JP2008094800A - Method for producing tertiary amine - Google Patents

Method for producing tertiary amine Download PDF

Info

Publication number
JP2008094800A
JP2008094800A JP2006281018A JP2006281018A JP2008094800A JP 2008094800 A JP2008094800 A JP 2008094800A JP 2006281018 A JP2006281018 A JP 2006281018A JP 2006281018 A JP2006281018 A JP 2006281018A JP 2008094800 A JP2008094800 A JP 2008094800A
Authority
JP
Japan
Prior art keywords
tertiary amine
reactor
film
producing
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006281018A
Other languages
Japanese (ja)
Other versions
JP4975409B2 (en
Inventor
Toru Nishimura
徹 西村
Shoji Hasegawa
祥志 長谷川
Atsushi Hirota
敦史 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2006281018A priority Critical patent/JP4975409B2/en
Publication of JP2008094800A publication Critical patent/JP2008094800A/en
Application granted granted Critical
Publication of JP4975409B2 publication Critical patent/JP4975409B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing a tertiary amine by the reaction of an alcohol with a primary or secondary amine gas in the presence of a film-type catalyst. <P>SOLUTION: The method for producing the tertiary amine from the alcohol and the primary or secondary amine includes continuously feeding a reaction raw material in a liquid or gas form to a reactor packed with the film-type catalyst to carry out the reaction, while regulating the bore diameter D of a feed opening for feeding the reaction raw material in the gas form to the reactor so as to be 0.3-200 mm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フィルム型触媒を用いて、アルコールと1級又は2級アミンとを原料として、対応する3級アミンを効率的に製造する方法に関する。   The present invention relates to a method for efficiently producing a corresponding tertiary amine using a film-type catalyst and using an alcohol and a primary or secondary amine as raw materials.

3級アミンの製造分野、特に、触媒の存在下にアルコールとジメチルアミンとを反応させてジメチルモノアルキルアミンを製造する際に、効率良く3級アミンを製造する方法が検討されている。   In the production field of tertiary amines, in particular, when producing dimethylmonoalkylamine by reacting alcohol and dimethylamine in the presence of a catalyst, a method for efficiently producing a tertiary amine has been studied.

工業的な反応の多くは、固体触媒スラリーを用いて混合槽型反応器で行なわれる。これらの混合槽型反応器では反応性ガスを触媒の存在下で液体と接触させる事により反応を行なわせる。反応性ガスは溶解を促進するために、微細な気泡に分散することが行なわれている。例えば特許文献1では特殊な撹拌翼を使用して、収率良く3級アミンを製造する方法が開示されている。   Many industrial reactions are carried out in mixing tank reactors using solid catalyst slurries. In these mixing tank reactors, the reaction is performed by bringing a reactive gas into contact with a liquid in the presence of a catalyst. In order to promote dissolution, the reactive gas is dispersed in fine bubbles. For example, Patent Document 1 discloses a method of producing a tertiary amine with a high yield using a special stirring blade.

しかしながら、スラリー化された触媒は、安全性、廃棄物の増加、操作性、生産性などの問題を生じる。例えば、反応生成物を回収する為には濾過等によって触媒を除去する必要があり、設備及び運転が複雑になるという問題がある。   However, the slurryed catalyst causes problems such as safety, increased waste, operability, and productivity. For example, in order to recover the reaction product, it is necessary to remove the catalyst by filtration or the like, and there is a problem that facilities and operation become complicated.

スラリー触媒を用いない反応方法として、フィルムの表面上に触媒金属を付着させたフィルム触媒を用いる方法がある。この反応方法では、攪拌や、触媒の濾過分離が不要であるが、反応性ガスを反応場にどのように導入すれば3級アミンを効率よく製造できるかという検討を行った例はこれまでなかった。
特開2006−160691号公報
As a reaction method not using a slurry catalyst, there is a method using a film catalyst in which a catalytic metal is attached on the surface of the film. Although this reaction method does not require stirring or filtration / separation of the catalyst, there has been no study on how to efficiently produce a tertiary amine by introducing a reactive gas into the reaction field. It was.
JP 2006-160691 A

本発明の課題は、フィルム型触媒の存在下、アルコールと1級又は2級アミンガスとの反応により効率よく3級アミンを製造する方法を提供することにある。   An object of the present invention is to provide a method for efficiently producing a tertiary amine by reaction of an alcohol with a primary or secondary amine gas in the presence of a film type catalyst.

本発明は、アルコールと1級又は2級アミンとから3級アミンを製造する方法であって、フィルム型触媒を装填した反応器に液体状及びガス状の反応原料を連続的に供給して反応を行い、ガス状の反応原料を反応器に供給する供給口の孔径Dが0.3〜200mmである、3級アミンの製造方法を提供する。   The present invention is a method for producing a tertiary amine from an alcohol and a primary or secondary amine, and reacts by continuously supplying liquid and gaseous reaction raw materials to a reactor loaded with a film-type catalyst. And a method for producing a tertiary amine in which the pore diameter D of the supply port for supplying the gaseous reaction raw material to the reactor is 0.3 to 200 mm is provided.

本発明によれば、目的とする3級アミンを効率的に得ることができる。    According to the present invention, the target tertiary amine can be obtained efficiently.

本発明において、3級アミンを製造する際に用いられる原料のアルコールとしては、直鎖状又は分岐鎖状の、炭素数6〜36の飽和又は不飽和の脂肪族アルコールが好ましく、例えばヘキシルアルコール、オクチルアルコール、ラウリルアルコール、ミリスチルアルコール、ステアリルアルコール、ベヘニルアルコール、オレイルアルコール等や、これらの混合アルコール等、またチーグラー法によって得られるチーグラーアルコールや、オキソ法によって得られるオキソアルコール及びゲルべアルコール等が挙げられる。   In the present invention, the raw material alcohol used in producing the tertiary amine is preferably a linear or branched, saturated or unsaturated aliphatic alcohol having 6 to 36 carbon atoms, such as hexyl alcohol, Examples include octyl alcohol, lauryl alcohol, myristyl alcohol, stearyl alcohol, behenyl alcohol, oleyl alcohol, etc., mixed alcohols thereof, Ziegler alcohol obtained by Ziegler method, oxo alcohol and Gerve alcohol obtained by oxo method, etc. .

また、3級アミンを製造する際に用いられる原料の1級又は2級アミンとしては、脂肪族1級又は2級アミンが好ましく、例えばメチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、ドデシルアミン、ジドデシルアミン等が挙げられる。   The primary or secondary amine used as a raw material for producing a tertiary amine is preferably an aliphatic primary or secondary amine, such as methylamine, dimethylamine, ethylamine, diethylamine, dodecylamine, didodecyl. An amine etc. are mentioned.

これら原料となるアルコールと1級又は2級アミンから得られる、対応する3級アミンは、1級もしくは2級アミンの窒素原子に結合する水素原子がアルコール由来のアルキル及び/又はアルケニル基で置換されたものである。例えばドデシルアルコールとジメチルアミンから得られる、対応する3級アミンは、N−ドデシル−N,N−ジメチルアミンであり、ジメチルアミンが不均化して生じたメチルアミン及びアンモニアが反応して副生する3級アミンのN,N−ジドデシル−N−メチルアミン及びN,N,N−トリドデシルアミンと区別される。   In the corresponding tertiary amine obtained from the starting alcohol and the primary or secondary amine, the hydrogen atom bonded to the nitrogen atom of the primary or secondary amine is substituted with an alcohol-derived alkyl and / or alkenyl group. It is a thing. For example, the corresponding tertiary amine obtained from dodecyl alcohol and dimethylamine is N-dodecyl-N, N-dimethylamine, which is produced as a by-product by reaction of methylamine and ammonia generated by disproportionation of dimethylamine. Differentiated from the tertiary amines N, N-didodecyl-N-methylamine and N, N, N-tridodecylamine.

本発明に用いられるフィルム型触媒とは、従来型の数mm程度の大きさを持つ不規則充填物タイプとは異なり、厚さ500μm以下の薄いフィルム状の形態の触媒を指す。反応原料及び生成物が触媒体内部を移動する過程は拡散支配であり、その距離を500μm以下まで短くする事で、触媒体外部との間での物質移動を促進し、触媒体内部まで有効に活用できると共に、触媒体内部での中間反応物の過反応を抑制する事ができる。特に100μm以下の厚さである事が、触媒質量当りの反応活性が顕著に高くなって好ましく、50μm以下である事がより好ましい。厚さの下限は、触媒層の強度確保及び強度面の耐久性を得るために、0.01μm以上が好ましく、1μm以上がより好ましい。   The film-type catalyst used in the present invention refers to a catalyst in the form of a thin film having a thickness of 500 μm or less, unlike the irregular packing type having a size of about several mm. The process in which the reaction raw materials and products move inside the catalyst body is diffusion-dominated. By shortening the distance to 500 μm or less, the mass transfer between the outside of the catalyst body is promoted and the inside of the catalyst body is effectively made. In addition to being able to be utilized, it is possible to suppress overreaction of intermediate reactants inside the catalyst body. In particular, a thickness of 100 μm or less is preferable because the reaction activity per catalyst mass is remarkably increased, and a thickness of 50 μm or less is more preferable. The lower limit of the thickness is preferably 0.01 μm or more, and more preferably 1 μm or more in order to ensure the strength of the catalyst layer and obtain durability of the strength.

フィルム型触媒の構造としては、反応器形状に応じて種々の形態のものが挙げられる。例えば、管内壁面上に形成された触媒コーティング層や、管内を複数の軸方向流通路に間仕切る薄板状に成形した触媒等が挙げられ、管状の流通式反応器に好適に用いることができる。また、槽内部に設置された開放型フィン状平板の表面に形成された触媒コーティング層等でもよく、槽型反応器の場合に好適に用いることができる。いずれの場合においても、触媒体に対する反応原料の供給と触媒体からの生成物の回収が容易に起こり得る構造をとることが好ましい。また反応原料の供給及び生成物の回収が起こる触媒体表面をできるだけ広く設ける事が、反応を効率よく進行させる上で望ましい。上記要件を達成するために、内径数mm〜数十mmの管を束ねた集合体や、セル密度が1平方インチ当り数十〜数百セルのハニカム構造体に対して、その内壁面上にフィルム型触媒を設けたもの等が、好適に用いられる。   The structure of the film type catalyst includes various forms depending on the reactor shape. For example, a catalyst coating layer formed on the inner wall surface of the pipe, a catalyst formed into a thin plate shape partitioning the inside of the pipe into a plurality of axial flow passages, and the like can be cited, and can be suitably used for a tubular flow reactor. Moreover, the catalyst coating layer etc. which were formed in the surface of the open type fin-shaped flat plate installed in the inside of a tank may be sufficient, and can be used suitably in the case of a tank type reactor. In any case, it is preferable to adopt a structure in which the supply of the reaction raw material to the catalyst body and the recovery of the product from the catalyst body can easily occur. In addition, it is desirable to provide as wide a surface of the catalyst body as possible for the supply of the reaction raw material and the recovery of the product as much as possible in order to advance the reaction efficiently. In order to achieve the above requirements, on an inner wall surface of a bundle of tubes having an inner diameter of several mm to several tens of mm or a honeycomb structure having a cell density of several tens to several hundred cells per square inch Those provided with a film-type catalyst are preferably used.

液体状及びガス状の反応原料をフィルム型触媒に連続的に供給しながら、反応原料とフィルム型触媒の接触を効率的に行うために、フィルム型触媒の形状は、フィルム型触媒表面で囲まれた複数の流路(セル)を形成している事が望ましい。例えば平板状のフィルム型触媒を波板形状(コルゲート)に折り曲げ加工し、元の平板状のものと交互に積層する事で、複数のセルを有するいわゆるハニカム構造のフィルム型触媒とする事ができる。個々のセルの断面積は、液体状及びガス状の反応原料の通過を容易に行わせる目的から、0.01cm2以上が好ましく、0.03cm2以上がより好ましく、0.05cm2以上がさらに好ましい。また反応原料とフィルム型触媒との接触効率を高める観点から、100cm2以下が望ましく、50cm2以下がより好ましく、10cm2以下がさらに好ましい。 The shape of the film type catalyst is surrounded by the surface of the film type catalyst in order to efficiently contact the reaction type raw material and the film type catalyst while continuously supplying the liquid and gaseous reaction raw materials to the film type catalyst. It is desirable to form a plurality of flow paths (cells). For example, a so-called honeycomb-structured film-type catalyst having a plurality of cells can be obtained by bending a flat film-type catalyst into a corrugated shape and alternately laminating the original flat plate-like catalyst. . Sectional area of the individual cells, for the purpose of causing the passage of liquid and gaseous reactants easily, preferably 0.01 cm 2 or more, more preferably 0.03 cm 2 or more, 0.05 cm 2 or more and more preferable. Further, from the viewpoint of increasing the contact efficiency between the reaction raw material and the film-type catalyst, 100 cm 2 or less is desirable, 50 cm 2 or less is more preferable, and 10 cm 2 or less is more preferable.

フィルム型触媒を上記種々の構造にするためには、例えば触媒活物質そのものを成形してハニカム状の構造体とする方法があるが、薄い触媒層と高い機械的強度を両立する観点からは、フィルム型触媒を支持体表面に固定化する事が好ましく、フィルム型触媒支持体が金属箔であることがより好ましい。例えば上述のように、金属その他剛性を有する管状、平板状あるいはハニカム状等の支持体表面に、触媒活物質を含むコーティング層を形成してフィルム型触媒とする方法が挙げられる。この時のコーティング方法としては、従来公知の方法を用いる事ができ、例えばスパッタ等の物理蒸着法、化学蒸着法、溶液系からの含浸法の他に、バインダを使ったブレード、スプレイ、ディップ、スピン、グラビア、ダイコーティング等、各種塗工法が挙げられる。   In order to make the film-type catalyst into the various structures described above, for example, there is a method of forming the catalyst active material itself into a honeycomb structure, but from the viewpoint of achieving both a thin catalyst layer and high mechanical strength, The film-type catalyst is preferably immobilized on the surface of the support, and the film-type catalyst support is more preferably a metal foil. For example, as described above, a method of forming a film-type catalyst by forming a coating layer containing a catalyst active material on the surface of a metal or other support having a rigid tubular shape, a flat plate shape, or a honeycomb shape can be given. As a coating method at this time, a conventionally known method can be used. For example, in addition to a physical vapor deposition method such as sputtering, a chemical vapor deposition method, an impregnation method from a solution system, a blade using a binder, a spray, a dip, Various coating methods such as spin, gravure, die coating and the like can be mentioned.

フィルム型触媒を構成する活物質としては、特に限定されるものではなく、公知のものを利用する事ができるが、一般に銅系の金属等を好適に用いることができ、銅を含有するものが更に好ましい。例えばCu単独あるいはこれにCr、Co、Ni、Fe、Mn等の遷移金属元素を加えた2成分の金属を含むものが挙げられ、CuとNiを含有するものが好ましく用いられる。更に3成分以上の金属を含むものも好ましく用いられる。またこれらをさらにシリカ、アルミナ、チタニア、ゼオライト等の担体に担持させたもの等も用いられる。   The active material constituting the film-type catalyst is not particularly limited, and known materials can be used, but generally copper-based metals can be preferably used, and those containing copper can be used. Further preferred. For example, Cu alone or a material containing a two-component metal obtained by adding a transition metal element such as Cr, Co, Ni, Fe, or Mn to this can be used, and a material containing Cu and Ni is preferably used. Further, those containing a metal having three or more components are also preferably used. Further, those in which these are further supported on a carrier such as silica, alumina, titania, zeolite or the like can be used.

フィルム型触媒の内部には、それ単独では活物質として作用しないが、活物質を固定化してフィルム型の触媒体を形成するためのバインダを含有していてもよい。バインダとしては、活物質同士または支持体表面への結着性の他に、反応環境に耐え、なおかつ反応系に悪影響しないような、耐薬品性や耐熱性等の性質を有する高分子あるいは無機化合物が挙げられる。例えば、カルボキシメチルセルロースやヒドロキシエチルセルロース等のセルロース系樹脂、ポリ四フッ化エチレンやポリフッ化ビニリデン等のフッ素系樹脂、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、ポリビニルアルコール、ポリイミド樹脂、ポリイミドアミド樹脂等の高分子化合物、あるいはシリカ、アルミナ等の無機化合物ゾル等が挙げられる。   The film type catalyst does not act as an active material by itself, but may contain a binder for immobilizing the active material to form a film type catalyst body. As the binder, in addition to the binding properties between the active materials or the support surface, a polymer or an inorganic compound having properties such as chemical resistance and heat resistance that can withstand the reaction environment and does not adversely affect the reaction system Is mentioned. For example, cellulose resins such as carboxymethyl cellulose and hydroxyethyl cellulose, fluorine resins such as polytetrafluoroethylene and polyvinylidene fluoride, urethane resins, epoxy resins, polyester resins, phenol resins, melamine resins, silicone resins, polyvinyl alcohol, polyimides Examples thereof include high molecular compounds such as resins and polyimide amide resins, and inorganic compound sols such as silica and alumina.

フィルム型触媒の内部構造は、触媒体を構成する活物質の種類や触媒体の作製方法等に大きく依存するが、緻密な連続相を形成していてもよいし、多孔質であってもよい。例えば、スパッタ法や化学蒸着法等により支持体表面上に形成した薄膜である場合は緻密な連続相とする事ができ、粉末状の活物質を使って湿式あるいは乾式の塗工等の方法により支持体表面上に形成した場合は多孔質とする事が可能である。   The internal structure of the film-type catalyst largely depends on the type of active material constituting the catalyst body, the production method of the catalyst body, etc., but may form a dense continuous phase or may be porous. . For example, in the case of a thin film formed on the support surface by sputtering or chemical vapor deposition, it can be made into a dense continuous phase, and it can be made by a wet or dry coating method using a powdered active material. When it is formed on the surface of the support, it can be made porous.

