unit 13 calculates the force component in the six-axis direction of the external force acting on the cover 12 based on the detection result of each pressure sensor 16 according to the following equation.
  • the translational force in the three axes directions of the xyz axis is (Fx, Fy, Fz), and the moment (torque) around the three axes direction is (Mx, My, Mz).
  • the translational force and moment with a minus sign next to the translational force F and moment M represent components in the opposite direction in the axial direction represented by the character.
  • the detection values of the first and fourth sensors S1 and S4 that are opposed in the vertical direction are f 1a and f 1b, and the detection values of the second and fifth sensors S2 and S5 that are opposed in the vertical direction are f 2a
  • the detection values of the seventh and ninth sensors S7 and S9 that are opposite in the left-right direction are f 4a and f 4b
  • the detection values of the eighth and tenth sensors S8 and S10 that are opposite in the left-right direction are f 5a , f 4b .
  • Let f 5b Let f 5b .
  • Ln is a constant for performing adjustment based on the difference in performance. In addition to the adjustment between the sensors, Ln represents the distance of each pressure sensor 16 from a reference point (the center of gravity of the six-axis force sensor 19). This is a constant taken into account. In the following equation, the crosstalk process is omitted.
  • the present embodiment has a configuration of a six-axis force sensor 30 having a shape different from that of the first embodiment. It can be detected.
  • electrostatic pressure sensors 33 having the same principle as the pressure sensor 16 of the first embodiment are arranged on the six surfaces serving as the surfaces of the cubic internal support 32, respectively.
  • the sensor unit 11 is characterized. Although not shown, also in this embodiment, when a cover is covered around the sensor unit 11 and an external force is applied to each outer surface of the cover from one of the front, rear, left, and right directions. In addition, the pressing force based on the external force is detected by any one of the pressure sensors 33.
  • the pressure sensor 33 used in the present embodiment has a shape such that the fixed electrode 18 is divided into two with respect to the pressure sensor 16 used in the first embodiment, and the divided movable electrodes 18 are not mutually separated. It is configured so as to cause interference, and a single pressure sensor 16 is provided to allow moment measurement.
  • the pressure sensor 33 disposed on the upper surface of the internal support 32 detects a pressing force from above.
  • the pressure sensor 33 is arranged in a direction in which the fixed electrode 18 is divided into left and right.
  • a portion where a signal is detected by the left fixed electrode 18 is referred to as a first sensor S1
  • the right sensor A portion where a signal is detected by the fixed electrode 18 is referred to as a second sensor S2.
  • the pressure sensor 33 disposed on the lower surface of the internal support 32 detects a pressing force from below.
  • the pressure sensor 33 here is also arranged in a direction in which the fixed electrode 18 is divided into left and right.
  • a portion where a signal is detected by the left fixed electrode 18 is referred to as a third sensor S3, A portion where a signal is detected by the fixed electrode 18 is referred to as a fourth sensor S4.
  • the first and third sensors S1, S3 are relatively arranged in the vertical direction
  • the second and fourth sensors S2, S4 are relatively arranged in the vertical direction.
  • the pressure sensor 33 disposed on the left side surface of the internal support 32 detects a pressing force from the left side.
  • the pressure sensor 33 is arranged in a direction in which the fixed electrode 18 is divided into the front and the rear.
  • a portion where a signal is detected by the front fixed electrode 18 is referred to as a fifth sensor S5, and the rear side.
  • a portion where a signal is detected by the fixed electrode 18 is referred to as a sixth sensor S6.
  • the pressure sensor 33 disposed on the right side surface of the internal support 32 detects a pressing force from the right side.
  • the pressure sensor 33 here is also arranged in a direction in which the fixed electrode 18 is divided into the front and the rear.
  • a portion where a signal is detected by the front fixed electrode 18 is referred to as a seventh sensor S7.
  • a portion where a signal is detected by the fixed electrode 18 is referred to as an eighth sensor S8.
  • the fifth and seventh sensors S5, S7 are relatively arranged in the left-right direction
  • the sixth and eighth sensors S6, S8 are relatively arranged in the left-right direction.
  • the pressure sensor 33 disposed on the front surface of the internal support 32 detects a pressing force from the front.
  • the pressure sensor 33 is arranged in a direction in which the fixed electrode 18 is vertically divided.
  • a portion where a signal is detected by the upper fixed electrode 18 is referred to as a ninth sensor S9.
  • a portion where a signal is detected by the fixed electrode 18 is referred to as a tenth sensor S10.
  • the pressure sensor 33 disposed on the rear surface of the internal support 32 detects a pressing force from the rear.
  • the pressure sensor 33 is disposed so as to penetrate the connecting member J having a U-shape in plan view and exposed to the inside thereof, and is disposed in a direction in which the fixed electrode 18 is divided vertically.
  • a portion where a signal is detected by the upper fixed electrode 18 is referred to as an eleventh sensor S11
  • a portion where a signal is detected by the lower fixed electrode 18 is referred to as a twelfth sensor S12.
  • the ninth and eleventh sensors S9 and S11 are relatively disposed in the front-rear direction
  • the tenth and twelfth sensors S10 and S12 are relatively disposed in the front-rear direction.
  • the force components in the six-axis directions of the external force acting on the cover are calculated using the detection result of each pressure sensor 33 according to the following equation.
  • the translational force in the three axis directions and the moments about the same axis are represented by the same characters as described in the first embodiment, and the translational force in the three axis directions of the xyz axis is expressed as (Fx , Fy, Fz), and the moment (torque) around the three axis directions is (Mx, My, Mz).
  • the detection values of the first and third sensors S1, S3 facing in the vertical direction are f 1a , f 1b
  • the detection values of the second and fourth sensors S2, S4 facing in the vertical direction are f 2a
  • Let f2b Let f2b .
  • the detection values of the fifth and seventh sensors S5 and S7 facing in the left-right direction are f 3a and f 3b
  • the detection values of the sixth and eighth sensors S6 and S8 facing in the left-right direction are f 4a , f 3b
  • Let f4b the detection values of the ninth and eleventh sensors S9, S11 that are opposed in the front-rear direction
  • the detection values of the tenth and twelfth sensors S10, S12 that are opposed in the front-rear direction are f 6a
  • Let f6b Furthermore, Kn and Ln are the constants described in the first embodiment.
  • the present embodiment uses a pressure sensor 16 having a structure substantially the same as that of the first embodiment, as shown in FIGS. 7 (A) and FIG. 8 is characterized in that a three-axis force sensor 40 capable of detecting a shear force in the x-axis direction and the y-axis direction) and a pressing force in the z-axis direction in FIG.
  • the triaxial force sensor 40 is used as, for example, a tactile sensor disposed on the surface of a robot arm or the like.
  • the triaxial force sensor 40 includes a sensor unit 41 that detects the magnitude of the applied external force in a predetermined direction, a rubber cover 42 that is disposed so as to surround the outside of the sensor unit 41, and is elastically deformable, and a sensor. Based on the detection result of the unit 41, there is provided a calculation unit 43 that calculates the shear force in the biaxial direction and the pressing force on the xy axis plane by calculation.
  • the sensor unit 41 of the present embodiment has a predetermined angle (for example, 45 degrees) for each of the pressure sensors 16 at a plurality of portions of the base 45 disposed on the lower side in the figure. It is supported by standing up. Further, when an external force is applied from any direction around the cover 42, each pressure sensor 16 elastically deforms the cover 42 with the external force, so that the joint portion with the base 45 serves as a fixed end. It is arranged so as to be elastically displaceable in a direction approaching and separating from 45.
  • a predetermined angle for example, 45 degrees
  • the pressure sensor 16 is disposed in the first to fourth regions A1 to A4 obtained by dividing the upper surface of the base 45, which has a substantially rectangular shape in plan view, into four, and the inclination directions are different from each other. That is, the pressure sensor 16 is provided so as to be displaceable in opposite directions by external forces acting on the cover 42 in each of the two orthogonal axes (x-axis and y-axis directions).
  • two pressure sensors 16, 16 are arranged in parallel to each other.
  • First and second sensors S1, S2 are arranged in the first area A1 at the upper left in FIG. 8 so as to incline to the left in the figure.
  • third and fourth sensors S3 and S4 are arranged so as to incline upward in the figure.
  • fifth and sixth sensors S5 and S6 are arranged in the third area A3 at the lower left in the figure so as to incline downward in the figure.
  • seventh and eighth sensors S7 and S8 are arranged so as to incline to the right in the figure. That is, the pressure sensors 16 and 16 arranged in the first and fourth regions A1 and A4 are arranged point-symmetrically with respect to the center of the base 45, and when an external force compressing the cover 42 is applied, FIG.
  • the pressure sensors 16 and 16 arranged in the second and third regions A2 and A3 are also arranged point-symmetrically with respect to the center of the base 45, and when an external force that compresses the cover 42 is applied, They are tilted in opposite directions along the vertical direction (y-axis direction), which is the middle / up / down direction.
  • the pressure sensor 16 When the pressure sensor 16 is displaced with respect to the base 45 according to the external force acting on the cover 42 and the external force does not act on the cover 42, the pressure sensor 16 elastically returns to the original posture before the external force action. It is like that.
  • the pressure sensors 16 in the first to fourth regions A1 to A4 move toward the base 45. It falls down with the same amount of displacement, and the same detection value is obtained for all.
  • a shearing force acts on the upper surface of the cover 42 in the xy-axis direction
  • the pressure sensors 16 in the first to fourth regions A1 to A4 are inclined in the shearing force acting direction.
  • the pressure sensor 16 is the maximum amount of displacement.
  • the three-axis direction consisting of the shearing force in the xy-axis direction and the pressing force (compression force) in the z-axis direction is used.
  • the force component can be detected.
  • the force component in the three-axis direction of the external force acting on the cover 42 is calculated using the detection result of each pressure sensor 16 according to the following equation.
  • one detection value is specified for each of the first to fourth regions A1 to A4 from the detection value of the pressure sensor 16 provided in each of the first to fourth regions A1 to A4. .
  • This specification is performed based on preset processing such as an average value, a maximum value, a minimum value, and the like of each of the two pressure sensors 16 and 16.
  • the pressure sensors 16 provided in each of the regions A1 to A4 can be one each, or three or more.
  • the plurality of pressure sensors 16 are inclinedly arranged in the same direction for each of the first to fourth regions A1 to A4, more pressure sensors are provided in a limited region of the base 45. 16 can be arranged, and the sensor can be compact and have high spatial resolution.
  • the shearing force in the x-axis direction is Fx
  • the shearing force in the y-axis direction is Fy
  • the pressing force in the z-axis direction is Fz.
  • the detected values of the pressure sensor 16 in the first, second, third, and fourth regions A1, A2, A3, and A4 are defined as f 1 , f 2 , f 3 , and f 4 .
  • the pressure sensor in the present invention is not limited to the beryllium copper capacitive pressure sensor 16 of each of the embodiments described above, and various pressure sensors can be used as long as a pressing force in one direction can be similarly detected. be able to.
  • the pressure sensor 16 a structure in which the movable electrodes 19, 19 are arranged on the upper and lower surfaces of the fixed electrode 18 in FIG. In this case, since the detection values from the two movable electrodes 19 and 19 can be used at one place, the sensitivity can be doubled.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

The purpose of the present invention is to provide a multiaxial force sensor that can accurately detect force components with respect to an external force applied from the periphery, and that can make the overall constitution compact. A six-axis force sensor 10 comprises a sensor unit 11 in which a plurality of pressure sensors 16 capable of detecting a pressing force in one direction are provided, a cover 12 that is provided at the periphery of the sensor unit 11 and that is constituted to be capable of transmitting an applied external force to the sensor unit 11, and a calculation unit 13 that finds by calculation the force components of an external force in a plurality of axis directions on the basis of the detection value from each pressure sensor 16. Each pressure sensor 16 is arranged in a manner capable of detecting a pressing force from a mutually different direction, and the sensor unit 11 is provided in a manner capable of detecting a pressing force by at least some of the pressure sensors 16 even when an external force is applied to the cover 12 in any of the orthogonal three-axis directions.

Description

多軸力センサMulti-axis force sensor
 本発明は、作用した外力の多軸方向の力成分を検出可能な多軸力センサに関する。 The present invention relates to a multi-axis force sensor capable of detecting force components in the multi-axis direction of an applied external force.
 近時において、人間と共生するロボットの実用化が進められているが、当該ロボットは、人間との行動範囲が重複するため、人間との接触による安全性を確保することが重要になる。そこで、例えば、ロボットハンドには、直交3軸方向にそれぞれ作用する並進力や当該直交3軸周りのモーメントを検出する6軸力センサや、表面に作用する押圧力やせん断力を検出する触覚センサ等が適宜配置され、当該6軸力センサや触覚センサの検出値に基づいて、ロボットハンドに人間や物体が接触した際のロボットハンドの動作制御を行っている。 Recently, robots that coexist with human beings have been put into practical use. However, since the robots have overlapping action ranges with humans, it is important to ensure safety by contact with humans. Therefore, for example, a robot hand includes a six-axis force sensor that detects translational forces acting in the three orthogonal axes directions and a moment around the three orthogonal axes, and a tactile sensor that detects pressing force and shear force acting on the surface. Are appropriately arranged, and based on the detection values of the six-axis force sensor and the tactile sensor, operation control of the robot hand when a human or an object contacts the robot hand is performed.
 前記6軸力センサとしては、特許文献1、2にも記載されているように、ひずみゲージ式の力センサと静電容量式の力センサとがある。これら各文献に記載されている通り、従来のひずみゲージ式の力センサでは、構造が複雑になるためコンパクトさに欠けることから、設置の自由度が少なく、例えば、ロボットアームやロボットハンドに多数配置することは困難である。そこで、特許文献1、2には、ロボットに適用される6軸力センサとして、静電容量式の力センサが提案されている。 The six-axis force sensor includes a strain gauge type force sensor and a capacitance type force sensor, as described in Patent Documents 1 and 2. As described in each of these documents, the conventional strain gauge type force sensor has a complicated structure and lacks compactness. Therefore, the degree of freedom of installation is small. For example, many sensors are arranged on a robot arm or robot hand. It is difficult to do. Therefore, Patent Documents 1 and 2 propose a capacitive force sensor as a six-axis force sensor applied to a robot.
 また、特許文献3には、直交3軸の各軸方向に対応して反応する誘電層を3層積層し、作用する外力につき、2方向のせん断力と1方向の圧縮力を検出する触覚センサが提案されている。 Patent Document 3 discloses a tactile sensor in which three dielectric layers that react corresponding to the directions of three orthogonal axes are stacked, and two external shearing forces and one compressive force are detected with respect to the applied external force. Has been proposed.
特開2012-145497号公報JP 2012-145497 A 特開2007-108079号公報JP 2007-108079 A 特開2012-247297号公報JP 2012-247297 A
 しかしながら、前記特許文献1に係る力センサにあっては、その構造上、作用した外力に応じて静電容量を変化させる電極部分の変位幅を大きく確保する必要があり、このことが、検出値の正確な取得の阻害要因となる。また、前記特許文献2に係る力センサにあっては、各種センサや球体等が複雑に配置されており、コンパクトな構成とすることができない。しかも、センサへの外力の作用部が板状(同文献における上板2)になっており、上板2に作用した外力に対する6軸方向の力成分しか検出できず、上板2を除く周囲から作用した外力に対する6軸方向の力成分を検出することができない。 However, in the force sensor according to Patent Document 1, it is necessary to ensure a large displacement width of the electrode portion that changes the capacitance according to the applied external force due to the structure, and this is a detection value. This is an obstacle to accurate acquisition. Moreover, in the force sensor according to Patent Document 2, various sensors, spheres, and the like are arranged in a complicated manner, and a compact configuration cannot be obtained. In addition, the action part of the external force to the sensor is plate-shaped (upper plate 2 in the same document), and only the six-axis direction force component with respect to the external force acting on the upper plate 2 can be detected. It is not possible to detect force components in the 6-axis direction with respect to the external force applied from.
 また、前記特許文献3の触覚センサは、各軸方向の変形に応じて異なる特性の異方性センサとなる誘電層を3層積層しなければならず、この積層構造により、センサの小型化を実現しにくくなるばかりか、空間分解能が低下し、素早い反応が得られにくい。 In addition, the tactile sensor of Patent Document 3 must have three dielectric layers that become anisotropic sensors having different characteristics depending on the deformation in each axial direction, and this stacked structure reduces the size of the sensor. Not only is this difficult to achieve, but the spatial resolution is reduced, making it difficult to obtain a quick response.
 本発明は、以上の課題を解決するために案出されたものであり、その目的は、周囲から作用した外力に対する力成分を高精度に検出することができ、且つ、全体構成をコンパクトにすることができる多軸力センサを提供することにある。 The present invention has been devised in order to solve the above-described problems, and an object of the present invention is to detect a force component with respect to an external force applied from the surroundings with high accuracy and to make the entire configuration compact. An object of the present invention is to provide a multi-axis force sensor that can be used.
 前記目的を達成するため、本発明は、主として、1方向の押圧力を検出可能な圧力センサを複数設けてなるセンサユニットと、当該センサユニットの周囲に設けられ、作用した外力を前記センサユニットに伝達可能に構成されたカバーと、前記各圧力センサからの検出値に基づき、前記外力の複数軸方向の力成分を演算により求める演算部とを備えた多軸力センサにおいて、前記センサユニットは、相互に異なる方向からの押圧力を検出可能に前記各圧力センサが配置され、前記カバーに直交3軸方向の何れの方向から外力が作用したときでも、前記各圧力センサの少なくとも一部で前記押圧力を検出可能に設けられる、という構成を採っている。 In order to achieve the above object, the present invention mainly includes a sensor unit provided with a plurality of pressure sensors capable of detecting a pressing force in one direction and an external force that is provided around the sensor unit and acts on the sensor unit. In the multi-axis force sensor comprising a cover configured to be able to transmit and a calculation unit for calculating force components in a plurality of axial directions of the external force based on detection values from the pressure sensors, the sensor unit includes: The pressure sensors are arranged so as to be able to detect pressing forces from different directions, and even when an external force is applied to the cover from any of the three orthogonal axes, at least a part of the pressure sensors is used. The configuration is such that the pressure can be detected.
 なお、本特許請求の範囲及び本明細書において、特に明示しない限り、位置或いは方向を表す用語として、全て同一方向に多軸力センサを表示した図1、図3(A)、或いは図5を基準とする。すなわち、特に明示しない限り、「前」は、各図の座標軸のうちx軸方向における図中手前側を意味し、「後」は、同x軸方向における同奥行側を意味し、「右」は、同y軸方向における同右側(同手前側)を意味し、「左」は、同y軸方向における同左側(同奥行側)を意味し、「上」は、同z軸方向における同上側を意味し、「下」は、同z軸方向における同下側を意味する。 In the claims and the present specification, unless otherwise specified, as a term representing a position or direction, FIG. 1, FIG. 3 (A), or FIG. The standard. That is, unless otherwise specified, “front” means the near side in the x-axis direction of the coordinate axes of each figure, “rear” means the same depth side in the x-axis direction, and “right” Means the same right side (front side) in the same y-axis direction, “left” means the same left side (same depth side) in the same y-axis direction, and “upper” means the same in the same z-axis direction. “Lower” means the lower side in the z-axis direction.
 本発明によれば、1方向の押圧力を検出可能な圧力センサを複数配置する際、相互に異なる方向からの押圧力を検出可能となるように、圧力センサにおける検出面を相互に異なる空間上の面に配置することができ、これにより各圧力センサのコンパクトな配置が可能となり、製造コストの低廉化が期待できる。また、この構成により、特許文献1の力センサのように電極部分の変位幅を大きく確保する必要がなくなり、当該力センサに比べ、感受性を向上させることができる。また、カバーに直交3軸方向の何れの方向から外力が作用したときでも、各圧力センサの少なくとも一部で押圧力を検出可能とするように、圧力センサにおける検出面を相互に異なる空間上の面に配置できるため、センサユニットの周囲の空間から作用した外力に対する力成分を高精度に検出することができる。 According to the present invention, when a plurality of pressure sensors capable of detecting a pressing force in one direction are arranged, the detection surfaces of the pressure sensors are arranged on different spaces so that the pressing forces from different directions can be detected. Thus, each pressure sensor can be arranged in a compact manner, and a reduction in manufacturing cost can be expected. Also, with this configuration, it is not necessary to ensure a large displacement width of the electrode portion as in the force sensor of Patent Document 1, and sensitivity can be improved compared to the force sensor. In addition, even when an external force is applied to the cover from any of the three orthogonal axes, the detection surfaces of the pressure sensors are set on different spaces so that the pressing force can be detected by at least a part of each pressure sensor. Since it can arrange | position to a surface, the force component with respect to the external force which acted from the space around a sensor unit can be detected with high precision.
 更に、圧力センサが、ベースに対して所定の角度で傾斜した状態で起立するように配置されるとともに、カバーに作用した外力に応じて、ベースとの接合部分を固定端として当該ベースに離間接近する方向に変位可能に配置される構造となっているため、所定平面上の直交2軸のせん断力と、当該所定平面に対する押圧力とからなる3軸方向の力成分を求める3軸力センサとして、コンパクトな構成にすることができ、製造コストの低廉化が期待できる。 Furthermore, the pressure sensor is arranged so as to stand upright at a predetermined angle with respect to the base, and in accordance with the external force applied to the cover, the base is separated from the base with the joint portion as a fixed end. As a triaxial force sensor for obtaining a triaxial force component consisting of two orthogonal shear forces on a predetermined plane and a pressing force on the predetermined plane. Thus, a compact configuration can be achieved, and a reduction in manufacturing cost can be expected.
第1実施形態に係る6軸力センサの概略斜視図を含む全体構成図。1 is an overall configuration diagram including a schematic perspective view of a six-axis force sensor according to a first embodiment. FIG. (A)は、図1を右側方(同図中A方向)から見た概略断面図であり、(B)は、同図を後方(同図中B方向)から見た概略断面図であり、(C)は、同図を上方(同図中A方向)から見た概略断面図である。(A) is the schematic sectional drawing which looked at FIG. 1 from the right side (A direction in the figure), (B) is the schematic sectional drawing which looked at the figure from back (B direction in the figure). (C) is the schematic sectional drawing which looked at the figure from the upper part (A direction in the figure). (A)は、図1の6軸力センサを構成するセンサユニットの概略斜視図であり、(B)は、(A)の一部分解斜視図である。(A) is a schematic perspective view of the sensor unit which comprises the 6-axis force sensor of FIG. 1, (B) is a partial exploded perspective view of (A). 前記センサユニットを構成する圧力センサの概略斜視図。The schematic perspective view of the pressure sensor which comprises the said sensor unit. 第2実施形態に係る6軸力センサの一部を分解した概略斜視図を含む全体構成図。The whole block diagram including the schematic perspective view which decomposed | disassembled some 6-axis force sensors which concern on 2nd Embodiment. 図5を後方から見た一部断面図。FIG. 6 is a partial cross-sectional view of FIG. 5 viewed from the rear. (A)は、第3実施形態に係る3軸力センサの概略斜視図を含む全体構成図であり、(B)は、(A)の3軸力センサを構成するセンサユニットの概略斜視図である。(A) is a whole block diagram including a schematic perspective view of a three-axis force sensor according to the third embodiment, and (B) is a schematic perspective view of a sensor unit constituting the three-axis force sensor of (A). is there. 図7のセンサユニットの概略平面図。The schematic plan view of the sensor unit of FIG.
 以下、本発明の実施形態について図面を参照しながら説明する。
 (第1実施形態)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
 図1には、第1実施形態に係る6軸力センサの概略斜視図を含む全体構成図が示されており、図2(A)は、図1を右側方(図1中A方向)から見た概略断面図であり、同図(B)は、同後方(同B方向)から見た概略断面図であり、同図(C)は、同上方(同A方向)から見た概略断面図である。これらの図において、前記6軸力センサ10は、作用した外力について、6軸方向の力成分、すなわち、直交3軸方向(図1中、x-y-z軸方向)におけるそれぞれの並進力と当該各軸周りのそれぞれのモーメントとを検出可能に設けられている。なお、特に限定されるものではないが、本実施形態では、6軸力センサ10は、その後端側が、連結部材Jを介して図示しないロボットの指先やロボットアーム等のロボットのエンドエフェクターに取り付けられる。 FIG. 1 shows an overall configuration diagram including a schematic perspective view of a six-axis force sensor according to the first embodiment. FIG. 2 (A) shows FIG. 1 from the right side (A direction in FIG. 1). It is the schematic sectional drawing seen, the figure (B) is the schematic sectional drawing seen from the back (same B direction), and the figure (C) is the schematic sectional view seen from the same upper direction (same A direction) FIG. In these drawings, the 6-axis force sensor 10 is configured to calculate the force component in the 6-axis direction of the applied external force, that is, the respective translational force in the orthogonal 3-axis direction (xyz axis direction in FIG. 1). Each moment around each axis is provided so as to be detectable. Although not particularly limited, in this embodiment, the rear end side of the six-axis force sensor 10 is attached to an end effector of a robot such as a robot fingertip or a robot arm (not shown) via a connecting member J. .
 この6軸力センサ10は、作用した外力について、前記3軸方向毎に押圧力を検出するセンサユニット11と、センサユニット11の外側を囲むように配置されたカバー12と、センサユニット11の検出結果に基づき、外力の6軸方向の力成分を演算により求める演算部13とを備えている。 The six-axis force sensor 10 includes a sensor unit 11 that detects a pressing force for the applied external force in each of the three axis directions, a cover 12 that is disposed so as to surround the outside of the sensor unit 11, and detection of the sensor unit 11. Based on the results, a calculation unit 13 is provided that calculates force components in the six-axis directions of external forces by calculation.
 前記センサユニット11は、図3にも示されるように、平面視T字のブロック形状をなす内部支持体15(同図(B)参照)と、内部支持体15の表面複数箇所に配置されるとともに、1方向の押圧力を検出可能な圧力センサ16とにより構成されている。 As shown in FIG. 3, the sensor unit 11 is arranged at an inner support 15 (see FIG. 3B) having a T-shaped block shape in plan view and at a plurality of locations on the surface of the inner support 15. In addition, the pressure sensor 16 is configured to detect a pressing force in one direction.
 前記内部支持体15は、後側に位置する直方体状の第1の部分15Aと、第1の部分15Aの左右方向のほぼ中央位置で前方に連なるとともに、左右方向の幅が第1の部分15Aのほぼ半分のサイズに形成された立方体状の第2の部分15Bとからなる。 The internal support 15 is connected to the front at a substantially rectangular center position in the left-right direction of the first part 15A in the shape of a rectangular parallelepiped located on the rear side, and the width in the left-right direction is the first part 15A. And a second portion 15B having a cubic shape formed to be approximately half the size.
 前記圧力センサ16は、図4に示されるように、同図中下側の固定電極18と、作用した押圧力に応じて固定電極18に離間接近可能に変位する同図中上側の可動電極19とを備えた静電容量式の圧力センサが用いられている。すなわち、この圧力センサ16では、可動電極19が、固定電極18に対して隙間を隔てて配置されており、可動電極19への押圧力に基づく固定電極18との離間距離の差に応じた静電容量の変化により、押圧力を検出可能になっている。特に限定されるものではないが、本実施形態では、可動電極19としては、感受性を最適化できるベリリウム銅製のものが用いられ、可動電極19の表面に、円柱ボタン状の突部19Aが形成されたものが採用されている。この突部19Aにより、固定電極18の対向面にほぼ平行に可動電極19が変位することになり、クロストークの最小化が可能になる。 As shown in FIG. 4, the pressure sensor 16 includes a lower fixed electrode 18 in FIG. 4 and a movable electrode 19 on the upper side in FIG. A capacitance type pressure sensor having the following is used. That is, in this pressure sensor 16, the movable electrode 19 is arranged with a gap with respect to the fixed electrode 18, and the static electrode corresponding to the difference in the separation distance from the fixed electrode 18 based on the pressing force to the movable electrode 19 is provided. The pressing force can be detected by changing the electric capacity. Although not particularly limited, in this embodiment, the movable electrode 19 is made of beryllium copper capable of optimizing sensitivity, and a cylindrical button-shaped protrusion 19A is formed on the surface of the movable electrode 19. Is adopted. The projecting portion 19A displaces the movable electrode 19 substantially parallel to the opposed surface of the fixed electrode 18, so that crosstalk can be minimized.
 この圧力センサ16は、図2及び図3に示されるように、上下、左右、前後からの押圧力をそれぞれ検出可能となるように、内部支持体15の外面の12箇所に固定配置されている。 As shown in FIGS. 2 and 3, the pressure sensor 16 is fixedly disposed at 12 locations on the outer surface of the internal support 15 so as to be able to detect pressing force from the top, bottom, left, and right and front and rear. .
 具体的に、上方からの押圧力を検出する圧力センサ16としては、第1の部分15Aの上面に左右方向に並んで2箇所配置された第1、第2のセンサS1,S2と、第2の部分15Bの上面に1箇所配置された第3のセンサS3とにより構成されている。一方、それと逆方向になる下方からの押圧力を検出する圧力センサ16としては、第1、第2及び第3のセンサS1,S2,S3に相対するように、第1及び第2の部分15A,15Bの下面に配置された第4、第5及び第6のセンサS4,S5,S6により構成されている。ここで、図2(B)に主として示されるように、第1及び第4のセンサS1,S4が上下方向に相対配置され、第2及び第5のセンサS2,S5が上下方向に相対配置され、同図(A)に主として示されるように、第3及び第6のセンサS3,S6が上下方向に相対配置されている。 Specifically, as the pressure sensor 16 for detecting the pressing force from above, the first and second sensors S1, S2 arranged in two places on the upper surface of the first portion 15A in the left-right direction, The third sensor S3 is disposed at one location on the upper surface of the portion 15B. On the other hand, as the pressure sensor 16 for detecting the pressing force from below in the opposite direction, the first and second portions 15A are opposed to the first, second and third sensors S1, S2 and S3. , 15B, fourth, fifth and sixth sensors S4, S5, S6. Here, as mainly shown in FIG. 2B, the first and fourth sensors S1, S4 are relatively arranged in the vertical direction, and the second and fifth sensors S2, S5 are relatively arranged in the vertical direction. As mainly shown in FIG. 5A, the third and sixth sensors S3 and S6 are relatively arranged in the vertical direction.
 また、左方からの押圧力を検出する圧力センサ16としては、第1の部分15Aの左側面1箇所に配置された第7のセンサS7と、第2の部分15Bの左側面1箇所に配置されるとともに、第7のセンサS7に対して段差を介して前方に配置される第8のセンサS8とにより構成されている。一方、逆方向となる右方からの押圧力を検出する圧力センサ16としては、第7及び第8のセンサS7,S8に左右対称に相対するように、第1及び第2の部分15A,15Bの右側面の各1箇所に段差を介して配置された第9及び第10のセンサS9,S10により構成されている。ここで、図2(C)に主として示されるように、第7及び第9のセンサS7,S9が左右方向に相対配置され、第8及び第10のセンサS8,S10が左右方向に相対配置されている。 Further, as the pressure sensor 16 for detecting the pressing force from the left side, the seventh sensor S7 disposed on the left side surface of the first portion 15A and the left side surface of the second portion 15B are disposed on the left side surface. And an eighth sensor S8 disposed in front of the seventh sensor S7 through a step. On the other hand, as the pressure sensor 16 for detecting the pressing force from the right side which is the opposite direction, the first and second portions 15A and 15B are arranged so as to be symmetrical to the seventh and eighth sensors S7 and S8. It is comprised by 9th and 10th sensor S9, S10 arrange | positioned through each level | step difference on each right side. Here, as mainly shown in FIG. 2C, the seventh and ninth sensors S7, S9 are relatively arranged in the left-right direction, and the eighth and tenth sensors S8, S10 are relatively arranged in the left-right direction. ing.
 更に、前方からの押圧力を検出する圧力センサ16としては、第2の部分15Bの前面1箇所に配置された第11のセンサS11により構成されている。一方、逆方向となる後方からの押圧力を検出する圧力センサ16としては、第1の部分15Aの後面1箇所に配置され、第11のセンサS11と前後対称に相対配置された第12のセンサS12により構成されている。 Furthermore, the pressure sensor 16 for detecting the pressing force from the front is constituted by an eleventh sensor S11 disposed at one place on the front surface of the second portion 15B. On the other hand, as the pressure sensor 16 for detecting the pressing force from the rear in the reverse direction, a twelfth sensor disposed at one place on the rear surface of the first portion 15A and disposed symmetrically relative to the eleventh sensor S11. S12 is comprised.
 前記カバー12は、特に限定されるものではないが、図1等に示されるように、ほぼ直方体状の外形をなし、また、図2に示されるように、カバー12の内部には、センサユニット11の各圧力センサ16の突部19A(図4参照)が接触した状態で収容される空間12Aが形成されている。すなわち、カバー12は、センサユニット11を相対移動不能に支持しながら、センサユニット11を被覆するようになっている。従って、カバー12の各外面に対し、前後、左右、上下の何れかの方向から外力が作用したときでも、当該外力に基づく押圧力が各圧力センサ16の何れかで検出されることになる。 The cover 12 is not particularly limited, but has a substantially rectangular parallelepiped outer shape as shown in FIG. 1 and the like, and as shown in FIG. A space 12A is formed to be accommodated in a state where the protrusions 19A (see FIG. 4) of the 11 pressure sensors 16 are in contact with each other. That is, the cover 12 covers the sensor unit 11 while supporting the sensor unit 11 so as not to be relatively movable. Therefore, even when an external force is applied to each outer surface of the cover 12 from any one of the front, rear, left, and right directions, the pressing force based on the external force is detected by any one of the pressure sensors 16.
 前記演算部13では、各圧力センサ16の検出結果に基づき、次式により、カバー12に作用した外力の6軸方向の力成分が演算される。 The calculation unit 13 calculates the force component in the six-axis direction of the external force acting on the cover 12 based on the detection result of each pressure sensor 16 according to the following equation.
 以下の式において、x-y-z軸の3軸方向の並進力を(Fx,Fy,Fz)とし、同3軸方向の周りのモーメント(トルク)を(Mx,My,Mz)とする。なお、並進力F及びモーメントMの次にマイナスを付した並進力及びモーメントは、当該文字が表す軸方向における反対方向の成分を表す。また、上下方向に相対する第1及び第4のセンサS1,S4の検出値をf1a,f1bとし、上下方向に相対する第2及び第5のセンサS2,S5の検出値をf2a,f2bとし、上下方向に相対する第3及び第6のセンサS3,S6の検出値をf3a,f3bとする。また、左右方向に相対する第7及び第9のセンサS7,S9の検出値をf4a,f4bとし、左右方向に相対する第8及び第10のセンサS8,S10の検出値をf5a,f5bとする。更に、前後方向に相対する第11及び第12のセンサS11,S12の検出値をf6a,f6bとする。更に、Kn(n=1、2・・・)、Ln(n=1、2・・・)は、予め設定されて演算部13に記憶された定数であり、Knは、各圧力センサ16の性能の差異に基づく調整等を行うための定数であり、Lnは、当該各センサ間の調整の他に、基準地点(6軸力センサ19の重心等)からの各圧力センサ16の距離等を考慮した定数である。なお、次式では、クロストークの処理を省略している。 In the following expression, the translational force in the three axes directions of the xyz axis is (Fx, Fy, Fz), and the moment (torque) around the three axes direction is (Mx, My, Mz). Note that the translational force and moment with a minus sign next to the translational force F and moment M represent components in the opposite direction in the axial direction represented by the character. The detection values of the first and fourth sensors S1 and S4 that are opposed in the vertical direction are f 1a and f 1b, and the detection values of the second and fifth sensors S2 and S5 that are opposed in the vertical direction are f 2a , Let f 2b be the detection values of the third and sixth sensors S3 and S6 facing in the up-down direction, f 3a and f 3b . The detection values of the seventh and ninth sensors S7 and S9 that are opposite in the left-right direction are f 4a and f 4b, and the detection values of the eighth and tenth sensors S8 and S10 that are opposite in the left-right direction are f 5a , f 4b . Let f 5b . Furthermore, detection values of the eleventh and twelfth sensors S11 and S12 facing in the front-rear direction are set to f 6a and f 6b . Furthermore, Kn (n = 1, 2,...) And Ln (n = 1, 2,...) Are constants that are set in advance and stored in the calculation unit 13, and Kn is the value of each pressure sensor 16. Ln is a constant for performing adjustment based on the difference in performance. In addition to the adjustment between the sensors, Ln represents the distance of each pressure sensor 16 from a reference point (the center of gravity of the six-axis force sensor 19). This is a constant taken into account. In the following equation, the crosstalk process is omitted.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 次に、本発明の他の実施形態について説明する。なお、以下の説明において、前記第1実施形態と同一若しくは同等の構成部分については同一符号を用いるものとし、説明を省略若しくは簡略にする。 Next, another embodiment of the present invention will be described. In the following description, the same reference numerals are used for the same or equivalent components as in the first embodiment, and the description is omitted or simplified.
(第2実施形態)
 本実施形態は、図5及び図6に示されるように、第1実施形態に対して形状の異なる6軸力センサ30の構成とし、第1実施形態と同様に、6軸方向の力成分を検出可能としたものである。
(Second Embodiment)
As shown in FIGS. 5 and 6, the present embodiment has a configuration of a six-axis force sensor 30 having a shape different from that of the first embodiment. It can be detected.
 前記6軸力センサ30は、立方体状の内部支持体32の各表面となる6面に、第1実施形態の圧力センサ16と同様の原理の静電容量式の圧力センサ33をそれぞれ配置してセンサユニット11を構成したところに特徴を有する。なお、図示省略しているが、本実施形態においても、センサユニット11の周囲にカバーが被覆され、当該カバーの各外面に対し、前後、左右、上下の何れかの方向から外力が作用したときに、当該外力に基づく押圧力が各圧力センサ33の何れかで検出されるようになっている。 In the six-axis force sensor 30, electrostatic pressure sensors 33 having the same principle as the pressure sensor 16 of the first embodiment are arranged on the six surfaces serving as the surfaces of the cubic internal support 32, respectively. The sensor unit 11 is characterized. Although not shown, also in this embodiment, when a cover is covered around the sensor unit 11 and an external force is applied to each outer surface of the cover from one of the front, rear, left, and right directions. In addition, the pressing force based on the external force is detected by any one of the pressure sensors 33.
 本実施形態で用いられる圧力センサ33は、前記第1実施形態で用いた圧力センサ16に対し、固定電極18を2分割したような形状を有し、当該分割した可動電極18は、相互に非干渉となるように構成され、一つの圧力センサ16でモーメントの計測も可能に設けられている。 The pressure sensor 33 used in the present embodiment has a shape such that the fixed electrode 18 is divided into two with respect to the pressure sensor 16 used in the first embodiment, and the divided movable electrodes 18 are not mutually separated. It is configured so as to cause interference, and a single pressure sensor 16 is provided to allow moment measurement.
 本実施形態において、内部支持体32の上面に配置された圧力センサ33では、上方からの押圧力を検出するようになっている。ここでの圧力センサ33は、固定電極18が左右に分割される向きで配置されており、説明の便宜上、左側の固定電極18で信号検出される部分を第1のセンサS1と称し、右側の固定電極18で信号検出される部分を第2のセンサS2と称する。一方、内部支持体32の下面に配置された圧力センサ33では、下方からの押圧力を検出するようになっている。ここでの圧力センサ33も、固定電極18が左右に分割される向きで配置されており、説明の便宜上、左側の固定電極18で信号検出される部分を第3のセンサS3と称し、右側の固定電極18で信号検出される部分を第4のセンサS4と称する。ここで、第1及び第3のセンサS1,S3が上下方向に相対配置され、第2及び第4のセンサS2,S4が上下方向に相対配置されることになる。 In the present embodiment, the pressure sensor 33 disposed on the upper surface of the internal support 32 detects a pressing force from above. Here, the pressure sensor 33 is arranged in a direction in which the fixed electrode 18 is divided into left and right. For convenience of explanation, a portion where a signal is detected by the left fixed electrode 18 is referred to as a first sensor S1, and the right sensor A portion where a signal is detected by the fixed electrode 18 is referred to as a second sensor S2. On the other hand, the pressure sensor 33 disposed on the lower surface of the internal support 32 detects a pressing force from below. The pressure sensor 33 here is also arranged in a direction in which the fixed electrode 18 is divided into left and right. For convenience of explanation, a portion where a signal is detected by the left fixed electrode 18 is referred to as a third sensor S3, A portion where a signal is detected by the fixed electrode 18 is referred to as a fourth sensor S4. Here, the first and third sensors S1, S3 are relatively arranged in the vertical direction, and the second and fourth sensors S2, S4 are relatively arranged in the vertical direction.
 また、内部支持体32の左側面に配置された圧力センサ33では、左方からの押圧力を検出するようになっている。ここでの圧力センサ33は、固定電極18が前後に分割される向きで配置されており、説明の便宜上、前側の固定電極18で信号検出される部分を第5のセンサS5と称し、後側の固定電極18で信号検出される部分を第6のセンサS6と称する。一方、内部支持体32の右側面に配置された圧力センサ33では、右方からの押圧力を検出するようになっている。ここでの圧力センサ33も、固定電極18が前後に分割される向きで配置されており、説明の便宜上、前側の固定電極18で信号検出される部分を第7のセンサS7と称し、後側の固定電極18で信号検出される部分を第8のセンサS8と称する。ここで、第5及び第7のセンサS5,S7が左右方向に相対配置され、第6及び第8のセンサS6,S8が左右方向に相対配置されることになる。 The pressure sensor 33 disposed on the left side surface of the internal support 32 detects a pressing force from the left side. Here, the pressure sensor 33 is arranged in a direction in which the fixed electrode 18 is divided into the front and the rear. For convenience of explanation, a portion where a signal is detected by the front fixed electrode 18 is referred to as a fifth sensor S5, and the rear side. A portion where a signal is detected by the fixed electrode 18 is referred to as a sixth sensor S6. On the other hand, the pressure sensor 33 disposed on the right side surface of the internal support 32 detects a pressing force from the right side. The pressure sensor 33 here is also arranged in a direction in which the fixed electrode 18 is divided into the front and the rear. For convenience of explanation, a portion where a signal is detected by the front fixed electrode 18 is referred to as a seventh sensor S7. A portion where a signal is detected by the fixed electrode 18 is referred to as an eighth sensor S8. Here, the fifth and seventh sensors S5, S7 are relatively arranged in the left-right direction, and the sixth and eighth sensors S6, S8 are relatively arranged in the left-right direction.
 更に、内部支持体32の前面に配置された圧力センサ33では、前方からの押圧力を検出するようになっている。ここでの圧力センサ33は、固定電極18が上下に分割される向きで配置されており、説明の便宜上、上側の固定電極18で信号検出される部分を第9のセンサS9と称し、下側の固定電極18で信号検出される部分を第10のセンサS10と称する。一方、内部支持体32の後面に配置された圧力センサ33では、後方からの押圧力を検出するようになっている。ここでの圧力センサ33は、平面視コ字状の連結部材Jを貫通してその内側に露出するように配置されるとともに、固定電極18が上下に分割される向きで配置されている。ここで、説明の便宜上、上側の固定電極18で信号検出される部分を第11のセンサS11と称し、下側の固定電極18で信号検出される部分を第12のセンサS12と称する。ここで、第9及び第11のセンサS9,S11が前後方向に相対配置され、第10及び第12のセンサS10,S12が前後方向に相対配置されることになる。 Furthermore, the pressure sensor 33 disposed on the front surface of the internal support 32 detects a pressing force from the front. Here, the pressure sensor 33 is arranged in a direction in which the fixed electrode 18 is vertically divided. For convenience of explanation, a portion where a signal is detected by the upper fixed electrode 18 is referred to as a ninth sensor S9. A portion where a signal is detected by the fixed electrode 18 is referred to as a tenth sensor S10. On the other hand, the pressure sensor 33 disposed on the rear surface of the internal support 32 detects a pressing force from the rear. Here, the pressure sensor 33 is disposed so as to penetrate the connecting member J having a U-shape in plan view and exposed to the inside thereof, and is disposed in a direction in which the fixed electrode 18 is divided vertically. Here, for convenience of explanation, a portion where a signal is detected by the upper fixed electrode 18 is referred to as an eleventh sensor S11, and a portion where a signal is detected by the lower fixed electrode 18 is referred to as a twelfth sensor S12. Here, the ninth and eleventh sensors S9 and S11 are relatively disposed in the front-rear direction, and the tenth and twelfth sensors S10 and S12 are relatively disposed in the front-rear direction.
 本実施形態における演算部13では、次式により、各圧力センサ33の検出結果を用いて、前記カバー(図示省略)に作用した外力の6軸方向の力成分が演算される。 In the calculation unit 13 in the present embodiment, the force components in the six-axis directions of the external force acting on the cover (not shown) are calculated using the detection result of each pressure sensor 33 according to the following equation.
 以下の式においても、3軸方向の並進力と同各軸周りのモーメントを第1実施形態での説明と同様の文字で表し、x-y-z軸の3軸方向の並進力を(Fx,Fy,Fz)とし、同3軸方向の周りのモーメント(トルク)を(Mx,My,Mz)とする。また、上下方向に相対する第1及び第3のセンサS1,S3の検出値をf1a,f1bとし、上下方向に相対する第2及び第4のセンサS2,S4の検出値をf2a,f2bとする。また、左右方向に相対する第5及び第7のセンサS5,S7の検出値をf3a,f3bとし、左右方向に相対する第6及び第8のセンサS6,S8の検出値をf4a,f4bとする。更に、前後方向に相対する第9及び第11のセンサS9,S11の検出値をf5a,f5bとし、前後方向に相対する第10及び第12のセンサS10,S12の検出値をf6a,f6bとする。更に、Kn、Lnは、第1実施形態で説明した定数である。 Also in the following equations, the translational force in the three axis directions and the moments about the same axis are represented by the same characters as described in the first embodiment, and the translational force in the three axis directions of the xyz axis is expressed as (Fx , Fy, Fz), and the moment (torque) around the three axis directions is (Mx, My, Mz). Also, the detection values of the first and third sensors S1, S3 facing in the vertical direction are f 1a , f 1b, and the detection values of the second and fourth sensors S2, S4 facing in the vertical direction are f 2a , Let f2b . Further, the detection values of the fifth and seventh sensors S5 and S7 facing in the left-right direction are f 3a and f 3b, and the detection values of the sixth and eighth sensors S6 and S8 facing in the left-right direction are f 4a , f 3b . Let f4b . Further, the detection values of the ninth and eleventh sensors S9, S11 that are opposed in the front-rear direction are f 5a and f 5b, and the detection values of the tenth and twelfth sensors S10, S12 that are opposed in the front-rear direction are f 6a , Let f6b . Furthermore, Kn and Ln are the constants described in the first embodiment.
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 従って、以上の第2実施形態によれば、第1実施形態の構造よりも一層コンパクトにすることができる。 Therefore, according to the second embodiment described above, it can be made more compact than the structure of the first embodiment.
 (第3実施形態)
 本実施形態は、多軸力センサとして、図7及び図8に示されるように、第1実施形態と実質的に同一となる構造の圧力センサ16を用い、所定平面内の2軸方向(図7(A)及び図8中、x軸方向及びy軸方向)のせん断力と、同図中z軸方向の押圧力とを検出可能な3軸力センサ40を構成したところに特徴を有する。この3軸力センサ40は、例えば、ロボットアーム等の表面に配置される触覚センサ等として用いられる。
(Third embodiment)
As shown in FIG. 7 and FIG. 8, the present embodiment uses a pressure sensor 16 having a structure substantially the same as that of the first embodiment, as shown in FIGS. 7 (A) and FIG. 8 is characterized in that a three-axis force sensor 40 capable of detecting a shear force in the x-axis direction and the y-axis direction) and a pressing force in the z-axis direction in FIG. The triaxial force sensor 40 is used as, for example, a tactile sensor disposed on the surface of a robot arm or the like.
 前記3軸力センサ40は、作用した外力について所定方向毎の大きさを検出するセンサユニット41と、センサユニット41の外側を囲むように配置され、弾性変形可能なゴム製のカバー42と、センサユニット41の検出結果に基づき、前記2軸方向のせん断力とx-y軸平面に対する押圧力とを演算により求める演算部43とを備えている。 The triaxial force sensor 40 includes a sensor unit 41 that detects the magnitude of the applied external force in a predetermined direction, a rubber cover 42 that is disposed so as to surround the outside of the sensor unit 41, and is elastically deformable, and a sensor. Based on the detection result of the unit 41, there is provided a calculation unit 43 that calculates the shear force in the biaxial direction and the pressing force on the xy axis plane by calculation.
 本実施形態のセンサユニット41は、同7(B)に示されるように、同図中下側に配置されるベース45の複数部位において、圧力センサ16がそれぞれ所定の角度(例えば、45度)で起立支持されている。また、各圧力センサ16は、カバー42の周囲の何れかの方向から外力が作用したときに、当該外力に伴ってカバー42が弾性変形することにより、ベース45との接合部分を固定端としてベース45に離間接近する方向に弾性変位可能に配置されている。 As shown in FIG. 7B, the sensor unit 41 of the present embodiment has a predetermined angle (for example, 45 degrees) for each of the pressure sensors 16 at a plurality of portions of the base 45 disposed on the lower side in the figure. It is supported by standing up. Further, when an external force is applied from any direction around the cover 42, each pressure sensor 16 elastically deforms the cover 42 with the external force, so that the joint portion with the base 45 serves as a fixed end. It is arranged so as to be elastically displaceable in a direction approaching and separating from 45.
 圧力センサ16は、平面視ほぼ方形状となるベース45の上面を4分割した第1~第4の領域A1~A4で、それぞれ傾斜方向が異なるように配置されている。すなわち、圧力センサ16は、直交2軸の各軸方向(x軸、y軸方向)それぞれにおいて、カバー42に作用した外力により相反する向きに変位可能となるように設けられている。また、各領域A1~A4においては、それぞれ2個の圧力センサ16,16が相互に平行に配置されている。図8中左上の第1の領域A1には、同図中左方に傾斜するように第1及び第2のセンサS1,S2が配置されている。また、同図中右上の第2の領域A2には、同図中上方に傾斜するように第3及び第4のセンサS3,S4が配置されている。更に、同図中左下の第3の領域A3には、同図中下方に傾斜するように第5及び第6のセンサS5,S6が配置されている。また、同図中右下の第4の領域A4には、同図中右方に傾斜するように第7及び第8のセンサS7,S8が配置されている。すなわち、第1及び第4の領域A1,A4に配置された圧力センサ16,16は、ベース45の中央に対して点対称に配置されており、カバー42を圧縮する外力が作用すると、図8中左右方向となる横方向(x軸方向)に沿って相互に反対方向に倒れるようになっている。また、第2及び第3の領域A2,A3に配置された圧力センサ16,16も、ベース45の中央に対して点対称に配置されており、カバー42を圧縮する外力が作用すると、同図中上下方向となる縦方向(y軸方向)に沿って相互に反対方向に倒れるようになっている。なお、カバー42に作用する外力に応じて圧力センサ16がベース45に対して変位し、当該外力がカバー42に作用しなくなると、圧力センサ16は、外力作用前の元の姿勢に弾性復帰するようになっている。 The pressure sensor 16 is disposed in the first to fourth regions A1 to A4 obtained by dividing the upper surface of the base 45, which has a substantially rectangular shape in plan view, into four, and the inclination directions are different from each other. That is, the pressure sensor 16 is provided so as to be displaceable in opposite directions by external forces acting on the cover 42 in each of the two orthogonal axes (x-axis and y-axis directions). In each region A1 to A4, two pressure sensors 16, 16 are arranged in parallel to each other. First and second sensors S1, S2 are arranged in the first area A1 at the upper left in FIG. 8 so as to incline to the left in the figure. Further, in the second area A2 at the upper right in the figure, third and fourth sensors S3 and S4 are arranged so as to incline upward in the figure. Further, fifth and sixth sensors S5 and S6 are arranged in the third area A3 at the lower left in the figure so as to incline downward in the figure. Further, in the fourth area A4 at the lower right in the figure, seventh and eighth sensors S7 and S8 are arranged so as to incline to the right in the figure. That is, the pressure sensors 16 and 16 arranged in the first and fourth regions A1 and A4 are arranged point-symmetrically with respect to the center of the base 45, and when an external force compressing the cover 42 is applied, FIG. They fall in opposite directions along the horizontal direction (x-axis direction), which is the middle / left / right direction. The pressure sensors 16 and 16 arranged in the second and third regions A2 and A3 are also arranged point-symmetrically with respect to the center of the base 45, and when an external force that compresses the cover 42 is applied, They are tilted in opposite directions along the vertical direction (y-axis direction), which is the middle / up / down direction. When the pressure sensor 16 is displaced with respect to the base 45 according to the external force acting on the cover 42 and the external force does not act on the cover 42, the pressure sensor 16 elastically returns to the original posture before the external force action. It is like that.
 以上の構成により、例えば、カバー42の上面に対して垂直方向(z軸方向)の押圧力が作用すれば、第1~第4の領域A1~A4の圧力センサ16は、ベース45に向かって同一の変位量で倒れ、全て同一の検出値が得られる。一方、カバー42の上面に対して、x-y軸方向にせん断力が作用すれば、第1~第4の領域A1~A4の圧力センサ16のうち、せん断力の作用方向に傾斜配置されている圧力センサ16が、最大の変位量となる。従って、第1~第4の領域A1~A4の圧力センサ16の検出値を用いることで、x-y軸方向のせん断力とz軸方向の押圧力(圧縮力)とからなる3軸方向の力成分を検出可能となる。 With the above configuration, for example, when a pressing force in the vertical direction (z-axis direction) acts on the upper surface of the cover 42, the pressure sensors 16 in the first to fourth regions A1 to A4 move toward the base 45. It falls down with the same amount of displacement, and the same detection value is obtained for all. On the other hand, if a shearing force acts on the upper surface of the cover 42 in the xy-axis direction, the pressure sensors 16 in the first to fourth regions A1 to A4 are inclined in the shearing force acting direction. The pressure sensor 16 is the maximum amount of displacement. Therefore, by using the detection values of the pressure sensor 16 in the first to fourth areas A1 to A4, the three-axis direction consisting of the shearing force in the xy-axis direction and the pressing force (compression force) in the z-axis direction is used. The force component can be detected.
 前記演算部43では、次式により、各圧力センサ16の検出結果を用いて、カバー42に作用した外力の前記3軸方向の力成分が演算される。ここで、第1~第4の領域A1~A4に2個ずつ設けられている圧力センサ16の検出値から、第1~第4の領域A1~A4毎に検出値が1つずつ特定される。この特定は、各2個の圧力センサ16,16の平均値、最大値、最小値等、予め設定された処理に基づいて行われる。なお、各領域A1~A4に設けられる圧力センサ16としては、それぞれ1個ずつ、或いは3個以上にすることもできる。このように、第1~第4の領域A1~A4毎に、複数の圧力センサ16を同じ向きに傾斜配置する構成を採ることにより、ベース45の限られた領域内に、より多くの圧力センサ16を配置することができ、コンパクトで空間分解能の高いセンサとすることができる。 In the calculation unit 43, the force component in the three-axis direction of the external force acting on the cover 42 is calculated using the detection result of each pressure sensor 16 according to the following equation. Here, one detection value is specified for each of the first to fourth regions A1 to A4 from the detection value of the pressure sensor 16 provided in each of the first to fourth regions A1 to A4. . This specification is performed based on preset processing such as an average value, a maximum value, a minimum value, and the like of each of the two pressure sensors 16 and 16. The pressure sensors 16 provided in each of the regions A1 to A4 can be one each, or three or more. As described above, by adopting a configuration in which the plurality of pressure sensors 16 are inclinedly arranged in the same direction for each of the first to fourth regions A1 to A4, more pressure sensors are provided in a limited region of the base 45. 16 can be arranged, and the sensor can be compact and have high spatial resolution.
 以下の式において、x軸方向のせん断力をFxとし、y軸方向のせん断力をFyとし、z軸方向の押圧力をFzとする。また、第1、第2、第3及び第4の領域A1,A2,A3,A4における圧力センサ16の検出値をf、f、f、fとする。また、Kn(n=1、2・・・)は、予め設定されて演算部43に記憶され、各圧力センサ16の性能の差異に基づく調整等を行うための定数である。 In the following equation, the shearing force in the x-axis direction is Fx, the shearing force in the y-axis direction is Fy, and the pressing force in the z-axis direction is Fz. Further, the detected values of the pressure sensor 16 in the first, second, third, and fourth regions A1, A2, A3, and A4 are defined as f 1 , f 2 , f 3 , and f 4 . Kn (n = 1, 2,...) Is a constant that is set in advance and stored in the calculation unit 43, and that is adjusted based on a difference in performance of each pressure sensor 16.
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 なお、本発明における圧力センサとしては、前記各実施形態のベリリウム銅製の静電容量式の圧力センサ16に限らず、同様に1方向の押圧力を検出可能な限り、種々の圧力センサを採用することができる。 Note that the pressure sensor in the present invention is not limited to the beryllium copper capacitive pressure sensor 16 of each of the embodiments described above, and various pressure sensors can be used as long as a pressing force in one direction can be similarly detected. be able to.
 また、圧力センサ16として、固定電極18の図4中上下両面に可動電極19,19を配置した構造のものを採用することもできる。この場合、1箇所につき2個の可動電極19,19からの検出値を用いることができるため、感受性を2倍にすることができる。 Further, as the pressure sensor 16, a structure in which the movable electrodes 19, 19 are arranged on the upper and lower surfaces of the fixed electrode 18 in FIG. In this case, since the detection values from the two movable electrodes 19 and 19 can be used at one place, the sensitivity can be doubled.
 その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。 In addition, the configuration of each part of the apparatus according to the present invention is not limited to the illustrated configuration example, and various modifications are possible as long as substantially the same operation is achieved.
 10 6軸力センサ(多軸力センサ)
 11 センサユニット
 12 カバー
 13 演算部
 16 圧力センサ
 30 6軸力センサ(多軸力センサ)
 33 圧力センサ
 40 3軸力センサ(多軸力センサ)
 41 センサユニット
 42 カバー
 43 演算部
 45 ベース
 A1~A4 第1~第4の領域
10 6-axis force sensor (multi-axis force sensor)
11 Sensor unit 12 Cover 13 Calculation unit 16 Pressure sensor 30 6-axis force sensor
33 Pressure sensor 40 3-axis force sensor (multi-axis force sensor)
41 Sensor unit 42 Cover 43 Calculation unit 45 Base A1 to A4 First to fourth areas

Claims (6)

  1.  1方向の押圧力を検出可能な圧力センサを複数設けてなるセンサユニットと、当該センサユニットの周囲に設けられ、作用した外力を前記センサユニットに伝達可能に構成されたカバーと、前記各圧力センサからの検出値に基づき、前記外力の複数軸方向の力成分を演算により求める演算部とを備えた多軸力センサにおいて、
     前記センサユニットは、相互に異なる方向からの押圧力を検出可能に前記各圧力センサが配置され、前記カバーに直交3軸方向の何れの方向から外力が作用したときでも、前記各圧力センサの少なくとも一部で前記押圧力を検出可能に設けられていることを特徴とする多軸力センサ。
    A sensor unit provided with a plurality of pressure sensors capable of detecting a pressing force in one direction, a cover provided around the sensor unit and configured to transmit an applied external force to the sensor unit; and each pressure sensor In a multi-axis force sensor comprising a calculation unit that calculates a force component in a plurality of axial directions of the external force based on a detection value from
    Each of the pressure sensors is arranged so that the pressing force from different directions can be detected, and the sensor unit has at least one of the pressure sensors even when an external force is applied to the cover from any of the three orthogonal directions. A multi-axis force sensor characterized in that the pressing force can be detected in part.
  2.  前記圧力センサは、多面体からなる内部支持体の各外面それぞれに対し、少なくとも1箇所ずつ固定されて、前後、左右、及び上下の各方向からの押圧力を検出可能に配置され、
     前記演算部では、直交3軸方向の並進力と、当該3軸周りのモーメントとからなる6軸方向の力成分を求めることを特徴とする請求項1記載の多軸力センサ。
    The pressure sensor is fixed to each outer surface of the polyhedral internal support at least one place, and is arranged so as to be able to detect the pressing force from the front and rear, left and right, and up and down directions,
    The multi-axis force sensor according to claim 1, wherein the calculation unit obtains a force component in a six-axis direction including a translational force in three orthogonal axes and a moment around the three axes.
  3.  前記圧力センサは、6面体からなる前記内部支持体の各外面それぞれに対し、2箇所ずつ固定されていることを特徴とする請求項2記載の多軸力センサ。 3. The multi-axis force sensor according to claim 2, wherein the pressure sensor is fixed at two locations on each outer surface of the internal support made of hexahedron.
  4.  前記圧力センサは、前後方向、左右方向、及び上下方向に対称となるように配置されることを特徴とする請求項2又は3記載の多軸力センサ。 The multi-axis force sensor according to claim 2 or 3, wherein the pressure sensors are arranged so as to be symmetrical in the front-rear direction, the left-right direction, and the up-down direction.
  5.  前記センサユニットは、前記圧力センサを起立させた状態で支持するベースを含み、
     前記圧力センサは、前記ベースに対して所定の角度で傾斜した状態で起立するように配置されるとともに、前記カバーに作用した外力に応じて、前記ベースとの接合部分を固定端として当該ベースに離間接近する方向に変位可能に配置され、
     前記演算部では、所定平面上の直交2軸のせん断力と、当該所定平面に対する押圧力とからなる3軸方向の力成分を求めることを特徴とする請求項1記載の多軸力センサ。
    The sensor unit includes a base that supports the pressure sensor in an upright state,
    The pressure sensor is disposed so as to stand upright at a predetermined angle with respect to the base, and in accordance with an external force applied to the cover, a joint portion with the base is used as a fixed end on the base. It is arranged to be displaceable in the direction of approaching,
    2. The multi-axis force sensor according to claim 1, wherein the calculation unit obtains a force component in a triaxial direction composed of a biaxial shear force on a predetermined plane and a pressing force with respect to the predetermined plane.
  6.  前記圧力センサは、前記直交2軸の各軸において、前記カバーに作用した外力により、相反する向きに変位可能となるように、前記ベースの複数領域に設けられていることを特徴とする請求項5記載の多軸力センサ。 The pressure sensor is provided in a plurality of regions of the base so that each of the two orthogonal axes can be displaced in opposite directions by an external force acting on the cover. 5. The multi-axis force sensor according to 5.
PCT/JP2016/056324 2015-04-20 2016-03-02 Multiaxial force sensor WO2016170848A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015086315A JP2016205942A (en) 2015-04-20 2015-04-20 Muti-axis force sensor
JP2015-086315 2015-04-20

Publications (1)

Publication Number Publication Date
WO2016170848A1 true WO2016170848A1 (en) 2016-10-27

Family

ID=57143939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056324 WO2016170848A1 (en) 2015-04-20 2016-03-02 Multiaxial force sensor

Country Status (2)

Country Link
JP (1) JP2016205942A (en)
WO (1) WO2016170848A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10274627B2 (en) 2015-10-30 2019-04-30 Ion Geophysical Corporation Ocean bottom seismic systems
US11204365B2 (en) 2018-09-13 2021-12-21 Ion Geophysical Corporation Multi-axis, single mass accelerometer
CN113924196A (en) * 2019-06-06 2022-01-11 欧姆龙株式会社 Tactile sensor, manipulator, and robot
US11524414B2 (en) * 2018-08-30 2022-12-13 Toyota Jidosha Kabushiki Kaisha Sensor unit, sensor system, robot hand, robot arm, server device, calculation method, and program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7306454B2 (en) * 2019-06-06 2023-07-11 オムロン株式会社 Tactile sensors, robot hands, and robots
US20220227006A1 (en) * 2019-06-06 2022-07-21 Omron Corporation Tactile Sensor, Robot Hand, and Robot
DE102020125583A1 (en) 2020-09-30 2022-03-31 Neura Robotics GmbH Device and method for determining a force acting on a body in at least three spatial directions and method for controlling the movement of a body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221287A (en) * 1984-04-13 1985-11-05 三菱電機株式会社 Force sensor for robot
JPH02253131A (en) * 1989-03-28 1990-10-11 Nippon Electric Ind Co Ltd Measuring instrument
JP2000258452A (en) * 1999-03-05 2000-09-22 Iwaki Denshi Kk Displacement sensor
JP2009068988A (en) * 2007-09-13 2009-04-02 Advanced Telecommunication Research Institute International Tactile sensor unit and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221287A (en) * 1984-04-13 1985-11-05 三菱電機株式会社 Force sensor for robot
JPH02253131A (en) * 1989-03-28 1990-10-11 Nippon Electric Ind Co Ltd Measuring instrument
JP2000258452A (en) * 1999-03-05 2000-09-22 Iwaki Denshi Kk Displacement sensor
JP2009068988A (en) * 2007-09-13 2009-04-02 Advanced Telecommunication Research Institute International Tactile sensor unit and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10274627B2 (en) 2015-10-30 2019-04-30 Ion Geophysical Corporation Ocean bottom seismic systems
US10545254B2 (en) 2015-10-30 2020-01-28 Ion Geophysical Corporation Multi-Axis, single mass accelerometer
US11561314B2 (en) 2015-10-30 2023-01-24 TGS-NOPEC Geophysical Corporation Multi-axis, single mass accelerometer
US12019197B2 (en) 2015-10-30 2024-06-25 Tgs-Nopec Geophysical Company Multi-axis, single mass accelerometer
US11524414B2 (en) * 2018-08-30 2022-12-13 Toyota Jidosha Kabushiki Kaisha Sensor unit, sensor system, robot hand, robot arm, server device, calculation method, and program
US11204365B2 (en) 2018-09-13 2021-12-21 Ion Geophysical Corporation Multi-axis, single mass accelerometer
CN113924196A (en) * 2019-06-06 2022-01-11 欧姆龙株式会社 Tactile sensor, manipulator, and robot
EP3981560A4 (en) * 2019-06-06 2023-01-04 OMRON Corporation Tactile sensor, robot hand, and robot

Also Published As

Publication number Publication date
JP2016205942A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
WO2016170848A1 (en) Multiaxial force sensor
US9200969B2 (en) Force sensor
JP7053410B2 (en) Sensor units, sensor systems, robot hands, robot arms, server devices, arithmetic methods, and programs
US9816886B2 (en) Force detection apparatus and robot
US9205561B2 (en) Force detector and robot
JP6626075B2 (en) 6-axis displacement sensor with displacement detection
JP4389001B1 (en) Force sensor and motion sensor
JP6344928B2 (en) Load sensor system
US11747223B2 (en) Strain inducing body and force sensor device with improved load bearing
US11662261B2 (en) Sensor chip and force sensor device with increased fracture resistance
US10960551B2 (en) Sensor system and robot hand
CN113167668A (en) Multi-axis tactile sensor
JP2022111489A (en) Triaxial force sensor
US11933809B2 (en) Inertial sensor
US20050120809A1 (en) Robotic force sensing device
Kim et al. Displacement sensor integrated into a remote center compliance device for a robotic assembly
JP2010112864A (en) Force sensor
JP2011033607A (en) Force or motion sensor and manufacturing method thereof
JPH0584870B2 (en)
KR102240791B1 (en) Apparatus for providing multidimensional motion information
JP7021174B2 (en) Displacement detection type force detection structure and force sensor
Fritzsche et al. A tactile sensor with cushioning elements for enhanced safety in human-robot interaction
KR102645890B1 (en) Force/torque sensor with tetrahedral structure
EP2260279A2 (en) A multi-dof sensor for an industrial robot
JP2012047713A (en) Force sense or motion sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782870

Country of ref document: EP

Kind code of ref document: A1