JP2008093615A - Cleaning method of electrostatic chuck - Google Patents

Cleaning method of electrostatic chuck Download PDF

Info

Publication number
JP2008093615A
JP2008093615A JP2006280832A JP2006280832A JP2008093615A JP 2008093615 A JP2008093615 A JP 2008093615A JP 2006280832 A JP2006280832 A JP 2006280832A JP 2006280832 A JP2006280832 A JP 2006280832A JP 2008093615 A JP2008093615 A JP 2008093615A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
cleaning
aromatic hydrocarbon
nonionic surfactant
blasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006280832A
Other languages
Japanese (ja)
Other versions
JP4813321B2 (en
Inventor
Tamotsu Harada
保 原田
Hironori Ishida
弘徳 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2006280832A priority Critical patent/JP4813321B2/en
Publication of JP2008093615A publication Critical patent/JP2008093615A/en
Application granted granted Critical
Publication of JP4813321B2 publication Critical patent/JP4813321B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning method which enables the effective removal of a contaminant such as metal sticking to an attracting face of an electrostatic chuck without heating it to a high temperature. <P>SOLUTION: The cleaning method of an electrostatic chuck is characterized by comprising the step of immersing the same in a cleaning liquid comprised of an aromatic hydrocarbon and/or a nonionic surfactant and the step of subjecting it to a surface treatment by dry ice (CO<SB>2</SB>) blasting and is further characterized by decreasing an alkali metal element, an alkali earth metal element or iron element present on the surface of the electrostatic chuck after cleaning measured by inductively coupled plasma mass spectrometry to 300×10<SP>10</SP>atoms/cm<SP>2</SP>or lower respectively. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体製造装置や液晶パネルをはじめとするフラットパネルディスプレイ製造装置などに組み込まれ、Siウエハー、ガラス基板などの基板を固定させる工程に使用される静電チャックに関わる。 The present invention relates to an electrostatic chuck that is incorporated in a flat panel display manufacturing apparatus such as a semiconductor manufacturing apparatus or a liquid crystal panel and used in a process of fixing a substrate such as a Si wafer or a glass substrate.

半導体製造装置に組み込まれている静電チャックはエッチングや成膜等の工程において、ウエハーを静電気力で吸着させるものである。このような半導体製造工程はウエハー上に種々の元素を反応、ドープさせることにより積層させていくものであるため、必要元素以外の不純物が混在すると半導体素子の性能に不良を及ぼし、歩留まりの低下を招く。特にウエハーに接触する静電チャックの表面に有機成分や金属などが付着しているとウエハーの歩留まり低下に直結する。さらに、いったん汚染物質が製造装置内に混入すると、装置全体が汚染されてしまうため、洗浄には非常に手間がかかるうえに製造中断による損失が甚大となる。 An electrostatic chuck incorporated in a semiconductor manufacturing apparatus adsorbs a wafer with electrostatic force in processes such as etching and film formation. Since such semiconductor manufacturing processes are performed by laminating various elements on the wafer by reaction and doping, if impurities other than the necessary elements are mixed, the performance of the semiconductor element is deteriorated and the yield is reduced. Invite. In particular, if an organic component or metal adheres to the surface of the electrostatic chuck that contacts the wafer, the yield of the wafer is directly reduced. Furthermore, once the contaminants are mixed in the manufacturing apparatus, the entire apparatus is contaminated. Therefore, the cleaning is very troublesome and the loss due to the manufacturing interruption is significant.

また、静電チャックの製造工程では、焼成やロウ付け工程における炉内からの金属の付着、研削加工工程での研削液の付着、およびこれらの工程間での人との接触による汚染があるため主な汚染物質であるアルカリ金属、アルカリ土類金属または鉄等の金属元素や有機成分の付着なしに製造することは困難である。したがって、静電チャックを使用に供するうえで、上記したような汚染物質を除去することは必須となっている。 Also, in the electrostatic chuck manufacturing process, there is contamination due to adhesion of metal from the furnace in the firing and brazing processes, adhesion of grinding fluid in the grinding process, and contact with people between these processes. It is difficult to manufacture without adhesion of metal elements and organic components such as alkali metals, alkaline earth metals or iron which are main pollutants. Therefore, when using the electrostatic chuck, it is essential to remove the contaminants as described above.

半導体製造装置に用いられる静電チャックのようなセラミックス部材の汚染物質の除去方法として高温まで加熱する方法が試みられている。加熱方法としては通常のジュール熱を用いた加熱方法やプラズマによる加熱方法があり、1000℃以上の温度で加熱処理する方法が提案されている(例えば特許文献1参照)。 A method of heating to a high temperature has been attempted as a method for removing contaminants from ceramic members such as electrostatic chucks used in semiconductor manufacturing equipment. As a heating method, there are a heating method using ordinary Joule heat and a heating method using plasma, and a method of performing a heat treatment at a temperature of 1000 ° C. or higher has been proposed (for example, see Patent Document 1).

特開平9−328376号公報JP-A-9-328376

高温での加熱処理は、表面の汚染物の大部分を除去できることから、セラミックス部材に対して一般的に用いられている。しかしながら、1000℃以上の高温では、例えば静電チャックに良く用いられる窒化アルミニウムのような非酸化物セラミックス素材では表面が著しく酸化され、絶縁層の体積抵抗率が変化したり、酸化層の脱粒によるパーティクルが生じたりする。また、金属成分が残存していると、加熱により金属成分が部材内部へ拡散し、静電チャックの特性に影響を及ぼす可能性がある。プラズマによる加熱では粒界部分のエッチングが進行し、表面粗さが変化してしまう問題がある。 Heat treatment at a high temperature is generally used for ceramic members because most of the surface contaminants can be removed. However, at a high temperature of 1000 ° C. or higher, for example, the surface of a non-oxide ceramic material such as aluminum nitride often used for electrostatic chucks is significantly oxidized, the volume resistivity of the insulating layer is changed, or the oxide layer is degranulated. Particles are generated. Further, if the metal component remains, the metal component diffuses into the member due to heating, which may affect the characteristics of the electrostatic chuck. In the heating by plasma, there is a problem that the etching of the grain boundary portion proceeds and the surface roughness changes.

さらに、静電チャックはその構造上、給電端子をロウ付け接合している場合が多く、接合部が高温に耐え切れず、ロウ材が劣化して導通不良を起こしたり、給電端子が脱落したりする恐れがある。さらに、加熱による熱膨張のため内蔵する電極が剥離したり、その影響を受けて静電チャック表面の平坦度が悪化したりする問題がある。逆に、上記のような問題を回避するために、加熱処理の温度を例えば500℃程度まで低温化すると、有機成分や金属成分を十分に除去することはできないし、洗浄しきれずに残存している有機成分が加熱により色シミになるなどの問題が生じる。 Furthermore, electrostatic chucks often have their power supply terminals brazed and joined due to their structure, and the joints cannot withstand high temperatures, causing the brazing material to deteriorate and causing poor conduction, or the power supply terminals to drop off. There is a fear. Further, there is a problem that the built-in electrode is peeled off due to thermal expansion due to heating, and the flatness of the electrostatic chuck surface is deteriorated due to the influence. On the other hand, in order to avoid the above problems, when the temperature of the heat treatment is lowered to, for example, about 500 ° C., the organic component and the metal component cannot be sufficiently removed and cannot be completely cleaned. There arises a problem that the organic component is colored by heating.

本発明は上記したような従来技術の問題点に鑑みなされたものであり、高温に加熱することなく静電チャックの吸着面に付着した金属などの汚染物を効果的に除去できる洗浄方法を提供することにある。  The present invention has been made in view of the above-described problems of the prior art, and provides a cleaning method capable of effectively removing contaminants such as metal adhering to the adsorption surface of the electrostatic chuck without heating to a high temperature. There is to do.

本発明の静電チャックの洗浄方法は、すなわち、芳香族炭化水素系化合物および/または非イオン系界面活性剤を用いた洗浄液に浸漬する工程と、COブラストによる表面処理を行う工程と、を含むことを特徴とするものである。 The electrostatic chuck cleaning method of the present invention includes a step of immersing in a cleaning liquid using an aromatic hydrocarbon compound and / or a nonionic surfactant, and a step of performing a surface treatment by CO 2 blasting. It is characterized by including.

本発明で使用される洗浄液は芳香族炭化水素系化合物および/または非イオン系界面活性剤を用いたものである。一般的に静電チャックの洗浄液として、陰イオン系界面活性剤が用いられている。しかしながら、本発明者らの検討によれば、陰イオン系界面活性剤のような親水性の物質は表面に残りやすいことが分かっている。これは、静電チャック表面の親水基に陰イオン系界面活性剤が結合するためである。静電チャックの素材として用いられるセラミックス部材のうち、酸化物セラミックスではもちろんのこと、非酸化物セラミックスにおいても表面近傍は通常酸化されており、親水性によりOH基が形成されている。そのためOH基と陰イオン系界面活性剤が結びつき、有機成分の残渣として残り、この残渣が製造装置内で汚染物質となる。 The cleaning liquid used in the present invention uses an aromatic hydrocarbon compound and / or a nonionic surfactant. In general, an anionic surfactant is used as a cleaning liquid for an electrostatic chuck. However, according to studies by the present inventors, it has been found that a hydrophilic substance such as an anionic surfactant tends to remain on the surface. This is because the anionic surfactant is bonded to the hydrophilic group on the electrostatic chuck surface. Of the ceramic members used as the material of the electrostatic chuck, not only oxide ceramics but also non-oxide ceramics, the vicinity of the surface is usually oxidized, and OH groups are formed due to hydrophilicity. Therefore, the OH group and the anionic surfactant are combined to remain as an organic component residue, and this residue becomes a contaminant in the manufacturing apparatus.

一方、本発明の芳香族炭化水素系化合物および非イオン系界面活性剤は、静電チャック表面の親水基と結合することがないため、残渣として残らず、しかも、COブラストと併用することにより効果的に有機成分及び金属等を除去することができる。この効果の詳細は明らかではないが、芳香族炭化水素系化合物および非イオン系界面活性剤は静電チャック表面と化学的に結合している汚染物を除去できるのに対し、COブラストは物理的に結合している汚染物を除去できるという作用の違いによるものと思われる。また、COブラストのみでは、付着物を物理的に飛散、剥離しても、それらが再付着することが考えられるが、本発明では、COブラスト処理前に、芳香族炭化水素系化合物および/または非イオン系界面活性剤を用いた洗浄液による処理を行っているため、再付着しても強固な化学結合を起こし難くなっているものと思われる。したがって、本発明では、通常行われるような高温に加熱する必要がないので内部電極に給電端子がロウ付けされている静電チャックのようなセラミックス部材であっても不具合が生じることなく洗浄することができる。 On the other hand, aromatic hydrocarbon compounds and non-ionic surfactants of the present invention, since no binding with the hydrophilic groups of the electrostatic chuck surface, does not remain as a residue, moreover, by combination with CO 2 blast Organic components and metals can be effectively removed. Details of this effect are not clear, but aromatic hydrocarbon compounds and nonionic surfactants can remove contaminants that are chemically bonded to the electrostatic chuck surface, whereas CO 2 blasting is This is thought to be due to the difference in action that the contaminants that are bound to each other can be removed. In addition, with CO 2 blast alone, it is conceivable that even if the deposits are physically scattered and peeled off, they re-adhere, but in the present invention, before the CO 2 blast treatment, the aromatic hydrocarbon compound and Since the treatment with a cleaning solution using a nonionic surfactant is performed, it seems that it is difficult to cause a strong chemical bond even after reattachment. Therefore, in the present invention, since it is not necessary to heat to a high temperature as is normally performed, even a ceramic member such as an electrostatic chuck in which a power supply terminal is brazed to an internal electrode can be cleaned without causing any trouble. Can do.

芳香族炭化水素系化合物としては、単環又は2環の芳香族化合物、及びこれらのアルキル置換体を含む化合物であり、アルキルベンゼン、ナフタレン、アルキルナフタレン、インダン、アルキルインダンなどが挙げられる。なかでも、アルキルベンゼン、ナフタレン及びアルキルナフタレンが好ましい。これらを単独または、必要に応じて2種以上を適宜に選択して組み合わせて使用できる。 The aromatic hydrocarbon compound is a monocyclic or bicyclic aromatic compound and a compound containing an alkyl substituent thereof, and examples thereof include alkylbenzene, naphthalene, alkylnaphthalene, indane, and alkylindan. Of these, alkylbenzene, naphthalene and alkylnaphthalene are preferable. These may be used alone or in combination of two or more as required.

非イオン系界面活性剤の具体例としては、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンフェノールエーテルなどのポリアルキレングリコールエーテル型非イオン系界面活性剤、ポリアルキレングリコールモノエステル、ポリアルキレングリコールジエステルなどのポリアルキレングリコールエステル型非イオン系界面活性剤、脂肪酸アミドのアルキレンオキサイド付加物、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステルなどの多価アルコール型非イオン系界面活性剤、脂肪酸アルカノールアミド、ポリオキシアルキレンアルキルアミンなどをあげることができる。これらを単独または2種以上を混合して用いても良い。 Specific examples of nonionic surfactants include polyalkylene glycol ether type nonionic surfactants such as polyoxyalkylene alkyl ethers and polyoxyalkylene phenol ethers, polyalkylene glycol monoesters, polyalkylene glycol diesters and the like. Alkylene glycol ester type nonionic surfactants, alkylene oxide adducts of fatty acid amides, polyhydric alcohol type nonionic surfactants such as sorbitan fatty acid esters, sucrose fatty acid esters, fatty acid alkanolamides, polyoxyalkylene alkylamines, etc. Can give. You may use these individually or in mixture of 2 or more types.

洗浄液としては、芳香族炭化水素系化合物または非イオン系界面活性剤のいずれか一方、もしくは両者を混合したものを希釈せずに、または、水もしくはアルコール等で希釈して使用することができる。ただし、芳香族炭化水素系化合物または非イオン系界面活性剤単独では、静電チャック表面に残存する可能性があるので、希釈して用いることが望ましい。洗浄液の濃度は、芳香族炭化水素系化合物は5〜10質量%、非イオン系界面活性剤は10〜20質量%であることが好ましい。上限値以上であると洗浄液が残存する可能性が高く、下限値以下であると洗浄効果が期待できない。 As the cleaning liquid, either an aromatic hydrocarbon compound or a nonionic surfactant, or a mixture of both may be used without dilution or diluted with water or alcohol. However, since an aromatic hydrocarbon compound or a nonionic surfactant alone may remain on the surface of the electrostatic chuck, it is desirable to use it diluted. The concentration of the cleaning liquid is preferably 5 to 10% by mass for the aromatic hydrocarbon compound and 10 to 20% by mass for the nonionic surfactant. If it is at least the upper limit, there is a high possibility that the cleaning liquid will remain, and if it is at most the lower limit, the cleaning effect cannot be expected.

洗浄後にCOブラストを行うことで、有機成分および金属をより効果的に除去することができる。COブラストは微小ドライアイスを吹きつけた際の衝撃で汚染物を物理的に剥離して除去する効果と、ドライアイスが蒸発する際の潜熱で表面の付着物を除去する効果を有する。そのため、表面を加工することなく付着物を除去できる。このCOブラストを行うことにより、洗浄液の残存液や取りきれなかった汚染物を除去することができる。 By performing CO 2 blasting after cleaning, organic components and metals can be more effectively removed. CO 2 blasting has the effect of physically peeling and removing contaminants by impact when fine dry ice is blown, and the effect of removing surface deposits by latent heat when dry ice evaporates. Therefore, the deposits can be removed without processing the surface. By performing this CO 2 blasting, it is possible to remove the remaining cleaning liquid and contaminants that could not be removed.

また、洗浄工程内において酸洗浄することも好ましい。酸の種類はフッ酸、硝酸、硫酸など特に限定しない。酸の濃度としては3〜7質量%が最適な量である。なお、酸洗浄をする際は、給電端子部にシリコンゴムなどの被覆材で保護をする。 It is also preferable to perform acid cleaning in the cleaning step. The type of acid is not particularly limited, such as hydrofluoric acid, nitric acid, and sulfuric acid. The optimum amount of acid is 3 to 7% by mass. When acid cleaning is performed, the power supply terminal portion is protected with a covering material such as silicon rubber.

本発明の静電チャックの吸着面は、Al、SiまたはAlNを主成分とするセラミックスからなる。これらのセラミックスは基板の処理温度において好適な体積抵抗率を有し、耐食性が要求されるエッチングや成膜等のプロセス環境下での使用に好適である。ただし、これらのセラミックスは、静電チャックの絶縁層の表面に形成された吸着面を構成するものであり、静電チャックの絶縁層以外の基台等を構成する部材はAl、SiまたはAlNを主成分とするセラミックスであっても良いし、その他のセラミックス、金属、金属とセラミックスの複合材料等であっても良い。吸着面のセラミックスの製造方法としては、常圧、ホットプレスのような焼結法の他、溶射、CVD等の種々の方法が採用できる。 The attracting surface of the electrostatic chuck of the present invention is made of ceramics mainly composed of Al 2 O 3 , Si 3 N 4 or AlN. These ceramics have a suitable volume resistivity at the substrate processing temperature, and are suitable for use in process environments such as etching and film formation that require corrosion resistance. However, these ceramics constitute an adsorption surface formed on the surface of the insulating layer of the electrostatic chuck, and members constituting the base other than the insulating layer of the electrostatic chuck are Al 2 O 3 , Si Ceramics mainly composed of 3 N 4 or AlN may be used, or other ceramics, metals, composite materials of metals and ceramics, or the like may be used. As a method for producing the ceramic of the adsorption surface, various methods such as thermal spraying and CVD can be adopted in addition to a sintering method such as normal pressure and hot pressing.

静電チャックの内部電極と給電端子は、ロウ付け接合されている。使用するロウ材は、内部電極と給電端子の材料およびセラミックス部材との濡れを考慮し、金、銀、アルミニウム、ニッケル、白金、バナジウム等を主成分としたものを用いることができる。セラミックスとの濡れを向上させ強度をもたせるために、これらにチタンやジルコン等の活性金属を添加しても良い。内部電極の材質はセラミックスとの熱膨脹差が小さいものが好ましく、なかでも高融点金属のモリブデンやタングステンが好適である。給電端子としては、ニッケルが良く用いられる。なお、ロウ付けは加熱処理を伴うが、加熱時にロウ材の金属成分や炉内に残存している金属が飛散してセラミックスに付着したり、加熱炉の炉壁や焼成冶具として用いられるカーボンが付着したりするため、ロウ付け後の洗浄は必須である。 The internal electrode and the power supply terminal of the electrostatic chuck are brazed and joined. As the brazing material to be used, a material mainly composed of gold, silver, aluminum, nickel, platinum, vanadium, or the like can be used in consideration of wetting between the internal electrode, the material of the power supply terminal, and the ceramic member. An active metal such as titanium or zircon may be added to these to improve wettability with ceramics and to provide strength. The material of the internal electrode is preferably a material having a small difference in thermal expansion from that of ceramics. Among them, refractory metal molybdenum or tungsten is preferable. Nickel is often used as the power supply terminal. Brazing is accompanied by heat treatment, but during heating, the metal component of the brazing material and the metal remaining in the furnace are scattered and adhered to the ceramic, or carbon used as the furnace wall of the heating furnace or as a firing jig is used. Cleaning after brazing is indispensable for adhesion.

上述のように本発明においては、洗浄液として芳香族炭化水素系化合物または非イオン系界面活性剤を用いた洗浄の後、COブラストを使用することにより、洗浄後の静電チャック表面の誘導結合プラズマ質量分析によるアルカリ金属、アルカリ土類金属または鉄の各元素を300×1010atoms/cm以下と極めて微量に低減することが可能であり、また、有機成分の総分子量についても、500×1012分子/cm以下に低減できるため、従来の不具合の要因であった加熱処理を行うことなく、清浄な静電チャックを得ることができる。 As described above, in the present invention, after cleaning using an aromatic hydrocarbon compound or a nonionic surfactant as a cleaning liquid, by using CO 2 blast, inductive coupling of the electrostatic chuck surface after cleaning is performed. Each element of alkali metal, alkaline earth metal or iron by plasma mass spectrometry can be reduced to a very small amount of 300 × 10 10 atoms / cm 2 or less, and the total molecular weight of the organic component is also 500 × Since it can be reduced to 10 12 molecules / cm 2 or less, a clean electrostatic chuck can be obtained without performing the heat treatment that has been a cause of conventional problems.

以上の通り、本発明によれば、洗浄液として芳香族炭化水素系化合物または非イオン系界面活性剤を用いた洗浄の後、COブラストを使用して表面を清浄化することにより加熱処理をすることなく有機成分や金属などの汚染物質の付着が少ない静電チャックを提供できる。 As described above, according to the present invention, after washing with an aromatic hydrocarbon compound or nonionic surfactant as a cleaning solution, to a heat treatment by cleaning the surface using a CO 2 blast An electrostatic chuck with less adhesion of contaminants such as organic components and metals can be provided.

以下、本発明の実施例を比較例とともに具体的に挙げ、より詳細に説明する。 Hereinafter, examples of the present invention will be specifically described together with comparative examples, and will be described in more detail.

静電チャックは以下に説明する公知のホットプレス法により作製した。市販のAlN粉末に希土類酸化物の焼結助剤を添加してなる混合粉末を、100kg/cm(=9.8MPa)で一軸加圧し、盤状の第1の成形体とし、次に、第1の成形体の上に双極型のモリブデン内部電極を配置し、その上に前記した混合粉末を充填し第2の成形体とした。第1、第2の成形体は、それぞれ絶縁層、基台を形成し、基台と絶縁層との間に内部電極が埋設された積層構造となっている。この積層構造の成形体を焼成温度;1900℃、焼成時間;2時間、プレス圧;100kg/cmの条件でホットプレス焼結を行うことで、φ200mm×15mm(絶縁層厚み:5mm)の盤状のセラミックスからなる静電チャック用部材を得た。その後、吸着面等の平面研削加工等を行って所望の形状とし、さらに、基台側からφ4.1mmの孔をあけ、内部電極を露出させた。ニッケル給電端子(φ4×15mm)を孔に嵌め込んで、銀ロウ材(BAg−8)にチタンを加えたロウ材を介して内部電極に接合(真空雰囲気下、820℃)した。 The electrostatic chuck was produced by a known hot press method described below. A mixed powder obtained by adding a sintering aid of a rare earth oxide to a commercially available AlN powder is uniaxially pressed at 100 kg / cm 2 (= 9.8 MPa) to form a disk-shaped first molded body, A bipolar molybdenum internal electrode was disposed on the first molded body, and the above-mentioned mixed powder was filled thereon to form a second molded body. Each of the first and second molded bodies has a laminated structure in which an insulating layer and a base are formed, and an internal electrode is embedded between the base and the insulating layer. A board having a diameter of 200 mm × 15 mm (insulating layer thickness: 5 mm) is obtained by performing hot press sintering on a molded body having this laminated structure under the conditions of firing temperature: 1900 ° C., firing time: 2 hours, press pressure: 100 kg / cm 2. An electrostatic chuck member made of a ceramic was obtained. Thereafter, surface grinding such as an adsorption surface was performed to obtain a desired shape, and a hole of φ4.1 mm was formed from the base side to expose the internal electrode. A nickel feeding terminal (φ4 × 15 mm) was fitted into the hole, and joined to an internal electrode (820 ° C. under vacuum atmosphere) via a brazing material obtained by adding titanium to a silver brazing material (BAg-8).

このような条件により同一構造の静電チャックを8個作製し、洗浄試験を行った。以下に各試験の洗浄方法を示す。 Under these conditions, eight electrostatic chucks having the same structure were produced, and a cleaning test was performed. The cleaning method for each test is shown below.

[実施例1]
メタノールによる超音波洗浄を10分行った後、キシレン系の芳香族炭化水素系化合物を用いた洗浄液で30分浸漬洗浄を行った。次にメタノールによる浸漬洗浄を30分行い、COブラストを20分行う。硝酸(2%)洗浄を1分、超純水による洗い流しを5分行い、乾燥機で乾燥させた。
[Example 1]
After ultrasonic cleaning with methanol for 10 minutes, immersion cleaning was performed with a cleaning liquid using a xylene-based aromatic hydrocarbon compound for 30 minutes. Next, immersion cleaning with methanol is performed for 30 minutes, and CO 2 blasting is performed for 20 minutes. Nitric acid (2%) was washed for 1 minute, rinsed with ultrapure water for 5 minutes, and dried with a dryer.

[実施例2]
脂肪酸アルカノールアミド型の非イオン系界面活性剤を用い、浸漬洗浄時間を40分にした以外は実施例1と同様の方法で洗浄を行った。
[Example 2]
Cleaning was performed in the same manner as in Example 1 except that a fatty acid alkanolamide type nonionic surfactant was used and the immersion cleaning time was 40 minutes.

[実施例3]
ポリオキシエチレンアルキルエーテル型の非イオン系界面活性剤を用い、浸漬洗浄時間を20分にした以外は実施例1と同様の方法で洗浄を行った。
[Example 3]
Cleaning was performed in the same manner as in Example 1 except that a polyoxyethylene alkyl ether type nonionic surfactant was used and the immersion cleaning time was set to 20 minutes.

[実施例4]
キシレン系の芳香族炭化水素系化合物および脂肪酸アルカノールアミド型の非イオン系界面活性剤を2:1で混合した洗浄剤を用い、浸漬洗浄時間を30分にした以外は実施例1と同様の方法で洗浄を行った。
[Example 4]
A method similar to Example 1 except that a cleaning agent in which a xylene-based aromatic hydrocarbon compound and a fatty acid alkanolamide-type nonionic surfactant were mixed at a ratio of 2: 1 was used and the immersion cleaning time was set to 30 minutes. And washed.

[比較例1]
直鎖アルキルベンゼン系の陰イオン系界面活性剤を用い、浸漬洗浄時間を30分にした以外は実施例1と同様の方法で洗浄を行った。
[Comparative Example 1]
Cleaning was performed in the same manner as in Example 1 except that a linear alkylbenzene anionic surfactant was used and the immersion cleaning time was 30 minutes.

[比較例2]
COブラストによる工程を除外した以外は実施例1と同様の方法で洗浄を行った。
[Comparative Example 2]
Cleaning was performed in the same manner as in Example 1 except that the step by CO 2 blasting was excluded.

[比較例3]
直鎖アルキルベンゼン系の陰イオン系界面活性剤を用い、浸漬洗浄時間を30分にした以外は実施例1と同様の方法で洗浄を行った後、大気中、500℃での加熱処理を行った。
[Comparative Example 3]
A linear alkylbenzene-based anionic surfactant was used, and cleaning was performed in the same manner as in Example 1 except that the immersion cleaning time was set to 30 minutes, followed by heat treatment at 500 ° C. in the air. .

[比較例4]
直鎖アルキルベンゼン系の陰イオン系界面活性剤を用い、浸漬洗浄時間を30分にした以外は実施例1と同様の方法で洗浄を行った後、大気中、1000℃での加熱処理を行った。
[Comparative Example 4]
A linear alkylbenzene-based anionic surfactant was used, and after cleaning by the same method as in Example 1 except that the immersion cleaning time was 30 minutes, heat treatment was performed at 1000 ° C. in the air. .

上記各静電チャックの吸着面について、誘導結合プラズマ質量装置(ICP-MS、島津製作所社製:ICPM-8500)にて金属成分を分析した。また、有機成分の分析としてGC/MSを用い、キャリアガスであるArと水分の分子数を引いたものを有機成分の分子数として評価した。 About the adsorption | suction surface of each said electrostatic chuck, the metal component was analyzed with the inductively coupled plasma mass apparatus (ICP-MS, Shimadzu Corp. make: ICPM-8500). In addition, GC / MS was used for the analysis of the organic component, and the value obtained by subtracting the number of molecules of carrier gas Ar and moisture was evaluated as the number of molecules of the organic component.

Figure 2008093615
Figure 2008093615

本発明の範囲内である実施例1〜4では、金属成分各元素の量はいずれも300×1010atoms/cm以下であった。一方、本発明の範囲外である比較例1および2では、実施例と比べて金属成分の量が著しく多かった。また、有機成分の量についても比較例1、2に比べ実施例は非常に少なかった。500℃で加熱処理を行った比較例3は色シミが発生し、1000℃で加熱処理を行った比較例4では給電端子が脱落した。 In Examples 1 to 4 within the scope of the present invention, the amount of each element of the metal component was 300 × 10 10 atoms / cm 2 or less. On the other hand, in Comparative Examples 1 and 2, which are outside the scope of the present invention, the amount of the metal component was remarkably large as compared with the Examples. Also, the amount of the organic component was very small compared to Comparative Examples 1 and 2. In Comparative Example 3 in which the heat treatment was performed at 500 ° C., color spots were generated, and in Comparative Example 4 in which the heat treatment was performed at 1000 ° C., the power supply terminal dropped.

Claims (4)

芳香族炭化水素系化合物および/または非イオン系界面活性剤を用いた洗浄液に浸漬する工程と、
COブラストによる表面処理を行う工程と、
を含むことを特徴とする静電チャックの洗浄方法。
A step of immersing in a cleaning liquid using an aromatic hydrocarbon compound and / or a nonionic surfactant;
Performing a surface treatment with CO 2 blasting;
A method for cleaning an electrostatic chuck, comprising:
内部電極に給電端子がロウ付け接合された静電チャックの洗浄方法であって、芳香族炭化水素系化合物および/または非イオン系界面活性剤を用いた洗浄液に浸漬する工程と、
COブラストによる表面処理を行う工程と、
を含むことを特徴とする静電チャックの洗浄方法。
A method of cleaning an electrostatic chuck in which a power supply terminal is brazed to an internal electrode, wherein the electrostatic chuck is immersed in a cleaning solution using an aromatic hydrocarbon compound and / or a nonionic surfactant;
Performing a surface treatment with CO 2 blasting;
A method for cleaning an electrostatic chuck, comprising:
洗浄後の静電チャック表面の誘導結合プラズマ質量分析によるアルカリ金属、アルカリ土類金属または鉄の各元素が300×1010atoms/cm以下であることを特徴とする請求項1または2記載の静電チャックの洗浄方法。 3. The element of alkali metal, alkaline earth metal or iron by inductively coupled plasma mass spectrometry of the electrostatic chuck surface after cleaning is 300 × 10 10 atoms / cm 2 or less. Cleaning method for electrostatic chuck. 前記静電チャックは、吸着面がAl、SiまたはAlNを主成分とするセラミックスであることを特徴とする請求項1〜3記載の静電チャックの洗浄方法。 The electrostatic chuck, the electrostatic chuck cleaning method of claim 1, wherein the suction surface is a ceramic mainly composed of Al 2 O 3, Si 3 N 4 or AlN.
JP2006280832A 2006-10-16 2006-10-16 Cleaning method for electrostatic chuck Expired - Fee Related JP4813321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280832A JP4813321B2 (en) 2006-10-16 2006-10-16 Cleaning method for electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280832A JP4813321B2 (en) 2006-10-16 2006-10-16 Cleaning method for electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2008093615A true JP2008093615A (en) 2008-04-24
JP4813321B2 JP4813321B2 (en) 2011-11-09

Family

ID=39377031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280832A Expired - Fee Related JP4813321B2 (en) 2006-10-16 2006-10-16 Cleaning method for electrostatic chuck

Country Status (1)

Country Link
JP (1) JP4813321B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110265815A1 (en) * 2010-04-28 2011-11-03 Tokyo Ohka Kogyo Co., Ltd. Method of cleaning support plate
JP2012049185A (en) * 2010-08-24 2012-03-08 Taiheiyo Cement Corp Ceramic member and method for producing the same
WO2013047506A1 (en) * 2011-09-27 2013-04-04 大陽日酸株式会社 Nitride semiconductor fabrication device material washing method and nitride semiconductor fabrication device material washing device
KR20150068917A (en) * 2013-12-12 2015-06-22 램 리써치 코포레이션 Electrostatic chuck cleaning fixture
CN112871853A (en) * 2021-01-12 2021-06-01 度亘激光技术(苏州)有限公司 Cleaning method of porous sucker
TWI752835B (en) * 2021-02-26 2022-01-11 台灣積體電路製造股份有限公司 Member of physical vapor deposition and method for cleaning electrostatic chuck

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11626271B2 (en) 2020-06-18 2023-04-11 Tokyo Electron Limited Surface fluorination remediation for aluminium oxide electrostatic chucks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641587A (en) * 1992-06-25 1994-02-15 Nippon Petrochem Co Ltd Detergent for precise part
JPH0938604A (en) * 1995-07-25 1997-02-10 Arakawa Chem Ind Co Ltd Cleaning method
JPH10189699A (en) * 1996-12-27 1998-07-21 Kyocera Corp Method of cleaning electrostatic chuck
JP2006130434A (en) * 2004-11-08 2006-05-25 Tokyo Electron Ltd Washing method of ceramic thermal spray member, program for carrying out the method, storage medium, and ceramic thermal spray member
WO2006060234A2 (en) * 2004-12-01 2006-06-08 Lam Research Corporation Wet cleaning of electrostatic chucks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641587A (en) * 1992-06-25 1994-02-15 Nippon Petrochem Co Ltd Detergent for precise part
JPH0938604A (en) * 1995-07-25 1997-02-10 Arakawa Chem Ind Co Ltd Cleaning method
JPH10189699A (en) * 1996-12-27 1998-07-21 Kyocera Corp Method of cleaning electrostatic chuck
JP2006130434A (en) * 2004-11-08 2006-05-25 Tokyo Electron Ltd Washing method of ceramic thermal spray member, program for carrying out the method, storage medium, and ceramic thermal spray member
WO2006060234A2 (en) * 2004-12-01 2006-06-08 Lam Research Corporation Wet cleaning of electrostatic chucks

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110265815A1 (en) * 2010-04-28 2011-11-03 Tokyo Ohka Kogyo Co., Ltd. Method of cleaning support plate
JP2012049185A (en) * 2010-08-24 2012-03-08 Taiheiyo Cement Corp Ceramic member and method for producing the same
WO2013047506A1 (en) * 2011-09-27 2013-04-04 大陽日酸株式会社 Nitride semiconductor fabrication device material washing method and nitride semiconductor fabrication device material washing device
JPWO2013047506A1 (en) * 2011-09-27 2015-03-26 大陽日酸株式会社 Nitride semiconductor manufacturing apparatus member cleaning method and nitride semiconductor manufacturing apparatus member cleaning apparatus
TWI553725B (en) * 2011-09-27 2016-10-11 Taiyo Nippon Sanso Corp Cleaning method for component for nitride semiconductor manufacturing device, and cleaning device for component for nitride semiconductor manufacturing device
KR20150068917A (en) * 2013-12-12 2015-06-22 램 리써치 코포레이션 Electrostatic chuck cleaning fixture
KR102400355B1 (en) * 2013-12-12 2022-05-19 램 리써치 코포레이션 Electrostatic chuck cleaning fixture
CN112871853A (en) * 2021-01-12 2021-06-01 度亘激光技术(苏州)有限公司 Cleaning method of porous sucker
CN112871853B (en) * 2021-01-12 2022-06-24 度亘激光技术(苏州)有限公司 Cleaning method of porous sucker
TWI752835B (en) * 2021-02-26 2022-01-11 台灣積體電路製造股份有限公司 Member of physical vapor deposition and method for cleaning electrostatic chuck

Also Published As

Publication number Publication date
JP4813321B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4813321B2 (en) Cleaning method for electrostatic chuck
US7052553B1 (en) Wet cleaning of electrostatic chucks
AU721781B2 (en) Substrate processing method and apparatus and Soi substrate
JP4744855B2 (en) Electrostatic chuck
JP4272786B2 (en) Electrostatic chuck member and manufacturing method thereof
KR101433959B1 (en) Cleaning of electrostatic chucks using ultrasonic agitation and applied electric fields
JP5030992B2 (en) Method for manufacturing SOI substrate having back surface treated by sandblasting
TW201534407A (en) Electrostatic chuck cleaning fixture
JP4387563B2 (en) Susceptor and method of manufacturing susceptor
KR100330564B1 (en) Substrate for use in wafer attracting apparatus and manufacturing method thereof
TWI336504B (en)
JP2002313899A (en) Substrate holding structure and substrate processor
JP4443976B2 (en) Ceramic cleaning method and highly cleanable ceramics
CN102652350B (en) The method of metal pollutant is removed from the upper electrode for plasma indoor
JP2004363334A (en) Holder for semiconductor or liquid crystal production system and semiconductor or liquid crystal production system mounting it
JP4903322B2 (en) Yttrium oxide material
JP4099053B2 (en) Manufacturing method of electrostatic chuck
JP5300363B2 (en) Holding jig and transport device using the same
KR20200125943A (en) Alkali-free borosilicate glass with low HF post-etch roughness
JP2009231506A (en) Manufacturing method of laminated substrate
KR101878123B1 (en) Cleaning liquid for wafer chuck table and chemical cleaning method of wafer chuck table using the same
JPH09213774A (en) Wafer holding member and its manufacturing method
JP5443819B2 (en) Method for manufacturing a roughened substrate
JP2008297136A (en) Method of manufacturing ceramic component for semiconductor manufacture and method of fitting the same
JP2004277227A (en) Washing method for aluminum nitride ceramics member, and aluminum nitride ceramics member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110824

R150 Certificate of patent or registration of utility model

Ref document number: 4813321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees