JP2006292177A - Dynamic-pressure bearing arrangement - Google Patents

Dynamic-pressure bearing arrangement Download PDF

Info

Publication number
JP2006292177A
JP2006292177A JP2006172223A JP2006172223A JP2006292177A JP 2006292177 A JP2006292177 A JP 2006292177A JP 2006172223 A JP2006172223 A JP 2006172223A JP 2006172223 A JP2006172223 A JP 2006172223A JP 2006292177 A JP2006292177 A JP 2006292177A
Authority
JP
Japan
Prior art keywords
sleeve
dynamic pressure
shaft member
peripheral surface
pressure bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006172223A
Other languages
Japanese (ja)
Inventor
Masayoshi Seichi
正義 齋地
Masato Gomyo
五明  正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2006172223A priority Critical patent/JP2006292177A/en
Publication of JP2006292177A publication Critical patent/JP2006292177A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sealing Of Bearings (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic-pressure bearing arrangement capable of assuring bonding strength and bending strength and furthermore rigidity of a dynamic-pressure bearing by assuring long enough for bonding length between each component. <P>SOLUTION: The dynamic-pressure bearing arrangement composes a radial dynamic-pressure bearing part 3 in a clearance between the inner peripheral surface of a sleeve 2 and the outer peripheral surface of a shaft member 1 and composes a thrust dynamic-pressure bearing part 4 in clearance between the axial one end of the sleeve 2 and the opposite surface of the shaft member 1 opposed to the one end and composes a capillary tube sealing part 45 in a clearance between the sleeve 2 and the shaft member 1 opposed to the sleeve 2. A lubricant fluid is continuously filled into the radial dynamic-pressure bearing part 3, the thrust dynamic-pressure bearing part 4 and the capillary tube sealing part 45 without being blocked and forms gas-liquid interface with outside air only within the capillary tube sealing part 45. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軸部材とスリーブを備え、軸部材とスリーブとが互いに非接触で相対回転することができる動圧軸受装置に関するもので、たとえば磁気ディスク、光ディスク等のディスク駆動装置用軸受装置として、その他、高い回転精度が要求される各種装置の軸受装置として用いることができるものである。   The present invention relates to a hydrodynamic bearing device including a shaft member and a sleeve, and the shaft member and the sleeve can be rotated relative to each other without contact with each other. For example, as a bearing device for a disk drive device such as a magnetic disk or an optical disk, In addition, it can be used as a bearing device for various devices that require high rotational accuracy.

高い回転精度が要求される各種装置の軸受装置として動圧軸受装置が用いられている。たとえば、ハードディスク駆動装置においては、ハードディスクの記録密度が月日を追って高くなっており、これに伴って、ディスクの回転速度および回転精度がますます高くなっている。ディスクの高回転速度化および高回転精度化の要求に応えるためには、動圧軸受装置を用いることが適している。   BACKGROUND ART A hydrodynamic bearing device is used as a bearing device for various devices that require high rotational accuracy. For example, in a hard disk drive, the recording density of the hard disk increases with time, and accordingly, the rotational speed and rotational accuracy of the disk are further increased. In order to meet the demand for higher rotational speed and higher rotational accuracy of the disk, it is suitable to use a hydrodynamic bearing device.

従来一般的なディスク駆動装置用動圧軸受装置の構成は次のようになっている。ディスクを載置するハブの中央部に軸部材の一端部を接合固定してなるハブ組の上記軸部材を、ラジアル動圧発生用のグルーブ加工を施したスリーブに挿入し、スラスト動圧発生用のグルーブ加工を施したスラストプレートを上記軸部材の他端部に固定し、カウンタープレートと上記スリーブとによってスラストプレートを挟み込み、カウンタープレートはステータ等に固定し、軸部材の他端部とスリーブとの間の隙間を接着剤などで封止して、軸受組を構成する。   The configuration of a conventional dynamic pressure bearing device for a disk drive device is as follows. Insert the above-mentioned shaft member of the hub assembly, in which one end of the shaft member is joined and fixed to the center of the hub on which the disk is placed, into a sleeve that has been subjected to groove processing for generating radial dynamic pressure, and for generating thrust dynamic pressure The thrust plate subjected to the groove processing is fixed to the other end portion of the shaft member, the thrust plate is sandwiched between the counter plate and the sleeve, the counter plate is fixed to the stator or the like, and the other end portion of the shaft member and the sleeve A gap between them is sealed with an adhesive or the like to form a bearing set.

次に、上記軸部材とスリーブとの間のラジアル動圧軸受部およびスラストプレートとカウンタープレートおよびスリーブとの間のスラスト動圧軸受部には潤滑流体を充填し、ハブの周壁内周面側にローターマグネットを固着してローター組を構成する。さらに、ベースフレームに絶縁紙およびフレキシブル配線基板を貼り付けたベース組を構成し、絶縁塗料を塗布した積層コアに導線を巻き回してこれを駆動コイルとしてなるコア巻線組を、上記ベース組に組み付けてステータ組を構成する。このステータ組に上記ローター組を組み付けることによって、ディスク駆動用流体動圧軸受モータを得ている。   Next, the radial dynamic pressure bearing portion between the shaft member and the sleeve and the thrust dynamic pressure bearing portion between the thrust plate, the counter plate and the sleeve are filled with a lubricating fluid, and the inner peripheral surface side of the peripheral wall of the hub is filled. A rotor magnet is fixed to form a rotor set. In addition, a base set in which insulating paper and a flexible wiring board are attached to a base frame is configured, and a core winding set in which a conductive wire is wound around a laminated core coated with an insulating paint and used as a drive coil is used as the base set. Assemble the stator assembly. A disk driving fluid dynamic bearing motor is obtained by assembling the rotor set to the stator set.

特開平6−178490号公報JP-A-6-178490

近年、動圧軸受装置を用いた各種機器、たとえばディスク駆動装置では、高速回転化、高回転精度化の要求とともに、薄型化の要求も厳しくなっており、それに伴って動圧軸受装置の薄型化も要求されている。しかしながら、従来の動圧軸受装置の構造では、薄型化の要求に対して十分に応えていない。動圧軸受装置の薄型化を阻害する要因として次の項目を挙げることができる。   In recent years, various devices using a hydrodynamic bearing device, such as a disk drive device, have become more demanding to reduce the thickness as well as demands for higher speed rotation and higher rotation accuracy. Is also required. However, the structure of the conventional hydrodynamic bearing device does not sufficiently meet the demand for thinning. The following items can be cited as factors that hinder the thinning of the hydrodynamic bearing device.

衝撃等の外部応力で軸受装置が破損しないように、各構成部材間の接合強度を高くする必要がある。たとえば、ハブと軸部材との接合強度、軸部材とスラストプレートとの接合強度、カウンタープレートとスリーブとの接合強度を所定の強度以上に高める必要がある。しかし、例えば軸部材とスラストプレートとを圧入によって接合すると、静摩擦係数が0.2程度であり、十分大きな接合強度を得るには、接合長さを長くする必要がある。この接合長さを長くすると、動圧軸受装置の薄型化に対する阻害要因となる。また、外部応力で軸受装置が破損しないように、各構成部材を厚くして曲げ強度を高める必要がある。例えば、スラストプレートの厚み、カウンタープレートの厚みなどを厚くする必要がある。これらの部材の厚みを厚くすると、動圧軸受装置の薄型化に対する阻害要因となる。   It is necessary to increase the bonding strength between the constituent members so that the bearing device is not damaged by external stress such as impact. For example, it is necessary to increase the bonding strength between the hub and the shaft member, the bonding strength between the shaft member and the thrust plate, and the bonding strength between the counter plate and the sleeve beyond a predetermined strength. However, for example, when the shaft member and the thrust plate are joined by press-fitting, the static friction coefficient is about 0.2, and it is necessary to increase the joining length in order to obtain a sufficiently large joining strength. If this joining length is lengthened, it becomes an obstructive factor for thinning of the hydrodynamic bearing device. Further, it is necessary to increase the bending strength by increasing the thickness of each component so that the bearing device is not damaged by external stress. For example, it is necessary to increase the thickness of the thrust plate, the thickness of the counter plate, and the like. Increasing the thickness of these members becomes an impediment to reducing the thickness of the fluid dynamic bearing device.

ラジアル動圧軸受の剛性を高めるためには、軸受部の軸方向長さを長くする必要があり、薄型化の阻害要因となる。さらに、潤滑流体の漏れを防止するためのシール装置を、動圧軸受装置の軸方向端部に設置する必要がある。例えば、毛細管シールの場合、潤滑流体の蒸発に起因する不具合を解消して信頼性を高めるために、毛細管シールの深さ寸法を長くして十分な量の潤滑流体を確保する必要があり、そのために動圧軸受装置の薄型化に対する阻害要因となる。また、毛細管シールに変え、あるいは毛細管シールとともに磁性流体シールを用いることもあるが、磁性流体シールは、マグネットやポールピースが必要であり、それらの厚みが動圧軸受装置の薄型化に対する阻害要因となる。   In order to increase the rigidity of the radial dynamic pressure bearing, it is necessary to increase the axial length of the bearing portion, which is an obstacle to the reduction in thickness. Furthermore, it is necessary to install a seal device for preventing leakage of the lubricating fluid at the axial end of the hydrodynamic bearing device. For example, in the case of a capillary seal, it is necessary to secure a sufficient amount of lubricating fluid by increasing the depth dimension of the capillary seal in order to eliminate defects caused by evaporation of the lubricating fluid and increase reliability. In addition, it becomes an impediment to the thinning of the hydrodynamic bearing device. In addition, a magnetic fluid seal may be used instead of a capillary seal or together with a capillary seal. However, the magnetic fluid seal requires a magnet and a pole piece, and their thickness is an obstructive factor for reducing the thickness of a hydrodynamic bearing device. Become.

本発明は以上のような従来技術の問題点を解消するためになされたもので、各構成部材間の接合長さを十分長く確保することによって、接合強度および曲げ強度、さらには動圧軸受の剛性を確保することができる動圧軸受装置を提供することを目的とする。   The present invention has been made to solve the above-described problems of the prior art, and by ensuring a sufficiently long joining length between the constituent members, the joining strength and the bending strength, and further, the hydrodynamic bearing It is an object of the present invention to provide a hydrodynamic bearing device that can ensure rigidity.

請求項1記載の動圧軸受装置は、円筒状のスリーブと、
スリーブの内周面と対向する外周面を有し、スリーブに対し回転中心軸を中心として相対回転する軸部材と、
スリーブの内周面と軸部材の外周面との間の隙間に形成され、相対回転時に流体動圧を誘起するラジアル動圧発生用溝列を有するラジアル動圧軸受部と、
スリーブの軸方向一端面と該一端面と対向する軸部材の対向面との間の隙間に形成され、相対回転時に流体動圧を誘起するスラスト動圧発生用溝列を有する一端側スラスト動圧軸受部と、
スリーブと該スリーブと対向する軸部材との間の隙間に形成され、一端側スラスト動圧軸受部に繋がると共に一端側スラスト動圧軸受部から離れるに従ってその隙間寸法が拡大する毛細管シール部と、
ラジアル動圧軸受部、一端側スラスト動圧軸受部、および、毛細管シール部に途切れることなく連続して充填され、毛細管シール部内にてのみ外気との気液界面を形成する潤滑流体と、を備えることを特徴とする。
The hydrodynamic bearing device according to claim 1, a cylindrical sleeve;
A shaft member having an outer peripheral surface facing the inner peripheral surface of the sleeve, and rotating relative to the sleeve about the rotation center axis;
A radial dynamic pressure bearing portion having a radial dynamic pressure generating groove array formed in a gap between the inner peripheral surface of the sleeve and the outer peripheral surface of the shaft member and inducing a fluid dynamic pressure at the time of relative rotation;
One end-side thrust dynamic pressure having a thrust dynamic pressure generating groove array formed in a gap between one axial end surface of the sleeve and the opposite surface of the shaft member facing the one end surface to induce fluid dynamic pressure during relative rotation A bearing portion;
A capillary seal portion formed in a gap between the sleeve and the shaft member facing the sleeve, connected to the one-end-side thrust dynamic pressure bearing portion, and having a gap size that increases as it moves away from the one-end-side thrust dynamic pressure bearing portion;
A radial dynamic pressure bearing portion, one end side thrust dynamic pressure bearing portion, and a lubricating fluid that is continuously filled without interruption in the capillary seal portion and forms a gas-liquid interface with the outside air only within the capillary seal portion. It is characterized by that.

請求項2の動圧軸受装置は、一端側スラスト動圧軸受部と毛細管シール部との間には、軸部材がスリーブに対し相対的に抜けるのを防止する抜け防止機構が形成されていることを特徴とする。   In the fluid dynamic bearing device according to claim 2, a slip-off preventing mechanism for preventing the shaft member from slipping relative to the sleeve is formed between the one end side thrust fluid pressure bearing portion and the capillary seal portion. It is characterized by.

請求項3の動圧軸受装置は、軸部材には、スリーブの他端面と軸方向に対向するよう環状部材が固定され、毛細管シール部は、スリーブの外周面と環状部材の内周面との間に形成されていることを特徴とする。   In the fluid dynamic bearing device according to claim 3, the annular member is fixed to the shaft member so as to face the other end surface of the sleeve in the axial direction, and the capillary seal portion is formed between the outer peripheral surface of the sleeve and the inner peripheral surface of the annular member. It is formed between them.

請求項4の動圧軸受装置は、軸部材には、スリーブの他端面と軸方向に対向するよう環状部材が固定され、抜け防止機構は、スリーブの他端面と環状部材の一端面とが係止することにより構成されていることを特徴とする。   In the hydrodynamic bearing device according to the fourth aspect, the annular member is fixed to the shaft member so as to face the other end surface of the sleeve in the axial direction, and the slip prevention mechanism is related to the other end surface of the sleeve and the one end surface of the annular member. It is configured by stopping.

請求項5の動圧軸受装置は、軸部材には、スリーブの外周部の一部を囲む周壁部、および、周壁部から他端側に突出する突堤部が形成され、環状部材は、周壁部及び突堤部のそれぞれに当接して固定されていることを特徴とする。   In the hydrodynamic bearing device according to claim 5, the shaft member is formed with a peripheral wall portion surrounding a part of the outer peripheral portion of the sleeve, and a jetty portion protruding from the peripheral wall portion to the other end side. And it is fixed in contact with each of the jetty portions.

請求項6の動圧軸受装置は、環状部材は、軸体に接着剤を介して固定されていることを特徴とする。   The fluid dynamic bearing device according to claim 6 is characterized in that the annular member is fixed to the shaft body via an adhesive.

請求項7の動圧軸受装置は、毛細管シール部は、スリーブの外周面と該外周面と対向する軸部材の内周面との間の半径方向隙間に形成され、
毛細管シール部を構成するスリーブの外周面の回転中心軸に対する傾斜角は、毛細管シール部を構成する軸部材の内周面の回転中心軸に対する傾斜角より大に形成されていることを特徴とする。
In the dynamic pressure bearing device according to claim 7, the capillary seal portion is formed in a radial gap between the outer peripheral surface of the sleeve and the inner peripheral surface of the shaft member facing the outer peripheral surface.
The inclination angle of the outer peripheral surface of the sleeve constituting the capillary seal portion with respect to the rotation center axis is formed larger than the inclination angle of the inner peripheral surface of the shaft member constituting the capillary seal portion with respect to the rotation center axis. .

請求項8の動圧軸受装置は、スリーブの一端側外周部には、半径方向に伸びる鍔部が前記スリーブと一体又は別体にて設けられ、
一端側スラスト動圧軸受部は、鍔部の一端面と該一端面と対向する軸部材の対向面との間の隙間に形成されていることを特徴とする。
In the hydrodynamic bearing device according to claim 8, a flange portion extending in the radial direction is provided on the outer peripheral portion on one end side of the sleeve as an integral or separate body with the sleeve,
The one-end-side thrust dynamic pressure bearing portion is formed in a gap between one end surface of the flange portion and the facing surface of the shaft member facing the one end surface.

請求項9の動圧軸受装置は、スリーブの軸方向他端面と該他端面と対向する軸部材の対向面との間の隙間には、相対回転時に流体動圧を誘起するスラスト動圧発生用溝列を有する他端側スラスト動圧軸受部が形成され、
潤滑流体は、一端側スラスト動圧軸受部、他端側スラスト動圧軸受部、および、毛細管シール部と途切れることなく連続して充填されていることを特徴とする。
The hydrodynamic bearing device according to claim 9 is for generating thrust dynamic pressure that induces fluid dynamic pressure at the time of relative rotation in the gap between the other axial end surface of the sleeve and the opposing surface of the shaft member facing the other end surface. The other end side thrust dynamic pressure bearing portion having the groove row is formed,
The lubricating fluid is characterized by being continuously filled without interruption with the one end side thrust dynamic pressure bearing portion, the other end side thrust dynamic pressure bearing portion, and the capillary seal portion.

本発明の一例の動圧軸受装置は、各構成部材間の接合長さを十分長く確保することによって、接合強度および曲げ強度、さらには動圧軸受の剛性を確保することができる。   The fluid dynamic bearing device according to the example of the present invention can ensure the joining strength and the bending strength, and further the rigidity of the fluid dynamic bearing by ensuring the joint length between the constituent members sufficiently long.

また、動圧軸受装置を薄型化することができる。   In addition, the hydrodynamic bearing device can be reduced in thickness.

以下、図面を参照しながら本発明にかかる動圧軸受装置の実施の形態について、組み立て手順に従って説明する。この実施の形態は、ハードディスク等のディスクを回転駆動するディスク駆動装置として構成されているが、本発明にかかる動圧軸受装置は、ディスク駆動装置以外の各種機器の動圧軸受装置として適用可能なものである。   Hereinafter, embodiments of a hydrodynamic bearing device according to the present invention will be described in accordance with an assembling procedure with reference to the drawings. Although this embodiment is configured as a disk drive device that rotationally drives a disk such as a hard disk, the fluid dynamic bearing device according to the present invention is applicable as a fluid dynamic bearing device for various devices other than the disk drive device. Is.

図1、図2において、符号1は軸部材を、符号2はスリーブをそれぞれ示している。軸部材1は中心軸11と、この中心軸11の一端部(図において上端部)に圧入等によって接合された回転体25とを有してなる。この実施の形態では、回転体25はディスクを載置して回転するハブである。上記中心軸11と回転体25との接合部には、あとで説明する潤滑流体が外部に漏れないように、その全周が溶接され、またはシール材によってシールされている。   1 and 2, reference numeral 1 denotes a shaft member, and reference numeral 2 denotes a sleeve. The shaft member 1 includes a central shaft 11 and a rotating body 25 joined to one end portion (upper end portion in the drawing) of the central shaft 11 by press fitting or the like. In this embodiment, the rotating body 25 is a hub that rotates with a disk placed thereon. The entire circumference of the joint between the central shaft 11 and the rotating body 25 is welded or sealed with a sealing material so that a lubricating fluid described later does not leak to the outside.

上記スリーブ2は、ラジアル動圧軸受部3,3を形成するための円筒部21とこの円筒部21の外周側に形成されたスラスト動圧軸受部4,5形成用の突出部22とを有してなる。この突出部22は、上記円筒部21の一端部(図において上端部)に、円筒部21の鍔部として形成されている。上記突出部22は、図示の例ではスリーブ2の円筒部21と一体成形されているが、スリーブ2とは別部材とし、これをスリーブ2の円筒部21に圧入等によって一体に設けてもよい。上記突出部22はスラスト軸受用のスラストプレートとなるものである。この突出部22がスリーブ2の円筒部21に一体に設けられた状態で、スリーブ2の上記円筒部21の内周面に、ラジアル動圧発生用溝が形成され、上記突出部22の上下面に、スラスト動圧発生用溝が形成されている。上記ラジアル動圧発生用溝は、円筒部21の内周面の上下2箇所に、通常のように全周にわたって形成されている。上記スラスト動圧発生用溝も、突出部22の上下面の全周にわたって形成されている。   The sleeve 2 has a cylindrical portion 21 for forming the radial dynamic pressure bearing portions 3, 3 and a protruding portion 22 for forming the thrust dynamic pressure bearing portions 4, 5 formed on the outer peripheral side of the cylindrical portion 21. Do it. The protruding portion 22 is formed as a flange portion of the cylindrical portion 21 at one end portion (upper end portion in the drawing) of the cylindrical portion 21. In the illustrated example, the protruding portion 22 is integrally formed with the cylindrical portion 21 of the sleeve 2. However, the protruding portion 22 may be a separate member from the sleeve 2 and may be provided integrally with the cylindrical portion 21 of the sleeve 2 by press fitting or the like. . The protrusion 22 is a thrust plate for a thrust bearing. In a state where the protruding portion 22 is provided integrally with the cylindrical portion 21 of the sleeve 2, a radial dynamic pressure generating groove is formed on the inner peripheral surface of the cylindrical portion 21 of the sleeve 2, and the upper and lower surfaces of the protruding portion 22 are formed. In addition, a thrust dynamic pressure generating groove is formed. The radial dynamic pressure generating grooves are formed over the entire circumference at two locations on the inner circumferential surface of the cylindrical portion 21 as usual. The thrust dynamic pressure generating groove is also formed over the entire circumference of the upper and lower surfaces of the protrusion 22.

上記スリーブ2の円筒部21に、上側から上記軸部材1の中心軸11を挿入する。次に、環状部材であるリング状のスラスト受け部材27を、外周に沿い下側から挿入し、回転体25の下面に形成された円形の突堤23の内周面に接合する。さらに、後述の潤滑流体が漏れないように、上記突堤23とスラスト受け部材27との接合部を接着剤等で封止する。次に、キャップ状のカバー28を中心軸11の下端部に被せ、カバー28の外周部を上記円筒部21の下端周溝に落とし込んで接合し、接着剤29等で封止する。   The central shaft 11 of the shaft member 1 is inserted into the cylindrical portion 21 of the sleeve 2 from above. Next, a ring-shaped thrust receiving member 27, which is an annular member, is inserted along the outer periphery from the lower side and joined to the inner peripheral surface of the circular jetty 23 formed on the lower surface of the rotating body 25. Further, the joint between the jetty 23 and the thrust receiving member 27 is sealed with an adhesive or the like so that a lubricating fluid described later does not leak. Next, the cap-shaped cover 28 is put on the lower end portion of the central shaft 11, and the outer peripheral portion of the cover 28 is dropped into the lower peripheral groove of the cylindrical portion 21 and joined, and sealed with an adhesive 29 or the like.

図1に示すように、スラスト受け部材27の内周面とこれに対向する上記スリーブ2の外周面との間、スラスト受け部材27の上面とこれに対向する上記突出部22の下面との間、上記突出部22の外周面とこれに対向する上記回転体25の周壁部の周壁面との間、回転体25の庇状内周部26とこれに対向する上記突出部22の上面との間、上記スリーブ2の内周面と中心軸11の外周面との間、および上記カバー28と中心軸11の下端部との間には隙間が形成されている。これらの隙間は互いに上記の順に連通していて、スラスト受け部材27の内周面とこれに対向する上記スリーブ2の外周面との間の隙間が下に向かって開放している。また、このスラスト受け部材27の内周面に対向する上記スリーブ2の外周面は、下に向かって外径が小さくなる向きのテーパー部となっていて、上記スラスト受け部材27の内周面とスリーブ2の外周面との間の隙間は、その間隔が下に向かって徐々に拡大する毛細管シール部45となっている。この毛細管シール部45に、後述する潤滑流体(オイル)の液面Aが位置するように設ける。   As shown in FIG. 1, between the inner peripheral surface of the thrust receiving member 27 and the outer peripheral surface of the sleeve 2 facing the thrust receiving member 27, between the upper surface of the thrust receiving member 27 and the lower surface of the protruding portion 22 facing the thrust receiving member 27. , Between the outer peripheral surface of the projecting portion 22 and the peripheral wall surface of the peripheral wall portion of the rotating body 25 facing the outer surface, and between the bowl-shaped inner peripheral portion 26 of the rotating body 25 and the upper surface of the projecting portion 22 facing the same. A gap is formed between the inner peripheral surface of the sleeve 2 and the outer peripheral surface of the central shaft 11 and between the cover 28 and the lower end portion of the central shaft 11. These gaps communicate with each other in the above order, and the gap between the inner circumferential surface of the thrust receiving member 27 and the outer circumferential surface of the sleeve 2 facing the opening is opened downward. Further, the outer peripheral surface of the sleeve 2 facing the inner peripheral surface of the thrust receiving member 27 is a tapered portion whose outer diameter decreases toward the bottom, and the inner peripheral surface of the thrust receiving member 27 A gap between the sleeve 2 and the outer peripheral surface is a capillary seal portion 45 in which the gap gradually increases downward. The capillary seal portion 45 is provided such that a liquid level A of a lubricating fluid (oil) described later is located.

上記毛細管シール部45から上記隙間に潤滑流体(オイル)を注入する。この注入方法は任意で、例えば、上記隙間を真空状態ないしは負圧状態にして注入するとよい。上記スラスト受け部材27の上面とこれに対向する上記突出部22の下面との間には他端側スラスト動圧軸受部である下側スラスト動圧軸受部5が形成され、回転体25の庇状内周部26とこれに対向する上記突出部22の上面との間には一端側スラスト動圧軸受部である上側スラスト動圧軸受部4が形成され、スリーブ2の内周面と中心軸11の外周面との間の上下2箇所にはラジアル動圧軸受部3、3が形成されている。これら上下のスラスト動圧軸受部4,5およびラジアル動圧軸受部3、3に、上記潤滑流体が介在している。   Lubricating fluid (oil) is injected from the capillary seal portion 45 into the gap. This injection method is arbitrary. For example, the gap may be injected in a vacuum state or a negative pressure state. A lower thrust dynamic pressure bearing portion 5, which is the other end side thrust dynamic pressure bearing portion, is formed between the upper surface of the thrust receiving member 27 and the lower surface of the protruding portion 22 facing the thrust receiving member 27. An upper thrust dynamic pressure bearing portion 4 which is one end side thrust dynamic pressure bearing portion is formed between the inner peripheral portion 26 and the upper surface of the projecting portion 22 opposed to the inner peripheral portion 26, and the inner peripheral surface of the sleeve 2 and the central axis Radial dynamic pressure bearing portions 3 and 3 are formed at two locations on the upper and lower sides between the outer peripheral surfaces of the eleventh. The lubricating fluid is interposed between the upper and lower thrust dynamic pressure bearing portions 4 and 5 and the radial dynamic pressure bearing portions 3 and 3.

次に、液面Aで示す潤滑流体が外部に漏れるのを防止するために、スラスト受け部材27の下面に、油吸収布30を、カバープレート31で押さえて固定する。カバープレート31は断面がL字状で、かつ、全体はリング状の部材で、その立ち上がり部分を、前記回転体25の突堤23の外周面に接合させて固定する。油吸収布30の内周面は、上記毛細管シール部45の開口部に対向している。次に、回転体25の外周壁41の内周面に、ロータマグネット40を接着固着する。これによって軸受組が完成する。   Next, in order to prevent the lubricating fluid indicated by the liquid level A from leaking to the outside, the oil absorbing cloth 30 is pressed and fixed to the lower surface of the thrust receiving member 27 by the cover plate 31. The cover plate 31 has an L-shaped cross section and is a ring-shaped member as a whole, and its rising portion is joined and fixed to the outer peripheral surface of the jetty 23 of the rotating body 25. The inner peripheral surface of the oil absorbing cloth 30 faces the opening of the capillary seal portion 45. Next, the rotor magnet 40 is bonded and fixed to the inner peripheral surface of the outer peripheral wall 41 of the rotating body 25. This completes the bearing set.

別工程においてステータコア35にワイヤを巻いてこれを駆動コイル36とし、コア巻線組を作成しておく。さらに別の工程で、ベースプレート33の凹部334の底面に絶縁紙38を接着する。ベースプレート33は中心孔を有し、この中心孔の周囲に突堤333を有し、この突堤333の外周側に周溝状の上記凹部334を有している。ベースプレート33にはまた、その底面に沿って、図2に示すようにフレキシブル回路基板42を接着する。   In a separate process, a wire is wound around the stator core 35 to form a drive coil 36, and a core winding group is created. In yet another step, the insulating paper 38 is bonded to the bottom surface of the recess 334 of the base plate 33. The base plate 33 has a central hole, a jetty 333 around the central hole, and the concave portion 334 having a circumferential groove shape on the outer peripheral side of the jetty 333. A flexible circuit board 42 is also bonded to the base plate 33 along the bottom surface thereof as shown in FIG.

上記コア巻線組を上記ベースプレート33に接着固定する。ここでは、上記突堤333の外周面に沿ってステータコア35の中心孔を嵌め、また、上記突堤333の外周側に段部が形成されているので、この段部に上記ステータコア35を載せて接着する。次に、駆動コイル36の端末をフレキシブル回路基板42の所定の回路パターンに半田付けする。これによってステータ組が完成する。さらに、このステータ組に前記軸受組を接合する。より詳細には、軸受組の一部を構成するスリーブ2の円筒部21下端部を、ステータ組の一部を構成するベースプレート33の中心孔にその上側から圧入して固定する。これによって、ディスク回転駆動用の動圧軸受モータが完成する。ベースプレート33には、フレキシブル回路基板42を引き出すための孔および上記半田付け部分から逃げるための孔が形成されていて、これらの孔は接着剤その他適宜のシール材43で封止される。   The core winding set is bonded and fixed to the base plate 33. Here, the center hole of the stator core 35 is fitted along the outer peripheral surface of the jetty 333, and a step portion is formed on the outer peripheral side of the jetty 333, so that the stator core 35 is placed on and attached to the step portion. . Next, the terminal of the drive coil 36 is soldered to a predetermined circuit pattern on the flexible circuit board 42. This completes the stator assembly. Further, the bearing set is joined to the stator set. More specifically, the lower end portion of the cylindrical portion 21 of the sleeve 2 constituting a part of the bearing set is press-fitted from the upper side into the center hole of the base plate 33 constituting a part of the stator set and fixed. Thus, a hydrodynamic bearing motor for driving the disk rotation is completed. The base plate 33 is formed with holes for pulling out the flexible circuit board 42 and holes for escaping from the soldered portion, and these holes are sealed with an adhesive or other appropriate sealing material 43.

上記動圧軸受モータの駆動コイル36への通電を切り替え制御することにより、ステータコア35の突極とロータマグネット40との磁気的吸引反発力で、ロータマグネット40、回転体25と中心軸11を含む軸部材1およびスラスト受け部材27が回転駆動される。この回転によって、スラスト動圧軸受部4,5に存在する潤滑流体にスラスト動圧力が発生し、また、ラジアル動圧軸受部3,3に存在する潤滑流体にラジアル動圧力が発生し、上記軸部材1がスリーブ2に対し非接触状態を保持したままで相対回転する。   By switching and controlling the energization to the drive coil 36 of the dynamic pressure bearing motor, the magnetic attraction and repulsive force between the salient poles of the stator core 35 and the rotor magnet 40 includes the rotor magnet 40, the rotating body 25, and the central shaft 11. The shaft member 1 and the thrust receiving member 27 are rotationally driven. By this rotation, a thrust dynamic pressure is generated in the lubricating fluid existing in the thrust dynamic pressure bearing portions 4 and 5, and a radial dynamic pressure is generated in the lubricating fluid existing in the radial dynamic pressure bearing portions 3 and 3. The member 1 rotates relative to the sleeve 2 while maintaining a non-contact state.

このようにして、軸部材1の一部を構成する回転体25の前記庇状内周部26とスラスト受け部材27は、軸部材1の一部を構成する中心軸11よりも外周側にあるため、スリーブ2の突出部22を取り囲む外周部を構成している。そして、中心軸11の外周面とスリーブ2の円筒部21内周面との間にラジアル動圧軸受部3が形成されるとともに、スリーブ2の突出部22と上記軸部材1との軸方向対向面間にスラスト動圧軸受部4,5が形成されている。   In this way, the flange-shaped inner peripheral portion 26 and the thrust receiving member 27 of the rotating body 25 constituting a part of the shaft member 1 are located on the outer peripheral side with respect to the central shaft 11 constituting a part of the shaft member 1. Therefore, the outer peripheral part which surrounds the protrusion part 22 of the sleeve 2 is comprised. A radial dynamic pressure bearing portion 3 is formed between the outer peripheral surface of the central shaft 11 and the inner peripheral surface of the cylindrical portion 21 of the sleeve 2, and the protruding portion 22 of the sleeve 2 and the shaft member 1 are opposed in the axial direction. Thrust dynamic pressure bearing portions 4 and 5 are formed between the surfaces.

以上説明した実施の形態によれば、スラストプレートに相当するスリーブ2の突出部22、カウンタープレートに相当するスラスト受け部材27、毛細管シール部45が、ラジアル軸受部3よりも半径方向外側に配置されているため、次のような効果を得ることができる。ラジアル軸受部3の軸方向の幅を十分に広く確保することができるため、軸受剛性を上げることができ、より高精度で、かつ、外乱に対する回転性能の劣化が少ない動圧軸受装置を得ることができる。毛細管シール部45の軸方向の長さを十分に長く確保することができるため、蒸発による潤滑流体の枯渇を防止することができ、寿命が長く、信頼性の高い動圧軸受装置を得ることができる。各部材間の必要な接合強度を得るのに十分な部品の軸方向寸法を確保することができるため、衝撃などの外力による軸受の破損を防止することができる。潤滑流体吸収部材30を設置するためのスペースを確保することができるため、潤滑流体の漏れによる汚染を防止することができる。   According to the embodiment described above, the protruding portion 22 of the sleeve 2 corresponding to the thrust plate, the thrust receiving member 27 corresponding to the counter plate, and the capillary seal portion 45 are arranged on the radially outer side than the radial bearing portion 3. Therefore, the following effects can be obtained. Since the axial width of the radial bearing portion 3 can be sufficiently widened, the bearing rigidity can be increased, and a hydrodynamic bearing device with higher accuracy and less deterioration in rotational performance due to disturbance can be obtained. Can do. Since the length of the capillary seal portion 45 in the axial direction can be sufficiently long, it is possible to prevent depletion of the lubricating fluid due to evaporation, and to obtain a hydrodynamic bearing device with a long life and high reliability. it can. Since the axial dimensions of the parts sufficient to obtain the necessary joint strength between the members can be ensured, damage to the bearing due to external forces such as impact can be prevented. Since a space for installing the lubricating fluid absorbing member 30 can be secured, contamination due to leakage of the lubricating fluid can be prevented.

スラスト軸受をラジアル軸受と一体にした部材、具体的には、スラスト動圧軸受部4,5を形成するための突出部22と、内周面にラジアル動圧軸受部3を構成するための円筒部21とを一体にしたスリーブ2を用い、このスリーブ2にスラスト動圧発生用溝およびラジアル動圧発生用溝を形成するようにしたため、スラスト動圧発生用の上記突出部22の軸方向寸法および直径を小さくすることができ、軸受のロストルクを低減して小電力化を測ることができる。また、スリーブ2にスラスト動圧発生用溝およびラジアル動圧発生用溝を形成することができるため、ラジアル軸受面に対するスラスト軸受面の直角度を精度よく仕上げることができ、回転性能が向上する。   A member in which the thrust bearing is integrated with the radial bearing, specifically, a protruding portion 22 for forming the thrust dynamic pressure bearing portions 4 and 5, and a cylinder for forming the radial dynamic pressure bearing portion 3 on the inner peripheral surface. Since the sleeve 2 integrated with the portion 21 is used and a thrust dynamic pressure generating groove and a radial dynamic pressure generating groove are formed in the sleeve 2, the axial dimension of the protrusion 22 for generating the thrust dynamic pressure is as follows. In addition, the diameter can be reduced, and the loss torque of the bearing can be reduced to reduce the power consumption. Further, since the thrust dynamic pressure generating groove and the radial dynamic pressure generating groove can be formed in the sleeve 2, the perpendicularity of the thrust bearing surface with respect to the radial bearing surface can be finished with high accuracy, and the rotational performance is improved.

毛細管シール部45が、スラスト受け部材27の内周面とスリーブ2の円筒部21外周面との間に、軸線方向に長く形成されているため、潤滑流体が遠心力の影響で飛散しにくい構造となっており、潤滑流体による汚染が防止される。また、軸方向のスペースに余裕が生まれ、潤滑流体吸収部材を配置するための空間を容易に確保することができ、潤滑流体の漏れを防止して周辺の汚染を防止することができる。スリーブ2の突出部22とスラスト受け部材との対向面間に形成されるスラスト軸受部5は、スリーブ2の円筒部21に形成されているラジアル軸受部3,3よりも半径方向外側に形成されているため、スラスト軸受部5を形成することに起因する動圧軸受装置の軸方向寸法の増大を防止することができる。   Since the capillary seal portion 45 is formed long in the axial direction between the inner peripheral surface of the thrust receiving member 27 and the outer peripheral surface of the cylindrical portion 21 of the sleeve 2, the lubricating fluid is less likely to scatter due to the centrifugal force. Thus, contamination by the lubricating fluid is prevented. In addition, there is a margin in the space in the axial direction, a space for arranging the lubricating fluid absorbing member can be easily secured, leakage of the lubricating fluid can be prevented, and surrounding contamination can be prevented. The thrust bearing portion 5 formed between the opposed surfaces of the protruding portion 22 of the sleeve 2 and the thrust receiving member is formed on the radially outer side than the radial bearing portions 3 and 3 formed on the cylindrical portion 21 of the sleeve 2. Therefore, an increase in the axial dimension of the hydrodynamic bearing device due to the formation of the thrust bearing portion 5 can be prevented.

本発明にかかる動圧軸受装置は、これまで説明してきたようなアウターロータ型モータに限らず、インナーロータ型モータにも適用することができる。図3R>3はインナーロータ型モータに本発明にかかる動圧軸受装置を適用した実施の形態を示す。前記実施の形態と同様の構成部分ないしは対応する構成部分には共通の符号を付し、前記実施の形態と異なる構成部分を重点的に説明する。   The hydrodynamic bearing device according to the present invention can be applied not only to the outer rotor type motor as described above but also to an inner rotor type motor. FIG. 3R> 3 shows an embodiment in which the hydrodynamic bearing device according to the present invention is applied to an inner rotor type motor. Constituent parts that are the same as or corresponding to those of the above-described embodiment or common constituent parts are denoted by common reference numerals, and constituent parts that are different from those of the above-described embodiment are described mainly.

図3に示す実施の形態が、前記実施の形態と大きく異なる点は、ロータマグネット40を取り付けるための回転体25の円筒状周壁50が、回転体25の半径方向中間部にあり、この円筒状周壁50の外周側の面にロータマグネット40が固着され、このロータマグネット40の外周面にステータコア35の内周面が適宜の間隙をおいて対向していることである。ステータコア35はその外周側がベースプレート33の段部に固定され、内方に向いた各突極に駆動コイル36が巻き回されている。   The embodiment shown in FIG. 3 is significantly different from the above embodiment in that the cylindrical peripheral wall 50 of the rotating body 25 for attaching the rotor magnet 40 is in the intermediate portion in the radial direction of the rotating body 25. The rotor magnet 40 is fixed to the outer peripheral surface of the peripheral wall 50, and the inner peripheral surface of the stator core 35 faces the outer peripheral surface of the rotor magnet 40 with an appropriate gap. The stator core 35 has an outer peripheral side fixed to a step portion of the base plate 33, and a drive coil 36 is wound around each inwardly facing salient pole.

その他の構成はほぼ前記実施の形態と同じで、符号1は軸部材、2はスリーブ、3はラジアル動圧軸受、4および5はスラスト動圧軸受、11は中心軸、21は円筒部、22は突出部、27はスラスト受け部材、30は油吸収布、45は毛細管シール部をそれぞれ示している。円筒部21の下端にはカバー48が嵌められて封止され、潤滑オイルの漏れ防止が図られている。図3に示すように、インナーロータ型モータに本発明にかかる動圧軸受装置を適用したものにおいても、前記実施の形態と同様の効果を得ることができる。   Other configurations are almost the same as those of the above-described embodiment. Reference numeral 1 is a shaft member, 2 is a sleeve, 3 is a radial dynamic pressure bearing, 4 and 5 are thrust dynamic pressure bearings, 11 is a central shaft, 21 is a cylindrical portion, 22 Denotes a protruding portion, 27 denotes a thrust receiving member, 30 denotes an oil absorbing cloth, and 45 denotes a capillary seal portion. A cover 48 is fitted and sealed at the lower end of the cylindrical portion 21 to prevent the lubricating oil from leaking. As shown in FIG. 3, even when the hydrodynamic bearing device according to the present invention is applied to an inner rotor type motor, the same effect as that of the above embodiment can be obtained.

なお、何れの実施の形態においても、油吸収布30は、ベースプレート33側に取り付けてもよい。本発明にかかる動圧軸受装置は、ディスク駆動モータだけでなく、各種回転体の軸受装置として用いることができる。   In any embodiment, the oil absorbing cloth 30 may be attached to the base plate 33 side. The dynamic pressure bearing device according to the present invention can be used not only as a disk drive motor but also as a bearing device for various rotating bodies.

本発明によれば、スリーブは、ラジアル動圧軸受部を形成するための円筒部とこの円筒部の外周側に形成されたスラスト動圧軸受部形成用の突出部とを有し、軸部材は、上記スリーブの円筒部内に挿入される中心軸と上記スリーブの上記突出部を取り囲む外周部とを有し、上記中心軸の外周面と上記スリーブの円筒部内周面との間にラジアル動圧軸受部が形成されるとともに、スリーブの突出部と軸部材との軸方向対向面間にスラスト動圧軸受部が形成されているため、ラジアル軸受部の軸方向の幅を十分に広く確保することができる。これによって、軸受剛性を上げることができ、より高精度で、かつ、外乱に対する回転性能の劣化が少ない動圧軸受装置を得ることができる。各部材間の必要な接合強度を得るのに十分な部品の軸方向寸法を確保することができるため、衝撃などの外力による軸受の破損を防止することができる。   According to the present invention, the sleeve has a cylindrical portion for forming the radial dynamic pressure bearing portion, and a protrusion for forming the thrust dynamic pressure bearing portion formed on the outer peripheral side of the cylindrical portion, and the shaft member is A radial dynamic pressure bearing having a central shaft inserted into the cylindrical portion of the sleeve and an outer peripheral portion surrounding the protruding portion of the sleeve, and between the outer peripheral surface of the central shaft and the inner peripheral surface of the cylindrical portion of the sleeve And the thrust dynamic pressure bearing portion is formed between the axially facing surfaces of the protruding portion of the sleeve and the shaft member, so that the radial width of the radial bearing portion can be sufficiently wide. it can. As a result, the bearing rigidity can be increased, and a hydrodynamic bearing device can be obtained with higher accuracy and less deterioration in rotational performance due to disturbance. Since the axial dimensions of the parts sufficient to obtain the necessary joint strength between the members can be ensured, damage to the bearing due to external forces such as impact can be prevented.

また、鍔部とスラスト受け部材との対向面間に形成されるスラスト軸受部は、円筒部に形成されるラジアル軸受部よりも半径方向外側に形成されているため、スラスト軸受部5を形成することに起因する動圧軸受装置の軸方向寸法の増大を防止することができる。   Further, since the thrust bearing portion formed between the facing surfaces of the flange portion and the thrust receiving member is formed on the radially outer side than the radial bearing portion formed in the cylindrical portion, the thrust bearing portion 5 is formed. Accordingly, an increase in the axial dimension of the hydrodynamic bearing device can be prevented.

また、スラスト軸受部には潤滑流体が充填されており、スリーブ外周面とスラスト受け部材の内周面との間隔が徐々に拡大するテーパー部が上記スラスト動圧軸受部より軸方向外側に設けられ、このテーパー部により潤滑流体の漏れ防止用の毛細管シール部が構成されているため、スラスト軸受部を形成することに起因する動圧軸受装置の軸方向寸法の増大を防止することができる。また、毛細管シール部の軸方向長さを十分に長く確保することができるため、蒸発による潤滑流体の枯渇を防止することができ、寿命が長く、信頼性の高い動圧軸受装置を得ることができる。   Further, the thrust bearing portion is filled with a lubricating fluid, and a tapered portion where the distance between the outer peripheral surface of the sleeve and the inner peripheral surface of the thrust receiving member gradually increases is provided on the outer side in the axial direction from the thrust dynamic pressure bearing portion. Since the capillary seal portion for preventing leakage of the lubricating fluid is constituted by the tapered portion, it is possible to prevent an increase in the axial dimension of the dynamic pressure bearing device due to the formation of the thrust bearing portion. In addition, since the length of the capillary seal portion in the axial direction can be sufficiently long, it is possible to prevent depletion of the lubricating fluid due to evaporation, and to obtain a highly reliable hydrodynamic bearing device having a long life. it can.

また、動圧軸受装置はディスク駆動装置の動圧軸受装置であって、回転体は、ディスク載置用ハブであるため、上記のような利点を有するディスク駆動装置を得ることができる。   Further, the hydrodynamic bearing device is a hydrodynamic bearing device of a disc drive device, and the rotating body is a disc mounting hub, so that a disc drive device having the above advantages can be obtained.

本発明にかかる動圧軸受装置の実施の形態を示す主要部の拡大正面断面図である。It is an expansion front sectional view of the principal part showing an embodiment of a fluid dynamic bearing device concerning the present invention. 上記実施の形態を示す正面断面図である。It is front sectional drawing which shows the said embodiment. 本発明にかかる動圧軸受装置の、別の実施の形態を示す正面断面図である。It is front sectional drawing which shows another embodiment of the fluid dynamic bearing apparatus concerning this invention.

符号の説明Explanation of symbols

1 軸部材
2 スリーブ
3 ラジアル動圧軸受部
4 スラスト動圧軸受部
5 スラスト動圧軸受部
11 中心軸
21 円筒部
22 突出部
25 回転体
27 外周部としてのスラスト受け部材
45 毛細管シール部
DESCRIPTION OF SYMBOLS 1 Shaft member 2 Sleeve 3 Radial dynamic pressure bearing part 4 Thrust dynamic pressure bearing part 5 Thrust dynamic pressure bearing part 11 Center shaft 21 Cylindrical part 22 Protrusion part 25 Rotating body 27 Thrust receiving member as outer peripheral part 45 Capillary seal part

Claims (9)

円筒状のスリーブと、
前記スリーブの内周面と対向する外周面を有し、前記スリーブに対し回転中心軸を中心として相対回転する軸部材と、
前記スリーブの内周面と前記軸部材の外周面との間の隙間に形成され、前記相対回転時に流体動圧を誘起するラジアル動圧発生用溝列を有するラジアル動圧軸受部と、
前記スリーブの軸方向一端面と該一端面と対向する前記軸部材の対向面との間の隙間に形成され、前記相対回転時に流体動圧を誘起するスラスト動圧発生用溝列を有する一端側スラスト動圧軸受部と、
前記スリーブと該スリーブと対向する前記軸部材との間の隙間に形成され、前記一端側スラスト動圧軸受部に繋がると共に前記一端側スラスト動圧軸受部から離れるに従ってその隙間寸法が拡大する毛細管シール部と、
前記ラジアル動圧軸受部、前記一端側スラスト動圧軸受部、および、前記毛細管シール部に途切れることなく連続して充填され、前記毛細管シール部内にてのみ外気との気液界面を形成する潤滑流体と、を備えることを特徴とする動圧軸受装置。
A cylindrical sleeve;
A shaft member having an outer peripheral surface facing the inner peripheral surface of the sleeve, and rotating relative to the sleeve about a rotation center axis;
A radial dynamic pressure bearing portion formed in a gap between the inner peripheral surface of the sleeve and the outer peripheral surface of the shaft member, and having a radial dynamic pressure generating groove array for inducing fluid dynamic pressure during the relative rotation;
One end side having a thrust dynamic pressure generating groove array that is formed in a gap between one axial end surface of the sleeve and the opposing surface of the shaft member facing the one end surface and induces fluid dynamic pressure during the relative rotation. A thrust hydrodynamic bearing,
A capillary seal that is formed in a gap between the sleeve and the shaft member facing the sleeve, and is connected to the one end side thrust dynamic pressure bearing portion, and the gap dimension increases as the distance from the one end side thrust dynamic pressure bearing portion increases. And
Lubricating fluid that fills the radial dynamic pressure bearing portion, the one end side thrust dynamic pressure bearing portion, and the capillary seal portion continuously without interruption, and forms a gas-liquid interface with the outside air only in the capillary seal portion. And a hydrodynamic bearing device.
前記一端側スラスト動圧軸受部と前記毛細管シール部との間には、前記軸部材が前記スリーブに対し相対的に抜けるのを防止する抜け防止機構が形成されていることを特徴とする請求項1記載の動圧軸受装置。   The removal prevention mechanism for preventing the shaft member from coming off relative to the sleeve is formed between the one end side thrust dynamic pressure bearing portion and the capillary seal portion. 1. The hydrodynamic bearing device according to 1. 前記軸部材には、前記スリーブの他端面と軸方向に対向するよう環状部材が固定され、
前記毛細管シール部は、前記スリーブの外周面と前記環状部材の内周面との間に形成されていることを特徴とする請求項1又は2記載の動圧軸受装置。
An annular member is fixed to the shaft member so as to face the other end surface of the sleeve in the axial direction,
The hydrodynamic bearing device according to claim 1, wherein the capillary seal portion is formed between an outer peripheral surface of the sleeve and an inner peripheral surface of the annular member.
前記軸部材には、前記スリーブの他端面と軸方向に対向するよう環状部材が固定され、
前記抜け防止機構は、前記スリーブの他端面と前記環状部材の一端面とが係止することにより構成されていることを特徴とする請求項2又は3記載の動圧軸受装置。
An annular member is fixed to the shaft member so as to face the other end surface of the sleeve in the axial direction,
4. The hydrodynamic bearing device according to claim 2, wherein the slip-off prevention mechanism is configured by locking the other end surface of the sleeve and one end surface of the annular member. 5.
前記軸部材には、前記スリーブの外周部の一部を囲む周壁部、および、前記周壁部から他端側に突出する突堤部が形成され、
前記環状部材は、前記周壁部及び突堤部のそれぞれに当接して固定されていることを特徴とする請求項3又は4記載の動圧軸受装置。
The shaft member is formed with a peripheral wall portion surrounding a part of the outer peripheral portion of the sleeve, and a jetty portion protruding from the peripheral wall portion to the other end side,
The hydrodynamic bearing device according to claim 3 or 4, wherein the annular member is fixed in contact with each of the peripheral wall portion and the jetty portion.
前記環状部材は、前記軸体に接着剤を介して固定されていることを特徴とする請求項3乃至5のいずれか記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 3, wherein the annular member is fixed to the shaft body via an adhesive. 前記毛細管シール部は、前記スリーブの外周面と該外周面と対向する前記軸部材の内周面との間の半径方向隙間に形成され、
前記毛細管シール部を構成する前記スリーブの外周面の前記回転中心軸に対する傾斜角は、前記毛細管シール部を構成する前記軸部材の内周面の前記回転中心軸に対する傾斜角より大に形成されていることを特徴とする請求項1乃至6のいずれか記載の動圧軸受装置。
The capillary seal portion is formed in a radial gap between the outer peripheral surface of the sleeve and the inner peripheral surface of the shaft member facing the outer peripheral surface,
The inclination angle of the outer peripheral surface of the sleeve constituting the capillary seal portion with respect to the rotation center axis is formed larger than the inclination angle of the inner peripheral surface of the shaft member constituting the capillary seal portion with respect to the rotation center axis. The hydrodynamic bearing device according to claim 1, wherein the hydrodynamic bearing device is provided.
前記スリーブの一端側外周部には、半径方向に伸びる鍔部が前記スリーブと一体又は別体にて設けられ、
前記一端側スラスト動圧軸受部は、前記鍔部の一端面と該一端面と対向する前記軸部材の対向面との間の隙間に形成されていることを特徴とする請求項1乃至7のいずれか記載の動圧軸受装置。
An outer peripheral portion on one end side of the sleeve is provided with a flange portion extending in the radial direction integrally or separately from the sleeve,
The said one end side thrust dynamic pressure bearing part is formed in the clearance gap between the one end surface of the said collar part, and the opposing surface of the said shaft member facing this one end surface. Any one of the hydrodynamic bearing devices.
前記スリーブの軸方向他端面と該他端面と対向する前記軸部材の対向面との間の隙間には、前記相対回転時に流体動圧を誘起するスラスト動圧発生用溝列を有する他端側スラスト動圧軸受部が形成され、
前記潤滑流体は、前記一端側スラスト動圧軸受部、前記他端側スラスト動圧軸受部、および、前記毛細管シール部と途切れることなく連続して充填されていることを特徴とする請求項1乃至8のいずれか記載の動圧軸受装置。
The other end side having a thrust dynamic pressure generating groove array for inducing fluid dynamic pressure at the time of the relative rotation in the gap between the other axial end surface of the sleeve and the opposing surface of the shaft member facing the other end surface A thrust hydrodynamic bearing is formed,
2. The lubricating fluid is continuously filled with the one end side thrust dynamic pressure bearing portion, the other end side thrust dynamic pressure bearing portion, and the capillary seal portion without interruption. The hydrodynamic bearing device according to any one of 8.
JP2006172223A 2006-06-22 2006-06-22 Dynamic-pressure bearing arrangement Pending JP2006292177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006172223A JP2006292177A (en) 2006-06-22 2006-06-22 Dynamic-pressure bearing arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006172223A JP2006292177A (en) 2006-06-22 2006-06-22 Dynamic-pressure bearing arrangement

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23914099A Division JP4693948B2 (en) 1999-08-26 1999-08-26 Hydrodynamic bearing device

Publications (1)

Publication Number Publication Date
JP2006292177A true JP2006292177A (en) 2006-10-26

Family

ID=37412930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006172223A Pending JP2006292177A (en) 2006-06-22 2006-06-22 Dynamic-pressure bearing arrangement

Country Status (1)

Country Link
JP (1) JP2006292177A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014370A (en) * 2014-09-09 2015-01-22 サムスン電機ジャパンアドバンスドテクノロジー株式会社 Disk drive
JP2020046049A (en) * 2018-09-21 2020-03-26 株式会社デンソーウェーブ Lubricant leakage prevention device and drive device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014370A (en) * 2014-09-09 2015-01-22 サムスン電機ジャパンアドバンスドテクノロジー株式会社 Disk drive
JP2020046049A (en) * 2018-09-21 2020-03-26 株式会社デンソーウェーブ Lubricant leakage prevention device and drive device
JP7040379B2 (en) 2018-09-21 2022-03-23 株式会社デンソーウェーブ Lubricant leak prevention device and drive device

Similar Documents

Publication Publication Date Title
JP4693948B2 (en) Hydrodynamic bearing device
JP2011080597A (en) Fluid dynamic pressure bearing, motor, and recording medium drive device
JP5652676B2 (en) Spindle motor and hard disk drive including the same
JP2003329032A (en) Dynamic pressure bearing device
JP2014180190A (en) Spindle motor
JP2001050278A (en) Manufacture of dynamic-pressure bearing device, and dynamic-pressure bearing device
JP5521230B2 (en) Spindle motor
US8836189B2 (en) Spindle motor having lubricant filled bearing clearance
JP2006292177A (en) Dynamic-pressure bearing arrangement
JP4978703B2 (en) DYNAMIC PRESSURE BEARING DEVICE, DYNAMIC PRESSURE BEARING MOTOR WITH THIS DYNAMIC PRESSURE BEARING DEVICE, AND DISK DRIVE DEVICE WITH THIS DYNAMIC PRESSURE BEARING MOTOR
JP4094784B2 (en) Hydrodynamic bearing device
KR101339596B1 (en) Spindle motor
JP2004044789A (en) Oil dynamic pressure bearing motor
JP2015108454A (en) Spindle motor
KR101376809B1 (en) spindle motor
US8890381B2 (en) Spindle motor
JP7424906B2 (en) Fluid dynamic bearing devices, spindle motors, and hard disk drives
JP2003336627A (en) Dynamic pressure bearing device and manufacturing method therefor
JP2003348792A (en) Fluid dynamic pressure bearing motor
KR101452088B1 (en) Spindle motor and driving device of recording disk having the same
KR101218983B1 (en) Spindle motor
KR20130011286A (en) Spindle motor
JP2015108455A (en) Spindle motor
KR20140003710A (en) Spindle motor
KR20130024005A (en) Spindle motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117