JP2008091828A - Solar cell array troubleshooting method - Google Patents

Solar cell array troubleshooting method Download PDF

Info

Publication number
JP2008091828A
JP2008091828A JP2006273917A JP2006273917A JP2008091828A JP 2008091828 A JP2008091828 A JP 2008091828A JP 2006273917 A JP2006273917 A JP 2006273917A JP 2006273917 A JP2006273917 A JP 2006273917A JP 2008091828 A JP2008091828 A JP 2008091828A
Authority
JP
Japan
Prior art keywords
solar cell
cell module
pole
connection form
modules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006273917A
Other languages
Japanese (ja)
Other versions
JP4604250B2 (en
Inventor
Takumi Takashima
工 高島
Junji Yamaguchi
純司 山口
Masayoshi Ishida
政義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006273917A priority Critical patent/JP4604250B2/en
Publication of JP2008091828A publication Critical patent/JP2008091828A/en
Application granted granted Critical
Publication of JP4604250B2 publication Critical patent/JP4604250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily detect a disconnection point between solar cell modules. <P>SOLUTION: In a first connection mode, one electrode of a first solar cell module 4 is connected to one input terminal of an LCR meter 9, and the other electrode is connected to an electrode, having the same polarity as one electrode, of an adjoining second solar cell module 4, being sequentially connected, in the same manner, down to the electrode of the same polarity as one electrode of an n-th solar cell module 4. The electrode having the same polarity as the other electrode is acted as an open end. All the solar cell modules are installed on one metal stage 11 connected to the earth, with the other input terminal of the LCR meter 9 being grounded. In a second connection mode, adjoining some solar cell modules 4 in the first connection mode are disconnected from each other. The first and second connection modes are arranged outdoors. Assuming electrostatic capacitances detected with the LCR meter 9 in first and second connection modes to be Cd and Cx, the number of solar cell modules down to a disconnection point is known with (Cx/Cd)×n, where n is an arbitrary integer of 2 or larger. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、太陽電池アレイ故障診断方法に関する。   The present invention relates to a solar cell array fault diagnosis method.

太陽光発電システムの直流側である太陽電池アレイは、機械的に動作する部分がなく、メンテナンスフリーで、約20〜30年の長寿命を有すると言われている。しかしながら、実際は設置後数年程度で太陽電池アレイが故障したり不具合が発生したとの報告がある。太陽電池の商品価値を下げずに、また普及の妨げとならないためにも、故障や不具合を早期に発見し改善する必要がある。
しかし、従来の太陽光発電システムの診断方法では、出力端から電流・電圧を測定するだけであるので、太陽電池アレイ、太陽電池モジュールを直列に接続した太陽電池ストリングの異常状態を検出はできるものの、故障箇所が特定できず、故障箇所を発見しようとすると、1枚ずつ太陽電池モジュールを取り外し確認するしか方法がなく、時間と労力を要していた。
The solar cell array on the direct current side of the photovoltaic power generation system is said to have no mechanically operating part, is maintenance-free, and has a long life of about 20 to 30 years. However, there are actually reports that the solar cell array has failed or malfunctioned within a few years after installation. In order not to reduce the commercial value of solar cells and to prevent the spread of solar cells, it is necessary to detect and improve failures and malfunctions at an early stage.
However, in the conventional method for diagnosing a photovoltaic power generation system, only the current and voltage are measured from the output end, so that it is possible to detect an abnormal state of a solar cell string in which solar cell arrays and solar cell modules are connected in series. If the failure location could not be identified and the failure location was to be found, the only way was to remove and check the solar cell modules one by one, which required time and labor.

従来、太陽電池の故障を検出するものとしては、特許文献1に、太陽電池の地絡状態を検出しインバータを停止させる技術が開示されている。また、特許文献2には、太陽電池のシャント抵抗値を測定して太陽電池の故障を検出する技術が開示されている。
特願2002−233045 特開2004−287787号公報
Conventionally, as a technique for detecting a failure of a solar battery, Patent Document 1 discloses a technique for detecting a ground fault state of a solar battery and stopping an inverter. Patent Document 2 discloses a technique for detecting a failure of a solar cell by measuring a shunt resistance value of the solar cell.
Japanese Patent Application No. 2002-233045 JP 2004-287787 A

上述のごとく、従来の太陽電池アレイの発電性能の診断法では、太陽電池アレイ中のどの位置(何番目の太陽電池モジュール)で断線が発生しているか検出することができず、断線位置を特定することができなかった。
本発明の目的は、上記の問題点に鑑み、太陽電池ストリングの端子(正極または負極)または太陽電池アレイの端子(正極または負極)とアース間の静電容量を測定し、太陽電池モジュール間の断線位置を容易に検出することを可能にした太陽電池アレイ故障診断方法を提供することにある。
As described above, in the conventional method for diagnosing the power generation performance of a solar cell array, it is not possible to detect at which position in the solar cell array (which solar cell module) the disconnection occurs, and the disconnection position is specified. I couldn't.
In view of the above problems, an object of the present invention is to measure the capacitance between a solar cell string terminal (positive electrode or negative electrode) or a solar cell array terminal (positive electrode or negative electrode) and the ground, and between solar cell modules. It is an object of the present invention to provide a solar cell array fault diagnosis method that makes it possible to easily detect the disconnection position.

本発明は、上記の課題を解決するために、下記の手段を採用した。
第1の手段は、LCRメータの一方の入力端に第1の太陽電池モジュールの一方の極を接続し、前記第1の太陽電池モジュールの他方の極を隣接する第2の太陽電池モジュールの前記一方の極と同極に接続し、同様にして、第n−1の太陽電池モジュールの前記他方の極と同極を第nの太陽電池モジュールの前記一方の極と同極に接続し、第nの太陽電池モジュールの前記他方の極と同極を開放端とし、前記第1の太陽電池モジュールから第nの太陽電池モジュールの全ての太陽電池モジュールの金属製フレーム間を電気的に接続し、前記LCRメータの他方の入力端に前記第1の太陽電池モジュールの金属製フレームに接続してなる第1の接続形態と、前記第1の接続形態において前記第1の太陽電池モジュールから第nの太陽電池モジュールにおいていずれかの隣接する太陽電池モジュール間が断線状態にある第2の接続形態とからなり、前記第1の接続形態および前記第2の接続形態を屋内に配置し、前記LCRメータによって、前記第1の接続形態で測定された静電容量をCdとし、前記第2の接続形態で測定された静電容量をCxとするとき、断線箇所までの太陽電池モジュール枚数を、断線箇所までの太陽電池モジュール枚数=(Cx/Cd)×nで求めることを特徴とする太陽電池アレイ故障診断方法である。ただし、前記nは2以上の任意の整数。
第2の手段は、LCRメータの一方の入力端に第1の太陽電池モジュールの一方の極を接続し、前記第1の太陽電池モジュールの他方の極を隣接する第2の太陽電池モジュールの前記一方の極と同極に接続し、同様にして、第n−1の太陽電池モジュールの前記他方の極と同極を第nの太陽電池モジュールの前記一方の極と同極に接続し、第nの太陽電池モジュールの前記他方の極と同極を開放端とし、前記第1の太陽電池モジュールから第nの太陽電池モジュールの全ての太陽電池モジュールを1つの金属製架台に設置し該金属製架台をアースに接地し、前記LCRメータの他方の入力端をアースに接地してなる第1の接続形態と、前記第1の接続形態において前記第1の太陽電池モジュールから第nの太陽電池モジュールにおいていずれかの隣接する太陽電池モジュール間が断線状態にある第2の接続形態とからなり、前記第1の接続形態および前記第2の接続形態を屋外に配置し、前記LCRメータによって、前記第1の接続形態で測定された静電容量をCdとし、前記第2の接続形態で測定された静電容量をCxとするとき、断線箇所までの太陽電池モジュール枚数を、断線箇所までの太陽電池モジュール枚数=(Cx/Cd)×nで求めることを特徴とする太陽電池アレイ故障診断方法である。ただし、前記nは2以上の任意の整数。
The present invention employs the following means in order to solve the above problems.
The first means connects one pole of the first solar cell module to one input terminal of the LCR meter, and the second pole of the second solar cell module adjacent to the other pole of the first solar cell module. Similarly, the same polarity as the other pole of the n-1th solar cell module is connected to the same polarity as the one pole of the nth solar cell module. The same pole as the other pole of the n solar cell modules is an open end, and the metal frames of all the solar cell modules of the nth solar cell module are electrically connected from the first solar cell module, A first connection form in which the other input end of the LCR meter is connected to a metal frame of the first solar cell module; and the first connection form in the first connection form from the first solar cell module to the nth Solar cell module And the second connection form in which any adjacent solar cell modules are disconnected from each other, the first connection form and the second connection form are arranged indoors, and the LCR meter When the capacitance measured in the first connection configuration is Cd and the capacitance measured in the second connection configuration is Cx, the number of solar cell modules up to the disconnection location is the number of solar cells up to the disconnection location. It is a solar cell array failure diagnosis method characterized by obtaining the number of battery modules = (Cx / Cd) × n. However, n is an arbitrary integer of 2 or more.
The second means connects one pole of the first solar cell module to one input end of the LCR meter, and the second pole of the second solar cell module adjacent to the other pole of the first solar cell module. Similarly, the same polarity as the other pole of the n-1th solar cell module is connected to the same polarity as the one pole of the nth solar cell module. The same pole as the other pole of the n solar cell modules is an open end, and all the solar cell modules from the first solar cell module to the nth solar cell module are installed on a single metal cradle. A first connection form in which the gantry is grounded to the ground and the other input end of the LCR meter is grounded to the ground, and the first to nth solar cell modules in the first connection form At any And the second connection form in which the adjacent solar cell modules are disconnected, the first connection form and the second connection form are arranged outdoors, and the first connection is made by the LCR meter. When the capacitance measured in the configuration is Cd and the capacitance measured in the second connection configuration is Cx, the number of solar cell modules up to the disconnection location is the number of solar cell modules up to the disconnection location = It is a solar cell array failure diagnosis method characterized by obtaining by (Cx / Cd) × n. However, n is an arbitrary integer of 2 or more.

従来は、太陽電池アレイ中や太陽電池ストリング中の断線故障位置の特定のためには、太陽電池アレイや太陽電池ストリング中の太陽電池モジュールを取り外して検査する方法しかなかった。それに対して、本発明によれば、太陽電池アレイや太陽電池ストリングの端子からの静電容量の測定のみで容易に断線位置を特定することができ、断線修理や太陽電池モジュール交換の保守作業が非常に容易になる。   Conventionally, in order to identify the disconnection failure position in the solar cell array or the solar cell string, there has been only a method of removing and inspecting the solar cell module in the solar cell array or the solar cell string. On the other hand, according to the present invention, the disconnection position can be easily identified only by measuring the capacitance from the terminals of the solar cell array or solar cell string, and maintenance work for disconnection repair or solar cell module replacement can be performed. It becomes very easy.

はじめに、静電容量計測法について説明する。静電容量計測法は電力ケーブルのような伝送線路における断線箇所の検出に用いられており、伝送線路の全長d(m)、断線箇所x(m)までの静電容量c(F)、伝送線路全長の静電容量c(F)とすると、健全相と故障相との静電容量の比から断線箇所までの距離x(m)は(1)式で求められる。
x=(c/c)×d (1)
First, the capacitance measuring method will be described. The capacitance measurement method is used to detect a disconnection point in a transmission line such as a power cable, and has a total length d (m) of the transmission line, a capacitance c x (F) up to the disconnection point x (m), Assuming that the capacitance c d (F) of the entire length of the transmission line, the distance x (m) to the disconnection location is obtained by the equation (1) from the ratio of the capacitance between the healthy phase and the failure phase.
x = (c x / c d ) × d (1)

次に、対象となる太陽電池ストリングにおける静電容量計測法の適用可能性について説明する。
図1は、太陽電池ストリングの等価回路を示す図である。太陽電池ストリングは単相結線であるので、太陽電池ストリングの端子とアース間の対地間静電容量を用いて静電容量計測を行う。
同図において、1は太陽電池ストリング、2は太陽電池モジュールであり、各太陽電池モジュール2は直列抵抗Rs(Ω)、並列抵抗Rp(Ω)、pn接合における接合容量Cd(F)で表される。ここで、L(H)は太陽電池モジュール2間の結線のインダクタンス、Cg(F)は太陽電池モジュール2間における対地間静電容量である。
明状態では、太陽電池モジュール2は発電状態にあるためpn接合における障壁が低くなり、接合容量Cdが無視できるようになると考えられ、抵抗のみの回路で表せる。従って、太陽電池ストリング1は電力ケーブルのような伝送線路として考えられ、静電容量計測法が適用可能であるといえる。
Next, the applicability of the capacitance measurement method in the target solar cell string will be described.
FIG. 1 is a diagram showing an equivalent circuit of a solar cell string. Since the solar cell string is a single-phase connection, the capacitance measurement is performed using the capacitance between the terminal of the solar cell string and the ground.
In the figure, 1 is a solar cell string, 2 is a solar cell module, and each solar cell module 2 is represented by a series resistance Rs (Ω), a parallel resistance Rp (Ω), and a junction capacitance Cd (F) at a pn junction. The Here, L (H) is the inductance of the connection between the solar cell modules 2, and Cg (F) is the electrostatic capacitance between the solar cell modules 2.
In the bright state, since the solar cell module 2 is in the power generation state, the barrier at the pn junction is lowered, and the junction capacitance Cd is considered to be negligible, and can be expressed by a circuit only of resistance. Therefore, the solar cell string 1 can be considered as a transmission line such as a power cable, and it can be said that a capacitance measuring method is applicable.

また、太陽電池ストリング1は不図示の設置架台を通じて太陽電池モジュールのフレームにアースが施されているので、対地間静電容量Cgは、太陽電池ストリング1中の線路とフレーム間の静電容量となり、接続されている太陽電池モジュール枚数に比例して増加する。その結果、(2)式に示すように、断線箇所は断線箇所までの太陽電池モジュール枚数によって表現することができる。
断線箇所までの太陽電池モジュール枚数=(故障時の静電容量/健全時の静電容量)×太陽電池ストリング中の太陽電池モジュール枚数 (2)
In addition, since the solar cell string 1 is grounded to the frame of the solar cell module through an installation stand (not shown), the capacitance Cg between the ground is the capacitance between the line in the solar cell string 1 and the frame. It increases in proportion to the number of connected solar cell modules. As a result, as shown in Equation (2), the disconnection location can be expressed by the number of solar cell modules up to the disconnection location.
The number of solar cell modules up to the disconnection point = (capacitance at the time of failure / capacitance at the time of soundness) x number of solar cell modules in the solar cell string (2)

次に、本発明の第1の実施形態を図2ないし図5を用いて説明する。
図2は、屋内における各太陽電池モジュール間の接続が健全状態にある時の太陽電池モジュールの第1の接続形態を示す図、図3は、屋内における太陽電池モジュール間の接続のいずれかが断線状態にある時の太陽電池モジュールの第2の接続形態を示す図である。
これらの図において、3は太陽電池モジュール4が直列に接続された太陽電池ストリング、4は太陽電池モジュール、5は各太陽電池モジュール4の金属製フレーム、6はアース線、7はLCRメータ9の入力端(正極側)、8はLCRメータ9の入力端(負極側)、9は静電容量を測定するLCRメータ、10は太陽電池モジュール4間が断線状態にあるモジュール間開放端である。
Next, a first embodiment of the present invention will be described with reference to FIGS.
FIG. 2 is a diagram showing a first connection form of the solar cell modules when the connection between the solar cell modules indoors is in a healthy state, and FIG. 3 shows that any of the connections between the solar cell modules indoors is broken. It is a figure which shows the 2nd connection form of the solar cell module when it exists in a state.
In these figures, 3 is a solar cell string in which solar cell modules 4 are connected in series, 4 is a solar cell module, 5 is a metal frame of each solar cell module 4, 6 is a ground wire, and 7 is an LCR meter 9. An input end (positive electrode side), 8 is an input end (negative electrode side) of the LCR meter 9, 9 is an LCR meter for measuring capacitance, and 10 is an open end between modules where the solar cell modules 4 are disconnected.

これらの図に示すように、LCRメータ9の入力端(正極側)7には、太陽電池ストリング3の一端にある太陽電池モジュール4の正極が接続され、この太陽電池モジュール4の負極は隣接する太陽電池モジュール4の正極に接続される。同様にして、順次、太陽電池モジュール4の負極を隣接する太陽電池モジュール4の正極に接続する。また、LCRメータ9の入力端(負極側)8には、太陽電池ストリング3の一端にある太陽電池モジュールを支持する金属製フレーム5に接続する。屋内の太陽電池ストリング3はアースが施されていないので、互いに隣接する太陽電池モジュールを支持する金属製フレーム5間をアース線6で接続し、擬似的な接地極を作製する。   As shown in these figures, the positive terminal of the solar cell module 4 at one end of the solar cell string 3 is connected to the input end (positive electrode side) 7 of the LCR meter 9, and the negative electrode of this solar cell module 4 is adjacent. It is connected to the positive electrode of the solar cell module 4. Similarly, the negative electrode of the solar cell module 4 is sequentially connected to the positive electrode of the adjacent solar cell module 4. Further, the input end (negative electrode side) 8 of the LCR meter 9 is connected to a metal frame 5 that supports the solar cell module at one end of the solar cell string 3. Since the indoor solar cell string 3 is not grounded, the metal frames 5 supporting the solar cell modules adjacent to each other are connected by the ground wire 6 to produce a pseudo ground electrode.

太陽電池モジュール4に用いたモジュールは、2種類の多結晶太陽電池モジュールAおよび多結晶太陽電池モジュールBを用いた。また太陽電池ストリング3中の太陽電池モジュール4の枚数は5枚である。日射条件は、屋内の蛍光灯と窓から入射される散乱光による擬似明状態である。   As the modules used for the solar cell module 4, two types of polycrystalline solar cell modules A and polycrystalline solar cell modules B were used. The number of solar cell modules 4 in the solar cell string 3 is five. The solar radiation condition is a quasi-bright state caused by indoor fluorescent lamps and scattered light incident from a window.

本実施形態の太陽電池モジュール間の断線検出は、まず、図2に示す構成において、太陽電池モジュール間の接続が健全状態にある時の太陽電池ストリング3の対地間静電容量c5をLCRメータ9によって測定する。次に、図3に示す構成において、各太陽電池モジュール間の接続が順次各々故障状態にある時の太陽電池ストリング3の対地間静電容量c1、c2、c3、c4をLCRメータ9によって測定する。   The disconnection detection between the solar cell modules of the present embodiment is performed by first calculating the capacitance c5 between the solar cell string 3 and the ground when the connection between the solar cell modules is in a healthy state in the configuration shown in FIG. Measure by. Next, in the configuration shown in FIG. 3, the LCR meter 9 measures the ground-to-ground capacitances c1, c2, c3, and c4 of the solar cell string 3 when the connections between the solar cell modules are sequentially in a fault state. .

図4は、図2および図3の測定において、第1の太陽電池モジュール4と第2の太陽電池モジュール4間、第2の太陽電池モジュール4と第3の太陽電池モジュール4間、第3の太陽電池モジュール4と第4の太陽電池モジュール4間、第4の太陽電池モジュール4と第5の太陽電池モジュール4間において断線がある場合、および第5の太陽電池モジュール4の終端が開放端である場合における、LCRメータ9によって測定された対地間静電容量c1、c2、c3、c4、c5を示すグラフである。
同グラフに示すように、対地間静電容量は断線箇所までの太陽電池モジュール4の枚数に比例して増加していることが分かる。これは、太陽電池ストリング3中の線路と接地されたフレーム5間との静電容量を測定しているため、接続されている太陽電池モジュール枚数に比例して対地間静電容量が増加したと考えられる。多結晶モジュールAと多結晶モジュールBとで対地間静電容量の増加量が異なるのは、構造や大きさや材料の違いにより静電容量が影響したものと考えられる。
4 and FIG. 3, in the measurement of FIG. 2 and FIG. 3, between the first solar cell module 4 and the second solar cell module 4, between the second solar cell module 4 and the third solar cell module 4, the third When there is a disconnection between the solar cell module 4 and the fourth solar cell module 4, between the fourth solar cell module 4 and the fifth solar cell module 4, and the termination of the fifth solar cell module 4 is an open end. It is a graph which shows the electrostatic capacitances c1, c2, c3, c4, c5 between the ground measured by the LCR meter 9 in a certain case.
As shown in the graph, it can be seen that the capacitance to ground increases in proportion to the number of solar cell modules 4 up to the disconnection point. This is because the capacitance between the line in the solar cell string 3 and the grounded frame 5 is measured, so that the capacitance between the ground and the ground increases in proportion to the number of connected solar cell modules. Conceivable. It is considered that the increase in the capacitance between the polycrystalline module A and the polycrystalline module B is different due to the difference in structure, size and material.

図5は、図4の測定結果を用いて、(2)式により断線箇所までの太陽電池モジュール枚数を算出したグラフである。なお、健全時の静電容量は上記c5を用いた。同グラフに示すように、算出した太陽電池モジュール枚数の誤差は全て0.1枚以内となった。従って、断線箇所に対応した太陽電池モジュール枚数が算出でき、この算出法は断線箇所の検出に極めて有効である。   FIG. 5 is a graph in which the number of solar cell modules up to a broken line is calculated by the equation (2) using the measurement result of FIG. In addition, the above-mentioned c5 was used for the electrostatic capacity at the time of sound. As shown in the graph, all the calculated solar cell module errors were within 0.1. Therefore, the number of solar cell modules corresponding to the disconnection location can be calculated, and this calculation method is extremely effective for detecting the disconnection location.

次に、本発明の第2の実施形態を図6ないし図9を用いて説明する。
図6は、屋外における太陽電池モジュール間の接続が健全状態にある時の太陽電池モジュールの第1の接続形態を示す図、図7は、屋外における太陽電池モジュール間の接続のいずれかが断線状態にある時の太陽電池モジュールの第2の接続形態を示す図である。
これらの図において、11はアースに接地され、個々の太陽電池モジュール4を一体に支持する金属製架台である。なお、その他の構成は図2および図3に示した同符号の構成に対応するので説明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIGS.
FIG. 6 is a diagram showing a first connection form of the solar cell modules when the connection between the solar cell modules outdoors is in a healthy state, and FIG. 7 is a state where any of the connections between the solar cell modules outdoors is disconnected. It is a figure which shows the 2nd connection form of the solar cell module at the time.
In these drawings, reference numeral 11 denotes a metal mount that is grounded to ground and supports the individual solar cell modules 4 integrally. Other configurations correspond to the configurations of the same reference numerals shown in FIGS. 2 and 3, and the description thereof is omitted.

これらの図に示すように、LCRメータ9の入力端(正極側)7には、太陽電池ストリング3の一端にある太陽電池モジュール4の正極が接続され、この太陽電池モジュール4の負極は隣接する太陽電池モジュール4の正極にされる。同様にして、順次、太陽電池モジュール4の負極を隣接する太陽電池モジュール4の正極に接続する。また、LCRメータ9の入力端(負極側)8はアースに接地される。   As shown in these figures, the positive terminal of the solar cell module 4 at one end of the solar cell string 3 is connected to the input end (positive electrode side) 7 of the LCR meter 9, and the negative electrode of this solar cell module 4 is adjacent. The positive electrode of the solar cell module 4 is used. Similarly, the negative electrode of the solar cell module 4 is sequentially connected to the positive electrode of the adjacent solar cell module 4. Further, the input end (negative electrode side) 8 of the LCR meter 9 is grounded.

太陽電池モジュール4として多結晶太陽電池モジュールを用いた。また太陽電池ストリング3中の太陽電池モジュール4の枚数は、図6および図7には5枚示されているが、実際は10枚用いた。日射条件は、日射強度の影響を調べるために、晴れの日(日射強度800W/m以上)と曇りの日(日射強度240W/m程度)の測定を行った。 A polycrystalline solar cell module was used as the solar cell module 4. The number of solar cell modules 4 in the solar cell string 3 is shown in FIG. 6 and FIG. Solar radiation conditions, in order to examine the influence of solar radiation intensity, was measured on a sunny day (solar radiation intensity 800W / m 2 or more) and a cloudy day (about solar radiation intensity 240W / m 2).

本実施形態の太陽電池モジュール間の断線検出は、まず、図6に示す構成において太陽電池モジュール4が10個直列接続された場合の、太陽電池モジュール4間の接続が健全状態にある時の太陽電池ストリング3の対地間静電容量C10をLCRメータ9によって測定する。次に、図7に示す構成において太陽電池モジュール4が10個直列接続された場合の、各太陽電池モジュール4間の接続が順次断線状態にある時の太陽電池ストリング3の対地間静電容量C1,C2,C3,C4,C5,C6,C7,C8,C9をLCRメータ9によって測定する。   The disconnection detection between the solar cell modules of the present embodiment is as follows. First, when the ten solar cell modules 4 are connected in series in the configuration shown in FIG. The capacitance C10 between the battery string 3 and the ground is measured by the LCR meter 9. Next, when ten solar cell modules 4 are connected in series in the configuration shown in FIG. 7, the capacitance C1 between the solar cell strings 3 and the ground when the connections between the solar cell modules 4 are sequentially disconnected. , C2, C3, C4, C5, C6, C7, C8, and C9 are measured by the LCR meter 9.

図8は、図6および図7に示す構成において太陽電池モジュール4が10個直列接続された場合の、第1の太陽電池モジュール4と第2の太陽電池モジュール4間、第2の太陽電池モジュール4と第3の太陽電池モジュール4間、第3の太陽電池モジュール4と第4の太陽電池モジュール4間、第4の太陽電池モジュール4と第5の太陽電池モジュール4間、第5の太陽電池モジュール4と第6の太陽電池モジュール4間、第6の太陽電池モジュール4と第7の太陽電池モジュール4間、第7の太陽電池モジュール4と第8の太陽電池モジュール4間、第8の太陽電池モジュール4と第9の太陽電池モジュール4間、第9の太陽電池モジュール4と第10の太陽電池モジュール4間において順次断線状態にある場合、および第10の太陽電池モジュール4の終端が開放端である場合における、LCRメータ9によって測定された対地間静電容量C1、C2、C3、C4、C5、C6、C7,C8,C9を示すグラフである。
同グラフに示すように、対地間静電容量は断線箇所までの太陽電池モジュール4の枚数に比例して増加していることが分かる。これは、太陽電池ストリング3中の線路と接地された金属製架台11間との静電容量を測定しているため、接続されている太陽電池モジュール枚数に比例して対地間静電容量が増加したと考えられる。また、晴れた日も曇りの日もほとんど同じ値を示していることから、日射強度の影響を受けないことも分かる。
FIG. 8 shows the second solar cell module between the first solar cell module 4 and the second solar cell module 4 when ten solar cell modules 4 are connected in series in the configuration shown in FIGS. 6 and 7. 4 and the third solar cell module 4, between the third solar cell module 4 and the fourth solar cell module 4, between the fourth solar cell module 4 and the fifth solar cell module 4, and the fifth solar cell. Between the module 4 and the sixth solar cell module 4, between the sixth solar cell module 4 and the seventh solar cell module 4, between the seventh solar cell module 4 and the eighth solar cell module 4, and the eighth sun When the battery module 4 and the ninth solar battery module 4 are sequentially disconnected between the ninth solar battery module 4 and the tenth solar battery module 4, and the tenth solar battery When the end of the module 4 is an open end, is a graph showing the LCR ground between the capacitance C1 as measured by a meter 9, C2, C3, C4, C5, C6, C7, C8, C9.
As shown in the graph, it can be seen that the capacitance to ground increases in proportion to the number of solar cell modules 4 up to the disconnection point. This is because the capacitance between the line in the solar cell string 3 and the grounded metal mount 11 is measured, and the capacitance between the ground increases in proportion to the number of connected solar cell modules. It is thought that. Moreover, since it is almost the same value on a sunny day and a cloudy day, it can be seen that it is not affected by solar radiation intensity.

図9は、図8の測定結果を用いて、(2)式により断線箇所までの太陽電池モジュール枚数を算出したグラフである。なお、健全時の静電容量は上記C10を用いた。同グラフに示すように、算出した太陽電池モジュール枚数の最大誤差は、第1の太陽電池モジュール4と第2の太陽電池モジュール4間の断線状態と第9の太陽電池モジュール4と第10の太陽電池モジュール4間の断線状態の時に0.33枚となった。よって、ほぼ断線箇所に対応した太陽電池モジュール枚数を算出することができ、この算出法は屋外で稼動している太陽電池ストリングにおいても断線検出箇所の検出に有効であることが分かる。しかも、LCRメータ内のアースを利用し、かつ使用する装置がLCRメータのみで、簡便に測定することができる。   FIG. 9 is a graph in which the number of solar cell modules up to a broken line is calculated by the equation (2) using the measurement result of FIG. In addition, the said C10 was used for the electrostatic capacitance at the time of sound. As shown in the graph, the maximum error of the calculated number of solar cell modules is the disconnection state between the first solar cell module 4 and the second solar cell module 4, and the ninth solar cell module 4 and the tenth solar cell. The number of sheets was 0.33 when the battery modules 4 were disconnected. Therefore, it is possible to calculate the number of solar cell modules substantially corresponding to the disconnection location, and it can be seen that this calculation method is effective for detecting the disconnection detection location even in a solar cell string operating outdoors. In addition, the ground in the LCR meter is used, and the apparatus to be used can be simply measured by using only the LCR meter.

上記の各実施形態では、太陽電池モジュールとして、多結晶モジュールを用いる場合について説明したが、図1で説明したように、太陽電池固有の接合容量Cdは発電状態では
太陽電池モジュール間の対地間静電容量Cgに比べて無視できる程度に小さくなるため、
単結晶モジュールや薄膜ハイブリッドモジュールやアモルファスシリコンモジュールを用いた太陽電池モジュール間の断線検出方法にも適用可能である。
また、上記の各実施形態では図示されていないが、正極と負極を入れ替えて測定しても、断線箇所までのモジュール枚数を同様に求めることができる。
In each of the above embodiments, the case where a polycrystalline module is used as the solar cell module has been described. However, as described with reference to FIG. 1, the junction capacitance Cd unique to the solar cell is static between the solar cell modules in the power generation state. Since it is negligibly small compared to the capacitance Cg,
The present invention is also applicable to a method for detecting disconnection between solar cell modules using a single crystal module, a thin film hybrid module, or an amorphous silicon module.
Although not shown in each of the above embodiments, the number of modules up to the disconnection point can be obtained in the same manner even when the positive electrode and the negative electrode are exchanged.

太陽電池ストリングの等価回路を示す図である。It is a figure which shows the equivalent circuit of a solar cell string. 屋内における各太陽電池モジュール間の接続が健全状態にある時の太陽電池モジュールの第1の接続形態を示す図である。It is a figure which shows the 1st connection form of a solar cell module when the connection between each solar cell module indoor is in a healthy state. 屋内における太陽電池モジュール間の接続のいずれかが断線状態にある時の太陽電池モジュールの第2の接続形態を示す図である。It is a figure which shows the 2nd connection form of a solar cell module when either of the connections between the solar cell modules indoor is in a disconnection state. 図2の第1の接続形態および図3の第2の接続形態において測定された、第5の太陽電池モジュールの終端が開放端である場合および各太陽電池モジュール間において断線がある場合の対地間静電容量を示すグラフである。Measured in the first connection configuration of FIG. 2 and the second connection configuration of FIG. 3, the ground between the case where the end of the fifth solar cell module is an open end and the case where there is a disconnection between the solar cell modules It is a graph which shows an electrostatic capacitance. 図4の測定結果を用いて、(2)式により断線箇所までの太陽電池モジュール枚数を算出したグラフである。It is the graph which computed the number of solar cell modules to a disconnection location by (2) Formula using the measurement result of FIG. 屋外における太陽電池モジュール間の接続が健全状態にある時の太陽電池モジュールの第1の接続形態を示す図である。It is a figure which shows the 1st connection form of a solar cell module when the connection between the solar cell modules in the outdoors exists in a healthy state. 屋外における太陽電池モジュール間の接続のいずれかが断線状態にある時の太陽電池モジュールの第2の接続形態を示す図である。It is a figure which shows the 2nd connection form of a solar cell module when one of the connections between the solar cell modules in an outdoor state is a disconnection state. 図6の第1の接続形態および図7の第2の接続形態において太陽電池モジュール4が10個直列接続された状態で測定された、第10の太陽電池モジュールの終端が開放端である場合および各太陽電池モジュール間において断線がある場合の対地間静電容量を示すグラフである。The case where the termination of the tenth solar cell module is an open end, measured in a state where ten solar cell modules 4 are connected in series in the first connection configuration of FIG. 6 and the second connection configuration of FIG. It is a graph which shows the electrostatic capacitance between ground when there exists a disconnection between each solar cell module. 図8の測定結果を用いて、(2)式により断線箇所までの太陽電池モジュール枚数を算出したグラフである。It is the graph which computed the number of solar cell modules to a disconnection location by (2) Formula using the measurement result of FIG.

符号の説明Explanation of symbols

1,3 太陽電池ストリング
2,4 太陽電池モジュール
5 フレーム
6 アース線
7 LCRメータの入力端(正極側)
8 LCRメータの入力端(負極側)
9 LCRメータ
10 モジュール間開放端
11 金属製架台
1, 3 Solar cell strings 2, 4 Solar cell module 5 Frame 6 Ground wire 7 LCR meter input terminal (positive electrode side)
8 LCR meter input terminal (negative electrode side)
9 LCR meter 10 Open end between modules 11 Metal base

Claims (2)

LCRメータの一方の入力端に第1の太陽電池モジュールの一方の極を接続し、前記第1の太陽電池モジュールの他方の極を隣接する第2の太陽電池モジュールの前記一方の極と同極に接続し、同様にして、第n−1の太陽電池モジュールの前記他方の極と同極を第nの太陽電池モジュールの前記一方の極と同極に接続し、第nの太陽電池モジュールの前記他方の極と同極を開放端とし、前記第1の太陽電池モジュールから第nの太陽電池モジュールの全ての太陽電池モジュールの金属製フレーム間を電気的に接続し、前記LCRメータの他方の入力端に前記第1の太陽電池モジュールの金属製フレームに接続してなる第1の接続形態と、前記第1の接続形態において前記第1の太陽電池モジュールから第nの太陽電池モジュールにおいていずれかの隣接する太陽電池モジュール間が断線状態にある第2の接続形態とからなり、前記第1の接続形態および前記第2の接続形態を屋内に配置し、前記LCRメータによって、前記第1の接続形態で測定された静電容量をCdとし、前記第2の接続形態で測定された静電容量をCxとするとき、断線箇所までの太陽電池モジュール枚数を下式、
断線箇所までの太陽電池モジュール枚数=(Cx/Cd)×n
で求めることを特徴とする太陽電池アレイ故障診断方法。
ただし、前記nは2以上の任意の整数。
One pole of the first solar cell module is connected to one input end of the LCR meter, and the other pole of the first solar cell module is the same as the one pole of the adjacent second solar cell module In the same manner, the same polarity as the other pole of the (n-1) th solar cell module is connected to the same polarity as the one pole of the nth solar cell module. The other pole of the LCR meter is electrically connected between the metal frames of all the solar cell modules from the first solar cell module to the nth solar cell module, with the same pole as the other pole being an open end. In the first connection form formed by connecting to the metal frame of the first solar cell module at the input end, and in the first to nth solar cell modules in the first connection form. The second connection form in which the adjacent solar cell modules are disconnected from each other, the first connection form and the second connection form are disposed indoors, and the first connection form is provided by the LCR meter. When the capacitance measured in the connection form is Cd and the capacitance measured in the second connection form is Cx, the number of solar cell modules up to the disconnection point is expressed by the following formula:
Number of solar cell modules up to disconnection location = (Cx / Cd) × n
A method for diagnosing a failure of a solar cell array, characterized by:
However, n is an arbitrary integer of 2 or more.
LCRメータの一方の入力端に第1の太陽電池モジュールの一方の極を接続し、前記第1の太陽電池モジュールの他方の極を隣接する第2の太陽電池モジュールの前記一方の極と同極に接続し、同様にして、第n−1の太陽電池モジュールの前記他方の極と同極を第nの太陽電池モジュールの前記一方の極と同極に接続し、第nの太陽電池モジュールの前記他方の極と同極を開放端とし、前記第1の太陽電池モジュールから第nの太陽電池モジュールの全ての太陽電池モジュールを1つの金属製架台に設置し該金属製架台をアースに接地し、前記LCRメータの他方の入力端をアースに接地してなる第1の接続形態と、前記第1の接続形態において前記第1の太陽電池モジュールから第nの太陽電池モジュールにおいていずれかの隣接する太陽電池モジュール間が断線状態にある第2の接続形態とからなり、前記第1の接続形態および前記第2の接続形態を屋外に配置し、前記LCRメータによって、前記第1の接続形態で測定された静電容量をCdとし、前記第2の接続形態で測定された静電容量をCxとするとき、断線箇所までの太陽電池モジュール枚数を下式
断線箇所までの太陽電池モジュール枚数=(Cx/Cd)×n
で求めることを特徴とする太陽電池アレイ故障診断方法。
ただし、前記nは2以上の任意の整数。
One pole of the first solar cell module is connected to one input end of the LCR meter, and the other pole of the first solar cell module is the same as the one pole of the adjacent second solar cell module In the same manner, the same polarity as the other pole of the (n-1) th solar cell module is connected to the same polarity as the one pole of the nth solar cell module. The same pole as the other pole is an open end, all the solar cell modules from the first solar cell module to the n-th solar cell module are installed on one metal frame, and the metal frame is grounded to the ground. , The first connection form in which the other input terminal of the LCR meter is grounded to the ground, and any one of the first solar cell module to the n-th solar cell module in the first connection form is adjacent to each other. Thick It is composed of a second connection form in which the battery modules are in a disconnected state, the first connection form and the second connection form are arranged outdoors, and measured by the LCR meter in the first connection form. Where Cd is the measured capacitance and Cx is the capacitance measured in the second connection configuration, the number of solar cell modules up to the disconnection location is calculated as follows: The number of solar cell modules up to the disconnection location = (Cx / Cd) × n
A method for diagnosing a failure of a solar cell array, characterized by:
However, n is an arbitrary integer of 2 or more.
JP2006273917A 2006-10-05 2006-10-05 Solar cell array fault diagnosis method Active JP4604250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006273917A JP4604250B2 (en) 2006-10-05 2006-10-05 Solar cell array fault diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006273917A JP4604250B2 (en) 2006-10-05 2006-10-05 Solar cell array fault diagnosis method

Publications (2)

Publication Number Publication Date
JP2008091828A true JP2008091828A (en) 2008-04-17
JP4604250B2 JP4604250B2 (en) 2011-01-05

Family

ID=39375633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006273917A Active JP4604250B2 (en) 2006-10-05 2006-10-05 Solar cell array fault diagnosis method

Country Status (1)

Country Link
JP (1) JP4604250B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124401A (en) * 2009-12-11 2011-06-23 System Jd:Kk Failure diagnosis system, failure diagnosis device, failure diagnosis method, program, and recording medium
WO2011104931A1 (en) * 2010-02-26 2011-09-01 株式会社 東芝 Fault diagnosis device and fault diagnosis method
JP2011181614A (en) * 2010-02-26 2011-09-15 Toshiba Corp Device and method for fault diagnosis
JP2011233584A (en) * 2010-04-23 2011-11-17 Toshiba Corp Abnormality diagnostic apparatus of photovoltaic power system
WO2012169496A1 (en) * 2011-06-10 2012-12-13 株式会社システム・ジェイディー Fault diagnostic system, fault diagnostic device, fault diagnostic method, program, storage medium, and object to be diagnosed
US8723547B2 (en) 2011-07-04 2014-05-13 Hitachi Metals, Ltd. Solar photovoltaic junction box
JP2017163805A (en) * 2016-03-11 2017-09-14 オムロン株式会社 Failure detector for solar cell and photovoltaic power generation system
JP2017529518A (en) * 2014-07-18 2017-10-05 イメジース テクノロジーズ アーペーエスEmazys Technologies Aps Method and system for fault detection and orientation in DC systems
JP6214845B1 (en) * 2016-06-09 2017-10-18 三菱電機株式会社 Failure diagnosis method and failure diagnosis device for solar cell string
WO2017212757A1 (en) * 2016-06-09 2017-12-14 三菱電機株式会社 Failure diagnostic method and failure diagnostic device of solar cell string
EP3337034A1 (en) 2016-12-14 2018-06-20 Omron Corporation Photovoltaic power generation system inspection apparatus and inspection method
JPWO2021124607A1 (en) * 2019-12-16 2021-06-24
KR102480168B1 (en) * 2021-12-10 2022-12-21 순천대학교 산학협력단 Detection of disconnection position of PV system using parasitic capacitor and the method using it
KR102508632B1 (en) * 2022-05-23 2023-03-09 순천대학교 산학협력단 Detection of disconnection position of PV system using parasitic capacitor and the method using it
KR102518017B1 (en) * 2022-05-23 2023-04-04 순천대학교 산학협력단 Detection of disconnection position of PV system using parasitic capacitor and the method using it
KR102518018B1 (en) * 2022-05-23 2023-04-04 순천대학교 산학협력단 Detection of disconnection position of PV system using parasitic capacitance and the method using it

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5872128B1 (en) 2014-04-23 2016-03-01 三菱電機株式会社 Diagnostic method for solar cell module, diagnostic circuit and diagnostic system for solar cell module
JP6390359B2 (en) 2014-11-07 2018-09-19 オムロン株式会社 Inspection method and inspection apparatus for photovoltaic power generation system
JP6597394B2 (en) 2016-02-29 2019-10-30 オムロン株式会社 Arc generating position detecting device and arc generating position detecting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222273A (en) * 1987-03-11 1988-09-16 Sumikin Kako Kk Detection of disconnected point for lines used in ground controlled approach system
JPH09115979A (en) * 1995-10-13 1997-05-02 Yamaha Corp Method for evaluating semiconductor device for testing
JPH11248779A (en) * 1998-02-27 1999-09-17 Canon Inc Method and apparatus for measurement of grounding state of solar battery module
JP2003318428A (en) * 2002-04-23 2003-11-07 Matsushita Electric Works Ltd Solar power generation module and wiring connection structure thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222273A (en) * 1987-03-11 1988-09-16 Sumikin Kako Kk Detection of disconnected point for lines used in ground controlled approach system
JPH09115979A (en) * 1995-10-13 1997-05-02 Yamaha Corp Method for evaluating semiconductor device for testing
JPH11248779A (en) * 1998-02-27 1999-09-17 Canon Inc Method and apparatus for measurement of grounding state of solar battery module
JP2003318428A (en) * 2002-04-23 2003-11-07 Matsushita Electric Works Ltd Solar power generation module and wiring connection structure thereof

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124401A (en) * 2009-12-11 2011-06-23 System Jd:Kk Failure diagnosis system, failure diagnosis device, failure diagnosis method, program, and recording medium
AU2010346725B2 (en) * 2010-02-26 2013-11-28 Kabushiki Kaisha Toshiba Fault diagnosis device and fault diagnosis method
WO2011104931A1 (en) * 2010-02-26 2011-09-01 株式会社 東芝 Fault diagnosis device and fault diagnosis method
JP2011181614A (en) * 2010-02-26 2011-09-15 Toshiba Corp Device and method for fault diagnosis
US9209743B2 (en) 2010-02-26 2015-12-08 Kabushiki Kaisha Toshiba Fault detection apparatus and fault detection method
JP2011233584A (en) * 2010-04-23 2011-11-17 Toshiba Corp Abnormality diagnostic apparatus of photovoltaic power system
JP2012256771A (en) * 2011-06-10 2012-12-27 System Jd:Kk Failure diagnosis method and diagnosed object
WO2012169496A1 (en) * 2011-06-10 2012-12-13 株式会社システム・ジェイディー Fault diagnostic system, fault diagnostic device, fault diagnostic method, program, storage medium, and object to be diagnosed
US9496823B2 (en) 2011-06-10 2016-11-15 System Jd Co., Ltd. Fault diagnosis system, fault diagnosis device, fault diagnosis method, program, computer-readable medium, and device under test
US8723547B2 (en) 2011-07-04 2014-05-13 Hitachi Metals, Ltd. Solar photovoltaic junction box
JP2017529518A (en) * 2014-07-18 2017-10-05 イメジース テクノロジーズ アーペーエスEmazys Technologies Aps Method and system for fault detection and orientation in DC systems
US10439553B2 (en) 2014-07-18 2019-10-08 Emazys Aps Method and system of fault detection and localization in DC-systems
JP2017163805A (en) * 2016-03-11 2017-09-14 オムロン株式会社 Failure detector for solar cell and photovoltaic power generation system
JP6214845B1 (en) * 2016-06-09 2017-10-18 三菱電機株式会社 Failure diagnosis method and failure diagnosis device for solar cell string
CN109314488A (en) * 2016-06-09 2019-02-05 三菱电机株式会社 The method for diagnosing faults and trouble-shooter of solar battery string
DE112017002898T5 (en) 2016-06-09 2019-02-14 Mitsubishi Electric Corporation Fault diagnosis method and fault diagnosis device for a solar cell string
WO2017212757A1 (en) * 2016-06-09 2017-12-14 三菱電機株式会社 Failure diagnostic method and failure diagnostic device of solar cell string
US10833628B2 (en) 2016-06-09 2020-11-10 Mitsubishi Electric Corporation Failure diagnostic method and failure diagnostic device of solar cell string
EP3337034A1 (en) 2016-12-14 2018-06-20 Omron Corporation Photovoltaic power generation system inspection apparatus and inspection method
US10727357B2 (en) 2016-12-14 2020-07-28 Omron Corporation Photovoltaic power generation system inspection apparatus and inspection method
JPWO2021124607A1 (en) * 2019-12-16 2021-06-24
WO2021124607A1 (en) * 2019-12-16 2021-06-24 三菱電機株式会社 Failure diagnosis device for solar battery string, solar power generation system equipped with same, and failure diagnosis method for solar battery string
JP7297098B2 (en) 2019-12-16 2023-06-23 三菱電機株式会社 Fault diagnosis device for solar cell string, photovoltaic power generation system provided with same, and fault diagnosis method for solar cell string
KR102480168B1 (en) * 2021-12-10 2022-12-21 순천대학교 산학협력단 Detection of disconnection position of PV system using parasitic capacitor and the method using it
KR102508632B1 (en) * 2022-05-23 2023-03-09 순천대학교 산학협력단 Detection of disconnection position of PV system using parasitic capacitor and the method using it
KR102518017B1 (en) * 2022-05-23 2023-04-04 순천대학교 산학협력단 Detection of disconnection position of PV system using parasitic capacitor and the method using it
KR102518018B1 (en) * 2022-05-23 2023-04-04 순천대학교 산학협력단 Detection of disconnection position of PV system using parasitic capacitance and the method using it

Also Published As

Publication number Publication date
JP4604250B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JP4604250B2 (en) Solar cell array fault diagnosis method
JP4780416B2 (en) Solar cell array fault diagnosis method
Bouraiou et al. Experimental investigation of observed defects in crystalline silicon PV modules under outdoor hot dry climatic conditions in Algeria
Takashima et al. Disconnection detection using earth capacitance measurement in photovoltaic module string
CN102362360B (en) For the fault detection method of solar power system
JP6362678B2 (en) Method and apparatus for regeneration of defects in solar panel equipment
WO2009131120A1 (en) Power lines for solar power generation system, solar power generation system using the power lines, and method for inspecting malfunction of the solar power generation system
US6271462B1 (en) Inspection method and production method of solar cell module
JP6091391B2 (en) Diagnostic method for solar panel
TW201414134A (en) Solar power generation monitoring method and solar power generation monitoring system used for said method
JP6093465B1 (en) Power generation diagnosis method and power generation diagnosis apparatus for solar power generation system
KR101939156B1 (en) The diagnosis system with multi-channel pv dc arrays
JP2010239045A (en) Solar power generation system and power line for solar power generation system
WO2017212757A1 (en) Failure diagnostic method and failure diagnostic device of solar cell string
KR101297078B1 (en) Photovoltaic monitoring device that can be default diagnosis each module and method of diagnosing Photovoltaic power generator
CN108028625A (en) Solar power system and its application method
CN105790711A (en) Detection method and system for silicon-based module defects of photovoltaic power station
JP2014165232A (en) Photovoltaic power generation module and photovoltaic power generation system
Kopp et al. I–V curves and visual inspection of 250 PV modules deployed over 2 years in Tucson
Kumar et al. Investigation and analysis of defects and degradations in desert fielded photovoltaic modules
JP6187853B2 (en) Solar cell operating point movement measurement method
KR101270534B1 (en) Method for monitoring photovoltaic array, and photovoltaic array monitoring apparatus
Gossla et al. Leakage current and performance loss of thin film solar modules
JP5205530B1 (en) Solar cell array inspection system
TW201938967A (en) Solar power generation device and method of controlling solar power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

R150 Certificate of patent or registration of utility model

Ref document number: 4604250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250