本発明において、フィルム型触媒を装填した反応器の形式は、従来公知のものを含めて種々のものを採用する事ができる。例えば管型反応器の内部にフィルム型触媒を円筒状に丸めたり、短冊状に加工して装填しても良い。またシェル&チューブ熱交換器タイプのチューブ内、又はシェル部にフィルム型触媒を装填しても良い。この場合にはフィルム型触媒を装填していないチューブ側又はシェル側に熱媒体を流し、反応部分の温度を制御することができる。流通式管型反応器の場合、管内部のフィルム型触媒に反応原料を供給しながら生成物を連続的に回収する方式によって、循環供給して連続式で反応を進行させる事ができる。   In the present invention, various types of reactors loaded with a film-type catalyst can be adopted including those conventionally known. For example, a film-type catalyst may be rounded into a cylindrical shape inside a tubular reactor, or processed into a strip shape and loaded. Further, a film-type catalyst may be loaded in a shell and tube heat exchanger type tube or in a shell portion. In this case, the temperature of the reaction part can be controlled by flowing a heat medium to the tube side or the shell side not loaded with the film type catalyst. In the case of a flow-through tubular reactor, the reaction can proceed continuously by circulating and supplying the product continuously while supplying the reaction raw material to the film-type catalyst inside the tube.

本発明に用いられる反応装置の一例を図1に示す。図1において、1はフィルム型触媒を装填した管型反応器、2はガス供給器、3は緩衝槽、4は外部循環用ポンプ、5は外部循環用導管、6は充填塔用導管、7は充填塔である。   An example of the reaction apparatus used in the present invention is shown in FIG. In FIG. 1, 1 is a tubular reactor loaded with a film-type catalyst, 2 is a gas supply device, 3 is a buffer tank, 4 is an external circulation pump, 5 is an external circulation conduit, 6 is a packed tower conduit, 7 Is a packed tower.

管型反応器1は、直立円管型固定床反応器で、内部にフィルム型触媒が装填され、外部からの加熱によってその温度を制御できる。緩衝槽3は、液状の反応原料、及び/又は生成物の混合物の貯槽であり、ポンプ4によって反応器1との間でこれらを循環させる。導管5を通じて反応器1の下端から反応原料、及び/又は生成物の混合物を供給し、ガス供給器2からガス状の1級又は2級アミン及び水素ガスを連続的に供給し、上端から未反応原料、及び/又は生成物の混合物と水素ガスを連続的に回収して、緩衝槽3に導入する。導管6を通して未反応のガス状1級又は2級アミン、及び水分を連続的に排出する。導管6から排出される成分中には、上記の他にアルコール、及び/又は生成3級アミンの蒸気又はミスト状成分等が含まれることがあり、充填塔7内で凝縮液化させて緩衝槽3に戻し、残りのガス成分を系外に排出する。反応系内はほぼ常圧に保たれる。   The tubular reactor 1 is an upright circular tube type fixed bed reactor, in which a film type catalyst is loaded, and its temperature can be controlled by heating from the outside. The buffer tank 3 is a storage tank of a liquid reaction raw material and / or product mixture, and these are circulated between the reactor 1 and the reactor 1 by a pump 4. A reaction raw material and / or a mixture of products are supplied from the lower end of the reactor 1 through the conduit 5, gaseous primary or secondary amine and hydrogen gas are continuously supplied from the gas supply 2, and unreacted from the upper end. A reaction raw material and / or a mixture of products and hydrogen gas are continuously recovered and introduced into the buffer tank 3. Unreacted gaseous primary or secondary amine and water are continuously discharged through the conduit 6. In addition to the above, the component discharged from the conduit 6 may contain alcohol, and / or vapor or mist-like component of the generated tertiary amine, and the like. The remaining gas components are discharged out of the system. The reaction system is maintained at almost normal pressure.

反応液の反応器1への供給方法は、反応器1内部に装填されたフィルム型触媒全体に十分液供給を行って、液に濡れない部分いわゆるドライスポットの発生を防ぐために、図1に示すようなアップフロー方式で行う事が望ましい。反応器1は通常行なわれているように、ジャケットや内部に設置した熱交換用配管により、温度コントロールすることが好ましい。   The method for supplying the reaction liquid to the reactor 1 is shown in FIG. 1 in order to sufficiently supply the liquid to the entire film type catalyst loaded in the reactor 1 and prevent the generation of a so-called dry spot where the liquid does not get wet. It is desirable to use the upflow method. As usual, the reactor 1 is preferably temperature-controlled by a jacket or a heat exchange pipe installed inside.

本発明におけるアルコールと1級又は2級アミンとの反応条件は、反応原料、生成物及び触媒の種類により異なるが、液体状及びガス状の反応原料を連続的に供給して反応させる。反応原料は気相に存在してもよいし、液相でもよい。反応は、水素、窒素及び/又は希ガス雰囲気下で行うことが、触媒の活性を保つ上で好ましい。気液2相の反応系において、アルコールと1級又は2級アミンとがそれぞれ異なる相に存在する場合、液中へのガスバブリング等によって相間での物質移動を促進する事が望ましい。またフィルム型触媒によって径数mm以下程度の細い流通路が形成された反応場に、気液混相で反応原料を供給する事により、上記物質移動促進効果を得る事もできる。   In the present invention, the reaction conditions of the alcohol and the primary or secondary amine vary depending on the types of reaction raw materials, products and catalysts, but liquid and gaseous reaction raw materials are continuously supplied for reaction. The reaction raw material may be present in the gas phase or in the liquid phase. The reaction is preferably performed in an atmosphere of hydrogen, nitrogen and / or a rare gas in order to maintain the activity of the catalyst. In a gas-liquid two-phase reaction system, when alcohol and primary or secondary amine are present in different phases, it is desirable to promote mass transfer between the phases by gas bubbling into the liquid. In addition, the above-described mass transfer promotion effect can be obtained by supplying the reaction raw material in a gas-liquid mixed phase to a reaction field in which a thin flow passage having a diameter of several mm or less is formed by a film type catalyst.

図1に示す反応装置の例では、反応器1の下部に設置されたガス供給器2より、ガス状の反応原料である水素および1級アミン又は2級アミンを供給する。ガス供給器としては、単管又は複数のガス吹込み管や、直線状やリング状の配管、側面にガス供給口を1個又は複数個設けたもの、管状以外の平板状、錐形状の表面に1個又は複数個の供給口を設けたもの等を用いることができる。   In the example of the reaction apparatus shown in FIG. 1, hydrogen and primary amine or secondary amine, which are gaseous reaction raw materials, are supplied from a gas supply device 2 installed at the lower part of the reactor 1. The gas supply device includes a single tube or a plurality of gas injection tubes, straight or ring-shaped piping, one or more gas supply ports provided on the side surface, a flat plate shape other than a tubular shape, or a cone-shaped surface A device provided with one or a plurality of supply ports can be used.

本発明において、ガス状反応原料を反応器に供給する供給口の孔径Dは反応液の混合や物質移動を促進する観点から、0.3mm以上が好ましく、0.5mm以上がより好ましく、0.6mm以上が特に好ましい。また反応系への供給ガス速度を大きくする観点から200mm以下が好ましく、50mm以下がより好ましく、10mm以下が特に好ましい。以上より供給口の孔径Dは0.3〜200mmが好ましく、0.5〜50mmがより好ましく、0.6〜10mmが特に好ましい。   In the present invention, the pore diameter D of the supply port for supplying the gaseous reaction raw material to the reactor is preferably 0.3 mm or more, more preferably 0.5 mm or more, from the viewpoint of promoting the mixing of the reaction liquid and mass transfer. 6 mm or more is particularly preferable. Further, from the viewpoint of increasing the gas supply rate to the reaction system, it is preferably 200 mm or less, more preferably 50 mm or less, and particularly preferably 10 mm or less. From the above, the hole diameter D of the supply port is preferably 0.3 to 200 mm, more preferably 0.5 to 50 mm, and particularly preferably 0.6 to 10 mm.

また、ガス状反応原料の供給口の数は、反応器内部に装填されたフィルム型触媒に均等にガス状反応原料を供給するために、ガス供給部位における断面積1cm2あたり0.005点以上が好ましく、0.007点以上がより好ましく、0.01点以上がさらに好ましい。また液体状反応原料中にガス状反応原料を大きな速度で供給する事で、液相と気相の間の相対速度を大きくし、これら界面での物質移動を促進する観点から、断面積1cm2あたり5点以下が好ましく、3点以下がより好ましく、1点以下がさらに好ましい。 Further, the number of gaseous reaction raw material supply ports is 0.005 or more per 1 cm 2 of the cross-sectional area at the gas supply site in order to supply the gaseous reaction raw material evenly to the film-type catalyst loaded in the reactor. Is preferable, 0.007 points or more are more preferable, and 0.01 points or more are more preferable. In addition, by supplying the gaseous reaction raw material into the liquid reaction raw material at a high speed, the relative speed between the liquid phase and the gas phase is increased, and from the viewpoint of promoting mass transfer at these interfaces, the cross-sectional area is 1 cm 2. 5 points or less are preferable, 3 points or less are more preferable, and 1 point or less are more preferable.

本発明におけるガス状の反応原料の標準状態(温度が0℃、圧力が大気圧)体積換算での供給量G(Nm3/Hr)と液体状反応原料及び3級アミンの液供給量L(m3/Hr)との比、G/Lは、ガス状反応原料の滞留時間の観点から0.01以上が好ましく、0.05以上がより好ましく、0.1以上が特に好ましい。また供給ガスの歩留まりの観点から400以下が好ましく、100以下がより好ましく、50以下が特に好ましい。以上よりG/Lは、0.01〜400が好ましく、0.05〜100がより好ましく、0.1〜50が特に好ましい。 The supply amount G (Nm 3 / Hr) in terms of volume in the standard state (temperature is 0 ° C., pressure is atmospheric pressure) of the gaseous reaction raw material in the present invention and the liquid supply amount L of the liquid reaction raw material and tertiary amine ( m 3 / Hr), G / L is preferably 0.01 or more, more preferably 0.05 or more, and particularly preferably 0.1 or more from the viewpoint of the residence time of the gaseous reaction raw material. Further, from the viewpoint of the yield of the supply gas, 400 or less is preferable, 100 or less is more preferable, and 50 or less is particularly preferable. From the above, G / L is preferably 0.01 to 400, more preferably 0.05 to 100, and particularly preferably 0.1 to 50.

本発明における反応系内の圧力は常圧を超えて著しく高くならないことが望ましい。反応温度は触媒の種類により異なるが、150〜300℃の温度で反応させる事が好ましい。また反応の過程で副生する水分を反応系外に排出する事で、反応の進行を促進し、触媒の活性を保つ事ができる。   In the present invention, it is desirable that the pressure in the reaction system does not exceed a normal pressure and does not increase remarkably. The reaction temperature varies depending on the type of catalyst, but it is preferable to carry out the reaction at a temperature of 150 to 300 ° C. Further, by discharging the water produced as a by-product in the course of the reaction to the outside of the reaction system, the progress of the reaction can be promoted and the activity of the catalyst can be maintained.

本発明の方法によれば、特別な混合操作や触媒の分離操作を必要としない簡易なプロセスにより、アルコールと1級又は2級アミンとを原料として目的とする3級アミンを高収率で効率的に製造することができる。   According to the method of the present invention, a target tertiary amine can be efficiently produced in high yield using alcohol and a primary or secondary amine as raw materials by a simple process that does not require any special mixing operation or catalyst separation operation. Can be manufactured automatically.

以下の例において、%及び部は特に断りのないものはそれぞれ質量%、質量部を示す。   In the following examples, “%” and “part”, unless otherwise specified, indicate “% by mass” and “part by mass”, respectively.

製造例1:フィルム型触媒Aの製造
フェノール樹脂をバインダとして粉末状触媒を固定化した、フィルム型触媒Aを以下のように調製した。
Production Example 1: Production of film-type catalyst A A film-type catalyst A in which a powdery catalyst was immobilized using a phenol resin as a binder was prepared as follows.

容量1Lのフラスコに合成ゼオライトを仕込み、次いで硝酸銅と硝酸ニッケル及び塩化ルテニウムを各金属原子のモル比でCu:Ni:Ru=4:1:0.01となるように水に溶かしたものを入れ、撹拌しながら昇温した。90℃で10%炭酸ナトリウム水溶液をpH9〜10にコントロールしながら徐々に滴下した。1時間の熟成後、沈殿物を濾過・水洗後80℃で10時間乾燥し、600℃で3時間焼成して粉末状触媒を得た。得られた粉末状触媒における金属酸化物の割合は50%、合成ゼオライトの割合は50%であった。   A synthetic zeolite was charged into a 1 L flask, and then copper nitrate, nickel nitrate, and ruthenium chloride were dissolved in water so that the molar ratio of each metal atom was Cu: Ni: Ru = 4: 1: 0.01. The temperature was increased while stirring. A 10% aqueous sodium carbonate solution was gradually added dropwise at 90 ° C. while controlling the pH at 9-10. After aging for 1 hour, the precipitate was filtered, washed with water, dried at 80 ° C. for 10 hours, and calcined at 600 ° C. for 3 hours to obtain a powdered catalyst. In the obtained powdery catalyst, the proportion of metal oxide was 50%, and the proportion of synthetic zeolite was 50%.

上記粉末状触媒100部に、バインダとしてフェノール樹脂(住友ベークライト製PR−9480、不揮発分58%)を加え、フェノール樹脂の不揮発分が47.7部になるようにした。さらに溶剤として2−ブタノンを加え、固形分(粉末状触媒及びフェノール樹脂の不揮発分)の割合が55%となるようにした。これをディスパにて10分間予備混合した後、バスケットミル(浅田鉄工製SS−3、1.4mm径のチタニアビーズ800mL、1900gを充填)にて1500rpmで70分間混合分散処理して塗料化した。銅箔(厚さ40μm、6.5cm×410cm×1枚)を支持体とし、上記塗料をバーコータにより両面に塗工後、150℃で30秒間乾燥した。乾燥したもののうちの半分を波板状に折り曲げ加工し、残りの平板状のものと重ねて捲回した後、150℃で90分間硬化処理して、フィルム型触媒を上記銅箔の両面に固定化した。得られたフィルム型触媒の銅箔を除いた片面当りの厚さは4.9μmであった。   To 100 parts of the above powdered catalyst, a phenol resin (PR-9480 manufactured by Sumitomo Bakelite, 58% nonvolatile content) was added as a binder so that the nonvolatile content of the phenol resin was 47.7 parts. Further, 2-butanone was added as a solvent so that the ratio of the solid content (non-volatile content of the powdered catalyst and the phenol resin) was 55%. This was premixed for 10 minutes in a dispa, and then mixed and dispersed at 1500 rpm for 70 minutes in a basket mill (SS-3 manufactured by Asada Tekko, filled with 1.4 mm diameter titania beads 800 mL, 1900 g) to form a paint. A copper foil (thickness 40 μm, 6.5 cm × 410 cm × 1 sheet) was used as a support, and the paint was applied on both sides with a bar coater and then dried at 150 ° C. for 30 seconds. Half of the dried material is bent into a corrugated plate, wound over the remaining flat plate, wound, and then cured at 150 ° C. for 90 minutes to fix the film-type catalyst on both sides of the copper foil. Turned into. The thickness of one side of the obtained film-type catalyst excluding the copper foil was 4.9 μm.

以下の実施例1、2及び比較例1では図1に示す循環固定床型反応装置を用いてラウリルアルコールとジメチルアミンとを原料としてN−ドデシル−N,N−ジメチルアミンを製造した。   In Examples 1 and 2 and Comparative Example 1 below, N-dodecyl-N, N-dimethylamine was produced using lauryl alcohol and dimethylamine as raw materials using the circulating fixed bed reactor shown in FIG.

実施例1
製造例1で得たフィルム型触媒Aを、内径29.4mmの反応器1の内部に装填した。フィルム型触媒の装填された部分の体積は0.27Lで、反応器1の軸方向に連通した、断面積0.1cm2の複数のセルがフィルム型触媒によって形成された。反応器1下部に設置されたガス供給器2には、リング状の配管に孔径0.68mmφのガス吹込み孔を6個設けた。ラウリルアルコール(花王(株)製カルコール20)1kgを緩衝槽3に仕込み、水素ガスを標準状態体積換算で20L/Hrの流量で供給しながら、緩衝槽3と反応器1との間で液循環を行った。反応器1内部の温度を220℃まで昇温した後、ジメチルアミンの供給によって220℃にて反応を開始した。ジメチルアミン供給量は反応の進行に合わせて調整した。経時的に緩衝槽3より反応液をサンプリングしてガスクロマトグラフにて分析を行い面積百分率法にて定量した。結果、未反応のラウリルアルコールが1.0%になるのに要した時間は反応開始から3.7時間であった。
Example 1
The film type catalyst A obtained in Production Example 1 was loaded into the reactor 1 having an inner diameter of 29.4 mm. The volume of the portion loaded with the film-type catalyst was 0.27 L, and a plurality of cells having a cross-sectional area of 0.1 cm 2 communicated in the axial direction of the reactor 1 were formed by the film-type catalyst. The gas supply device 2 installed at the bottom of the reactor 1 was provided with six gas injection holes having a hole diameter of 0.68 mmφ in a ring-shaped pipe. 1 kg of lauryl alcohol (Kalco Co., Ltd., Calcoal 20) is charged into the buffer tank 3, and liquid is circulated between the buffer tank 3 and the reactor 1 while supplying hydrogen gas at a flow rate of 20 L / Hr in terms of standard volume. Went. After raising the temperature inside the reactor 1 to 220 ° C., the reaction was started at 220 ° C. by supplying dimethylamine. The amount of dimethylamine supplied was adjusted according to the progress of the reaction. The reaction solution was sampled from the buffer tank 3 over time, analyzed with a gas chromatograph, and quantified by the area percentage method. As a result, the time required for the unreacted lauryl alcohol to reach 1.0% was 3.7 hours from the start of the reaction.

実施例2
製造例1で得たフィルム型触媒Aを、内径101mmの反応器1の内部に装填した。フィルム型触媒の装填された部分の体積は17.4Lで、反応器1の軸方向に連通した、断面積0.1cm2の複数の流路がフィルム型触媒によって形成された。反応器1下部に設置されたガス供給器2には、内径7.5mmの直単管状ガス吹込み管(供給口は管端部の1点)を用いた。ラウリルアルコール(花王(株)製カルコール20)46.1kgを緩衝槽3に仕込み、水素ガスを標準状態体積換算で922L/Hrの流量で供給しながら、緩衝槽3と反応器1との間で液循環を行った。反応器1内部の温度を220℃まで昇温した後、ジメチルアミンの供給によって220℃にて反応を開始した。ジメチルアミン供給量は反応の進行に合わせて調整した。経時的に緩衝槽3より反応液をサンプリングしてガスクロマトグラフにて分析を行い面積百分率法にて定量した。結果、未反応のラウリルアルコールが1.0%になるのに要した時間は反応開始から3.8時間であった。
Example 2
The film type catalyst A obtained in Production Example 1 was loaded into the reactor 1 having an inner diameter of 101 mm. The volume of the portion loaded with the film-type catalyst was 17.4 L, and a plurality of channels having a cross-sectional area of 0.1 cm 2 communicated in the axial direction of the reactor 1 were formed by the film-type catalyst. A straight single tubular gas blowing tube having an inner diameter of 7.5 mm (a supply port is one point at the end of the tube) was used as the gas supply device 2 installed at the lower part of the reactor 1. While charging 46.1 kg of lauryl alcohol (Calcole 20 manufactured by Kao Corporation) into the buffer tank 3 and supplying hydrogen gas at a flow rate of 922 L / Hr in terms of standard state volume, between the buffer tank 3 and the reactor 1 Liquid circulation was performed. After raising the temperature inside the reactor 1 to 220 ° C., the reaction was started at 220 ° C. by supplying dimethylamine. The amount of dimethylamine supplied was adjusted according to the progress of the reaction. The reaction solution was sampled from the buffer tank 3 over time, analyzed with a gas chromatograph, and quantified by the area percentage method. As a result, the time required for the unreacted lauryl alcohol to reach 1.0% was 3.8 hours from the start of the reaction.

比較例1
反応器1下部に設置されたガス供給器2として、孔径0.025mmの金属フィルターを用いた以外は、実施例1と同様の操作により実験を行った。経時的に緩衝槽3より反応液をサンプリングしてガスクロマトグラフにて分析を行い面積百分率法にて定量した。結果、未反応のラウリルアルコールが1.0%になるのに要した時間は反応開始から4.5時間であった。
Comparative Example 1
The experiment was performed by the same operation as in Example 1 except that a metal filter having a pore diameter of 0.025 mm was used as the gas supply device 2 installed at the lower part of the reactor 1. The reaction solution was sampled from the buffer tank 3 over time, analyzed with a gas chromatograph, and quantified by the area percentage method. As a result, the time required for the unreacted lauryl alcohol to reach 1.0% was 4.5 hours from the start of the reaction.

実施例1〜2及び比較例1の条件及び結果をまとめて表1に示す。   The conditions and results of Examples 1 and 2 and Comparative Example 1 are summarized in Table 1.

Figure 2008094800
Figure 2008094800

本発明に用いられる循環固定床型反応装置の一例を示す略示図である。It is a schematic diagram showing an example of a circulating fixed bed type reactor used in the present invention.

符号の説明Explanation of symbols

1:フィルム型触媒を装填した管型反応器
2:ガス供給器
3:緩衝槽
4:外部循環用ポンプ
5:外部循環用導管
6:充填塔用導管
7:充填塔
1: Tube reactor 2 loaded with a film-type catalyst 2: Gas supply unit 3: Buffer tank 4: External circulation pump 5: External circulation conduit 6: Packing column conduit 7: Packing column

Claims (7)

アルコールと1級又は2級アミンとから3級アミンを製造する方法であって、フィルム型触媒を装填した反応器に液体状及びガス状の反応原料を連続的に供給して反応を行い、ガス状の反応原料を反応器に供給する供給口の孔径Dが0.3〜200mmである、3級アミンの製造方法。   A method for producing a tertiary amine from an alcohol and a primary or secondary amine, wherein a reaction is carried out by continuously supplying liquid and gaseous reaction raw materials to a reactor loaded with a film-type catalyst. A method for producing a tertiary amine, wherein the pore diameter D of the supply port for supplying the reaction raw material in the form of a reactor is 0.3 to 200 mm. ガス状の反応原料の標準状態体積換算での供給量G(Nm3/Hr)と液体状反応原料及び3級アミンの液供給量L(m3/Hr)との比、G/Lが0.01〜400である、請求項1に記載の3級アミンの製造方法。 The ratio of the supply amount G (Nm 3 / Hr) of the gaseous reaction raw material in terms of the standard state volume to the liquid supply amount L (m 3 / Hr) of the liquid reaction raw material and tertiary amine, G / L is 0 The method for producing a tertiary amine according to claim 1, which is 0.01 to 400. フィルム型触媒が、触媒表面で囲まれた複数の流路(セル)を形成し、セル断面積が0.01〜100cm2である、請求項1又は2記載の3級アミンの製造方法。 Film-type catalyst, to form a plurality of flow paths surrounded by a catalyst surface (cell), the cell sectional area is 0.01~100Cm 2, a manufacturing method of a tertiary amine of claim 1 or 2, wherein. ガス状反応原料の供給口の数が、反応器のガス供給部位における断面積1cm2あたり0.005〜5点である、請求項1〜3いずれかに記載の3級アミンの製造方法。 The method for producing a tertiary amine according to any one of claims 1 to 3, wherein the number of gaseous reaction raw material supply ports is 0.005 to 5 points per 1 cm 2 of the cross-sectional area at the gas supply portion of the reactor. アルコールが、直鎖状又は分岐鎖状の、炭素数6〜36の飽和又は不飽和の脂肪族アルコールである、請求項1〜4いずれかに記載の3級アミンの製造方法。   The method for producing a tertiary amine according to any one of claims 1 to 4, wherein the alcohol is a linear or branched, saturated or unsaturated aliphatic alcohol having 6 to 36 carbon atoms. 1級又は2級アミンが脂肪族1級又は2級アミンである、請求項1〜5いずれかに記載の3級アミンの製造方法。   The method for producing a tertiary amine according to any one of claims 1 to 5, wherein the primary or secondary amine is an aliphatic primary or secondary amine. 反応器が流通式管型反応器である、請求項1〜6いずれかに記載の3級アミンの製造方法。   The method for producing a tertiary amine according to any one of claims 1 to 6, wherein the reactor is a flow-through tubular reactor.
JP2006281018A 2006-10-16 2006-10-16 Method for producing tertiary amine Expired - Fee Related JP4975409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281018A JP4975409B2 (en) 2006-10-16 2006-10-16 Method for producing tertiary amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281018A JP4975409B2 (en) 2006-10-16 2006-10-16 Method for producing tertiary amine

Publications (2)

Publication Number Publication Date
JP2008094800A true JP2008094800A (en) 2008-04-24
JP4975409B2 JP4975409B2 (en) 2012-07-11

Family

ID=39378019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281018A Expired - Fee Related JP4975409B2 (en) 2006-10-16 2006-10-16 Method for producing tertiary amine

Country Status (1)

Country Link
JP (1) JP4975409B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120886A (en) * 2008-11-20 2010-06-03 Kao Corp METHOD FOR PRODUCING alpha-AMINOKETONE COMPOUND
JP2012144522A (en) * 2010-12-21 2012-08-02 Kao Corp Method for producing tertiary amine
WO2012169585A1 (en) 2011-06-10 2012-12-13 花王株式会社 Method for manufacturing polyoxyethylene alkyl ether acetic acid
DE112011104476T5 (en) 2010-12-21 2013-09-12 Kao Corporation Process for producing a tertiary amine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196832A (en) * 1982-08-30 1983-11-16 Nippon Sangyo Gijutsu Kk Method for generating ultra-fine gas bubbles in liquid phase
JPS63267736A (en) * 1987-04-10 1988-11-04 インペリアル・ケミカル・インダストリーズ・ピーエルシー Manufacture of tetrafluoroethylene and hexafluoropropylene
JPH07194928A (en) * 1993-12-30 1995-08-01 Chiyoda Corp Multitubular gas-liquid contact apparatus
JPH07194925A (en) * 1993-12-30 1995-08-01 Chiyoda Corp Multitubular gas-liquid contact apparatus
JPH10244122A (en) * 1992-04-03 1998-09-14 Univ Toronto Innov Found Gas-liquid contacting method and device therefore
WO2005035122A1 (en) * 2003-10-08 2005-04-21 Kao Corporation Film catalyst for tertiary amine production and method for producing tertiary amine using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196832A (en) * 1982-08-30 1983-11-16 Nippon Sangyo Gijutsu Kk Method for generating ultra-fine gas bubbles in liquid phase
JPS63267736A (en) * 1987-04-10 1988-11-04 インペリアル・ケミカル・インダストリーズ・ピーエルシー Manufacture of tetrafluoroethylene and hexafluoropropylene
JPH10244122A (en) * 1992-04-03 1998-09-14 Univ Toronto Innov Found Gas-liquid contacting method and device therefore
JPH07194928A (en) * 1993-12-30 1995-08-01 Chiyoda Corp Multitubular gas-liquid contact apparatus
JPH07194925A (en) * 1993-12-30 1995-08-01 Chiyoda Corp Multitubular gas-liquid contact apparatus
WO2005035122A1 (en) * 2003-10-08 2005-04-21 Kao Corporation Film catalyst for tertiary amine production and method for producing tertiary amine using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120886A (en) * 2008-11-20 2010-06-03 Kao Corp METHOD FOR PRODUCING alpha-AMINOKETONE COMPOUND
JP2012144522A (en) * 2010-12-21 2012-08-02 Kao Corp Method for producing tertiary amine
DE112011104476T5 (en) 2010-12-21 2013-09-12 Kao Corporation Process for producing a tertiary amine
US8877978B2 (en) 2010-12-21 2014-11-04 Kao Corporation Method for producing tertiary amine
US9061964B2 (en) 2010-12-21 2015-06-23 Kao Corporation Method for producing tertiary amine
WO2012169585A1 (en) 2011-06-10 2012-12-13 花王株式会社 Method for manufacturing polyoxyethylene alkyl ether acetic acid

Also Published As

Publication number Publication date
JP4975409B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP2007197396A (en) Method for producing tertiary amine
JP4354341B2 (en) Reactor
JP5234726B2 (en) Production method of tertiary amine
WO2012086582A1 (en) Process for production of tertiary amine
JP4975409B2 (en) Method for producing tertiary amine
US7615666B2 (en) Process for production of tertiary amines
KR101182621B1 (en) Microreactor and liquid phase chemical reaction method using the microreactor
JP4781642B2 (en) Method for producing aldehyde
JP4994692B2 (en) Method for producing tertiary amine
JP4938125B2 (en) Method for producing tertiary amine
JP5806609B2 (en) Method for producing tertiary amine
JP5090567B2 (en) Method for producing tertiary amine
CN111056531B (en) Method for liquid phase dehydrogenation of heterocyclic naphthenic hydrogen storage material
JP2014009167A (en) Process for producing aldehyde
US11014063B2 (en) Device for processing and conditioning of material transported through the device
JP6637235B2 (en) Method for producing aldehyde
JP2018015695A (en) Tubular catalyst system and chemical reactor using the same, and method for manufacturing tubular catalyst system
JP2007176897A (en) Method for producing tertiary amine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees