JP2008095842A - Constant velocity joint boot - Google Patents

Constant velocity joint boot Download PDF

Info

Publication number
JP2008095842A
JP2008095842A JP2006278768A JP2006278768A JP2008095842A JP 2008095842 A JP2008095842 A JP 2008095842A JP 2006278768 A JP2006278768 A JP 2006278768A JP 2006278768 A JP2006278768 A JP 2006278768A JP 2008095842 A JP2008095842 A JP 2008095842A
Authority
JP
Japan
Prior art keywords
diameter cylindrical
peripheral surface
rigidity
cylindrical portion
boot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006278768A
Other languages
Japanese (ja)
Other versions
JP5052089B2 (en
Inventor
Yuji Furuta
裕二 古田
Satoshi Suzuki
智 鈴木
聡 鈴木
Kenji Oe
賢次 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Toyoda Gosei Co Ltd
Original Assignee
JTEKT Corp
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp, Toyoda Gosei Co Ltd filed Critical JTEKT Corp
Priority to JP2006278768A priority Critical patent/JP5052089B2/en
Priority to US12/444,427 priority patent/US8070612B2/en
Priority to EP07829660.5A priority patent/EP2068026B1/en
Priority to CN200780037828.2A priority patent/CN101523070B/en
Priority to PCT/JP2007/069924 priority patent/WO2008044760A1/en
Publication of JP2008095842A publication Critical patent/JP2008095842A/en
Application granted granted Critical
Publication of JP5052089B2 publication Critical patent/JP5052089B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sealing Devices (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a constant velocity joint boot to be assembled while suppressing its deformation by improving the rigidity near its large diameter cylinder part. <P>SOLUTION: The constant velocity joint boot comprises the large diameter cylinder part 2, a small diameter cylinder part 3 arranged apart from the large diameter cylinder part 2 coaxially therewith and having a smaller diameter than the large diameter cylinder part 2, and an intermediate part 10 connecting the large diameter cylinder part 2 to the small diameter cylinder part 3. The intermediate part 10 consists of a flexible bellows portion 19 integrally connected to the small diameter cylinder part 3, and a rigid formation portion 11 integrally connected to the bellows portion 19 and the large diameter cylinder part 2. The rigid formation portion 11 has a diameter enlarged ranging from the bellows portion 19 toward the large diameter cylinder part 2. A plurality of steps 61 are formed stepwise on at least an outer peripheral face 101 of the rigid formation portion 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、車両のドライブシャフトなどに用いられている等速ジョイントを被覆する等速ジョイント用ブーツに関する。   The present invention relates to a constant velocity joint boot that covers a constant velocity joint used in a drive shaft of a vehicle.

車両等の動力伝達装置においては、軸部及び等速ジョイントよりなるドライブシャフトを介して、駆動力がトランスミッションから駆動輪に伝達される。図10に示すように、ドライブシャフトは、シャフトからなる内方部材8と、内方部材8の両側に配設されたジョイント41、42とを有する。一方のジョイント41は、インボード側で、差動装置等の駆動部材に連結され、他方のジョイント42は、アウトボード側で、駆動輪などの従動部材に連結される。   In a power transmission device such as a vehicle, driving force is transmitted from a transmission to driving wheels via a drive shaft including a shaft portion and a constant velocity joint. As shown in FIG. 10, the drive shaft has an inner member 8 made of a shaft, and joints 41 and 42 disposed on both sides of the inner member 8. One joint 41 is connected to a driving member such as a differential on the inboard side, and the other joint 42 is connected to a driven member such as a driving wheel on the outboard side.

ジョイント41,42は、たとえば、ボールタイプであり、複数のボール溝81が円周方向に等間隔で形成された内方部材8と、ボール溝81内を転動するボール80と、内方部材8のボール溝81とボール80とをカップ部70に収容する外方部材7とからなる。インボード側のジョイント41は、転動自在のボール80を介して入力側の外方部材7から出力側の内方部材8に回転トルクを等速で伝達する。アウトボード側の等速ジョイント42は、転動自在のボール80を介して入力側の内方部材8から出力側の外方部材7に回転トルクを等速で伝達する。いずれの等速ジョイント41,42も、グリースが封入された蛇腹構造のブーツ1により被覆されて、外部からの異物の侵入が阻止されることによって大角度で滑らかな回転が維持されている。   The joints 41 and 42 are, for example, of the ball type, and an inner member 8 in which a plurality of ball grooves 81 are formed at equal intervals in the circumferential direction, a ball 80 that rolls in the ball groove 81, and an inner member The outer member 7 accommodates the eight ball grooves 81 and the balls 80 in the cup portion 70. The joint 41 on the inboard side transmits rotational torque at a constant speed from the outer member 7 on the input side to the inner member 8 on the output side via the rollable ball 80. The constant velocity joint 42 on the outboard side transmits rotational torque at a constant velocity from the inner member 8 on the input side to the outer member 7 on the output side via a rollable ball 80. Both of the constant velocity joints 41 and 42 are covered with a bellows-structured boot 1 filled with grease, and are prevented from invading foreign substances from the outside, thereby maintaining a smooth rotation at a large angle.

この等速ジョイント用のブーツ1は、外方部材7に保持される大径筒部2と、大径筒部2よりも小径で内方部材8の軸部83に保持される小径筒部3と、大径筒部2と小径筒部3とを一体に連結する略円錐台形状の伸縮性の蛇腹部19とを有する。使用時には、外方部材7と内方部材8とのなす角度(ジョイント角)の変化に応じて蛇腹部19が変形する。このため、ブーツ1は、ジョイント角が大きくなっても蛇腹部19の変形によってジョイント41,42を確実にシールする。   The constant velocity joint boot 1 includes a large-diameter cylindrical portion 2 held by the outer member 7 and a small-diameter cylindrical portion 3 having a smaller diameter than the large-diameter cylindrical portion 2 and held by the shaft portion 83 of the inner member 8. And a substantially frustoconical elastic bellows portion 19 that integrally connects the large-diameter cylindrical portion 2 and the small-diameter cylindrical portion 3. At the time of use, the bellows portion 19 is deformed according to a change in an angle (joint angle) formed by the outer member 7 and the inner member 8. For this reason, the boot 1 reliably seals the joints 41 and 42 by the deformation of the bellows portion 19 even when the joint angle increases.

ドライブシャフトを組み立てるには、まず、内方部材8の両端のボール溝81にボール80を配置し、その両端を外方部材7のカップ部70内部に挿入する。次に、ブーツ1の小径筒部3を内方部材8の軸部83にクランプ53にて固定する。また、ブーツ1の大径筒部2を外方部材7のカップ部70にクランプ52にて固定する。   To assemble the drive shaft, first, the balls 80 are disposed in the ball grooves 81 at both ends of the inner member 8, and both ends thereof are inserted into the cup portion 70 of the outer member 7. Next, the small diameter cylindrical portion 3 of the boot 1 is fixed to the shaft portion 83 of the inner member 8 with a clamp 53. Further, the large-diameter cylindrical portion 2 of the boot 1 is fixed to the cup portion 70 of the outer member 7 with a clamp 52.

ドライブシャフトを車両に組付けるにあたっては、図11に示すように、内方部材8の中央付近を手85で把持して持ち上げられる。内方部材8の両端には、外方部材7が回転自在のボール80を介して配設されている。このため、内方部材8を持ち上げたときに、内方部材8の両端に、所定重量の外方部材7が下方にぶら下がる。このとき、ブーツ1の蛇腹部19が径方向に変形して、ブーツ1と外方部材7のカップ部70内部のボール80とが干渉してしまうことがある。ときには、図12に示すように、ボール80が外方部材7からはずれてしまう。ボール80を外方部材7の中に組み付けるには、ブーツ1をジョイント41,42からはずし、更にジョイント41,42を分解した後、再度、内方部材8とボール80と外方部材7とを組み付けてジョイント41,42を構成し、ブーツ1をジョイント41,42に固定しなければならない。このように、外方部材7からボール80が外れると、再度ジョイント41,42の分解・組み立てを行う必要があり、手間である。   When the drive shaft is assembled to the vehicle, as shown in FIG. 11, the vicinity of the center of the inner member 8 is gripped by the hand 85 and lifted. At both ends of the inner member 8, the outer member 7 is disposed via rotatable balls 80. For this reason, when the inner member 8 is lifted, the outer member 7 having a predetermined weight hangs downward from both ends of the inner member 8. At this time, the bellows portion 19 of the boot 1 may be deformed in the radial direction, and the boot 1 and the ball 80 inside the cup portion 70 of the outer member 7 may interfere with each other. Sometimes, as shown in FIG. 12, the ball 80 is detached from the outer member 7. In order to assemble the ball 80 into the outer member 7, the boot 1 is removed from the joints 41, 42, and the joints 41, 42 are disassembled, and then the inner member 8, the ball 80, and the outer member 7 are connected again. The joints 41 and 42 must be assembled to fix the boot 1 to the joints 41 and 42. Thus, when the ball 80 is detached from the outer member 7, it is necessary to disassemble and assemble the joints 41 and 42 again, which is troublesome.

外方部材7からボール80が外れてしまうのは、ブーツ1の蛇腹部19の大径筒部2に近い部分が蛇腹形状であるため、剛性が弱く、変形しやすいためであると考えられる。かかる大径筒部2付近の蛇腹部19の剛性を高める手段として、従来、特許文献1には、大径筒部の近傍に円筒状の剛性形成部を形成することが示されている。
実開平1−69916号公報
The reason why the ball 80 is detached from the outer member 7 is considered to be that the portion close to the large-diameter cylindrical portion 2 of the bellows portion 19 of the boot 1 has a bellows shape, so that the rigidity is weak and the portion is easily deformed. As means for increasing the rigidity of the bellows portion 19 in the vicinity of the large-diameter cylindrical portion 2, conventionally, Patent Document 1 shows that a cylindrical rigidity forming portion is formed in the vicinity of the large-diameter cylindrical portion.
Japanese Utility Model Publication No. 1-69916

しかしながら、特許文献1の技術では、剛性筒部が円筒形状である。かかる剛性筒部の形状を工夫して更に剛性を高めて、大径筒部付近の剛性を更に高めたいという要望がある。本発明はかかる事情に鑑みてなされたものであり、大径筒部付近の剛性を高めて、組付け時の変形を抑制することができる等速ジョイント用ブーツを提供することを課題とする。   However, in the technique of Patent Document 1, the rigid cylindrical portion has a cylindrical shape. There is a demand for further improving the rigidity by devising the shape of the rigid cylindrical portion to further increase the rigidity in the vicinity of the large-diameter cylindrical portion. This invention is made | formed in view of this situation, and makes it a subject to provide the boot for constant velocity joints which can raise the rigidity of large diameter cylinder part vicinity and can suppress the deformation | transformation at the time of an assembly | attachment.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明の等速ジョイント用ブーツは、大径筒部と、大径筒部と離間して同軸的に配置され大径筒部より小径の小径筒部と、大径筒部と小径筒部とを連結する中間部と、からなる等速ジョイント用ブーツであって、中間部は、小径筒部に一体に連結された伸縮性の蛇腹部と、蛇腹部及び大径筒部に一体に連結された剛性形成部とからなり、剛性形成部は、蛇腹部から大径筒部に向けて拡径しているとともに、剛性形成部の少なくとも外周面は階段状に複数の段部を有する。   The constant velocity joint boot of the present invention includes a large-diameter cylindrical portion, a small-diameter cylindrical portion that is coaxially disposed apart from the large-diameter cylindrical portion, and has a smaller diameter than the large-diameter cylindrical portion, a large-diameter cylindrical portion, and a small-diameter cylindrical portion. A constant velocity joint boot comprising an intermediate portion, and an intermediate portion integrally connected to the bellows portion and the large-diameter cylindrical portion, and an elastic bellows portion integrally connected to the small-diameter cylindrical portion. The rigidity forming portion is expanded from the bellows portion toward the large-diameter cylindrical portion, and at least the outer peripheral surface of the rigidity forming portion has a plurality of steps in a stepped manner.

上記構成によれば、剛性形成部は、蛇腹部から大径筒部に向けて径が拡大しているとともに、剛性形成部の少なくとも外周面は階段状に複数の段部を有している。階段形状に複数の段部が形成された剛性形成部は、円筒形状の剛性形成部よりも剛性が高い。このため、大径筒部付近の剛性を高めることができる。それゆえ、ジョイントを持ち上げたときにも、外方部材の重量でブーツが下方に変形することを抑制でき、ボールが外方部材から外れることを抑制できる。   According to the above configuration, the rigidity forming portion has a diameter that increases from the bellows portion toward the large-diameter cylindrical portion, and at least the outer peripheral surface of the rigidity forming portion has a plurality of stepped portions. A rigidity forming portion in which a plurality of step portions is formed in a staircase shape has higher rigidity than a cylindrical rigidity forming portion. For this reason, the rigidity in the vicinity of the large-diameter cylindrical portion can be increased. Therefore, even when the joint is lifted, the boot can be prevented from being deformed downward by the weight of the outer member, and the ball can be prevented from being detached from the outer member.

以上のように本発明によれば、大径筒部付近の剛性を高めて、組付け時の変形を抑制することができる等速ジョイント用ブーツを提供することができる。   As described above, according to the present invention, it is possible to provide a constant velocity joint boot that can increase the rigidity in the vicinity of the large-diameter cylindrical portion and suppress deformation during assembly.

等速ジョイントブーツにおける大径筒部近傍の剛性形成部は、蛇腹部から大径筒部に向けて拡径しているとともに、剛性形成部の少なくとも外周面は階段状に複数の段部を有する。   The rigidity forming portion in the vicinity of the large-diameter cylindrical portion in the constant velocity joint boot expands from the bellows portion toward the large-diameter cylindrical portion, and at least the outer peripheral surface of the rigid forming portion has a plurality of steps in a stepped manner. .

段部は、径外方向に突出した山部と径内方向に窪んだ谷部とが交互に繰り返されており、谷部と山部との間を略軸方向に連結する側面と、山部と谷部との間を略径方向に連結する端面とを有する。段部の側面は、段部の軸方向に平行であることが好ましい。この場合、剛性形成部は優れた剛性を発揮できる。また、段部の側面は、段部の軸方向に対してテーパー状に傾斜していても良い。この場合にも、ジョイント持ち上げ時に外方部材の重量に耐え得る程度の剛性を発揮できる。段部の端面は、段部の径方向に平行であることが好ましい。この場合、剛性形成部は優れた剛性を発揮できる。また、段部の端面は、段部の径方向に対してテーパー状に傾斜していてもよい。この場合にも、ジョイント持ち上げ時に外方部材の重量に耐え得る程度の剛性を発揮できる。   The step part has a crest protruding in the radially outward direction and a trough recessed in the radially inward direction alternately, a side surface connecting the valley and the crest in the substantially axial direction, and a crest And an end face that connects the trough part in a substantially radial direction. The side surface of the stepped portion is preferably parallel to the axial direction of the stepped portion. In this case, the rigidity forming portion can exhibit excellent rigidity. Further, the side surface of the step portion may be inclined in a tapered shape with respect to the axial direction of the step portion. Also in this case, the rigidity that can withstand the weight of the outer member when lifting the joint can be exhibited. The end surface of the stepped portion is preferably parallel to the radial direction of the stepped portion. In this case, the rigidity forming portion can exhibit excellent rigidity. In addition, the end surface of the step portion may be inclined in a tapered shape with respect to the radial direction of the step portion. Also in this case, the rigidity that can withstand the weight of the outer member when lifting the joint can be exhibited.

段部は、剛性形成部の少なくとも外周面に形成されているが、剛性形成部の内周面にも外周面の段部と同様の段部が形成されていてもよい。   The step portion is formed on at least the outer peripheral surface of the rigidity forming portion, but the same step portion as the step portion of the outer peripheral surface may be formed on the inner peripheral surface of the rigidity forming portion.

剛性形成部の内周面は、剛性形成部の外周面に形成された段部の段差が小さい段部をもつことが好ましい。すなわち、剛性形成部の内周面に形成された段部の段差は、剛性形成部の外周面に形成された段部の段差よりも小さいことが好ましい。段部の段差とは、段部の山部と谷部との距離をいう。このように剛性形成部の内周面に形成された段部の段差が小さい場合には、段差が同じ場合に比べて、外周面の段部の側面と内周面との間の径方向の厚みが大きくなり、また外周面の段部の端面と内周面との間の軸方向の厚みが大きくなる。このため、剛性形成部の剛性が更に向上する。   It is preferable that the inner peripheral surface of the rigid forming portion has a stepped portion having a small step formed on the outer peripheral surface of the rigid forming portion. That is, it is preferable that the step of the step formed on the inner peripheral surface of the rigidity forming portion is smaller than the step of the step formed on the outer peripheral surface of the rigidity forming portion. The level difference of the step portion refers to the distance between the peak portion and the valley portion of the step portion. Thus, when the step of the step formed on the inner peripheral surface of the rigid forming portion is small, the radial direction between the side surface of the step of the outer peripheral surface and the inner peripheral surface is larger than when the step is the same. The thickness increases, and the axial thickness between the end surface of the step on the outer peripheral surface and the inner peripheral surface increases. For this reason, the rigidity of the rigidity forming portion is further improved.

剛性形成部の内周面には、段部が形成されていなくてもよい。この場合には、蛇腹部から大径筒部に向けて、剛性形成部の内周面が直線状に拡径する。そのため、内周面に段部を形成した場合に比べて、更に、外周面の段部の側面と内周面との間の径方向の厚みが大きくなり、また外周面の段部の端面と内周面との間の軸方向の厚みが大きくなる。このため、剛性形成部の剛性が更に向上する。   A stepped portion may not be formed on the inner peripheral surface of the rigid forming portion. In this case, the inner peripheral surface of the rigidity forming portion linearly expands from the bellows portion toward the large-diameter cylindrical portion. Therefore, compared with the case where the step portion is formed on the inner peripheral surface, the radial thickness between the side surface of the step portion on the outer peripheral surface and the inner peripheral surface is further increased, and the end surface of the step portion on the outer peripheral surface is The axial thickness between the inner peripheral surface is increased. For this reason, the rigidity of the rigidity forming portion is further improved.

段部の側面の径方向の厚み(A)に対する端面の径方向の長さ(B)の比率(B/A)は小さい方がよく、たとえば、B/Aは0.5〜2.0であることが好ましい。0.5未満の場合には、剛性形成部が筒形状に近い形状になり、折り曲げやすくなるおそれがある(比較例2参照)。 2.0を超える場合には、端面の長さ(B)が長すぎて端面に応力集中によるたわみが生じて剛性形成部全体の変形につながるおそれがある。   The ratio (B / A) of the length (B) in the radial direction of the end surface to the radial thickness (A) of the side surface of the stepped portion should be small, for example, B / A is 0.5 to 2.0. Preferably there is. If it is less than 0.5, the rigidity forming portion may have a shape close to a cylindrical shape, and may be easily bent (see Comparative Example 2). If it exceeds 2.0, the length (B) of the end face is too long, and the end face may bend due to stress concentration, leading to deformation of the entire rigid forming portion.

段部の段数は2以上であればよく、上限は5であることが好ましい。段数が多すぎてもそれに見合う効果の向上は期待できない。   The number of steps in the step portion may be two or more, and the upper limit is preferably five. Even if there are too many stages, the improvement of the effect corresponding to it cannot be expected.

蛇腹部の軸方向の長さ(Q)に対する剛性形成部の軸方向の長さ(P)の比率(P/Q)は、0.3〜2.0であることが好ましい。0.3未満の場合には、大径筒部付近が折れ曲がりやすくなるおそれがあり、2.0を超える場合には、蛇腹部が短くなり、ブーツの伸縮性が低下するおそれがある。   The ratio (P / Q) of the axial length (P) of the rigidity forming portion to the axial length (Q) of the bellows portion is preferably 0.3 to 2.0. If it is less than 0.3, the vicinity of the large-diameter cylindrical portion may be easily bent, and if it exceeds 2.0, the bellows portion may be shortened, and the stretchability of the boot may be reduced.

剛性形成部の肉厚は蛇腹部の肉厚と同じかそれ以上であることが好ましい。この場合には、剛性形成部の剛性が更に向上する。   The thickness of the rigid forming portion is preferably equal to or greater than the thickness of the bellows portion. In this case, the rigidity of the rigidity forming portion is further improved.

また、蛇腹部における剛性形成部との連結部は、径内方向に窪み軸方向断面がU字溝形状である窪み部が形成されていることが好ましい。ブーツに外力が加わったときに、U字形状の窪み部によって蛇腹部の圧縮・伸縮がし易くなり、剛性形成部の変形を更に効果的に抑制できる。   Moreover, it is preferable that the connection part with the rigidity formation part in a bellows part is formed in the radial direction, and the hollow part whose axial direction cross section is U-shaped groove shape is formed. When an external force is applied to the boot, the bellows portion can be easily compressed and expanded by the U-shaped depression, and the deformation of the rigid forming portion can be more effectively suppressed.

ブーツは、合成樹脂からなり、たとえば、TPE(ポリエステル系熱可塑性エラストマー)、TPO(ポリオレフィン系熱可塑性エラストマー)などの熱可塑性エラストマー樹脂、ゴムを用いて、ブロー成形、射出成形などの公知の方法で成形することができる。   The boot is made of a synthetic resin. For example, the boot is made of a thermoplastic elastomer resin such as TPE (polyester thermoplastic elastomer), TPO (polyolefin thermoplastic elastomer), or rubber by a known method such as blow molding or injection molding. Can be molded.

以下、実施例及び比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(実施例1)
本発明の一実施例にかかる等速ジョイント用ブーツ1は、図1、図2に示すように、大径筒部2と、大径筒部2と離間して同軸的に配置され大径筒部2より小径の小径筒部3と、大径筒部2と小径筒部3とを連結する略円錐台形状の中間部10とからなる。中間部10は、小径筒部3に一体に連結された伸縮性の蛇腹部19と、蛇腹部19と大径筒部2に一体に連結された剛性形成部11とからなる。剛性形成部11は、蛇腹部19から大径筒部2に向けて拡径しているとともに、剛性形成部11の外周面101及び内周面102は、それぞれ階段状に複数の段部61,62を有する。
(Example 1)
A constant velocity joint boot 1 according to an embodiment of the present invention includes a large-diameter tube portion 2 and a large-diameter tube that are coaxially disposed apart from the large-diameter tube portion 2 as shown in FIGS. A small-diameter cylindrical portion 3 having a smaller diameter than the portion 2 and a substantially frustoconical intermediate portion 10 connecting the large-diameter cylindrical portion 2 and the small-diameter cylindrical portion 3. The intermediate portion 10 includes a stretchable bellows portion 19 integrally connected to the small diameter cylindrical portion 3, and a rigidity forming portion 11 integrally connected to the bellows portion 19 and the large diameter cylindrical portion 2. The rigidity forming portion 11 is expanded from the bellows portion 19 toward the large-diameter cylindrical portion 2, and the outer peripheral surface 101 and the inner peripheral surface 102 of the rigidity forming portion 11 are stepped in a plurality of step portions 61, respectively. 62.

図3(a)に示すように、剛性形成部11の外周面101の段部61は、径外方向に突出した山部Mと径内方向に窪んだ谷部Vとが交互に繰り返されており、谷部Vと山部Mとの間を軸方向に連結する側面611と、山部Mと谷部Vとの間を径方向に連結する端面612とを有する。段部61の側面611は、段部61の軸方向に平行であり、段部61の端面612は段部61の径方向に平行である。山部Mにおける側面611と端面612のなす角度は直角、谷部Vにおける端面612と側面611とのなす角度も直角である。   As shown in FIG. 3A, the stepped portion 61 of the outer peripheral surface 101 of the rigidity forming portion 11 is formed by alternately repeating a ridge portion M projecting radially outward and a valley portion V recessed in the radially inward direction. And a side surface 611 that connects the valley portion V and the peak portion M in the axial direction, and an end surface 612 that connects the peak portion M and the valley portion V in the radial direction. The side surface 611 of the step portion 61 is parallel to the axial direction of the step portion 61, and the end surface 612 of the step portion 61 is parallel to the radial direction of the step portion 61. The angle formed between the side surface 611 and the end surface 612 in the peak portion M is a right angle, and the angle formed between the end surface 612 and the side surface 611 in the valley portion V is also a right angle.

外周面101の側面611の径方向の厚み(A)に対する端面612の径方向の長さ(B)の比率(B/A)は1.39である。   The ratio (B / A) of the radial length (B) of the end surface 612 to the radial thickness (A) of the side surface 611 of the outer peripheral surface 101 is 1.39.

剛性形成部11の内周面102の段部62は、径外方向に突出した山部mと径内方向に窪んだ谷部vとが交互に繰り返されており、谷部vと山部mとの間を略軸方向に連結する側面621と、山部mと谷部vとの間を略径方向に連結する端面622とを有する。側面621は、段部62の軸方向に対して剛性形成部11の拡径する側に傾斜している。端面622は、段部62の径方向に対して剛性形成部11の拡径する側に傾斜している。   In the stepped portion 62 of the inner peripheral surface 102 of the rigidity forming portion 11, a peak portion m projecting radially outward and a trough portion v recessed in the radially inner direction are alternately repeated. Side surface 621 that connects the first and second portions in the substantially axial direction, and an end surface 622 that connects the peak portion m and the valley portion v in the substantially radial direction. The side surface 621 is inclined with respect to the axial direction of the stepped portion 62 on the side where the rigidity forming portion 11 is expanded. The end surface 622 is inclined with respect to the radial direction of the stepped portion 62 toward the side where the rigidity forming portion 11 is expanded.

剛性形成部11の内周面102の段部62の山部mと谷部vとの間の距離すなわち段部62の段差hは、外周面51の段部61の山部Mと谷部Vとの間の距離すなわち段差Hよりも小さい。   The distance between the peak portion m and the valley portion v of the step portion 62 on the inner peripheral surface 102 of the rigidity forming portion 11, that is, the step height h of the step portion 62 is the peak portion M and the valley portion V of the step portion 61 of the outer peripheral surface 51. Is smaller than the distance H, ie, the step H.

剛性形成部11のもっとも薄い部分の肉厚Dは蛇腹部19の肉厚dと同程度である。
剛性形成部11の外周面101の段部61及び内周面102の段部62の数はいずれも4つである。図1に示すように、蛇腹部19は、山部Xと谷部Yとが繰り返され、その間を三角形状に連結する右上がり斜面191と左上がり斜面192とをもつ。
The thickness D of the thinnest portion of the rigidity forming portion 11 is approximately the same as the thickness d of the bellows portion 19.
The number of the step portions 61 on the outer peripheral surface 101 of the rigidity forming portion 11 and the number of the step portions 62 on the inner peripheral surface 102 are four. As shown in FIG. 1, the bellows portion 19 has a crest portion X and a trough portion Y repeated, and has a right-upward inclined surface 191 and a left-upward inclined surface 192 that connect between them in a triangular shape.

蛇腹部19における剛性形成部11との連結部は、径内方向に窪み軸方向断面がU字溝形状である窪み部18が形成されている。蛇腹部19の軸方向の長さQに対する剛性形成部11の軸方向の長さPの比率(P/Q)は、0.5である。   The connection part with the rigid formation part 11 in the bellows part 19 forms the hollow part 18 whose hollow axial cross section is U-shaped groove shape in the radial direction. The ratio (P / Q) of the axial length P of the rigidity forming portion 11 to the axial length Q of the bellows portion 19 is 0.5.

ブーツ1は、合成樹脂からなり、たとえば、TPE(ポリエステル系熱可塑性エラストマー)、TPO(ポリオレフィン系熱可塑性エラストマー)などの熱可塑性エラストマー樹脂を用いて、ブロー成形で形成される。   The boot 1 is made of a synthetic resin and is formed by blow molding using a thermoplastic elastomer resin such as TPE (polyester thermoplastic elastomer) or TPO (polyolefin thermoplastic elastomer).

図2、図10に示すように、ブーツ1は、内方部材8と外方部材7との間を連結するジョイント41、42を被覆する。ジョイント41,42の外方部材7のカップ部70にはブーツ1の大径筒部2を、内方部材8の軸部83には小径筒部3を嵌め込む。そして、大径筒部2及び小径筒部3の外周面22,32にリング状のクランプ52,53をかしめて締結する。   As shown in FIGS. 2 and 10, the boot 1 covers joints 41 and 42 that connect the inner member 8 and the outer member 7. The large-diameter cylindrical portion 2 of the boot 1 is fitted into the cup portion 70 of the outer member 7 of the joints 41 and 42, and the small-diameter cylindrical portion 3 is fitted into the shaft portion 83 of the inner member 8. Then, ring-shaped clamps 52 and 53 are caulked and fastened to the outer peripheral surfaces 22 and 32 of the large diameter cylindrical portion 2 and the small diameter cylindrical portion 3.

等速ジョイント用のブーツ1は、図10に示すように、シャフトからなる内方部材8と外方部材7との間のジョイント部41、42を覆うことにより、その内部のグリースの漏れを防止するとともに内部に水や埃の侵入を防止する。ブーツ1の大径筒部2の内周面21には、外方部材7のカップ部70を弾接させて、その外周面側からのクランプ52の締結力により固定する。また、小径筒部3は、内方部材8の軸部83に固定する。内方部材8の端部84は、同軸的に外方部材7のカップ部70に挿入されている。内方部材8の端部84と外方部材7のカップ部70との間には周方向に複数のボール80が介在されていて、内方部材8と外方部材7とを揺動自在に連結している。そして、外方部材7及び内方部材8のうち駆動側の部材から、内方部材8及び外方部材7のうち従動側の部材へ、回転トルクが等速で伝達される。   The constant velocity joint boot 1, as shown in FIG. 10, covers the joint portions 41, 42 between the inner member 8 and the outer member 7 formed of a shaft, thereby preventing leakage of grease inside the boot. And prevent water and dust from entering inside. The cup portion 70 of the outer member 7 is brought into elastic contact with the inner peripheral surface 21 of the large-diameter cylindrical portion 2 of the boot 1 and fixed by the fastening force of the clamp 52 from the outer peripheral surface side. Further, the small diameter cylindrical portion 3 is fixed to the shaft portion 83 of the inner member 8. The end portion 84 of the inner member 8 is coaxially inserted into the cup portion 70 of the outer member 7. A plurality of balls 80 are interposed in the circumferential direction between the end portion 84 of the inner member 8 and the cup portion 70 of the outer member 7 so that the inner member 8 and the outer member 7 can swing freely. It is connected. The rotational torque is transmitted at a constant speed from the driving member of the outer member 7 and the inner member 8 to the driven member of the inner member 8 and the outer member 7.

(実施例2)
本例の等速ジョイント用ブーツは、図4に示すように、剛性形成部12の外周面101の段部61が実施例1よりも径外方向に突出して、段部61の側面611が軸方向に対して傾斜している。段部61の端面612は径方向と平行である。その他は実施例1と同様である。
(Example 2)
In the constant velocity joint boot of this example, as shown in FIG. 4, the stepped portion 61 of the outer peripheral surface 101 of the rigidity forming portion 12 protrudes radially outward from the first embodiment, and the side surface 611 of the stepped portion 61 is the shaft. Inclined with respect to direction. The end surface 612 of the step portion 61 is parallel to the radial direction. Others are the same as in the first embodiment.

(比較例1)
本比較例のブーツでは、図5に示すように、剛性形成部15が蛇腹部19から大径筒部2に向けて広がる碗形状であり、その外周面101及び内周面102に段部がない。その他の点は、実施例1と同様である。
(Comparative Example 1)
In the boot of this comparative example, as shown in FIG. 5, the rigidity forming portion 15 has a flange shape extending from the bellows portion 19 toward the large-diameter cylindrical portion 2, and step portions are provided on the outer peripheral surface 101 and the inner peripheral surface 102 thereof. Absent. Other points are the same as in the first embodiment.

(比較例2)
本比較例のブーツでは、図6に示すように、剛性形成部16の全体が円筒状である点が、実施例1と相違する。剛性形成部16の径は、蛇腹部19よりも大きく大径筒部2よりも小さい。その他の点は実施例1と同様である。
(Comparative Example 2)
As shown in FIG. 6, the boot of this comparative example is different from the first embodiment in that the rigidity forming portion 16 is entirely cylindrical. The diameter of the rigidity forming portion 16 is larger than the bellows portion 19 and smaller than the large diameter cylindrical portion 2. Other points are the same as in the first embodiment.

(比較例3)
本比較例のブーツでは、図7に示すように、剛性形成部17が蛇腹形状である点が、実施例1と相違する。剛性形成部17は、谷部Wと山部Nが2回繰り返される形状である。剛性形成部17と蛇腹部18との間の連結部には谷部180が形成されている。その他の点は実施例1と同様である。
(Comparative Example 3)
The boot of this comparative example is different from the first embodiment in that the rigidity forming portion 17 has a bellows shape as shown in FIG. The rigidity forming portion 17 has a shape in which the valley portion W and the mountain portion N are repeated twice. A trough portion 180 is formed at the connecting portion between the rigidity forming portion 17 and the bellows portion 18. Other points are the same as in the first embodiment.

(評価)
実施例1,2及び比較例1〜3のブーツについて下記の物性を評価した。
(折り曲げトルク)ブーツの剛性形成部を折り曲げるのに必要なトルクを測定した。必要なトルクを4段階で評価した。◎は非常に大きい、○は大きい、△は中程度、×は小さいトルクで剛性形成部を折り曲げることができた場合を示す。
(疲労性)ブーツの剛性形成部を所定角度で折り曲げた状態で高熱環境下で所定時間放置する実験を行った。実験前後で応力変化を測定し、応力変化が所定量以下の場合の耐久時間を求めた。耐久時間が所定時間以上の場合を○、所定時間未満の場合を×とした。
(干渉性)図10に示すように、ブーツ1の大径筒部2を外方部材7のカップ部70にクランプ52を用いて固定し、小径筒部3を内方部材8の軸部83にクランプ53を用いて固定した。これにより、カップ部70とボール80と内方部材8の端部84とからなるジョイント41,42にブーツ1を組み付けた。この状態で、内方部材8を持ち上げたときに、ブーツがボールや外方部材と干渉するか否かについて調べた。外方部材やボールと干渉しない場合を○、干渉する場合を×とした。
(Evaluation)
The following physical properties of the boots of Examples 1 and 2 and Comparative Examples 1 to 3 were evaluated.
(Bending torque) The torque required to bend the rigid forming portion of the boot was measured. The required torque was evaluated in 4 stages. ◎ is very large, ○ is large, Δ is medium, and x indicates a case where the rigid forming portion can be bent with a small torque.
(Fatigue) An experiment was conducted in which the rigid forming portion of the boot was left at a predetermined angle in a state where the boot was bent at a predetermined angle. The stress change was measured before and after the experiment, and the endurance time when the stress change was below a predetermined amount was determined. The case where the endurance time was not less than the predetermined time was marked with ◯, and the case where the durability time was less than the predetermined time was marked with x.
(Interference) As shown in FIG. 10, the large-diameter cylindrical portion 2 of the boot 1 is fixed to the cup portion 70 of the outer member 7 using a clamp 52, and the small-diameter cylindrical portion 3 is fixed to the shaft portion 83 of the inner member 8. It was fixed using a clamp 53. Thereby, the boot 1 was assembled | attached to joint 41,42 which consists of the cup part 70, the ball | bowl 80, and the edge part 84 of the inner member 8. FIG. In this state, it was examined whether or not the boot interferes with the ball and the outer member when the inner member 8 is lifted. The case where it did not interfere with the outer member or the ball was indicated as ◯, and the case where it interfered was indicated as x.

以上の各測定結果から総合的に判断して、ブーツの総合特性について、◎(最良)、○(良)、△(普通)、×(不良)で評価した。評価結果を表1に示した。   Judging comprehensively from the above measurement results, the overall characteristics of the boots were evaluated with ◎ (best), ○ (good), Δ (normal), and × (poor). The evaluation results are shown in Table 1.

Figure 2008095842
Figure 2008095842

同表より、実施例1,2は、いずれの物性評価についても良好な結果が得られた。これに対して、比較例1〜3は折り曲げトルクが小さく、剛性形成部の剛性が低かった。   From the table, Examples 1 and 2 gave good results for any physical property evaluation. On the other hand, in Comparative Examples 1 to 3, the bending torque was small, and the rigidity of the rigidity forming portion was low.

以上の評価より、実施例1,2は、剛性形成部の剛性が高く、外力に対して変形しにくい形状であることがわかった。その理由は、実施例1,2の剛性形成部は階段状の複数の段部を有するため、比較例1の碗形状、比較例2の円筒形状、比較例3の蛇腹形状に比べて、高い剛性が得られたと考えられる。   From the above evaluations, it was found that Examples 1 and 2 have a shape in which the rigidity of the rigidity forming portion is high and is not easily deformed by an external force. The reason is that the rigid forming portions of Examples 1 and 2 have a plurality of stepped steps, which is higher than the flange shape of Comparative Example 1, the cylindrical shape of Comparative Example 2, and the bellows shape of Comparative Example 3. It is thought that rigidity was obtained.

また、実施例1ではブロー成形にてブーツを作製している。このため、ブーツの内周面は、外周面と同じ形状に成形しにくく、外周面よりもゆるやかな傾斜をもつ傾向にある。それゆえ、実施例1では、図3(b)に示すように、剛性形成部11の内周面102は径方向に対して傾斜した端面622と、軸方向に対して傾斜した側面621とをもつことになる。剛性形成部11の内周面102に形成された段部62の段差hは、外周面101に形成された段部61の段差Hよりも小さい。このため、両者の段差H、hが同じ場合(図3(b)中の点線)に比べて、外周面101の段部61の側面611と内周面102との間の径方向の厚みL1が大きくなり、また外周面101の段部61の端面612と内周面102との間の軸方向の厚みL2が大きくなる。このことも剛性形成部11の剛性向上の要因であると考えられる。   Moreover, in Example 1, the boot is produced by blow molding. For this reason, the inner peripheral surface of the boot is difficult to be formed into the same shape as the outer peripheral surface, and tends to have a gentler slope than the outer peripheral surface. Therefore, in the first embodiment, as shown in FIG. 3B, the inner peripheral surface 102 of the rigidity forming portion 11 includes an end surface 622 inclined with respect to the radial direction and a side surface 621 inclined with respect to the axial direction. Will have. The level difference h of the stepped portion 62 formed on the inner peripheral surface 102 of the rigidity forming portion 11 is smaller than the level difference H of the stepped portion 61 formed on the outer peripheral surface 101. For this reason, compared with the case where both the level | step differences H and h are the same (dotted line in FIG.3 (b)), radial thickness L1 between the side surface 611 of the step part 61 of the outer peripheral surface 101 and the inner peripheral surface 102 is shown. And the axial thickness L2 between the end surface 612 of the stepped portion 61 of the outer peripheral surface 101 and the inner peripheral surface 102 is increased. This is also considered to be a factor for improving the rigidity of the rigidity forming portion 11.

変形例として、射出成形などで成形した場合には、図8に示すように、剛性形成部13の内周面102を外周面101と同形状に成形することも可能である。この場合には、外周面101の段部61の側面611と内周面102との間の径方向の厚みL1が蛇腹部19の厚みdと同程度になり、また外周面101の段部61の端面612と内周面102との間の軸方向の厚みL2も蛇腹部19の厚みdと同程度となる。この場合でも、剛性形成部13は階段形状であるため、円筒形状より断面係数が高い。それゆえ、剛性形成部13は、高い剛性を発揮し、持ち上げられたときに変形しにくく、ボールや外方部材と干渉することを抑制できる。   As a modification, when molding is performed by injection molding or the like, it is possible to mold the inner peripheral surface 102 of the rigidity forming portion 13 into the same shape as the outer peripheral surface 101 as shown in FIG. In this case, the radial thickness L1 between the side surface 611 of the stepped portion 61 of the outer peripheral surface 101 and the inner peripheral surface 102 is substantially the same as the thickness d of the bellows portion 19, and the stepped portion 61 of the outer peripheral surface 101. The thickness L2 in the axial direction between the end surface 612 and the inner peripheral surface 102 is also approximately the same as the thickness d of the bellows portion 19. Even in this case, since the rigidity forming portion 13 has a stepped shape, the section modulus is higher than that of the cylindrical shape. Therefore, the rigidity forming portion 13 exhibits high rigidity, is difficult to be deformed when lifted, and can suppress interference with the ball and the outer member.

また、他の変形例として、図9に示すように、剛性形成部14の外周面101には階段形状の段部61が形成され、その内周面102は段部がなく、蛇腹部19から大径筒部2に向けて直線状に傾斜した傾斜面63とすることができる。この場合には、実施例1の場合よりも、外周面101の段部61の側面611と内周面102との間の径方向の厚みL1が大きくなり、また外周面101の段部61の端面612と内周面102との間の軸方向の厚みL2が大きくなる。このため、実施例1よりも更に高い剛性が得られる。   As another modified example, as shown in FIG. 9, a staircase-shaped stepped portion 61 is formed on the outer peripheral surface 101 of the rigidity forming portion 14, and the inner peripheral surface 102 has no stepped portion. It can be set as the inclined surface 63 inclined linearly toward the large diameter cylindrical part 2. In this case, the radial thickness L1 between the side surface 611 of the stepped portion 61 of the outer peripheral surface 101 and the inner peripheral surface 102 is larger than that of the first embodiment, and the stepped portion 61 of the outer peripheral surface 101 is increased. The axial thickness L2 between the end surface 612 and the inner peripheral surface 102 is increased. For this reason, higher rigidity than Example 1 is obtained.

実施例1の等速ジョイント用ブーツの断面図である。1 is a cross-sectional view of a constant velocity joint boot of Example 1. FIG. 実施例1における、等速ジョイントにブーツを組付けた状態の断面図である。It is sectional drawing of the state which assembled | attached the boot to the constant velocity joint in Example 1. FIG. 実施例1の剛性形成部の断面説明図である。FIG. 3 is a cross-sectional explanatory view of a rigidity forming portion of Example 1. 実施例2の等速ジョイント用ブーツの断面図である。6 is a cross-sectional view of a constant velocity joint boot of Example 2. FIG. 比較例1の等速ジョイント用ブーツの断面図である。3 is a cross-sectional view of a constant velocity joint boot of Comparative Example 1. FIG. 比較例2の等速ジョイント用ブーツの断面図である。6 is a cross-sectional view of a constant velocity joint boot of Comparative Example 2. FIG. 比較例3の等速ジョイント用ブーツの断面図である。10 is a cross-sectional view of a constant velocity joint boot of Comparative Example 3. FIG. 変形例の剛性形成部の断面説明図である。It is sectional explanatory drawing of the rigid formation part of a modification. 他の変形例の剛性形成部の断面説明図である。It is sectional explanatory drawing of the rigid formation part of another modification. ドライブシャフトの断面図である。It is sectional drawing of a drive shaft. 従来例のドライブシャフトを持ち上げたときの問題点を示す説明図である。It is explanatory drawing which shows a problem when the drive shaft of a prior art example is lifted. 従来例のドライブシャフトを持ち上げたときの問題点を示す説明図である。It is explanatory drawing which shows a problem when the drive shaft of a prior art example is lifted.

符号の説明Explanation of symbols

1:ブーツ、2:大径筒部、3:小径筒部、41,42:ジョイント、7:外方部材、8:内方部材、11、12,13、14:剛性形成部、18:窪み部、19:蛇腹部、61,62:段部、70:カップ部、80:ボール、81、ボール溝、101:外周面、102:内周面、611、621:側面、612、622:端面 1: boot, 2: large diameter cylindrical portion, 3: small diameter cylindrical portion, 41, 42: joint, 7: outer member, 8: inner member, 11, 12, 13, 14: rigidity forming portion, 18: depression Part: 19: bellows part, 61, 62: step part, 70: cup part, 80: ball, 81, ball groove, 101: outer peripheral face, 102: inner peripheral face, 611, 621: side face, 612, 622: end face

Claims (2)

大径筒部と、該大径筒部と離間して同軸的に配置され該大径筒部より小径の小径筒部と、該大径筒部と該小径筒部とを連結する中間部と、からなる等速ジョイント用ブーツであって、
前記中間部は、前記小径筒部に一体に連結された伸縮性の蛇腹部と、該蛇腹部及び前記大径筒部に一体に連結された剛性形成部とからなり、
該剛性形成部は、前記蛇腹部から前記大径筒部に向けて拡径しているとともに、前記剛性形成部の少なくとも外周面は階段状に複数の段部を有することを特徴とする等速ジョイント用ブーツ。
A large-diameter cylindrical portion, a small-diameter cylindrical portion that is coaxially disposed apart from the large-diameter cylindrical portion, and has a smaller diameter than the large-diameter cylindrical portion, and an intermediate portion that connects the large-diameter cylindrical portion and the small-diameter cylindrical portion. A constant velocity joint boot comprising:
The intermediate portion is composed of a stretchable bellows portion integrally connected to the small diameter cylindrical portion, and a rigidity forming portion integrally connected to the bellows portion and the large diameter cylindrical portion,
The rigidity forming portion has a diameter that increases from the bellows portion toward the large-diameter cylindrical portion, and at least an outer peripheral surface of the rigidity forming portion has a plurality of stepped portions in a step shape. Joint boots.
前記剛性形成部の内周面は、前記剛性形成部の外周面に形成された前記段部の段差が小さい段部をもつことを特徴とする請求項1記載の等速ジョイント用ブーツ。   2. The constant velocity joint boot according to claim 1, wherein an inner peripheral surface of the rigidity forming portion has a step portion having a small step difference formed on the outer peripheral surface of the rigidity forming portion.
JP2006278768A 2006-10-12 2006-10-12 Constant velocity joint boots Expired - Fee Related JP5052089B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006278768A JP5052089B2 (en) 2006-10-12 2006-10-12 Constant velocity joint boots
US12/444,427 US8070612B2 (en) 2006-10-12 2007-10-12 Boot for constant-velocity universal joint and cross-grooved constant-velocity universal joint
EP07829660.5A EP2068026B1 (en) 2006-10-12 2007-10-12 Boot for constant velocity joint and cross group-type constant velocity joint
CN200780037828.2A CN101523070B (en) 2006-10-12 2007-10-12 Boot for constant velocity joint and cross group-type constant velocity joint
PCT/JP2007/069924 WO2008044760A1 (en) 2006-10-12 2007-10-12 Boot for constant velocity joint and cross group-type constant velocity joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006278768A JP5052089B2 (en) 2006-10-12 2006-10-12 Constant velocity joint boots

Publications (2)

Publication Number Publication Date
JP2008095842A true JP2008095842A (en) 2008-04-24
JP5052089B2 JP5052089B2 (en) 2012-10-17

Family

ID=39378904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006278768A Expired - Fee Related JP5052089B2 (en) 2006-10-12 2006-10-12 Constant velocity joint boots

Country Status (2)

Country Link
JP (1) JP5052089B2 (en)
CN (1) CN101523070B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105299076B (en) * 2010-08-24 2019-10-22 Gkn 动力传动系统国际有限责任公司 The cover with transitional region for being used for constant velocity cardan joint is especially for universal joint
CN104295748A (en) * 2014-07-17 2015-01-21 天津市环宇橡塑股份有限公司 Novel automobile drive shaft dustproof cover
CN108340516B (en) * 2018-01-17 2020-11-20 河南平高电气股份有限公司 Telescopic protective cover and die for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154908A (en) * 2005-11-30 2007-06-21 Ntn Corp Boots for constant velocity universal joint

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2430027C2 (en) * 1974-06-22 1976-01-08 Loehr & Bromkamp Gmbh, 6050 Offenbach Constant velocity swivel
JPH0169916U (en) * 1987-10-28 1989-05-10
ES2045809T3 (en) * 1989-06-14 1994-01-16 Fields Hayward Philip JOINT PROTECTOR BELLOWS.
KR940007396A (en) * 1992-09-30 1994-04-27 스마 요시츠기 Constant Groove Joint of Cross Groove Type
CN2739407Y (en) * 2004-06-22 2005-11-09 吴付华 Cross-groove type ball coupling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154908A (en) * 2005-11-30 2007-06-21 Ntn Corp Boots for constant velocity universal joint

Also Published As

Publication number Publication date
CN101523070A (en) 2009-09-02
JP5052089B2 (en) 2012-10-17
CN101523070B (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP4716117B2 (en) Constant velocity joint boots
JP2003113858A (en) Boot for constant velocity universal joint
JP5052089B2 (en) Constant velocity joint boots
US7753380B2 (en) Boot for constant-velocity universal joint
US7967687B2 (en) Joint structure and boot for joint
WO2008044760A1 (en) Boot for constant velocity joint and cross group-type constant velocity joint
JP2009085265A (en) Boot for constant velocity joint
JP2008133855A (en) Crossing groove type constant speed joint
JP5777918B2 (en) Joint boots
JP4877289B2 (en) Constant velocity joint boots
JP2007232043A (en) Boot mounting structure
WO2007032301A1 (en) Boot for constant velocity universal joint
US11761493B2 (en) Co-molded CVJ boot skirt for anti-slip performance
JP2009228727A (en) Dust preventing device for joint
JP2008082432A (en) Boot fastening structure for constant velocity joint
JP4657897B2 (en) Seal structure
US7282166B2 (en) Constant velocity joint plunge boot
JP5183960B2 (en) Constant velocity universal boots
KR100837989B1 (en) Boot-Fixing Assembly of Constant Velocity Joint for a Vehicle
JP2009228728A (en) Dust preventing device for joint
JP2009085228A (en) Boot for constant velocity joint
JP2006275168A (en) Drive shaft
JP2008248965A (en) Boot for constant-velocity universal joint and mounting structure for the same
JP2009275758A (en) Constant velocity universal joint boot
JP4398530B2 (en) Wide angle constant velocity joint boots

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120724

R150 Certificate of patent or registration of utility model

Ref document number: 5052089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees