JP2008095713A - Dynamic pressure bearing device and deflection scanning device - Google Patents

Dynamic pressure bearing device and deflection scanning device Download PDF

Info

Publication number
JP2008095713A
JP2008095713A JP2006274637A JP2006274637A JP2008095713A JP 2008095713 A JP2008095713 A JP 2008095713A JP 2006274637 A JP2006274637 A JP 2006274637A JP 2006274637 A JP2006274637 A JP 2006274637A JP 2008095713 A JP2008095713 A JP 2008095713A
Authority
JP
Japan
Prior art keywords
dynamic pressure
sleeve
shaft member
pressure generating
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006274637A
Other languages
Japanese (ja)
Inventor
Kaoru Sudo
薫 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Canon Precision Inc
Original Assignee
Canon Inc
Canon Precision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Canon Precision Inc filed Critical Canon Inc
Priority to JP2006274637A priority Critical patent/JP2008095713A/en
Publication of JP2008095713A publication Critical patent/JP2008095713A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Sliding-Contact Bearings (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid a trouble such as the uplift of a shaft member by flowdization of oil, leakage of oil, or scuffing between a sleeve and the shaft member. <P>SOLUTION: The dynamic pressure bearing device including upper and lower dynamic pressure generating grooves 7a and 7b formed in the sleeve 2 rotatably supporting a shaft member 1 is constituted so that clearance C<SB>2</SB>of bearing gap in a lower dynamic pressure generation part is larger than clearance C<SB>1</SB>in an upper dynamic pressure generation part. Necessary bearing rigidity is ensured by the upper clearance C<SB>1</SB>, and the influence by expansion of a bearing hole 5 of the sleeve 2 in a tapered shape at the time of fixing a thrust plate 4 to the lower end of the sleeve 2 by caulking is reduced by increasing only the lower clearance C<SB>2</SB>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レーザービームプリンタや光・磁気ディスク装置等に用いられる動圧軸受装置および偏向走査装置に関するものである。   The present invention relates to a hydrodynamic bearing device and a deflection scanning device used in a laser beam printer, an optical / magnetic disk device, and the like.

レーザプリンタやデジタル複写機等に用いられる偏向走査装置には、高速回転する回転多面鏡を支える軸受部に、安定した滑らかな回転を得るための動圧軸受装置が用いられている。また、光ディスクや磁気ディスク等の情報記録機器においても、高速で回転するディスクを支えるために、動圧軸受が幅広く使用されてきている。   2. Description of the Related Art A deflection scanning device used for a laser printer, a digital copying machine, or the like uses a dynamic pressure bearing device for obtaining a stable and smooth rotation at a bearing portion that supports a rotating polygon mirror that rotates at high speed. Also, in an information recording device such as an optical disk or a magnetic disk, a dynamic pressure bearing has been widely used to support a disk rotating at high speed.

図3は、一従来例における動圧軸受装置の断面を示すもので、同図の(a)は軸部材101が取り付けられた状態、(b)は軸部材101が取り付けられていない状態を示している。この動圧軸受装置は、軸部材101と、軸部材101を軸受孔105内に回転自在に支持するスリーブ102と、スリーブ102の下端に固定されて軸受孔105を封鎖する円板103と、円板103に支持されたスラスト板104とによって構成されている。また、スリーブ102の軸受孔105の内側表面と軸部材101の外側表面との間や、スラスト板104と軸部材101の端面との間には動作流体であるオイル106が充填されている。   FIGS. 3A and 3B show a cross section of a hydrodynamic bearing device in a conventional example. FIG. 3A shows a state in which the shaft member 101 is attached, and FIG. 3B shows a state in which the shaft member 101 is not attached. ing. This hydrodynamic bearing device includes a shaft member 101, a sleeve 102 that rotatably supports the shaft member 101 in a bearing hole 105, a disk 103 that is fixed to the lower end of the sleeve 102 and seals the bearing hole 105, The thrust plate 104 is supported by the plate 103. Further, oil 106 that is a working fluid is filled between the inner surface of the bearing hole 105 of the sleeve 102 and the outer surface of the shaft member 101 and between the thrust plate 104 and the end surface of the shaft member 101.

スリーブ102の軸受孔105には、上端、下端、および中央にそれぞれ大径部105a、105b、105cが設けられている。また、上端の大径部105aと中央の大径部105cの間と、中央の大径部105cと下端の大径部105bの間とには、それぞれヘリングボーン状の動圧発生溝107a、107bが形成されている。また、スラスト板104の上面にはスパイラル溝が形成されている。軸部材101の上端部はスリーブ102の軸受孔105より上方に突出し、その上部に図示したボス部が固定されている。   The bearing hole 105 of the sleeve 102 is provided with large-diameter portions 105a, 105b, and 105c at the upper end, the lower end, and the center, respectively. Further, between the large diameter portion 105a at the upper end and the large diameter portion 105c at the center, and between the large diameter portion 105c at the center and the large diameter portion 105b at the lower end, herringbone-like dynamic pressure generating grooves 107a and 107b, respectively. Is formed. A spiral groove is formed on the upper surface of the thrust plate 104. The upper end portion of the shaft member 101 protrudes upward from the bearing hole 105 of the sleeve 102, and the illustrated boss portion is fixed to the upper portion thereof.

このように構成された動圧軸受装置において、軸部材101が回転するとスリーブ102の軸受孔105に設けられた動圧発生溝107a、107bの作用で軸受間隙のオイル106に動圧を発生させ、軸部材101はスリーブ102の軸受孔105に非接触で回転する。また、スラスト方向についてもスラスト板104に設けられたスパイラル溝の作用で動圧を発生し、軸部材101が浮上した状態で支持される。この動圧軸受装置を偏向走査装置に使用する場合は、軸部材101の上端のボス部に図示しない回転多面鏡等が一体的に結合されており、これを回転駆動するために、モータのロータ等も軸部材101に固着されている。   In the dynamic pressure bearing device configured as described above, when the shaft member 101 rotates, dynamic pressure is generated in the oil 106 in the bearing gap by the action of the dynamic pressure generating grooves 107a and 107b provided in the bearing hole 105 of the sleeve 102, The shaft member 101 rotates without contact with the bearing hole 105 of the sleeve 102. Further, in the thrust direction, dynamic pressure is generated by the action of the spiral groove provided in the thrust plate 104, and the shaft member 101 is supported in a floating state. When this hydrodynamic bearing device is used in a deflection scanning device, a rotary polygon mirror (not shown) is integrally coupled to a boss portion at the upper end of the shaft member 101, and a rotor of a motor is used to drive the rotation. Are also fixed to the shaft member 101.

図4は動圧の圧力バランスを示す。折り返し線Aを有する上方のヘリングボーン状の動圧発生溝107aによって、動圧発生溝107aの中央の折り返し線Aに向かう動圧a1、a2が発生する。これによりオイル106は中央の折り返し線Aに向かって流動する。また、下方のヘリングボーン状の動圧発生溝107bによって、動圧発生溝107bの中央の折り返し線Bに向かってオイル106が流動する。通常a1=a2、b1=b2となるように設計することで、軸部材101が安定して回転することを可能にしている。   FIG. 4 shows the pressure balance of dynamic pressure. The dynamic pressures a1 and a2 toward the fold line A at the center of the dynamic pressure generation groove 107a are generated by the upper herringbone dynamic pressure generation groove 107a having the fold line A. As a result, the oil 106 flows toward the center folding line A. Further, the oil 106 flows toward the folding line B at the center of the dynamic pressure generating groove 107b by the lower herringbone dynamic pressure generating groove 107b. Normally, the shaft member 101 can be stably rotated by designing so that a1 = a2 and b1 = b2.

しかしながら、スリーブ102の下端を密閉する円板103は、通常加締めることによって組み付けられる。そのため、図5の(a)に示すように、スリーブ102の下端の内径が広がってしまい、軸受孔105の円筒度が悪化して、上下の動圧発生溝107a、107bにおける圧力バランスがa1>a2、b1>b2となってしまう。その結果、図5の(b)に示すように、スリーブ102の下端に向かって矢印R1で示す方向にオイル106を送る輸送力が発生する。この輸送力(圧力)は(a1−a2)+(b1−b2)で表される。この時スリーブ102の下端は密閉されているため、行き場のないオイル106は軸部材101を矢印R2で示すように押し上げるように流動する。このため、モータのロータや回転多面鏡の反射面の高さが安定しないという課題が発生した。   However, the disk 103 that seals the lower end of the sleeve 102 is usually assembled by caulking. Therefore, as shown in FIG. 5A, the inner diameter of the lower end of the sleeve 102 is expanded, the cylindricality of the bearing hole 105 is deteriorated, and the pressure balance in the upper and lower dynamic pressure generating grooves 107a and 107b is a1>. a2, b1> b2. As a result, as shown in FIG. 5B, a transport force is generated that sends the oil 106 toward the lower end of the sleeve 102 in the direction indicated by the arrow R1. This transport force (pressure) is represented by (a1-a2) + (b1-b2). At this time, since the lower end of the sleeve 102 is sealed, the oil 106 having nowhere to flow flows so as to push up the shaft member 101 as indicated by an arrow R2. For this reason, the subject that the height of the rotor of a motor and the reflective surface of a rotary polygon mirror was not stabilized occurred.

この課題を解決するために、特許文献1には、動圧軸受装置のヘリングボーン状の動圧発生溝の折り返し線の位置を上方へずらすことにより軸部材の浮上およびオイルの漏れ出し等を回避する構成が開示されている。
特開2004−301325号公報
In order to solve this problem, Patent Document 1 discloses that the position of the folding line of the herringbone-shaped dynamic pressure generating groove of the hydrodynamic bearing device is shifted upward to avoid the shaft member from floating and oil leaking out. The structure to perform is disclosed.
JP 2004-301325 A

しかしながら、回転数が高く(25000r/min以上)なるにつれて、円板を加締めた時の広がり量のバラツキにより、動圧発生溝の折り返し線をずらすだけでは、軸の浮上やオイル漏れ、軸部材とスリーブのかじり等の問題を解決するのは困難になってきた。   However, as the rotational speed becomes higher (25000 r / min or more), due to variations in the amount of spread when the disk is caulked, the shaft floating, oil leakage, shaft member can be achieved by simply shifting the folding line of the dynamic pressure generating groove. It has become difficult to solve problems such as sleeve galling.

本発明は上記従来の技術の有する未解決の課題に鑑みてなされたものであり、オイルの流動による軸部材の浮上や、オイルの漏れ出し、スリーブと軸部材のかじり等のトラブルを回避できる動圧軸受装置および偏向走査装置を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and is capable of avoiding troubles such as shaft member floating due to oil flow, oil leakage, and sleeve / shaft member galling. An object of the present invention is to provide a pressure bearing device and a deflection scanning device.

上記目的を達成するため、本発明の動圧軸受装置は、相対的に回転自在に嵌合する軸部材およびスリーブと、両者の間の軸受間隙に介在する動作流体と、を有し、前記軸部材および前記スリーブの少なくとも一方には、前記軸受間隙の上部に位置するように形成された第1の動圧発生部と、前記軸受間隙の下部に位置するように形成された第2の動圧発生部とが設けられており、前記第1の動圧発生部におけるクリアランスより、前記第2の動圧発生部におけるクリアランスの方が大であることを特徴とする。   In order to achieve the above object, a hydrodynamic bearing device according to the present invention includes a shaft member and a sleeve that are relatively rotatably fitted, and a working fluid that is interposed in a bearing gap between the shaft member and the sleeve. At least one of the member and the sleeve has a first dynamic pressure generating portion formed so as to be located above the bearing gap, and a second dynamic pressure formed so as to be located below the bearing gap. And a generating portion, and the clearance in the second dynamic pressure generating portion is larger than the clearance in the first dynamic pressure generating portion.

動圧発生部のクリアランスが、上方より下方の方が広くなるように最構成することで、スリーブ下端に円板を加締めたときのスリーブ内径の広がりによる影響を抑える。これによって、スリーブに対する軸部材の浮上を防ぎ、かつ、オイル漏れや、軸部材とスリーブのかじり等の不具合を回避して軸受性能を安定化することができる。   By making the clearance of the dynamic pressure generating part wider so that the lower part is wider than the upper part, the influence of the expansion of the inner diameter of the sleeve when the disk is crimped to the lower end of the sleeve is suppressed. As a result, the shaft member can be prevented from floating with respect to the sleeve, and problems such as oil leakage and galling between the shaft member and the sleeve can be avoided to stabilize the bearing performance.

動圧発生部のクリアランスは広げすぎると、軸受剛性が低下して軸部材を支持しきれず、軸部材が振れ回ったり、軸部材とスリーブのかじりを発生する等の問題も生じる。そこで、下方の動圧発生部のみのクリアランスを広げて、全体の軸受剛性が低下しすぎないようにする。   If the clearance of the dynamic pressure generating portion is excessively widened, the bearing rigidity is lowered and the shaft member cannot be supported, causing problems such as the shaft member swinging around and the shaft member and the sleeve being galled. Therefore, the clearance of only the dynamic pressure generating portion below is widened so that the overall bearing rigidity does not decrease too much.

下方の動圧発生溝部のクリアランスは、上方の動圧発生溝のクリアランスより0.5〜1.0μm広くするとよい。   The clearance of the lower dynamic pressure generating groove is preferably 0.5 to 1.0 μm wider than the clearance of the upper dynamic pressure generating groove.

このような動圧軸受装置を回転多面鏡の軸受部に用いることで、偏向走査装置の高速化、高性能化に大きく貢献できる。   By using such a dynamic pressure bearing device for the bearing portion of the rotary polygon mirror, it is possible to greatly contribute to speeding up and performance improvement of the deflection scanning device.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1の(a)は、一実施の形態による偏向走査装置の主要部を示す断面図であり、光ビームを偏向走査するための反射面11aを有する回転多面鏡11とこれを回転駆動するための駆動部を有する。図1の(b)、(c)は、動圧軸受装置の断面を示すもので、(b)は軸部材1が取り付けられていない状態、(c)は軸部材1が取り付けられた状態を示している。   FIG. 1A is a cross-sectional view showing a main part of a deflection scanning apparatus according to an embodiment, and a rotary polygon mirror 11 having a reflection surface 11a for deflecting and scanning a light beam and for rotationally driving the mirror. It has a drive part. FIGS. 1B and 1C show cross sections of the hydrodynamic bearing device. FIG. 1B shows a state where the shaft member 1 is not attached, and FIG. 1C shows a state where the shaft member 1 is attached. Show.

図1の(a)に示すように、軸部材1は永久磁石12aとヨーク12bからなるロータ12と回転多面鏡11とで一体化されている。また、スリーブ2は、駆動コイル13aとステータコア13bからなるステータ13および回路基板14と一体化され、軸部材1とスリーブ2は相互に回転可能に嵌合されている。   As shown in FIG. 1A, the shaft member 1 is integrated with a rotor 12 composed of a permanent magnet 12a and a yoke 12b, and a rotary polygon mirror 11. The sleeve 2 is integrated with the stator 13 and the circuit board 14 including the drive coil 13a and the stator core 13b, and the shaft member 1 and the sleeve 2 are fitted so as to be rotatable with respect to each other.

ステータコア13bは多極のポールシュウを有し、各ポールシュウに駆動コイル13aが巻回されている。多極に磁化された永久磁石12aの回転位置により順次通電が切り替えられ、ロータ12とステータ13との間に回転力を発生する。駆動コイル13aが巻回されたステータコア13bは、駆動回路を構成する回路部品とともに回路基板14に固定され、回路基板14は、スリーブ2と一体化されている。このようなロータ部とステータ部をそれぞれ個別に作成し、モータとしての組み立てが行われる。スリーブ2内に、オイル注油装置により規定量の動作流体であるオイル6が注油された後、スリーブ2の内径部に回転可能に嵌合する軸部材1が挿入されてモータが完成する。   The stator core 13b has multi-pole pole shoes, and a drive coil 13a is wound around each pole shoe. The energization is sequentially switched depending on the rotational position of the permanent magnet 12 a magnetized in multiple poles, and a rotational force is generated between the rotor 12 and the stator 13. The stator core 13b around which the drive coil 13a is wound is fixed to the circuit board 14 together with circuit components constituting the drive circuit, and the circuit board 14 is integrated with the sleeve 2. Such a rotor part and a stator part are produced individually and assembled as a motor. After a predetermined amount of oil 6 as the working fluid is injected into the sleeve 2 by the oil supply device, the shaft member 1 that is rotatably fitted to the inner diameter portion of the sleeve 2 is inserted to complete the motor.

回転多面鏡11を回転支持する軸受部である動圧軸受装置は、図1の(b)、(c)に示すように、軸部材1を軸受孔5内に回転自在に支持するスリーブ2を有する。さらに、スリーブ2の下端に固定されて軸受孔5を封鎖する円板3およびこれに支持されたスラスト板4を有し、スリーブ2と軸部材1の間や、スラスト板4と軸部材1の間にはオイル6が充填される。   As shown in FIGS. 1B and 1C, a hydrodynamic bearing device that is a bearing portion that rotatably supports the rotary polygon mirror 11 has a sleeve 2 that rotatably supports the shaft member 1 in the bearing hole 5. Have. Furthermore, it has a disc 3 fixed to the lower end of the sleeve 2 and sealing the bearing hole 5 and a thrust plate 4 supported by the disc 3, and between the sleeve 2 and the shaft member 1 and between the thrust plate 4 and the shaft member 1. In between, oil 6 is filled.

スリーブ2の軸受孔5の上端部、下端部、および中央部はそれぞれ大径部5a、5b、5cとなっている。上端の大径部5aと中央の大径部5cの間と、中央の大径部5cと下端の大径部5bの間とには、第1および第2の動圧発生部を構成するヘリングボーン状の動圧発生溝7a、7bが形成されている。また、スラスト板4の上面にはスパイラル溝が形成されている。   The upper end portion, the lower end portion, and the central portion of the bearing hole 5 of the sleeve 2 are large diameter portions 5a, 5b, and 5c, respectively. Between the large diameter portion 5a at the upper end and the central large diameter portion 5c, and between the central large diameter portion 5c and the large diameter portion 5b at the lower end, a herring that constitutes the first and second dynamic pressure generating portions Bone-like dynamic pressure generating grooves 7a and 7b are formed. A spiral groove is formed on the upper surface of the thrust plate 4.

このように構成された動圧軸受装置において、軸部材1が回転すると、スリーブ2の軸受孔5に設けられた動圧発生溝7a、7bの作用によりオイル6に動圧を発生させ、軸部材1はスリーブ2の軸受孔5に非接触で回転する。またスラスト方向についてもスラスト板4に設けられたスパイラル溝の作用で動圧を発生し軸部材1が浮上した状態で支持される。円板3はスリーブ2の下端の開口部を塞ぐために加締めにより固定され、その影響でスリーブ2の下端部の内径が広がって円筒度が悪化し、軸受間隙が拡大する。   In the dynamic pressure bearing device configured as described above, when the shaft member 1 rotates, the dynamic pressure is generated in the oil 6 by the action of the dynamic pressure generating grooves 7a and 7b provided in the bearing hole 5 of the sleeve 2, and the shaft member 1 rotates without contact with the bearing hole 5 of the sleeve 2. Also in the thrust direction, dynamic pressure is generated by the action of the spiral groove provided in the thrust plate 4, and the shaft member 1 is supported in a floating state. The disk 3 is fixed by caulking in order to close the opening at the lower end of the sleeve 2, and as a result, the inner diameter of the lower end of the sleeve 2 is expanded, the cylindricity is deteriorated, and the bearing gap is expanded.

特に、下方の動圧発生部は、この円板3を組み付けることで円筒度の悪化の影響を受け易く、回転数が高く(25000r/min以上)なるにつれ、テーパー形状に広がる量のバラツキが生じる。その結果、軸部材1の浮上やオイル漏れ、軸部材1とスリーブ2のかじり等の問題が発生する。   In particular, the lower dynamic pressure generating portion is easily affected by the deterioration of the cylindricity by assembling the disk 3, and as the rotational speed becomes higher (25000 r / min or more), the amount of variation spreading in a tapered shape is generated. . As a result, problems such as floating of the shaft member 1, oil leakage, and galling of the shaft member 1 and the sleeve 2 occur.

そこで、図1の(c)に示すように、予め、上方の動圧発生部におけるクリアランスC1 に比べて、下方の動圧発生部におけるクリアランスC2 が広くなるように構成することで、加締めによるテーパー形状の影響を受け難くする。 Therefore, as shown in FIG. 1 (c), the clearance C 2 in the lower dynamic pressure generating portion is configured to be larger than the clearance C 1 in the upper dynamic pressure generating portion in advance. Makes it less susceptible to taper shape due to tightening.

なお、動圧発生部のクリアランスを広げすぎると、軸受剛性が低下して軸部材1を支持しきれず、軸部材1が振れ回ったり、軸部材1とスリーブ2のかじりを発生する等の問題も生じる。   If the clearance of the dynamic pressure generating portion is excessively widened, there is a problem that the bearing rigidity is lowered and the shaft member 1 cannot be supported, the shaft member 1 is swung around, or the shaft member 1 and the sleeve 2 are galling. Arise.

そこで、軸受剛性がもっとも必要とされる上方の動圧発生部のクリアランスC1 は、適正な軸受剛性を得られるように例えば5μm程度に設定し、下方の動圧発生部のクリアランスC2 を上方の動圧発生部よりも0.5〜1.0μm広く設定する。 Therefore, the clearance C 1 of the upper dynamic pressure generating portion where the bearing rigidity is most required is set to, for example, about 5 μm so as to obtain an appropriate bearing rigidity, and the clearance C 2 of the lower dynamic pressure generating portion is set to the upper portion. It is set wider by 0.5 to 1.0 μm than the dynamic pressure generating portion.

例えば、図2に示すように、軸受孔5の下方の動圧発生溝7bを有する部位の内径を、上方の動圧発生溝7aを有する部位より大きくする。そして、α=0.012L〜0.050L(αは各動圧発生溝7a、7bにおける折り返し線A、Bのずらし量の和、Lは各動圧発生溝7a、7bの幅La、Lbの和)が成立するように構成するとよい。   For example, as shown in FIG. 2, the inner diameter of the portion having the dynamic pressure generating groove 7b below the bearing hole 5 is made larger than the portion having the upper dynamic pressure generating groove 7a. Α = 0.012L to 0.050L (α is the sum of shift amounts of the folding lines A and B in the dynamic pressure generating grooves 7a and 7b, and L is the width La and Lb of the dynamic pressure generating grooves 7a and 7b. (Sum) is preferably established.

なお、スリーブに動圧発生溝を設ける代わりに、軸部材に動圧発生溝を設けてもよいし、スリーブと軸部材の双方に動圧発生溝を設けてもよい。   Instead of providing the dynamic pressure generating groove on the sleeve, the dynamic pressure generating groove may be provided on the shaft member, or the dynamic pressure generating groove may be provided on both the sleeve and the shaft member.

本実施の形態によれば、軸部材1の浮上やオイル漏れ、軸部材1とスリーブ2のかじり等を極めて効果的に回避することができる。   According to the present embodiment, floating of the shaft member 1, oil leakage, galling of the shaft member 1 and the sleeve 2, and the like can be extremely effectively avoided.

一実施の形態による偏向走査装置を示すもので、(a)はその模式断面図、(b)は(a)のスリーブのみを示す断面図、(c)はスリーブと軸部材を示す断面図である。1 shows a deflection scanning device according to an embodiment, in which (a) is a schematic sectional view thereof, (b) is a sectional view showing only a sleeve of (a), and (c) is a sectional view showing a sleeve and a shaft member. is there. 図1の装置のスリーブの軸受孔を示す図である。It is a figure which shows the bearing hole of the sleeve of the apparatus of FIG. 一従来例による動圧軸受装置を説明する図である。It is a figure explaining the hydrodynamic bearing apparatus by one prior art example. 図3の従来例における動圧の圧力バランスを示す図である。It is a figure which shows the pressure balance of the dynamic pressure in the prior art example of FIG. 図3の従来例における動圧の圧力バランスの劣化を示す図である。It is a figure which shows deterioration of the pressure balance of the dynamic pressure in the prior art example of FIG.

符号の説明Explanation of symbols

1 軸部材
2 スリーブ
3 円板
4 スラスト板
5 軸受孔
6 オイル
7a、7b 動圧発生溝
11 回転多面鏡
12 ロータ
13 ステータ
14 回路基板
DESCRIPTION OF SYMBOLS 1 Shaft member 2 Sleeve 3 Disc 4 Thrust board 5 Bearing hole 6 Oil 7a, 7b Dynamic pressure generating groove 11 Rotating polygon mirror 12 Rotor 13 Stator 14 Circuit board

Claims (3)

相対的に回転自在に嵌合する軸部材およびスリーブと、両者の間の軸受間隙に介在する動作流体と、を有し、前記軸部材および前記スリーブの少なくとも一方には、前記軸受間隙の上部に位置するように形成された第1の動圧発生部と、前記軸受間隙の下部に位置するように形成された第2の動圧発生部とが設けられており、前記第1の動圧発生部におけるクリアランスより、前記第2の動圧発生部におけるクリアランスの方が大であることを特徴とする動圧軸受装置。   A shaft member and a sleeve, which are relatively rotatably fitted, and a working fluid interposed in a bearing gap between them, and at least one of the shaft member and the sleeve is provided above the bearing gap. A first dynamic pressure generating portion formed so as to be positioned; and a second dynamic pressure generating portion formed so as to be positioned below the bearing gap, wherein the first dynamic pressure generating portion is provided. A fluid dynamic bearing device, wherein the clearance in the second dynamic pressure generating part is larger than the clearance in the part. 前記第2の動圧発生部におけるクリアランスが、前記第1の動圧発生部におけるクリアランスより0.5〜1.0μmだけ大きいことを特徴とする請求項1記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein a clearance in the second dynamic pressure generating portion is larger by 0.5 to 1.0 μm than a clearance in the first dynamic pressure generating portion. 請求項1または2記載の動圧軸受装置からなる軸受部と、前記軸受部によって回転支持された回転多面鏡とを備えていることを特徴とする偏向走査装置。   3. A deflection scanning apparatus comprising: a bearing portion comprising the hydrodynamic bearing device according to claim 1; and a rotary polygon mirror rotatably supported by the bearing portion.
JP2006274637A 2006-10-06 2006-10-06 Dynamic pressure bearing device and deflection scanning device Pending JP2008095713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274637A JP2008095713A (en) 2006-10-06 2006-10-06 Dynamic pressure bearing device and deflection scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006274637A JP2008095713A (en) 2006-10-06 2006-10-06 Dynamic pressure bearing device and deflection scanning device

Publications (1)

Publication Number Publication Date
JP2008095713A true JP2008095713A (en) 2008-04-24

Family

ID=39378785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274637A Pending JP2008095713A (en) 2006-10-06 2006-10-06 Dynamic pressure bearing device and deflection scanning device

Country Status (1)

Country Link
JP (1) JP2008095713A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056251A (en) * 1998-08-07 2000-02-25 Canon Inc Dynamic pressure oil baring and deflection scanner using the same
JP2000120662A (en) * 1998-10-15 2000-04-25 Canon Inc Dynamic pressure fluid bearing
JP2002106548A (en) * 2000-09-29 2002-04-10 Canon Inc Dynamic pressure bearing device, rotation driving device and deflection scanning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056251A (en) * 1998-08-07 2000-02-25 Canon Inc Dynamic pressure oil baring and deflection scanner using the same
JP2000120662A (en) * 1998-10-15 2000-04-25 Canon Inc Dynamic pressure fluid bearing
JP2002106548A (en) * 2000-09-29 2002-04-10 Canon Inc Dynamic pressure bearing device, rotation driving device and deflection scanning device

Similar Documents

Publication Publication Date Title
US7478951B2 (en) Hydrodynamic bearing device, spindle motor including the same, and recording and reproducing apparatus
US7201517B2 (en) Hydrodynamic bearing device and a recording disk drive equipped with it
JP4084843B2 (en) Hydrodynamic bearing device and manufacturing method thereof
US20100239195A1 (en) Fluid dynamic bearing, motor, and recording-medium driving apparatus
JP2005304290A (en) Spindle motor equipped with fluid dynamic pressure bearing
US20130033137A1 (en) Spindle motor
JP2007024267A (en) Fluid bearing device and motor equipped with the same
US20120293028A1 (en) Bearing assembly and spindle motor including the same
JP4360482B2 (en) Hydrodynamic bearing device
JP2013122306A (en) Spindle motor
JP2008095713A (en) Dynamic pressure bearing device and deflection scanning device
JP4657734B2 (en) Hydrodynamic bearing device
JP5490396B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP3984449B2 (en) Fluid dynamic bearing, spindle motor using the same, and disk drive using the spindle motor
JP4560192B2 (en) Hydrodynamic bearing device, brushless motor, and deflection scanning device
JP2008261397A (en) Dynamic pressure bearing device
JP2002266878A (en) Dynamic pressure bearing device and its manufacturing method
JP2005226657A (en) Spindle motor
JP4614740B2 (en) Spindle motor
JP2004301325A (en) Dynamic pressure bearing device and deflection scanning device
JP2008115893A (en) Dynamic pressure bearing device and deflection scanning device
JP2006292177A (en) Dynamic-pressure bearing arrangement
JP2006230106A (en) Magnetic disk unit
US20120288223A1 (en) Hydrodynamic bearing assembly and motor having the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206