JP2006275168A - Drive shaft - Google Patents

Drive shaft Download PDF

Info

Publication number
JP2006275168A
JP2006275168A JP2005095734A JP2005095734A JP2006275168A JP 2006275168 A JP2006275168 A JP 2006275168A JP 2005095734 A JP2005095734 A JP 2005095734A JP 2005095734 A JP2005095734 A JP 2005095734A JP 2006275168 A JP2006275168 A JP 2006275168A
Authority
JP
Japan
Prior art keywords
boot
constant velocity
joint member
velocity universal
universal joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005095734A
Other languages
Japanese (ja)
Other versions
JP4652098B2 (en
Inventor
Shinichi Takabe
真一 高部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005095734A priority Critical patent/JP4652098B2/en
Publication of JP2006275168A publication Critical patent/JP2006275168A/en
Application granted granted Critical
Publication of JP4652098B2 publication Critical patent/JP4652098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance sealing property and durability of boots installed in a constant velocity universal joint of a drive shaft. <P>SOLUTION: This drive shaft is composed of a sliding type constant velocity universal joint J<SB>1</SB>attached with thermoplastic elastomer boots 10, a fixed type constant velocity universal joint J<SB>2</SB>attached with thermoplastic elastomer boots 10', and an intermediate shaft S for connecting both joints J<SB>1</SB>and J<SB>2</SB>. A large diameter installation part installed in an outside joint member of the boots 10 installed in the slide type constant velocity universal joint J<SB>1</SB>, is formed in a non-cylindrical shape of making a thin part and a thick part alternately appear in the circumferential direction, and has an outer peripheral surface of a cylindrical shape and an inner peripheral surface of a non-cylindrical shape along a boots installing part of the outside joint member, and the whole volume of the large diameter installation part is satisfied by a boots material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、自動車のデフ側とホイール側を連結して動力の伝達をするドライブシャフトに関する。   The present invention relates to a drive shaft that transmits power by connecting a differential side and a wheel side of an automobile.

自動車のドライブシャフトには、デフ側とホイール側にそれぞれ等速自在継手が使用される。等速自在継手には、θ=45〜50deg程度の大きな作動角を取ることのできるタイプ(例えばツェッパ型、バーフィールド型などのボールを用いた固定式等速自在継手)や、作動角はそれ程大きく取ることはできないが外側継手部材の軸線方向にスライドする機構を兼ね備えたタイプ(たとえばダブルオフセット型、トリポード型、クロスグルーブ型などの摺動式等速自在継手)がある。通常、ホイール側には固定式等速自在継手、デフ側には摺動式等速自在継手が使用される。   A constant velocity universal joint is used for a differential shaft and a wheel side of a drive shaft of an automobile. The constant velocity universal joint has a type that can take a large operating angle of θ = 45 to 50 deg (for example, a fixed type constant velocity universal joint using a ball such as a Rzeppa type or a barfield type), and the operating angle is so much. There is a type (for example, a sliding type constant velocity universal joint such as a double offset type, a tripod type, and a cross groove type) that cannot be taken large but has a mechanism that slides in the axial direction of the outer joint member. Usually, a fixed type constant velocity universal joint is used on the wheel side, and a sliding type constant velocity universal joint is used on the differential side.

等速自在継手は、内部に封入されたグリースの漏れや外部からの異物の侵入を防止する目的でブーツを装着して使用される。このブーツは、等速自在継手の外側継手部材に設けたブーツ取付部に取り付ける大径取付部と、等速自在継手に連結されたシャフト上に設けたブーツ取付部に取り付ける小径取付部と、両者を一体に連結する蛇腹部とで構成される。等速自在継手用ブーツには、クロロプレンなどのゴムや熱可塑性エラストマーなどが広く用いられる。一般に、ホイール側には熱可塑性エラストマー製ブーツが、デフ側にはクロロプレンラバー製ブーツが使用されている。あるいは、デフ側にも熱可塑性エラストマー製ブーツが使用されることもある。   The constant velocity universal joint is used with a boot attached for the purpose of preventing leakage of grease sealed inside and entry of foreign matter from the outside. This boot has a large-diameter mounting portion attached to a boot mounting portion provided on an outer joint member of a constant velocity universal joint, a small-diameter mounting portion attached to a boot mounting portion provided on a shaft connected to the constant velocity universal joint, And a bellows part that connects the two together. Rubbers such as chloroprene and thermoplastic elastomers are widely used for constant velocity universal joint boots. Generally, a thermoplastic elastomer boot is used on the wheel side, and a chloroprene rubber boot is used on the differential side. Alternatively, a thermoplastic elastomer boot may also be used on the differential side.

デフ側に用いる摺動式等速自在継手の外側継手部材の形状は、その開口部の輪郭が円筒形状のものもあれば、非円筒形状のものもある。等速自在継手の軽量化や加工性等の観点から、内部構造を考慮した非円筒形状を適用する方が効率的である場合が多数存在する。円筒形状の外側継手部材を用いる場合は熱可塑性エラストマー製ブーツを適用できるが、非円筒形状を成した外側継手部材に適用される等速自在継手用ブーツには、主にクロロプレンラバー製ブーツが使用されてきた。一方、昨今では熱可塑性エラストマー製ブーツを非円筒形状の外側継手部材にも適用することが検討されている(特許文献1ないし5参照)。
特開平10−110738号公報 特開平10−196673号公報 特開2002−13546号公報 特開2003−194093号公報 特開2003−329057号公報
The shape of the outer joint member of the sliding type constant velocity universal joint used on the differential side may be a cylindrical shape or a non-cylindrical shape. There are many cases where it is more efficient to apply the non-cylindrical shape considering the internal structure from the viewpoint of weight reduction and workability of the constant velocity universal joint. When a cylindrical outer joint member is used, a thermoplastic elastomer boot can be applied. However, a chloroprene rubber boot is mainly used as a constant velocity universal joint boot applied to a non-cylindrical outer joint member. It has been. On the other hand, recently, it has been studied to apply a thermoplastic elastomer boot to a non-cylindrical outer joint member (see Patent Documents 1 to 5).
Japanese Patent Laid-Open No. 10-110738 Japanese Patent Laid-Open No. 10-196673 JP 2002-13546 A JP 2003-194093 A JP 2003-329057 A

クロロプレンラバー製ブーツは、等速自在継手用ブーツとして比較的良好な性能を持っているが、耐疲労性、耐摩耗性、耐低温性、耐熱老化性、耐グリース性(耐油性)などの面で、使用条件によっては十分とは言えない場合も発生するため、より優れた性能を持つ熱可塑性エラストマー製ブーツに置き換わる傾向にある。特にホイール側に使用する固定式等速自在継手は、ほとんどの外側継手部材が円筒形状を成すため、置き換えが急速に進んでいる。しかし、デフ側に使用される摺動式等速自在継手は、軽量化や加工性等の観点から、内部構造を考慮した非円筒形状の輪郭を持つ外側継手部材が多いため、その置き換えがあまり進まず、主にクロロプレンラバー製ブーツが使用され続けている。非円筒形状の外側継手部材に適合させるためには、ブーツの大径取付部を円周方向に厚肉部と薄肉部を交互に構成させる非円筒形状に成形することや軸方向も含めた複雑な形状に成形することが必要となるところ、熱可塑性エラストマー製ブーツはその成形が困難であった。あるいは、熱可塑性エラストマーは材料特性上、弾性にやや乏しく材料硬さも高いため、外側継手部材へのブーツ装着性に難があったり、シール性が不十分となる場合がある。   Chloroprene rubber boots have relatively good performance as constant-velocity universal joint boots, but have aspects such as fatigue resistance, wear resistance, low temperature resistance, heat aging resistance, and grease resistance (oil resistance). However, since it may not be sufficient depending on the use conditions, it tends to be replaced with a thermoplastic elastomer boot having better performance. In particular, the fixed type constant velocity universal joint used on the wheel side is rapidly replaced because most outer joint members have a cylindrical shape. However, the sliding type constant velocity universal joints used on the differential side are not often replaced because there are many outer joint members with a non-cylindrical contour considering the internal structure from the viewpoint of weight reduction and workability. Without progressing, chloroprene rubber boots continue to be used. In order to adapt to a non-cylindrical outer joint member, the large-diameter mounting portion of the boot is formed into a non-cylindrical shape in which a thick portion and a thin portion are alternately formed in the circumferential direction, and complicated including the axial direction. However, it is difficult to mold the thermoplastic elastomer boot. Alternatively, since the thermoplastic elastomer is slightly poor in elasticity and high in material hardness due to material properties, it may be difficult to attach the boot to the outer joint member or the sealing performance may be insufficient.

熱可塑性エラストマー製ブーツを非円筒形状の外側継手部材に適用する際には、非円筒形状を成す外側継手部材と円筒形状を成すブーツの大径取付部との間、または、非円筒形状を成す外側継手部材に対してブーツの大径取付部を外側継手部材に沿った非円筒形状に成形し、その非円筒形状を成したブーツの大径取付部外面とバンドとの間に中間部材(ブッシング)を介在させるタイプを使用することが考えられる。しかし、この形態では部品点数が多くなり、管理上および組付け工程上好ましくない。さらに、コストが高騰する。あるいは、ブッシングにある程度の厚みが必要なため外径寸法が大きくなる。さらには、外側継手部材/ブーツ間、ブーツ/ブッシング間それぞれの接触部におけるシール性も不十分である。   When a thermoplastic elastomer boot is applied to a non-cylindrical outer joint member, the non-cylindrical outer joint member and the large-diameter mounting portion of the cylindrical boot or a non-cylindrical shape are formed. A large-diameter mounting portion of the boot is formed into a non-cylindrical shape along the outer joint member with respect to the outer joint member, and an intermediate member (bushing) is formed between the outer surface of the large-diameter mounting portion of the boot and the band that forms the non-cylindrical shape. ) May be used. However, in this embodiment, the number of parts increases, which is not preferable in terms of management and assembly process. Furthermore, the cost increases. Or since a certain amount of thickness is required for a bushing, an outer diameter dimension becomes large. Furthermore, the sealing properties at the contact portions between the outer joint member / boot and between the boot / bushing are insufficient.

一方、ブーツの大径取付部をほぼ一定肉厚にて非円筒形状を成す外側継手部材に沿った形状に成形し、そのブーツ外面を非円筒形状に沿った形状をしたバンドで締め付けることも考えられるが、バンドが複雑な形状を成すためコストが上がり、さらにはシール性も不十分である。   On the other hand, it is also considered that the large-diameter mounting portion of the boot is formed into a shape along the outer joint member that forms a non-cylindrical shape with a substantially constant thickness, and the boot outer surface is tightened with a band shaped along the non-cylindrical shape. However, since the band has a complicated shape, the cost increases and the sealing performance is insufficient.

また、他の手段として、ブーツの大径取付部内面の形状は非円筒形状を成す外側継手部材形状に沿った形状とし、ブーツの大径取付部外面は円筒形状を成すブーツとして、厚肉部に肉抜き部を設けた形状の熱可塑性エラストマー製ブーツなども考案されているが(特許文献5の図2参照)、この形状ではシール性が不十分だといった問題がある。   As another means, the shape of the inner surface of the large-diameter mounting portion of the boot is a shape along the shape of the outer joint member forming a non-cylindrical shape, and the outer surface of the large-diameter mounting portion of the boot is a thick-walled portion as a cylindrical boot. A boot made of a thermoplastic elastomer having a shape provided with a hollow portion has been devised (see FIG. 2 of Patent Document 5), but this shape has a problem that the sealing performance is insufficient.

本発明のドライブシャフトは、熱可塑性エラストマー製ブーツを装着した固定式等速自在継手と、熱可塑性エラストマー製ブーツを装着した摺動式等速自在継手と、前記両継手を連結する中間シャフトとからなり、摺動式等速自在継手に装着したブーツの、外側継手部材に取り付けた大径取付部は、円周方向に薄肉部と厚肉部が交互に現れる非円筒形状で、円筒形状の外周面と、外側継手部材のブーツ取付部に沿った非円筒形状の内周面を有し、大径取付部の全容積がブーツ材料により充足されていることを特徴とするものである。   The drive shaft of the present invention comprises a fixed type constant velocity universal joint fitted with a thermoplastic elastomer boot, a sliding type constant velocity universal joint fitted with a thermoplastic elastomer boot, and an intermediate shaft connecting the two joints. The large-diameter mounting part attached to the outer joint member of the boot attached to the sliding constant velocity universal joint is a non-cylindrical shape in which thin and thick parts appear alternately in the circumferential direction, and the cylindrical outer periphery And a non-cylindrical inner peripheral surface along the boot mounting portion of the outer joint member, and the entire volume of the large-diameter mounting portion is filled with the boot material.

本発明によれば、クロロプレンラバー製ブーツに比べて耐久性が向上し、十分なシール性も確保できたことで、ブーツ性能の信頼性が向上する。さらに、ブッシングを使わないことで部品点数を最少に留めることとブーツ重量もクロロプレンラバー製ブーツに比べて軽減できることでブーツの軽量化を達成できる。請求項2の発明のように中空シャフトと組み合わせて使用することでドライブシャフトの軽量化も更に達成できる。また、クロロプレンラバー製ブーツに比べて耐衝撃性に優れているため、ドライブシャフトの運搬時の取り扱い性が向上する。   According to the present invention, the durability is improved as compared with the boot made of chloroprene rubber, and the sufficient sealing performance can be secured, so that the reliability of the boot performance is improved. Furthermore, the weight of the boot can be reduced by not using a bushing and by minimizing the number of parts and reducing the weight of the boot compared to a boot made of chloroprene rubber. The drive shaft can be further reduced in weight by being used in combination with a hollow shaft as in the second aspect of the invention. In addition, since it is superior in impact resistance compared to chloroprene rubber boots, the handleability of the drive shaft during transportation is improved.

以下、熱可塑性エラストマー製ブーツを備えたトリポード型等速自在継手に適用した場合を例にとって実施の形態を説明する。   Hereinafter, an embodiment will be described by taking as an example a case where it is applied to a tripod type constant velocity universal joint provided with a boot made of a thermoplastic elastomer.

図1は、デフ側の摺動式等速自在継手J1と、ホイール側の固定式等速自在継手J2と、各等速自在継手の内側継手部材同士を接続する中間シャフトSとからなる自動車のドライブシャフトを例示している。図示する実施の形態では中間シャフトSを中空とすることにより軽量化を図ってある。中空シャフトは中間部分のパイプの両端に連結要素を溶接や圧接にて接合したものでもよいが、より軽量化を図るために、中間部分と連結要素を一体的に加工することが好ましい。その加工方法としては、鋼材から形成されたパイプの端部を加工して連結要素と成してもよいし、電縫管やシームレス管などの鋼製素管を塑性加工によって全体を加工して成してもよい。 FIG. 1 includes a differential-type sliding constant velocity universal joint J 1 , a wheel-side fixed constant velocity universal joint J 2, and an intermediate shaft S that connects inner joint members of the constant velocity universal joints. The drive shaft of a motor vehicle is illustrated. In the illustrated embodiment, the intermediate shaft S is made hollow to reduce the weight. The hollow shaft may be formed by joining connection elements to both ends of the pipe of the intermediate part by welding or pressure welding, but it is preferable to integrally process the intermediate part and the connection element in order to further reduce the weight. As the processing method, the end portion of the pipe formed from steel material may be processed to form a connecting element, or the whole steel raw pipe such as an electric-welded pipe or seamless pipe is processed by plastic working. You may make it.

ホイール側の固定式等速自在継手J2はここではツェッパ型が例示してあり、ブーツ10´を具備している。この固定式等速自在継手には、大径取付部が内周面、外周面共に円筒形状をした熱可塑性エラストマー製ブーツが装着される。これにより、従来から使用されてきたクロロプレンラバー製ブーツに比べてブーツ性能の信頼性が向上する。 Fixed type constant velocity universal joint J 2 of the wheel-side here is Yes and exemplified Tsueppa type, are provided with a boot 10 '. The fixed type constant velocity universal joint is mounted with a thermoplastic elastomer boot having a large-diameter mounting portion having a cylindrical shape on the inner peripheral surface and the outer peripheral surface. Thereby, the reliability of boot performance improves compared with the boot made from the chloroprene rubber conventionally used.

デフ側の摺動式等速自在継手J1は、図2および図3に示すように、外側継手部材2と、内側継手部材としてのトリポード部材4と、トルク伝達要素としてのローラ6を主要な構成要素としており、さらにブーツ10を具備している。 As shown in FIGS. 2 and 3, the differential sliding constant velocity universal joint J 1 includes an outer joint member 2, a tripod member 4 as an inner joint member, and a roller 6 as a torque transmission element. It is a constituent element and further includes a boot 10.

図示した実施の形態では、外側継手部材2は一体に形成されたマウス部22とステム部26とからなる。ステム部26は端部に形成したスプラインまたはセレーション軸28にて第一の回転軸(図示せず)とトルク伝達可能に結合する。マウス部22は一端にて開口したカップ状で、内周の円周方向三等分位置に軸方向に延びるトラック溝24が形成してある。マウス部22の外周面は、横断面(図3)で見ると、大径部22aと小径部22bが交互に現れる非円筒形状である。この実施の形態の場合、大径部22aはトラック溝24に対応する凸円弧形状の部分で、小径部は隣り合うトラック溝24間の部分に対応する凹円弧形状の部分である。   In the illustrated embodiment, the outer joint member 2 includes a mouth portion 22 and a stem portion 26 that are integrally formed. The stem portion 26 is coupled to a first rotating shaft (not shown) by a spline or serration shaft 28 formed at an end portion so as to transmit torque. The mouse portion 22 has a cup shape opened at one end, and a track groove 24 extending in the axial direction is formed at a position of the inner circumference in three equal parts. The outer peripheral surface of the mouse part 22 has a non-cylindrical shape in which the large diameter part 22a and the small diameter part 22b appear alternately when viewed in cross section (FIG. 3). In this embodiment, the large-diameter portion 22 a is a convex arc-shaped portion corresponding to the track groove 24, and the small-diameter portion is a concave arc-shaped portion corresponding to a portion between the adjacent track grooves 24.

トリポード部材4はボス42と脚軸46とからなる。ボス42には第二の回転軸たる中間シャフトSとトルク伝達可能に結合するスプラインまたはセレーション穴44が形成してある。脚軸46はボス42の円周方向三等分位置から半径方向に突出している。トリポード部材4の各脚軸46はローラ6を担持している。脚軸46とローラ6との間には複数の針状ころ8が介在させてあり、ローラ6は脚軸46の軸線を中心として回転自在である。なお、図1および図2ではローラ6の脱落防止のための止め輪やワッシャ等を省略してある。また、ここでは、一つの脚軸46に一つのローラ6を支持させたシングルローラタイプを例示してあるが、相対回転自在の内外ローラからなるダブルローラタイプであってもよい。   The tripod member 4 includes a boss 42 and a leg shaft 46. The boss 42 is formed with a spline or serration hole 44 that is coupled to the intermediate shaft S, which is the second rotating shaft, so as to be able to transmit torque. The leg shaft 46 projects in the radial direction from the circumferentially divided position of the boss 42. Each leg shaft 46 of the tripod member 4 carries a roller 6. A plurality of needle rollers 8 are interposed between the leg shaft 46 and the roller 6, and the roller 6 is rotatable about the axis of the leg shaft 46. In FIG. 1 and FIG. 2, a retaining ring and a washer for preventing the roller 6 from falling off are omitted. Here, a single roller type in which one roller 6 is supported on one leg shaft 46 is illustrated, but a double roller type including inner and outer rollers that are relatively rotatable is also possible.

図4にマウス部22の大径部22aの縦断面を示す。図示するように、端部近傍に円周方向に伸びるブーツ溝30が形成してある。このブーツ溝30付近を外側継手部材のブーツ取付部と呼ぶこととする。ブーツ溝30の底面は部分円筒面形状で、縦断面では軸線に平行な直線である。大径部22aの円周方向の一部または全部にわたって、突出部32が形成してある。突出部32は外側継手部材2の端面38付近に位置しているのが好ましい。   FIG. 4 shows a longitudinal section of the large diameter portion 22 a of the mouse portion 22. As shown in the drawing, a boot groove 30 extending in the circumferential direction is formed in the vicinity of the end portion. The vicinity of the boot groove 30 is referred to as a boot mounting portion of the outer joint member. The bottom surface of the boot groove 30 has a partial cylindrical shape, and is a straight line parallel to the axis in the longitudinal section. A protruding portion 32 is formed over part or all of the circumferential direction of the large diameter portion 22a. The protrusion 32 is preferably located near the end surface 38 of the outer joint member 2.

図示した実施の形態の場合、突出部32の軸方向両側はいずれも斜面34,36である。これらの斜面34,36の軸線に対する傾斜角度は25°以上60°以下、好ましくは25°以上45°以下とする。これにより、外側継手部材2の旋削加工効率を良くすると同時にブーツ10の大径取付部12を外側継手部材2に嵌合させる際の装着性を向上させ、かつ、ブーツ装着後における外側継手部材2に対するブーツ10の抜け防止作用および位置安定性も向上させることができる。   In the case of the illustrated embodiment, both sides of the protrusion 32 in the axial direction are inclined surfaces 34 and 36. The inclination angles of the inclined surfaces 34 and 36 with respect to the axis are 25 ° or more and 60 ° or less, preferably 25 ° or more and 45 ° or less. Thereby, the turning efficiency of the outer joint member 2 is improved, and at the same time, the mounting property when the large-diameter mounting portion 12 of the boot 10 is fitted to the outer joint member 2 is improved, and the outer joint member 2 after the boot is mounted. It is also possible to improve the action of preventing the boot 10 from coming off and the position stability.

第一の斜面すなわち外側継手部材2の端面38とは反対側の斜面34の角度が60°よりも大きくなると、外側継手部材2のブーツ取付部の加工性が低下してしまう。一方、25°未満の場合、外側継手部材2に嵌合させた後のブーツ10の軸方向への抜け防止作用や位置安定性が低下してしまう。また、軸方向に長い突起となることで、外側継手部材2のブーツ取付部の全幅が大きくなってしまい、スペース効率や強度上好ましくない。第二の斜面すなわち外側継手部材2の端面38側の斜面36の角度が60°よりも大きくなるとブーツ装着性が阻害される。一方、25°未満の場合、突出部32が軸方向に長くなることでブーツ取付部の全幅が大きくなってしまい、スペース効率や強度上好ましくない。   If the angle of the first inclined surface, that is, the inclined surface 34 opposite to the end surface 38 of the outer joint member 2 is larger than 60 °, the workability of the boot mounting portion of the outer joint member 2 is deteriorated. On the other hand, when the angle is less than 25 °, the action of preventing the boot 10 from coming off in the axial direction after being fitted to the outer joint member 2 and the position stability are lowered. Moreover, since it becomes a protrusion long in an axial direction, the full width of the boot attachment part of the outer joint member 2 will become large, and it is unpreferable on space efficiency or intensity | strength. When the angle of the second inclined surface, that is, the inclined surface 36 on the end surface 38 side of the outer joint member 2 is larger than 60 °, the boot mounting property is hindered. On the other hand, when the angle is less than 25 °, the protrusion 32 is elongated in the axial direction, so that the entire width of the boot mounting portion is increased, which is not preferable in terms of space efficiency and strength.

図5に示すように、ブーツ10の全体概観は円すい台形状で、大径取付部12と小径取付部14と両者間の屈曲部16とからなる。大径取付部12を外側継手部材2に嵌合させ、小径取付部14を中間シャフトSに嵌合させて、それぞれ、ブーツバンド13,15で締め付けて固定するようになっている(図1)。このため、各取付部の外周にブーツバンド13,15を受け入れるためのバンド溝18が形成してある。バンド溝18の底面は円筒面形状で縦断面が軸線に平行である。   As shown in FIG. 5, the overall appearance of the boot 10 has a truncated cone shape, and includes a large-diameter attachment portion 12, a small-diameter attachment portion 14, and a bent portion 16 therebetween. The large-diameter mounting portion 12 is fitted to the outer joint member 2 and the small-diameter mounting portion 14 is fitted to the intermediate shaft S, and is fastened and fixed by boot bands 13 and 15, respectively (FIG. 1). . For this reason, the band groove | channel 18 for receiving the boot bands 13 and 15 is formed in the outer periphery of each attaching part. The bottom surface of the band groove 18 has a cylindrical surface shape, and the longitudinal section is parallel to the axis.

ブーツ10は熱可塑性エラストマー製で、あらゆる部位が熱可塑性エラストマーにより充足され、空隙は全く存在しない。特に取付部に空隙が存在すると、バンド13(図2参照)の締付力が外側継手部材2のブーツ取付部に十分伝わらず、シール性が損なわれる。採用し得る材料の例としては、JIS K 6253によるタイプDデュロメータ硬さが35以上50以下の熱可塑性ポリエステル系エラストマーを挙げることができる。なお、クロロプレン等のJIS K 6253によるタイプAデュロメータ硬さが50以上70以下で示されるゴム材であっても効果を示すが、JIS K 6253によるタイプDデュロメータ硬さが35以上50以下で示される熱可塑性ポリエステル系エラストマーなど、材料硬さが高い材料である場合、より効果を発揮できる。   The boot 10 is made of a thermoplastic elastomer, and every part is filled with the thermoplastic elastomer, and there are no voids. In particular, if there is a gap in the attachment portion, the tightening force of the band 13 (see FIG. 2) is not sufficiently transmitted to the boot attachment portion of the outer joint member 2, and the sealing performance is impaired. Examples of materials that can be employed include thermoplastic polyester elastomers having a type D durometer hardness of 35 to 50 in accordance with JIS K 6253. A rubber material having a type A durometer hardness of 50 or more and 70 or less according to JIS K 6253, such as chloroprene, is effective, but a type D durometer hardness according to JIS K 6253 is indicated by 35 or more and 50 or less. In the case of a material having a high material hardness such as a thermoplastic polyester elastomer, the effect can be exhibited more.

熱可塑性ポリエステル系エラストマー製ブーツは、クロロプレンラバー製ブーツよりも、耐疲労性、耐摩耗性、耐低温性、耐熱老化性、耐グリース性(耐油性)などに優れるため、ブーツ耐久性が向上する。例えば、等速自在継手にブーツを装着した状態のドライブシャフトを100℃の雰囲気下に長時間放置して熱老化を与えた後、25℃の雰囲気下にて摺動式等速自在継手の作動角を低角度から高角度の間で変動させつつ摺動させながら、回転数600rpmにて連続運転した結果、熱可塑性ポリエステル系エラストマー製ブーツは優れた耐久性を示す。   Boots made of thermoplastic polyester elastomer have better fatigue resistance, wear resistance, low temperature resistance, heat aging resistance, grease resistance (oil resistance), etc. than boots made of chloroprene rubber. . For example, after the drive shaft with boots attached to a constant velocity universal joint is left to stand for a long time in an atmosphere of 100 ° C. and subjected to heat aging, the operation of the sliding type constant velocity universal joint in an atmosphere of 25 ° C. As a result of continuous operation at a rotation speed of 600 rpm while sliding while changing the angle between a low angle and a high angle, the boot made of thermoplastic polyester elastomer exhibits excellent durability.

また、同条件にて、特許文献5の図2のように、大径取付部12の厚肉部12bに空隙部分が存在する熱可塑性ポリエステル系エラストマー製ブーツを試験すると、バンド13の締付力が外側継手部材2のブーツ取付部に十分伝わらず、グリース漏れが発生するなど、シール性が十分とは言えない。   Further, under the same conditions, as shown in FIG. 2 of Patent Document 5, when a boot made of a thermoplastic polyester elastomer having a gap portion in the thick portion 12b of the large-diameter mounting portion 12 is tested, the tightening force of the band 13 However, it cannot be sufficiently transmitted to the boot mounting portion of the outer joint member 2 and grease leakage occurs.

一方、クロロプレンラバー製ブーツに比べて熱可塑性ポリエステル系エラストマー製ブーツの方が耐衝撃性にも優れていることから、ドライブシャフトの取り扱い時の損傷や、自動車へ搭載した後における飛び石などに対する抵抗性にも優れる。   On the other hand, boots made of thermoplastic polyester elastomer have better impact resistance than chloroprene rubber boots, so they are resistant to damage during handling of drive shafts and stepping stones after mounting in automobiles. Also excellent.

外側継手部材2に対するブーツ10の装着性もさることながら、ブーツ10に対するバンド13,15の装着性も、等速自在継手を組み立てる上で考慮すべき重要な因子である。たとえば、バンド溝18の両側壁は全周に連続的に設けてもよいが、その場合バンドの装着性を低下させる場合がある。そこで、バンド溝18の両側壁のうち、特に図5の右側に現れている端面側の側壁を形成する突部19については、バンド13の装着性に問題がなく、しかもバンド13の位置が安定する設定として、次のような構成とするのが好ましい。すなわち、図6から分かるように、突部19を円周方向に断続的に、たとえば三等分位置に配置し、各突部19の高さを0.6mm以上1.2mm以下、軸方向寸法を0.6mm以上2.0mm以下、さらに円周方向寸法をブーツ軸心から10°以上25°以下の範囲とする。   In addition to the mountability of the boot 10 to the outer joint member 2, the mountability of the bands 13, 15 to the boot 10 is an important factor to be considered in assembling the constant velocity universal joint. For example, both side walls of the band groove 18 may be continuously provided on the entire circumference, but in that case, the band mounting property may be lowered. Therefore, among the side walls of the band groove 18, in particular, the protrusion 19 that forms the side wall on the end face side that appears on the right side in FIG. 5 has no problem in the mountability of the band 13 and the position of the band 13 is stable. As the setting to be performed, the following configuration is preferable. That is, as can be seen from FIG. 6, the protrusions 19 are intermittently arranged in the circumferential direction, for example, at three equal positions, and the height of each protrusion 19 is 0.6 mm or more and 1.2 mm or less, and the axial dimension. Is 0.6 mm to 2.0 mm and the circumferential dimension is in the range of 10 ° to 25 ° from the boot axis.

ブーツ10の大径取付部の内周面は、図6に示すように、外側継手部材2のマウス部22の外周面形状に沿う形状となっている。すなわち、マウス部22の大径部22aに対応する薄肉部12aと、小径部22bに対応する厚肉部12bとが交互に現れる。   As shown in FIG. 6, the inner peripheral surface of the large-diameter mounting portion of the boot 10 has a shape along the outer peripheral surface shape of the mouth portion 22 of the outer joint member 2. That is, the thin part 12a corresponding to the large diameter part 22a of the mouse part 22 and the thick part 12b corresponding to the small diameter part 22b appear alternately.

大径取付部12の薄肉部12aの内周面は、縦断面で見ると、図7に示すように、端面側から面取り部A、軸線に平行な直線部B、窪みC、肩当てDが連続して形成してある。   As shown in FIG. 7, the inner peripheral surface of the thin portion 12a of the large-diameter mounting portion 12 has a chamfered portion A from the end surface side, a straight portion B parallel to the axis, a recess C, and a shoulder pad D as shown in FIG. It is formed continuously.

面取り部Aは、軸線に対して20°以上60°以下の角度で端面から1mm以上設ける。このような面取り部Aを設けることにより、上述のブーツ装着性をさらに向上させることができる。面取り部Aの端面側径は、外側継手部材2の突出部32の端面側斜面36の最小径よりも大きく設定してある。外側継手部材2の突出部32の端面側斜面36と端面38との会合部分は丸みを付けて滑らかにつないである。これにより、ブーツ10を装着するとき、当該丸み部分によってブーツ10の面取り部Aが案内されるため、一層円滑にブーツ10の装着を行うことができる。   The chamfered portion A is provided at least 1 mm from the end surface at an angle of 20 ° to 60 ° with respect to the axis. By providing such a chamfered portion A, the above-described boot mounting property can be further improved. The end surface side diameter of the chamfered portion A is set larger than the minimum diameter of the end surface side inclined surface 36 of the protruding portion 32 of the outer joint member 2. The meeting part of the end surface side slope 36 and the end surface 38 of the protrusion 32 of the outer joint member 2 is rounded and smoothly connected. Thus, when the boot 10 is mounted, the chamfered portion A of the boot 10 is guided by the rounded portion, so that the boot 10 can be mounted more smoothly.

窪みCは、外側継手部材2の突出部32を受け入れるため、突出部32の斜面34,36と接する斜面C1,C2を有する。これらを第三の斜面C1、第四の斜面C2とすると、第三の斜面C1が突出部32の第一の斜面34に対応し、第四の斜面C2が突出部32の第二の斜面36に対応する。このような構成であるため、窪みCは外側継手部材2の突出部32と嵌合して軸方向への抜け防止作用を発生させる。 The recess C has slopes C 1 and C 2 that contact the slopes 34 and 36 of the protrusion 32 in order to receive the protrusion 32 of the outer joint member 2. Assuming that these are the third slope C 1 and the fourth slope C 2 , the third slope C 1 corresponds to the first slope 34 of the protrusion 32, and the fourth slope C 2 is the second slope of the protrusion 32. Corresponds to the slope 36. Since it is such a structure, the hollow C fits with the protrusion part 32 of the outer joint member 2, and generates the removal | prevention action to an axial direction.

ブーツ10の大径取付部12は、外側継手部材2のブーツ取付部に容易に装着でき、かつ、バンド13で締め付けられた際に十分なシール性を発揮することが求められる。そのため、ブーツ10の大径取付部12の内面に設けた窪みCは、外側継手部材2の突出部32に沿う形状である。   The large-diameter attachment portion 12 of the boot 10 is required to be easily attached to the boot attachment portion of the outer joint member 2 and exhibit a sufficient sealing property when tightened with the band 13. Therefore, the recess C provided on the inner surface of the large-diameter mounting portion 12 of the boot 10 has a shape along the protruding portion 32 of the outer joint member 2.

ブーツ10の窪みCから肩当てDにかけての部分の輪郭は、外側継手部材2の突出部32から端面38にかけての部分の輪郭にほぼ一致する。そして、肩当てDは外側継手部材2の端面38と当接してブーツ10の軸方向位置を安定させる役割を果たす。   The contour of the portion of the boot 10 from the recess C to the shoulder pad D substantially matches the contour of the portion of the outer joint member 2 from the protruding portion 32 to the end surface 38. The shoulder rest D abuts against the end face 38 of the outer joint member 2 and serves to stabilize the axial position of the boot 10.

大径取付部12と屈曲部16をつなぐ肩部17が屈曲部16や大径取付部12の肉厚よりも厚肉に形成されている。ここで、肩部17とは、ブーツ10の大径取付部12に設けたバンド溝18の屈曲部16側の端面18aから屈曲部16の最終谷16aに繋がる斜面17aまでの部位を指す。この肩部17の最薄肉厚が大径取付部12における最薄肉部である窪みC部分の肉厚の2倍以上であることが好ましい。このような構成は、ブーツ肉厚が薄肉、具体的には蛇腹肉厚が0.5mmから2.0mm程度であるブーツにおいて、より効果を発揮する。   A shoulder 17 that connects the large-diameter mounting portion 12 and the bent portion 16 is formed thicker than the thickness of the bent portion 16 or the large-diameter mounting portion 12. Here, the shoulder portion 17 refers to a portion from the end surface 18 a on the bent portion 16 side of the band groove 18 provided in the large-diameter mounting portion 12 of the boot 10 to the inclined surface 17 a connected to the final valley 16 a of the bent portion 16. It is preferable that the thinnest wall thickness of the shoulder portion 17 is not less than twice the wall thickness of the hollow C portion which is the thinnest wall portion in the large-diameter mounting portion 12. Such a configuration is more effective in a boot having a thin boot thickness, specifically, a bellows thickness of about 0.5 mm to 2.0 mm.

斜面17aは、図7に例示したように最終谷16aに向かって縮径する斜面であってもよく、図9に示すように円筒形を成していてもよい。あるいは、図10に示すように一旦外径方向に広がってから縮径するような形状であってもよい。また、肩部17は、図7に例示したように外側継手部材2のブーツ取付部における突出部32ないし端面38と接触する設計を取ってもよいし、空間を設ける設計を取ってもよい。   The inclined surface 17a may be an inclined surface that decreases in diameter toward the final valley 16a as illustrated in FIG. 7, and may have a cylindrical shape as illustrated in FIG. Alternatively, as shown in FIG. 10, it may be a shape that once expands in the outer diameter direction and then decreases in diameter. Further, as illustrated in FIG. 7, the shoulder portion 17 may be designed to come into contact with the protruding portion 32 or the end surface 38 in the boot mounting portion of the outer joint member 2 or may be designed to provide a space.

ブーツ10の大径取付部12のうち厚肉部12bの内周面は、図8に示すように、端面側から、面取り部Aと軸線に平行な直線部Fが連続して形成してある。面取り部Aは既に述べた薄肉部のそれと同じである。図7と図8を対比すれば明らかなように、この厚肉部12bは、肩部17においても必然的に厚肉である。   As shown in FIG. 8, the inner peripheral surface of the thick portion 12 b of the large-diameter mounting portion 12 of the boot 10 is continuously formed with a chamfered portion A and a linear portion F parallel to the axis from the end surface side. . The chamfered portion A is the same as that of the thin portion already described. As is clear from a comparison between FIG. 7 and FIG. 8, the thick portion 12 b is inevitably thick even in the shoulder portion 17.

ブーツ10の大径取付部12の内周面に全周にわたって連続した突起Eが形成してある。この突起Eは薄肉部および厚肉部における上記直線部B,Fに位置する。突起Eの断面形状は半円や半楕円等でもよいが、三角形がより好ましい。図示する実施の形態では、突起Eの横断面は三角形で、頂点がブーツの半径方向内側つまり軸心側に向いている。突起Eは外側継手部材2のブーツ溝30と接触してシール機能を発揮する。突起Eは二条以上設けてもよい。あるいは、この突起Eとは別の不連続な突起を設けてもよい。バンド13で締め付けることにより、突起Eが外側継手部材2の非円筒形状からなるブーツ取付部のブーツ溝30に対して円周上均一に密着して十分なシール性を発揮する。その突起Eが密着する外側継手部材2のブーツ溝30の底面は平滑である。ブーツ溝30の底面は突起を設ける等の種々形状が考えられるが、外側継手部材2の加工工数の点から平滑であることが好ましい。   Protrusions E that are continuous over the entire circumference are formed on the inner circumferential surface of the large-diameter mounting portion 12 of the boot 10. This protrusion E is located in the said linear part B and F in a thin part and a thick part. The cross-sectional shape of the protrusion E may be a semicircle or a semi-ellipse, but a triangle is more preferable. In the illustrated embodiment, the protrusion E has a triangular cross section, and the apex is directed radially inward of the boot, that is, toward the axial center. The protrusion E contacts the boot groove 30 of the outer joint member 2 and exhibits a sealing function. Two or more protrusions E may be provided. Alternatively, a discontinuous protrusion different from the protrusion E may be provided. By tightening with the band 13, the protrusion E uniformly adheres to the boot groove 30 of the non-cylindrical boot mounting portion of the outer joint member 2 on the circumference and exhibits a sufficient sealing property. The bottom surface of the boot groove 30 of the outer joint member 2 with which the protrusion E is in close contact is smooth. The bottom surface of the boot groove 30 may have various shapes such as providing a protrusion, but is preferably smooth from the viewpoint of the processing man-hour of the outer joint member 2.

ブーツ10の大径取付部12における突起Eは、薄肉部12aと厚肉部12bの境界部においては凹円弧状に丸みをつけて滑らかにつないである。これにより、図11に示すように、外側継手部材2のブーツ溝30の円周方向端部の、異なる二曲面の接合部において、通常の締めしろの他の部位よりもブーツが外側継手部材に食い込むことが可能となってシール性が向上する。ただし、曲率半径が大きすぎると中央部が「担ぐ」ことになってすきまが生じてしまい、シール性が低下する。したがって、当該丸みの曲率半径は0.5mm以上5mm以下が好ましい。   The protrusion E in the large-diameter mounting portion 12 of the boot 10 is smoothly connected by rounding in a concave arc shape at the boundary between the thin portion 12a and the thick portion 12b. As a result, as shown in FIG. 11, the boot is connected to the outer joint member more than other portions of the normal tightening margin at the joint portion of the two different curved surfaces at the circumferential end portion of the boot groove 30 of the outer joint member 2. It becomes possible to bite in and the sealing performance is improved. However, if the radius of curvature is too large, the central portion is “bearing” and a gap is generated, resulting in a decrease in sealing performance. Therefore, the radius of curvature of the roundness is preferably 0.5 mm or more and 5 mm or less.

窪みCと突起Eの部位と外側継手部材2のブーツ取付部に対する締めしろは、突起Eの部位が弾性変形により外側継手部材2の突出部32を乗り越え、かつ、突起Eと外側継手部材2のブーツ溝30との間において十分なシール性を保つことができる設定が必要である。   The area of the recess C and the protrusion E and the tightening margin of the outer joint member 2 with respect to the boot mounting portion is such that the protrusion E part overcomes the protrusion 32 of the outer joint member 2 due to elastic deformation, and the protrusion E and the outer joint member 2 The setting which can maintain sufficient sealing performance between the boot grooves 30 is required.

ブーツ材質が熱可塑性エラストマー、特にJIS K 6253によるタイプDデュロメータ硬さが35以上50以下で示される熱可塑性ポリエステル系エラストマーである場合など、材料硬さが高い場合にはこの締めしろ設定が重要である。外側継手部材2のブーツ溝30と突出部32との段差が0.8mm以上1.5mm以下で、そこに装着されるブーツ10の大径取付部12の窪みCの突出部32に対する締めしろが半径で0.1mm以上1.0mm以下であり、かつ、突起Eの先端のブーツ溝30に対する締めしろが半径で0.1mm以上1.5mm以下であることが好ましい。さらに、突起Eの高さは0.3mm以上1.0mm以下が好ましい。   This boot setting is important when the material of the boot is high, such as when the material is high, such as when the material of the boot is a thermoplastic elastomer, especially a thermoplastic polyester elastomer with a type D durometer hardness of 35 to 50 in accordance with JIS K 6253. is there. The step between the boot groove 30 and the protrusion 32 of the outer joint member 2 is 0.8 mm or more and 1.5 mm or less, and the margin for the protrusion 32 of the recess C of the large-diameter mounting portion 12 of the boot 10 attached thereto is secured. It is preferable that the radius is 0.1 mm or more and 1.0 mm or less, and the interference with the boot groove 30 at the tip of the protrusion E is 0.1 mm or more and 1.5 mm or less. Furthermore, the height of the protrusion E is preferably 0.3 mm or greater and 1.0 mm or less.

述べたような締めしろ設定であれば、突起Eに外側継手部材2の突出部32を越えさせてブーツ10の大径取付部12を装着することができ、その後、バンド13で締め付けることによって、外側継手部材2のブーツ取付部にブーツ10の大径取付部12を強固に密着させて取り付けることができる。上述の締めしろよりも小さく設定した場合、バンド13を締めた時点でブーツ10が変形することにより局部的にすきまを生じる可能性がある。一方、上述の締めしろよりも大きい設定とすると、ブーツ装着が困難となる。また、突起Eの高さが0.3mm未満の場合、外側継手部材2の溝30に対する密着性が低くなり、十分なシール性が得られない。突起Eの高さが1.0mmを越える場合は、突起部の体積が大きくなりすぎて設計的にもシール性の面でも効率的でない。   With the tightening setting as described above, the large-diameter mounting portion 12 of the boot 10 can be attached to the protrusion E beyond the protruding portion 32 of the outer joint member 2, and then tightened with the band 13, The large-diameter attachment portion 12 of the boot 10 can be attached in close contact with the boot attachment portion of the outer joint member 2. If it is set to be smaller than the above-mentioned tightening margin, there is a possibility that a gap is locally generated by the deformation of the boot 10 when the band 13 is tightened. On the other hand, if the setting is larger than the above-described tightening margin, it is difficult to attach the boot. Moreover, when the height of the protrusion E is less than 0.3 mm, the adhesion of the outer joint member 2 to the groove 30 is lowered, and sufficient sealing performance cannot be obtained. When the height of the protrusion E exceeds 1.0 mm, the volume of the protrusion becomes too large, which is not efficient in terms of design and sealing properties.

ブーツ10の窪みCと突起Eはバンド溝18の幅の範囲内に位置させるのが好ましい。このような構成とすることにより、突起Eにバンドの締付け力が垂直方向に伝達され、かつ、突出部32と嵌合する窪みCの軸方向への拘束が強化されるため、より安定したシール性が得られる。   The recess C and the protrusion E of the boot 10 are preferably positioned within the range of the width of the band groove 18. With such a configuration, the band tightening force is transmitted to the protrusion E in the vertical direction, and the restraint in the axial direction of the recess C fitted to the protrusion 32 is strengthened. Sex is obtained.

以上の要件を満たすドライブシャフトの固定式等速自在継手と摺動式等速自在継手をつないで動力の伝達をする中間シャフトは、軸心に中空部分を成してもよい。この中空シャフトを適用することによりドライブシャフトの軽量化や共振点の調整が可能となる。また、中空シャフトは鋼材から形成されたパイプの端部に連結要素を一体に有したものであってもよいし、鋼製素管から塑性加工により成形され、端部に連結要素を一体に有したもあってもよい。   The intermediate shaft that transmits power by connecting the fixed constant velocity universal joint and the sliding constant velocity universal joint of the drive shaft that satisfies the above requirements may have a hollow portion in the shaft center. By applying this hollow shaft, the drive shaft can be reduced in weight and the resonance point can be adjusted. Further, the hollow shaft may have a connecting element integrally formed at the end of a pipe formed of steel, or may be formed by plastic working from a steel tube and integrally include a connecting element at the end. There may be.

以上の説明では摺動式等速自在継手としてトリポード型等速自在継手を例にとったが、本発明は外側継手部材のブーツ取付部が非円筒形状であるすべての摺動式等速自在継手に適用することができる。例えば、図12ないし図14に示すように、トリポード型のうち外側継手部材のブーツ取付部が円筒形状ではないものにも適用できる。また、トリポード型以外の、例えばダブルオフセット型(図15ないし図17参照)のようなトルク伝達要素としてボールを用いた等速自在継手にも適用できる。   In the above description, the tripod type constant velocity universal joint is taken as an example of the sliding type constant velocity universal joint. However, the present invention applies to all the sliding type constant velocity universal joints in which the boot mounting portion of the outer joint member has a non-cylindrical shape. Can be applied to. For example, as shown in FIGS. 12 to 14, the present invention can be applied to a tripod type in which the boot attachment portion of the outer joint member is not cylindrical. Further, the present invention can also be applied to a constant velocity universal joint using a ball as a torque transmitting element other than the tripod type, such as a double offset type (see FIGS. 15 to 17).

ドライブシャフトの縦断面図である。It is a longitudinal cross-sectional view of a drive shaft. 摺動式等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of a sliding type constant velocity universal joint. 図2の摺動式等速自在継手の横断面図である。It is a cross-sectional view of the sliding type constant velocity universal joint of FIG. 図2における外側継手部材の要部拡大図である。It is a principal part enlarged view of the outer joint member in FIG. ブーツの縦断面図である。It is a longitudinal cross-sectional view of boots. 図5のブーツの右側面図である。FIG. 6 is a right side view of the boot of FIG. 5. 図5のブーツの薄肉部の拡大図である。It is an enlarged view of the thin part of the boot of FIG. 図5のブーツの厚肉部の拡大図である。It is an enlarged view of the thick part of the boot of FIG. 変形例を示すブーツの要部断面図であって、(A)は図7に対応し、(B)は図8に対応する。It is principal part sectional drawing of the boot which shows a modification, Comprising: (A) respond | corresponds to FIG. 7, (B) respond | corresponds to FIG. 別の変形例を示すブーツの要部断面図であって、(A)は図7に対応し、(B)は図8に対応する。It is principal part sectional drawing of the boot which shows another modification, Comprising: (A) respond | corresponds to FIG. 7, (B) respond | corresponds to FIG. 外側継手部材とブーツの接触部の詳細図であって、(A)は両者を別々に示し、(B)は外側継手部材にブーツを嵌合させた状態を示す。It is detail drawing of the contact part of an outer joint member and a boot, Comprising: (A) shows both separately and (B) shows the state which fitted the boot to the outer joint member. 別の実施の形態を示す外側継手部材の斜視図である。It is a perspective view of the outer joint member which shows another embodiment. 図12の外側継手部材の横断面図である。It is a cross-sectional view of the outer joint member of FIG. 図13の外側継手部材のX−O−Y断面図である。FIG. 14 is an X-O-Y cross-sectional view of the outer joint member of FIG. 13. さらに別の実施の形態を示す外側継手部材の斜視図である。It is a perspective view of the outer joint member which shows another embodiment. 図15の外側継手部材の横断面図である。It is a cross-sectional view of the outer joint member of FIG. 図16の外側継手部材の縦断面図である。It is a longitudinal cross-sectional view of the outer joint member of FIG.

符号の説明Explanation of symbols

1 摺動式(トリポード型)等速自在継手
2 外側継手部材
22 マウス部
22a 大径部
22b 小径部
24 トラック溝
30 ブーツ溝
32 突出部
38 端面
26 ステム部
28 スプラインまたはセレーション軸
4 トリポード部材
42 ボス
44 スプラインまたはセレーション穴
46 脚軸
6 ローラ
8 針状ころ
10 ブーツ
12 大径取付部
12a 薄肉部
12b 厚肉部
14 小径取付部
16 蛇腹部(屈曲部)
2 固定式(ツェッパ型)等速自在継手
10´ ブーツ
S 中間シャフト
J 1 sliding type (tripod type) constant velocity universal joint 2 outer joint member 22 mouse part 22a large diameter part 22b small diameter part 24 track groove 30 boot groove 32 projecting part 38 end face 26 stem part 28 spline or serration shaft 4 tripod member 42 Boss 44 Spline or serration hole 46 Leg shaft 6 Roller 8 Needle roller 10 Boot 12 Large diameter mounting portion 12a Thin wall portion 12b Thick wall portion 14 Small diameter mounting portion 16 Bellows portion (bending portion)
J 2 fixed type (Rzeppa type) constant velocity universal joint 10 'boot S intermediate shaft

Claims (6)

熱可塑性エラストマー製ブーツを装着した固定式等速自在継手と、熱可塑性エラストマー製ブーツを装着した摺動式等速自在継手と、前記両継手を連結する中間シャフトとからなり、摺動式等速自在継手に装着したブーツの、外側継手部材に取り付けた大径取付部は、円周方向に薄肉部と厚肉部が交互に現れる非円筒形状で、円筒形状の外周面と、外側継手部材のブーツ取付部に沿った非円筒形状の内周面を有し、大径取付部の全容積がブーツ材料により充足されていることを特徴とするドライブシャフト。   It consists of a fixed constant velocity universal joint fitted with a thermoplastic elastomer boot, a sliding constant velocity universal joint fitted with a thermoplastic elastomer boot, and an intermediate shaft connecting the two joints. The large-diameter attachment part attached to the outer joint member of the boot attached to the universal joint is a non-cylindrical shape in which a thin part and a thick part appear alternately in the circumferential direction, a cylindrical outer peripheral surface, and an outer joint member A drive shaft having a non-cylindrical inner peripheral surface along a boot mounting portion, wherein the entire volume of the large-diameter mounting portion is filled with a boot material. 前記中間シャフトが軸心に中空部分を有することを特徴とする請求項1のドライブシャフト。   The drive shaft according to claim 1, wherein the intermediate shaft has a hollow portion in an axial center. 前記中間シャフトが鋼材から形成されたパイプの端部に連結要素を一体に設けてあることを特徴とする請求項2のドライブシャフト。   3. The drive shaft according to claim 2, wherein the intermediate shaft is integrally provided with a connecting element at an end portion of a pipe formed of a steel material. 前記中間シャフトが鋼製素管から塑性加工により成形されたパイプの端部に連結要素を一体に設けてあることを特徴とする請求項2のドライブシャフト。   3. The drive shaft according to claim 2, wherein the intermediate shaft is integrally provided with a connecting element at an end portion of a pipe formed by plastic working from a steel base tube. 摺動式等速自在継手がトリポード型であることを特徴とする請求項1ないし4のいずれかのドライブシャフト。 5. The drive shaft according to claim 1, wherein the sliding type constant velocity universal joint is a tripod type. ブーツの材質が、JIS K 6253によるタイプDデュロメータ硬さが35以上50以下の熱可塑性ポリエステル系エラストマーであることを特徴とする請求項1ないし5のいずれかのドライブシャフト。 The drive shaft according to any one of claims 1 to 5, wherein the boot is made of a thermoplastic polyester elastomer having a type D durometer hardness of 35 to 50 according to JIS K 6253.
JP2005095734A 2005-03-29 2005-03-29 Drive shaft Active JP4652098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005095734A JP4652098B2 (en) 2005-03-29 2005-03-29 Drive shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005095734A JP4652098B2 (en) 2005-03-29 2005-03-29 Drive shaft

Publications (2)

Publication Number Publication Date
JP2006275168A true JP2006275168A (en) 2006-10-12
JP4652098B2 JP4652098B2 (en) 2011-03-16

Family

ID=37210128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005095734A Active JP4652098B2 (en) 2005-03-29 2005-03-29 Drive shaft

Country Status (1)

Country Link
JP (1) JP4652098B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513803A (en) * 2006-12-22 2010-04-30 アイエフエイ − テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Longitudinal drive shaft for automobiles
JP2015172409A (en) * 2014-03-12 2015-10-01 本田技研工業株式会社 Universal coupling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240669A (en) * 1999-02-18 2000-09-05 Ntn Corp Power transmission shaft
JP2002213484A (en) * 2001-01-15 2002-07-31 Ntn Corp Boot for constant velocity universal joint
JP2003090325A (en) * 2001-09-18 2003-03-28 Toyoda Mach Works Ltd Intermediate shaft with constant velocity joint connected to both ends thereof
JP2004169726A (en) * 2002-11-15 2004-06-17 Toyo Tire & Rubber Co Ltd Boot for constant velocity joint, and mounting device
JP2004263730A (en) * 2003-02-25 2004-09-24 Nok Corp Boot for constant velocity joint
JP2004360817A (en) * 2003-06-05 2004-12-24 Fukoku Co Ltd Boot for constant velocity universal joint

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240669A (en) * 1999-02-18 2000-09-05 Ntn Corp Power transmission shaft
JP2002213484A (en) * 2001-01-15 2002-07-31 Ntn Corp Boot for constant velocity universal joint
JP2003090325A (en) * 2001-09-18 2003-03-28 Toyoda Mach Works Ltd Intermediate shaft with constant velocity joint connected to both ends thereof
JP2004169726A (en) * 2002-11-15 2004-06-17 Toyo Tire & Rubber Co Ltd Boot for constant velocity joint, and mounting device
JP2004263730A (en) * 2003-02-25 2004-09-24 Nok Corp Boot for constant velocity joint
JP2004360817A (en) * 2003-06-05 2004-12-24 Fukoku Co Ltd Boot for constant velocity universal joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513803A (en) * 2006-12-22 2010-04-30 アイエフエイ − テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Longitudinal drive shaft for automobiles
JP2015172409A (en) * 2014-03-12 2015-10-01 本田技研工業株式会社 Universal coupling

Also Published As

Publication number Publication date
JP4652098B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
US8328650B2 (en) Constant velocity universal joint
JP4527581B2 (en) Constant velocity universal joint with boots
JP5230977B2 (en) Silicone boot for constant velocity universal joint and constant velocity universal joint
JP4794867B2 (en) Constant velocity universal joint with boots
JP4652098B2 (en) Drive shaft
JP5484665B2 (en) Boot structure for constant velocity universal joint and silicone boot for constant velocity universal joint
US8348774B2 (en) Constant velocity joint and constant velocity joint boot
EP3173647B1 (en) Constant velocity universal joint
JP4527578B2 (en) Constant velocity universal joint and constant velocity universal joint boot
JP6884010B2 (en) Boots for constant velocity universal joints
JP2006258122A (en) Slide type constant velocity universal joint
WO2013058059A1 (en) Constant velocity universal joint
JP4122126B2 (en) Boot mounting structure
JP2012041969A (en) Boot for constant velocity universal joint and constant velocity universal joint
JP2009299905A (en) Constant-velocity universal joint
JP2007078154A (en) Boot for constant velocity universal joint
JP2006258121A (en) Constant velocity universal joint
JP2006220278A (en) Constant velocity universal joint, and boots for constant velocity universal joint
JP2019124321A (en) Constant velocity universal joint boot
JP2006283831A (en) Constant velocity universal joint
JP2007056949A (en) Flexible boot for constant speed universal joint
JP2007146932A (en) Boot for uniform speed universal joint
JP2008051191A (en) Fixed-type constant-speed universal joint
JP6253933B2 (en) Constant velocity universal joint
JP2008051189A (en) Fixed-type constant-speed universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

R150 Certificate of patent or registration of utility model

Ref document number: 4652098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250