JP2008091361A - Charged particle beam apparatus, and process for fabricating device - Google Patents

Charged particle beam apparatus, and process for fabricating device Download PDF

Info

Publication number
JP2008091361A
JP2008091361A JP2006266941A JP2006266941A JP2008091361A JP 2008091361 A JP2008091361 A JP 2008091361A JP 2006266941 A JP2006266941 A JP 2006266941A JP 2006266941 A JP2006266941 A JP 2006266941A JP 2008091361 A JP2008091361 A JP 2008091361A
Authority
JP
Japan
Prior art keywords
magnetic pole
bore diameter
end opening
magnetic
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006266941A
Other languages
Japanese (ja)
Other versions
JP2008091361A5 (en
JP4913521B2 (en
Inventor
Maki Hosoda
真希 細田
Yasunari Hayata
康成 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Canon Inc
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Canon Inc, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2006266941A priority Critical patent/JP4913521B2/en
Publication of JP2008091361A publication Critical patent/JP2008091361A/en
Publication of JP2008091361A5 publication Critical patent/JP2008091361A5/ja
Application granted granted Critical
Publication of JP4913521B2 publication Critical patent/JP4913521B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charged particle beam apparatus having a magnetic field lens with small spherical aberration, and to provide a process for fabricating high integration semiconductor devices with accurate pattern precisions. <P>SOLUTION: The charged particle beam apparatus has a second magnetic field lens 602b arranged under a first magnetic field lens 602a in the direction of the optical axis. An opening 102b on the lower end side of a first magnetic pole 102 has a bore diameter D1L larger than the bore diameter D1U of an opening 102a on the upper end side of the first magnetic pole 102, the bore diameter D2U of an opening 103a on the upper end side of the second magnetic pole 103, and the bore diameter D2L of an opening 103b on the lower end side of the second magnetic pole 103. A process for fabricating a device by the charged particle beam apparatus is also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体集積回路等の露光に用いられる電子線露光装置、イオンビーム露光装置等の荷電粒子線露光装置、半導体集積回路の製造過程で回路等のパターンを検査する走査型電子顕微鏡、電子線測長装置等の検査装置及び透過電子顕微鏡等の荷電粒子線装置およびその荷電粒子線装置を用いるデバイス製造方法に関するものである。   The present invention relates to an electron beam exposure apparatus used for exposure of a semiconductor integrated circuit or the like, a charged particle beam exposure apparatus such as an ion beam exposure apparatus, a scanning electron microscope for inspecting a pattern of a circuit or the like in the process of manufacturing a semiconductor integrated circuit, an electron The present invention relates to an inspection apparatus such as a line length measuring apparatus, a charged particle beam apparatus such as a transmission electron microscope, and a device manufacturing method using the charged particle beam apparatus.

従来、光学設計において光学系の球面収差を低減させる方法として、屈折面の平均分担、高屈折率ガラスの利用、レンズパワーの分割、凹レンズの利用、非球面レンズの利用などが、例えば非特許文献1に開示されている。
また、電子光学系において電磁レンズの球面収差を低減させる方法として、磁極の強励磁化や多極子レンズの利用などが、例えば非特許文献2に開示されている。
さらに、特開2004−303547号公報で、複数個の多極子レンズを組み合わせて対物レンズの球面収差を効率良く相殺させる方法が提案されている。
特開2004−303547号公報 レンズデザインガイド 高野栄一著 写真工業出版社 P.38−41 電子・イオンビーム光学 裏克巳著 共立出版 P.53−80、P.119−128
Conventionally, methods for reducing spherical aberration of an optical system in optical design include, for example, the average sharing of refractive surfaces, the use of high refractive index glass, the division of lens power, the use of concave lenses, the use of aspherical lenses, etc. 1 is disclosed.
Further, as a method for reducing the spherical aberration of an electromagnetic lens in an electron optical system, non-patent document 2 discloses, for example, strong magnetic pole excitation and use of a multipole lens.
Furthermore, Japanese Patent Laid-Open No. 2004-303547 proposes a method for efficiently canceling out spherical aberration of an objective lens by combining a plurality of multipole lenses.
JP 2004-303547 A Lens Design Guide by Eiichi Takano 38-41 Electron / Ion Beam Optics Katsuaki Ura Kyoritsu Publishing P. 53-80, P.I. 119-128

しかし、近年、半導体集積回路の微細化が進むことで、より精度の高い電子線露光装置やイオンビーム露光装置等の荷電粒子線露光装置や、より分解能の高い走査型電子顕微鏡や電子線測長装置等の検査装置や透過電子顕微鏡などが求められているにも関わらず、従来の電磁レンズでは、光学レンズのように凹レンズを簡単に作ることが困難なため、球面収差を大幅に低減することは難しい。そのため、従来の電磁レンズを用いて、より精度の高い荷電粒子線装置やより高分解能な検査装置を作製することは困難である。
そこで、本発明は、球面収差の小さい磁場レンズを備えた荷電粒子線装置および高集積度の半導体デバイスのパターン寸法を精度良く製造することが出来るデバイス製造方法を提供することを目的とする。
However, in recent years, with the progress of miniaturization of semiconductor integrated circuits, charged particle beam exposure apparatuses such as electron beam exposure apparatuses and ion beam exposure apparatuses with higher precision, scanning electron microscopes with higher resolution, and electron beam length measurement. Despite the need for inspection devices such as inspection devices and transmission electron microscopes, it is difficult to make concave lenses as easily as conventional optical lenses, so it is possible to significantly reduce spherical aberration. Is difficult. For this reason, it is difficult to produce a charged particle beam apparatus with higher accuracy and an inspection apparatus with higher resolution using a conventional electromagnetic lens.
Accordingly, an object of the present invention is to provide a charged particle beam apparatus having a magnetic lens with small spherical aberration and a device manufacturing method capable of accurately manufacturing pattern dimensions of highly integrated semiconductor devices.

上記の目的を達成するための本発明の荷電粒子線装置は、円周状に構成され上端側開口および下端側開口を有する第1の磁極および電磁コイルを備える第1の磁場レンズと、
円周状に構成され上端側開口および下端側開口を有する第2の磁極および電磁コイルを備え、前記第1の磁場レンズの光軸方向の下側に隣接される第2の磁場レンズと、を有する荷電粒子線装置において、
前記第1の磁極の下端側開口のボア径は、前記第1の磁極の上端側開口のボア径、前記第2の磁極の上端側開口のボア径、および、前記第2の磁極の下端側開口のボア径のいずれよりも大きいことを特徴とする。
さらに、本発明の荷電粒子線装置は、前記第2の磁極の上端側開口のボア径は、前記第1の磁極の上端側開口のボア径、前記第1の磁極の下端側開口のボア径、および、前記第2の磁極の下端側開口のボア径のいずれよりも小さい。
さらに、本発明の荷電粒子線装置は、前記第1の磁極の上端側開口のボア径と前記第2の磁極の下端側開口のボア径とは一致する。
さらに、本発明の荷電粒子線装置は、前記第1の磁極の下端側開口のボア径は前記第1の磁極の上端側開口のボア径より大きく、前記第2の磁極の上端側開口のボア径は前記第2の磁極の下端側開口のボア径より小さく、これらの差の絶対値は一致する。
さらに、本発明の荷電粒子線装置は、荷電粒子線を用いて被露光基板上に所望のパターンを露光する露光装置であることを特徴とする。
さらに、本発明のデバイス製造方法は、前記露光装置を用いて前記被露光基板に露光を行う工程と、露光された前記被露光基板を現像する工程と、を備えることを特徴とする。
In order to achieve the above object, a charged particle beam device of the present invention includes a first magnetic field lens including a first magnetic pole and an electromagnetic coil that are circumferentially configured and have an upper end opening and a lower end opening;
A second magnetic field lens comprising a second magnetic pole and an electromagnetic coil that are circumferentially configured and have an upper end opening and a lower end opening, and are adjacent to the lower side in the optical axis direction of the first magnetic field lens; In a charged particle beam apparatus having
The bore diameter of the lower end opening of the first magnetic pole is the bore diameter of the upper end opening of the first magnetic pole, the bore diameter of the upper end opening of the second magnetic pole, and the lower end side of the second magnetic pole. It is characterized by being larger than any of the bore diameters of the opening.
Further, in the charged particle beam device of the present invention, the bore diameter of the upper end opening of the second magnetic pole is the bore diameter of the upper end opening of the first magnetic pole and the bore diameter of the lower end opening of the first magnetic pole. , And the bore diameter of the lower end opening of the second magnetic pole is smaller.
Furthermore, in the charged particle beam device of the present invention, the bore diameter of the upper end opening of the first magnetic pole matches the bore diameter of the lower end opening of the second magnetic pole.
Furthermore, in the charged particle beam device of the present invention, the bore diameter of the lower end opening of the first magnetic pole is larger than the bore diameter of the upper end opening of the first magnetic pole, and the bore diameter of the upper end opening of the second magnetic pole. The diameter is smaller than the bore diameter of the opening on the lower end side of the second magnetic pole, and the absolute values of these differences coincide.
Furthermore, the charged particle beam apparatus of the present invention is an exposure apparatus that exposes a desired pattern on a substrate to be exposed using a charged particle beam.
Furthermore, the device manufacturing method of the present invention comprises a step of exposing the substrate to be exposed using the exposure apparatus, and a step of developing the exposed substrate to be exposed.

本発明の荷電粒子線装置によれば、前記第1の磁場レンズの光軸方向の下側に隣接される第2の磁場レンズを有し、前記第1の磁極の下端側開口のボア径は、前記第1の磁極の上端側開口のボア径、前記第2の磁極の上端側開口のボア径、および、前記第2の磁極の下端側開口のボア径のいずれよりも大きく構成されることにより、第1の磁場レンズおよび第2の磁場レンズの磁場分布の形状を変化させ、球面収差を低減させる。
さらに、本発明のデバイス製造方法によれば、本発明の荷電粒子線装置の露光装置を用いて前記被露光基板に露光を行う工程と、露光された前記被露光基板を現像する工程と、を備えるため、高集積度の半導体デバイスをパターン寸法を精度良く製造することが出来る。
According to the charged particle beam apparatus of the present invention, the first magnetic field lens has the second magnetic field lens adjacent to the lower side in the optical axis direction, and the bore diameter of the lower end opening of the first magnetic pole is The bore diameter of the upper end opening of the first magnetic pole, the bore diameter of the upper end opening of the second magnetic pole, and the bore diameter of the lower end opening of the second magnetic pole are configured to be larger. Thus, the shape of the magnetic field distribution of the first magnetic lens and the second magnetic lens is changed to reduce the spherical aberration.
Furthermore, according to the device manufacturing method of the present invention, the step of exposing the substrate to be exposed using the exposure apparatus of the charged particle beam device of the present invention, and the step of developing the exposed substrate to be exposed Therefore, a highly integrated semiconductor device can be manufactured with high pattern dimensions.

以下、本発明を、その実施例に基づいて、図面を参照して説明する。   Hereinafter, the present invention will be described with reference to the drawings based on the embodiments.

図1の断面図を参照して、本発明の実施例1の荷電粒子線装置を構成する磁場レンズを説明する。
本発明の実施例1の荷電粒子線装置では荷電粒子線として電子ビームを用いるが、電子ビームの代わりにイオンビームを用いても良い。
図示されない光源から照射される電子ビームは光軸101を有し、下方に図示されない像面が位置する。
第1の磁場レンズ602aは、円周状に構成され上端側開口102aおよび下端側開口102bを有する第1の磁極102および電磁コイル104を備える。電磁104に電流を流すことで磁場を発生させて電子ビームを収束させる。
第2の磁場レンズ602bは、円周状に構成され上端側開口103aおよび下端側開口103bを有する第2の磁極103および電磁コイル105を備える。電磁コイル105に電流を流すことで磁場を発生させて電子ビームを収束させる。
さらに、第2の磁場レンズ602bは、第1の磁場レンズ602aの光軸101方向の下側に隣接される。
また、第1の磁極102の下端側開口102bの内径の半径であるボア径D1Lは、第1の磁極102の上端側開口102aの内径の半径であるボア径D1U、第2の磁極103の上端側開口103aの内径の半径であるボア径D2U、および、第2の磁極103の下端側開口103bの内径の半径であるボア径D2Lのいずれよりも大きく構成される。
With reference to the cross-sectional view of FIG. 1, a magnetic lens constituting the charged particle beam apparatus according to the first embodiment of the present invention will be described.
In the charged particle beam apparatus according to the first embodiment of the present invention, an electron beam is used as the charged particle beam, but an ion beam may be used instead of the electron beam.
An electron beam emitted from a light source (not shown) has an optical axis 101, and an image plane (not shown) is positioned below.
The first magnetic field lens 602a includes a first magnetic pole 102 and an electromagnetic coil 104 that are formed in a circumferential shape and have an upper end side opening 102a and a lower end side opening 102b. By applying a current to the electromagnetic 104, a magnetic field is generated to converge the electron beam.
The second magnetic lens 602b includes a second magnetic pole 103 and an electromagnetic coil 105 which are configured in a circumferential shape and have an upper end side opening 103a and a lower end side opening 103b. A current is passed through the electromagnetic coil 105 to generate a magnetic field, thereby converging the electron beam.
Further, the second magnetic lens 602b is adjacent to the lower side in the optical axis 101 direction of the first magnetic lens 602a.
The bore diameter D1L, which is the radius of the inner diameter of the lower end opening 102b of the first magnetic pole 102, is the bore diameter D1U, which is the radius of the inner diameter of the upper end opening 102a of the first magnetic pole 102, and the upper end of the second magnetic pole 103. The bore diameter D2U, which is the radius of the inner diameter of the side opening 103a, and the bore diameter D2L, which is the radius of the inner diameter of the lower end side opening 103b of the second magnetic pole 103, are configured.

さらに、第2の磁極103の上端側開口103aのボア径D2Uは、第1の磁極102の上端側開口102aのボア径D1U、第1の磁極102の下端側開口102bのボア径D1L、および、第2の磁極103の下端側開口103bのボア径D2Lのいずれよりも小さく構成されることが好適である。
さらに、第1の磁極102の上端側開口102aのボア径D1Uと第2の磁極103の下端側開口103bのボア径D2Lとは一致することが好適である。
さらに、第1の磁極102の下端側開口102bのボア径D1Lは第1の磁極102の上端側開口102aのボア径D1Uより大きく、第2の磁極103の上端側開口103aのボア径D2Uは第2の磁極103の下端側開口103bのボア径D2Lより小さく、これらの差の絶対値は一致することが好適である。
Further, the bore diameter D2U of the upper end side opening 103a of the second magnetic pole 103 is the bore diameter D1U of the upper end side opening 102a of the first magnetic pole 102, the bore diameter D1L of the lower end side opening 102b of the first magnetic pole 102, and It is preferable that the second magnetic pole 103 is configured to be smaller than any of the bore diameters D2L of the lower end side opening 103b.
Furthermore, it is preferable that the bore diameter D1U of the upper end side opening 102a of the first magnetic pole 102 and the bore diameter D2L of the lower end side opening 103b of the second magnetic pole 103 coincide.
Further, the bore diameter D1L of the lower end opening 102b of the first magnetic pole 102 is larger than the bore diameter D1U of the upper end opening 102a of the first magnetic pole 102, and the bore diameter D2U of the upper end opening 103a of the second magnetic pole 103 is It is preferable that the absolute value of the difference between them is smaller than the bore diameter D2L of the lower end opening 103b of the second magnetic pole 103.

このように、2つの第1の磁場レンズ602aおよび第2の磁場レンズ602bを設け、第1の磁極102および第2の磁極103のボア径を磁極毎に変えた理由について説明する。
光学レンズでの球面収差補正方法として一般的に行われている、(1)屈折面の平均分担、(2)レンズパワーの平均分担、の2つを磁場レンズに応用した。光学レンズにおける、(1)屈折面の平均分担とは、レンズの左右でガラス面の曲率半径を変えることで球面収差を低減させる方法である。磁場レンズの場合、2つの磁極のボア径を変えることで、磁場分布の形状を変化させ、(1)屈折面の平均分担と同様の効果を期待できる。次に、光学レンズにおける、(1)レンズパワーの平均分担とは、2つのレンズの合成焦点距離を変えずにレンズを2つ並べてレンズパワーを分散させることで球面収差を低減させる方法である。磁場レンズの場合、2つの磁場レンズを並べることで同様の効果を期待できる。
The reason why the two first magnetic lens 602a and the second magnetic lens 602b are provided as described above and the bore diameters of the first magnetic pole 102 and the second magnetic pole 103 are changed for each magnetic pole will be described.
Two commonly used methods for correcting spherical aberration in an optical lens, (1) average sharing of refractive surfaces and (2) average sharing of lens power, were applied to a magnetic lens. In the optical lens, (1) average sharing of the refracting surface is a method of reducing spherical aberration by changing the radius of curvature of the glass surface on the left and right sides of the lens. In the case of a magnetic lens, the shape of the magnetic field distribution can be changed by changing the bore diameters of the two magnetic poles, and (1) the same effect as the average sharing of the refractive surface can be expected. Next, (1) average lens power sharing in an optical lens is a method of reducing spherical aberration by arranging two lenses and dispersing the lens power without changing the combined focal length of the two lenses. In the case of a magnetic lens, the same effect can be expected by arranging two magnetic lenses.

次に、第1の磁極102の上端側開口102aのボア径D1Uと第2の磁極103の下端側開口103bのボア径D2Lとを一致させ、それらより第1の磁極102の下端側開口102bのボア径D1Lを大きく、第2の磁極103の上端側開口103aのボア径D2Uを小さくさせた場合の球面収差量を、第1の磁場レンズ602aおよび第2の磁場レンズ602bの光学収差計算から求めた。
図2は、第1の磁極102の上端側開口102aのボア径D1Uと第2の磁極103の下端側開口103bのボア径D2Lとを一致させ、そのボア径を基準ボア径とし、X軸に第2の磁極103の上端側開口103aのボア径D2Uと基準ボア径との差、Y軸に第1の磁極102の下端側開口102bのボア径D1Lと基準ボア径との差、Z軸に球面収差量を並べたグラフである。
2つの第1の磁場レンズ602aおよび第2の磁場レンズ602bの合成焦点距離は125mm、電子ビームの開口数(NA)は18.1mrad、磁極ギャップは32mm、D1U及びD2Lは40mmとした。
図2から球面収差量は、X軸が−16mm近傍、Y軸が+16mm近傍に極小値を持つことが分かる。
図3は、第1の磁極102の上端側開口102aのボア径D1Uと第2の磁極103の下端側開口103bのボア径D2Lとを一致させ、そのボア径を基準ボア径とし、基準ボア径を10mmから60mmまで5mm単位で変化させた場合の球面収差量を示すグラフである。
その時、第1の磁極102の下端側開口102bのボア径D1Lと基準ボア径との差分量の絶対値と第2の磁極103の下端側開口103bのボア径D2Lと基準ボア径との差分量の絶対値は一致しており、第2の磁極103の上端側開口103aのボア径D2Uと基準ボア径との差をX軸としている。
Y軸は、第2の磁極103の上端側開口103aのボア径D2Uと基準ボア径との差がゼロであるときを1として規格化した球面収差量である。
Next, the bore diameter D1U of the upper end side opening 102a of the first magnetic pole 102 and the bore diameter D2L of the lower end side opening 103b of the second magnetic pole 103 are made to coincide with each other. The amount of spherical aberration when the bore diameter D1L is increased and the bore diameter D2U of the upper end opening 103a of the second magnetic pole 103 is decreased is obtained from the optical aberration calculation of the first magnetic lens 602a and the second magnetic lens 602b. It was.
In FIG. 2, the bore diameter D1U of the upper end side opening 102a of the first magnetic pole 102 and the bore diameter D2L of the lower end side opening 103b of the second magnetic pole 103 are made to coincide with each other, and the bore diameter is taken as the reference bore diameter. The difference between the bore diameter D2U of the upper end opening 103a of the second magnetic pole 103 and the reference bore diameter, the difference between the bore diameter D1L of the lower end opening 102b of the first magnetic pole 102 and the reference bore diameter on the Y axis, and the Z axis It is the graph which arranged the amount of spherical aberration.
The combined focal length of the two first magnetic lens 602a and the second magnetic lens 602b was 125 mm, the numerical aperture (NA) of the electron beam was 18.1 mrad, the magnetic pole gap was 32 mm, and D1U and D2L were 40 mm.
From FIG. 2, it can be seen that the spherical aberration amount has a minimum value in the vicinity of −16 mm on the X axis and in the vicinity of +16 mm on the Y axis.
FIG. 3 shows that the bore diameter D1U of the upper end side opening 102a of the first magnetic pole 102 and the bore diameter D2L of the lower end side opening 103b of the second magnetic pole 103 coincide with each other, and that the bore diameter is taken as the reference bore diameter. It is a graph which shows the amount of spherical aberration when changing from 10 mm to 60 mm in increments of 5 mm.
At that time, the absolute value of the difference between the bore diameter D1L of the lower end opening 102b of the first magnetic pole 102 and the reference bore diameter and the difference between the bore diameter D2L of the lower end opening 103b of the second magnetic pole 103 and the reference bore diameter. Are the same, and the difference between the bore diameter D2U of the upper end side opening 103a of the second magnetic pole 103 and the reference bore diameter is taken as the X axis.
The Y-axis is a spherical aberration amount normalized when the difference between the bore diameter D2U of the upper end opening 103a of the second magnetic pole 103 and the reference bore diameter is zero.

図4は、図3と同様に、第1の磁極102の上端側開口102aのボア径D1Uと第2の磁極103の下端側開口103bのボア径D2Lとを一致させ、そのボア径を基準ボア径とし、基準ボア径を2mmから10mmまで2mm単位で変化させた場合の球面収差量を示すグラフである。
その時、図3と同様に、第1の磁極102の下端側開口102bのボア径D1Lと基準ボア径との差分量の絶対値と第2の磁極103の下端側開口103bのボア径D2Lと基準ボア径との差分量の絶対値は一致しており、第2の磁極103の上端側開口103aのボア径D2Uと基準ボア径との差をX軸としている。
Y軸は、第2の磁極103の上端側開口103aのボア径D2Uと基準ボア径との差がゼロであるときを1として規格化した球面収差量である。
図2のときと同様に、2つの磁場レンズの合成焦点距離は125mm、電子ビームの開口数(NA)は18.1mrad、磁極ギャップは32mmとした。
図3と図4とから、基準ボア径の値によって球面収差量の極小値はそれぞれ異なることが分かる。だが、いずれの基準ボア径においても、基準ボア径よりD1Lを大きく、基準ボア径より第2の磁極103の上端側開口103aのボア径D2Uを小さくさせた場合の方が、基準ボア径と第1の磁極102の下端側開口102bのボア径D1L及び第2の磁極103の上端側開口103aのボア径D2Uを一致させた場合よりも球面収差量は小さくなる。
具体的には、
0mm<(D1U=D2L)≦10mmのとき、
0mm<(D1L−D1U)=(D2U−D2L)≦5mmとなるようにする。
10mm<(D1U=D2L)≦20mmのとき、
0mm<(D1L−D1U)=(D2U−D2L)≦14mmとなるようにする。
20mm<(D1U=D2L)≦30mmのとき、
0mm<(D1L−D1U)=(D2U−D2L)≦22mmとなるようにする。

30mm<(D1U=D2L)≦40mmのとき、
0mm<(D1L−D1U)=(D2U−D2L)≦32mmとなるようにする。
40mm<(D1U=D2L)≦50mmのとき、
0mm<(D1L−D1U)=(D2U−D2L)≦41mmとなるようにする。
以上のように数値を設定することで、基準ボア径と第1の磁極102の下端側開口102bのボア径D1L及び第2の磁極103の上端側開口103aのボア径D2Uを一致させた場合よりも球面収差量を小さくすることが出来る。
4, as in FIG. 3, the bore diameter D <b> 1 </ b> U of the upper end side opening 102 a of the first magnetic pole 102 and the bore diameter D <b> 2 </ b> L of the lower end side opening 103 b of the second magnetic pole 103 are made to coincide with each other. It is a graph which shows a spherical-aberration amount when it is set as a diameter and a reference | standard bore diameter is changed in 2 mm unit from 2 mm to 10 mm.
At that time, similarly to FIG. 3, the absolute value of the difference between the bore diameter D1L of the lower end opening 102b of the first magnetic pole 102 and the reference bore diameter, the bore diameter D2L of the lower end opening 103b of the second magnetic pole 103, and the reference The absolute values of the difference amounts with the bore diameter are the same, and the difference between the bore diameter D2U of the upper end side opening 103a of the second magnetic pole 103 and the reference bore diameter is taken as the X axis.
The Y-axis is a spherical aberration amount normalized when the difference between the bore diameter D2U of the upper end opening 103a of the second magnetic pole 103 and the reference bore diameter is zero.
As in FIG. 2, the combined focal length of the two magnetic lenses was 125 mm, the numerical aperture (NA) of the electron beam was 18.1 mrad, and the magnetic pole gap was 32 mm.
3 and 4 that the minimum value of the spherical aberration amount differs depending on the value of the reference bore diameter. However, at any reference bore diameter, D1L is larger than the reference bore diameter, and the bore diameter D2U of the upper end opening 103a of the second magnetic pole 103 is smaller than the reference bore diameter. The amount of spherical aberration is smaller than when the bore diameter D1L of the lower end side opening 102b of the first magnetic pole 102 and the bore diameter D2U of the upper end side opening 103a of the second magnetic pole 103 are matched.
In particular,
When 0 mm <(D1U = D2L) ≦ 10 mm,
0 mm <(D1L−D1U) = (D2U−D2L) ≦ 5 mm.
When 10 mm <(D1U = D2L) ≦ 20 mm,
0 mm <(D1L−D1U) = (D2U−D2L) ≦ 14 mm.
When 20 mm <(D1U = D2L) ≦ 30 mm,
0 mm <(D1L−D1U) = (D2U−D2L) ≦ 22 mm.

When 30 mm <(D1U = D2L) ≦ 40 mm,
0 mm <(D1L−D1U) = (D2U−D2L) ≦ 32 mm.
When 40 mm <(D1U = D2L) ≦ 50 mm,
0 mm <(D1L−D1U) = (D2U−D2L) ≦ 41 mm.
By setting the numerical values as described above, the reference bore diameter is matched with the bore diameter D1L of the lower end side opening 102b of the first magnetic pole 102 and the bore diameter D2U of the upper end side opening 103a of the second magnetic pole 103. Also, the amount of spherical aberration can be reduced.

図5は、基準ボア径と、球面収差量が最小値となる第2の磁極103の上端側開口103aのボア径D2Uと基準ボア径との差分量の絶対値との関係を、基準ボア径に対する比で示したグラフである。
X軸は基準ボア径の大きさ、Y軸は球面収差量が最小値となる第2の磁極103の上端側開口103aのボア径D2Uと基準ボア径との差分量の絶対値を基準ボア径で割った値である。
2mmから10mmまで、また、10mmから60mmまでを直線近似することにより、各基準ボア径における最適な第1の磁極102の下端側開口102bのボア径D1L及び第2の磁極103の上端側開口103aのボア径D2Uを求めることが出来る。
上記した内容は、第1の磁場レンズ602aと第2の磁場レンズ602bの電磁コイル形状に依存するものではなく、第1の磁場レンズ602aと第2の磁場レンズ602bの電磁コイル形状を変えても同様に球面収差量を低減させることが出来る。
さらに、上記した内容は、第1の磁場レンズ602aと第2の磁場レンズ602bの間の距離、第1の磁場レンズ602aと第2の磁場レンズ602bの合成パワー、電子ビームの開口数(NA)、第1の磁場レンズ602aと第2の磁場レンズ602bそれぞれの磁極ギャップが変化しても適用することができる。
FIG. 5 shows the relationship between the reference bore diameter and the absolute value of the difference amount between the bore diameter D2U of the upper end opening 103a of the second magnetic pole 103 and the reference bore diameter at which the spherical aberration amount has the minimum value. It is the graph shown by ratio with respect to.
The X-axis is the size of the reference bore diameter, and the Y-axis is the absolute value of the difference amount between the bore diameter D2U of the upper end opening 103a of the second magnetic pole 103 and the reference bore diameter where the spherical aberration amount is the minimum value. The value divided by.
By linearly approximating from 2 mm to 10 mm and from 10 mm to 60 mm, the optimum bore diameter D1L of the lower end side opening 102b of the first magnetic pole 102 and the upper end side opening 103a of the second magnetic pole 103 at each reference bore diameter. The bore diameter D2U can be obtained.
The above contents do not depend on the electromagnetic coil shapes of the first magnetic lens 602a and the second magnetic lens 602b, and even if the electromagnetic coil shapes of the first magnetic lens 602a and the second magnetic lens 602b are changed. Similarly, the amount of spherical aberration can be reduced.
Further, the above-described contents are the distance between the first magnetic lens 602a and the second magnetic lens 602b, the combined power of the first magnetic lens 602a and the second magnetic lens 602b, and the numerical aperture (NA) of the electron beam. Even when the magnetic pole gaps of the first magnetic lens 602a and the second magnetic lens 602b change, the present invention can be applied.

次に、図6の要部概略図を参照して、上記した第1の磁場レンズ602aと第2の磁場レンズ602bを用いた本発明の実施例2の電子ビーム露光装置について説明する。
この電子ビーム露光装置は、複数の電子ビームを用いてウエハなど被露光基板を露光する装置で、そのマルチソースモジュールは、複数の電子源像を形成し、その電子源像から電子ビームを放射し、5×5の25個が2次元的に配列される。
電子銃から成る電子源601は、クロスオーバー像を形成するもので、この電子源601から放射される電子ビーム601aは、2つの第1の磁場レンズ602aと第2の磁場レンズ602bから成るコンデンサーレンズによって略平行な電子ビーム610bとなる。アパーチャアレイ603は、開口が2次元的に配列されて形成される。レンズアレイ604は、同一の光学パワーを有する静電レンズが2次元的に配されて形成される。マルチ偏向器アレイ605、606、607、608は、個別に駆動可能な静電偏向器が2次元的に配列されて形成される。ブランカーアレイ609は、個別に駆動可能な静電のブランカーが2次元的に配列さえて形成される。
Next, an electron beam exposure apparatus according to the second embodiment of the present invention using the first magnetic lens 602a and the second magnetic lens 602b described above will be described with reference to a schematic diagram of a main part in FIG.
This electron beam exposure apparatus uses a plurality of electron beams to expose an exposed substrate such as a wafer. The multi-source module forms a plurality of electron source images and emits electron beams from the electron source images. 25 of 5 × 5 are arranged two-dimensionally.
An electron source 601 composed of an electron gun forms a crossover image, and an electron beam 601a emitted from the electron source 601 is a condenser lens including two first magnetic lens 602a and a second magnetic lens 602b. As a result, a substantially parallel electron beam 610b is obtained. The aperture array 603 is formed with openings two-dimensionally arranged. The lens array 604 is formed by two-dimensionally arranging electrostatic lenses having the same optical power. The multi deflector arrays 605, 606, 607, and 608 are formed by two-dimensionally arranging electrostatic deflectors that can be individually driven. The blanker array 609 is formed by two-dimensionally arranging electrostatic blankers that can be individually driven.

次に、マルチソースモジュールの各機能について説明する。
第1の磁場レンズ602aと第2の磁場レンズ602bから成るコンデンサーレンズからの略平行な電子ビーム601bは、アパーチャアレイ603によって複数の電子ビーム601cに分割される。分割された電子ビーム601cは、対応するレンズアレイ604の静電レンズを介して、ブランカーアレイ609の対応するブランカー上に、電子源601の中間像623を形成する。
この時、マルチ偏向器アレイ605、506、507、508は、ブランカーアレイ509上に形成される電子源601の中間像623の位置(光軸と直交する面内の位置)を個別に調整する。
また、ブランカーアレイ609で偏向された電子ビームは、ブランキングアパーチャ610によって遮断されるため、ウエハ620には照射されない。
一方、ブランカーアレイ509で偏向されない電子ビーム601dは、ブランキングアパーチャ610によって遮断されないため、ウエハ620には照射される。
マルチソースモジュールで形成された電子源の複数の中間像は、磁場レンズ615a、615b、616a、616b、617a、617b、618a、618bの縮小投影系を介して、ウエハ620に投影される。
この時、複数の中間像がウエハ620に投影される際、焦点位置は、ダイナミックフォーカスレンズ(静電もしくは磁場レンズ)611、612で調整できる。主偏向器613、副偏向器514は,各電子ビーム601dを露光すべき個所へ偏向させるものである。反射電子検出器619はウエハ620上に形成された電子源の各中間像の位置を計測するためのである。ステージ521はウエハ620を移動させるものである。マーク622は電子ビーム601dの位置およびビーム形状を検出するためのである。
第1の磁場レンズ602aと第2の磁場レンズ602bから成るコンデンサーレンズの球面収差が大きいと、平行な電子ビーム601bをアパーチャアレイ603に照射することができない。すると、電子ビーム601bのテレセン度(個々の電子ビームの傾き)が悪化し、フィールド内でのパターンの位置ずれや、フィールド間のつなぎ精度など描画性能を大きく低下させる。
電子ビームのテレセン度を向上させるため、上記した2つの第1の磁場レンズ602aと第2の磁場レンズ602bから成り、球面収差を低減させたコンデンサーレンズを用いる必要がある。
また、本実施例2において、縮小投影系を構成する磁場レンズ615a、616a、617a、618aを第1の磁場レンズ602a、磁場レンズ615b、616b、617b、618bを第2の磁場レンズ602bから構成してもよい。
さらに、この第1の磁場レンズ602aと第2の磁場レンズ602bは、電子線露光装置やイオンビーム露光装置等の荷電粒子線露光装置だけでなく、走査型電子顕微鏡や電子線測長装置等の検査装置、及び透過電子顕微鏡などの特に対物レンズなどに応用できる。
Next, each function of the multi-source module will be described.
The substantially parallel electron beam 601b from the condenser lens including the first magnetic field lens 602a and the second magnetic field lens 602b is divided into a plurality of electron beams 601c by the aperture array 603. The divided electron beam 601 c forms an intermediate image 623 of the electron source 601 on the corresponding blanker of the blanker array 609 via the electrostatic lens of the corresponding lens array 604.
At this time, the multi deflector arrays 605, 506, 507, and 508 individually adjust the position of the intermediate image 623 of the electron source 601 formed on the blanker array 509 (the position in the plane orthogonal to the optical axis).
Further, since the electron beam deflected by the blanker array 609 is blocked by the blanking aperture 610, the wafer 620 is not irradiated.
On the other hand, since the electron beam 601d that is not deflected by the blanker array 509 is not blocked by the blanking aperture 610, the wafer 620 is irradiated.
A plurality of intermediate images of the electron source formed by the multi-source module are projected onto the wafer 620 via the reduction projection system of the magnetic lens 615a, 615b, 616a, 616b, 617a, 617b, 618a, 618b.
At this time, when a plurality of intermediate images are projected onto the wafer 620, the focal position can be adjusted by dynamic focus lenses (electrostatic or magnetic field lenses) 611 and 612. The main deflector 613 and the sub deflector 514 deflect each electron beam 601d to a position to be exposed. The backscattered electron detector 619 is for measuring the position of each intermediate image of the electron source formed on the wafer 620. The stage 521 is for moving the wafer 620. The mark 622 is for detecting the position and beam shape of the electron beam 601d.
If the condenser lens composed of the first magnetic lens 602a and the second magnetic lens 602b has a large spherical aberration, the parallel electron beam 601b cannot be irradiated onto the aperture array 603. Then, the telecentricity (inclination of each electron beam) of the electron beam 601b is deteriorated, and the drawing performance such as the positional deviation of the pattern in the field and the connection accuracy between the fields is greatly reduced.
In order to improve the telecentricity of the electron beam, it is necessary to use a condenser lens composed of the two first magnetic lens 602a and the second magnetic lens 602b described above and having reduced spherical aberration.
In the second embodiment, the magnetic lenses 615a, 616a, 617a, and 618a constituting the reduction projection system are configured by the first magnetic lens 602a, and the magnetic lenses 615b, 616b, 617b, and 618b are configured by the second magnetic lens 602b. May be.
Furthermore, the first magnetic lens 602a and the second magnetic lens 602b are not only charged particle beam exposure apparatuses such as electron beam exposure apparatuses and ion beam exposure apparatuses, but also scanning electron microscopes, electron beam length measuring apparatuses, and the like. The present invention can be applied to an inspection device and particularly an objective lens such as a transmission electron microscope.

上記した磁場レンズを具備する電子ビーム露光装置を利用した本発明の実施例3のデバイス製造方法について説明する。
図7に微小デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造のフローを示す。
ステップ71(回路設計)では半導体デバイスの回路設計を行う。
ステップ72(EBデータ変換)では設計した回路パターンに基づいて露光装置の露光制御データを作成する。
一方、ステップ73(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。
ステップ74(ウエハプロセス)は前工程と呼ばれ、上記用意した露光制御データが入力された露光装置とウエハを用いて、リソグラフィ技術によってウエハ上に実際の回路を形成する。
次のステップ75(組み立て)は後工程と呼ばれ、ステップ74によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。
ステップ76(検査)ではステップ75で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ77)される。
A device manufacturing method according to the third embodiment of the present invention using the electron beam exposure apparatus including the above-described magnetic lens will be described.
FIG. 7 shows a flow of manufacturing a microdevice (a semiconductor chip such as an IC or LSI, a liquid crystal panel, a CCD, a thin film magnetic head, a micromachine, etc.).
In step 71 (circuit design), a semiconductor device circuit is designed.
In step 72 (EB data conversion), exposure control data for the exposure apparatus is created based on the designed circuit pattern.
On the other hand, in step 73 (wafer manufacture), a wafer is manufactured using a material such as silicon.
Step 74 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the wafer and the exposure apparatus to which the prepared exposure control data is input.
The next step 75 (assembly) is called a post-process, and is a process for forming a semiconductor chip using the wafer produced in step 74, and is a process such as an assembly process (dicing, bonding), a packaging process (chip encapsulation), or the like. including.
In step 76 (inspection), the semiconductor device manufactured in step 75 undergoes inspections such as an operation confirmation test and a durability test. Through these steps, a semiconductor device is completed and shipped (step 77).

図8は上記ウエハプロセスの詳細なフローを示す。
ステップ81(酸化)ではウエハの表面を酸化させる。ステップ82(CVD)ではウエハ表面に絶縁膜を形成する。ステップ83(電極形成)ではウエハ上に電極を蒸着によって形成する。ステップ84(イオン打込み)ではウエハにイオンを打ち込む。ステップ85(レジスト処理)ではウエハに感光剤を塗布する。ステップ86(露光)では上記説明した露光装置によって回路パターンをウエハに焼付露光する。ステップ87(現像)では露光したウエハを現像する。ステップ88(エッチング)では現像したレジスト像以外の部分を削り取る。ステップ89(レジスト剥離)ではエッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンが形成される。
以上、説明したように本実施例3のデバイス製造方法を用いれば、高集積度の半導体デバイスのパターン寸法を精度良く製造することが出来る。
FIG. 8 shows a detailed flow of the wafer process.
In step 81 (oxidation), the wafer surface is oxidized. In step 82 (CVD), an insulating film is formed on the wafer surface. In step 83 (electrode formation), an electrode is formed on the wafer by vapor deposition. In step 84 (ion implantation), ions are implanted into the wafer. In step 85 (resist process), a photosensitive agent is applied to the wafer. In step 86 (exposure), the circuit pattern is printed onto the wafer by exposure using the exposure apparatus described above. In step 87 (development), the exposed wafer is developed. In step 88 (etching), portions other than the developed resist image are removed. In step 89 (resist stripping), unnecessary resist after etching is removed. By repeatedly performing these steps, multiple circuit patterns are formed on the wafer.
As described above, by using the device manufacturing method of the third embodiment, the pattern dimensions of a highly integrated semiconductor device can be manufactured with high accuracy.

本発明の実施例1の荷電粒子線装置を構成する第1および第2の磁場レンズの断面図である。It is sectional drawing of the 1st and 2nd magnetic field lens which comprises the charged particle beam apparatus of Example 1 of this invention. 第1の磁極の上端側開口のボア径D1Uと第2の磁極の下端側開口のボア径D2Lとを一致させ、そのボア径を基準ボア径とし、X軸に第2の磁極の上端側開口のボア径D2Uと基準ボア径との差、Y軸に第1の磁極の下端側開口のボア径D1Lと基準ボア径との差、Z軸に球面収差量を示すグラフである。The bore diameter D1U of the upper end opening of the first magnetic pole and the bore diameter D2L of the lower end opening of the second magnetic pole are made to coincide with each other as the reference bore diameter, and the upper end opening of the second magnetic pole is set on the X axis. 4 is a graph showing the difference between the bore diameter D2U and the reference bore diameter, the difference between the bore diameter D1L of the lower end opening of the first magnetic pole on the Y axis and the reference bore diameter, and the spherical aberration amount on the Z axis. 基準ボア径を10mmから60mmまで5mm単位で変化させたときの球面収差量を説明するグラフである。It is a graph explaining the amount of spherical aberration when changing the reference bore diameter from 10 mm to 60 mm in increments of 5 mm. 基準ボア径を2mmから10mmまで5mm単位で変化させたときの球面収差量を説明するグラフである。It is a graph explaining the amount of spherical aberration when changing the reference bore diameter from 2 mm to 10 mm in units of 5 mm. 基準ボア径と、球面収差量が最小値となる第2の磁場レンズの第2の磁極の上端側開口のボア径D2Uと基準ボア径との差分量の絶対値との関係を、基準ボア径に対する比で示したグラフである。The relationship between the reference bore diameter and the absolute value of the difference between the bore diameter D2U of the upper end opening of the second magnetic pole of the second magnetic field lens and the reference bore diameter at which the spherical aberration amount is the minimum value is expressed by the reference bore diameter. It is the graph shown by ratio with respect to. 複数の電子ビームを用いてウエハなど被露光基板を露光する本発明の実施例2の電子ビーム露光装置の要部概略図である。It is the principal part schematic of the electron beam exposure apparatus of Example 2 of this invention which exposes to-be-exposed substrates, such as a wafer, using a several electron beam. 本発明の実施例3のデバイス製造方法による微小デバイスの製造フローの説明図である。It is explanatory drawing of the manufacturing flow of the microdevice by the device manufacturing method of Example 3 of this invention. 図7のデバイス製造方法のウエハプロセスの説明図である。It is explanatory drawing of the wafer process of the device manufacturing method of FIG.

符号の説明Explanation of symbols

101 光軸
602a 第1の磁場レンズ
602b 第2の磁場レンズ
104、105 電磁コイル
601 電子源(クロスオーバー像)
603 アパーチャアレイ
604 レンズアレイ
605、606、607、608 マルチ偏向器アレイ
609 ブランカーアレイ
610 ブランキングアパーチャ
611、612 ダイナミックフォーカスレンズ
613 主偏向器
614 副偏向器
615a,616a,617a,618a 第1の磁場レンズ
615b,616b,617b,618b 第2の磁場レンズ
619 反射電子検出器
620 ウエハ
621 ステージ
622 マーク
623 中間像
624 レンズアレイパワー補正制御回路
625 像
101 optical axis
602a First magnetic lens 602b Second magnetic lens 104, 105 Electromagnetic coil 601 Electron source (crossover image)
603 Aperture array 604 Lens array 605, 606, 607, 608 Multi deflector array 609 Blanker array 610 Blanking aperture 611, 612 Dynamic focus lens 613 Main deflector 614 Sub deflector 615a, 616a, 617a, 618a First magnetic field lens 615b, 616b, 617b, 618b Second magnetic lens 619 Backscattered electron detector 620 Wafer 621 Stage 622 Mark 623 Intermediate image 624 Lens array power correction control circuit 625 Image

Claims (6)

円周状に構成され上端側開口および下端側開口を有する第1の磁極および電磁コイルを備える第1の磁場レンズと、
円周状に構成され上端側開口および下端側開口を有する第2の磁極および電磁コイルを備え、前記第1の磁場レンズの光軸方向の下側に隣接される第2の磁場レンズと、を有する荷電粒子線装置において、
前記第1の磁極の下端側開口のボア径は、前記第1の磁極の上端側開口のボア径、前記第2の磁極の上端側開口のボア径、および、前記第2の磁極の下端側開口のボア径のいずれよりも大きいことを特徴とする荷電粒子線装置。
A first magnetic field lens including a first magnetic pole and an electromagnetic coil which are circumferentially configured and have an upper end opening and a lower end opening;
A second magnetic field lens comprising a second magnetic pole and an electromagnetic coil that are circumferentially configured and have an upper end opening and a lower end opening, and are adjacent to the lower side in the optical axis direction of the first magnetic field lens; In a charged particle beam apparatus having
The bore diameter of the lower end opening of the first magnetic pole is the bore diameter of the upper end opening of the first magnetic pole, the bore diameter of the upper end opening of the second magnetic pole, and the lower end side of the second magnetic pole. A charged particle beam device characterized by being larger than any of the bore diameters of the opening.
前記第2の磁極の上端側開口のボア径は、前記第1の磁極の上端側開口のボア径、前記第1の磁極の下端側開口のボア径、および、前記第2の磁極の下端側開口のボア径のいずれよりも小さい請求項1記載の荷電粒子線装置。   The bore diameter of the upper end opening of the second magnetic pole is the bore diameter of the upper end opening of the first magnetic pole, the bore diameter of the lower end opening of the first magnetic pole, and the lower end side of the second magnetic pole. The charged particle beam apparatus according to claim 1, wherein the charged particle beam apparatus is smaller than any of the bore diameters of the openings. 前記第1の磁極の上端側開口のボア径と前記第2の磁極の下端側開口のボア径とは一致する請求項1または2記載の荷電粒子線装置。   The charged particle beam device according to claim 1 or 2, wherein a bore diameter of an upper end side opening of the first magnetic pole and a bore diameter of a lower end side opening of the second magnetic pole coincide with each other. 前記第1の磁極の下端側開口のボア径は前記第1の磁極の上端側開口のボア径より大きく、前記第2の磁極の上端側開口のボア径は前記第2の磁極の下端側開口のボア径より小さく、これらの差の絶対値は一致する請求項3に記載の荷電粒子線装置。   The bore diameter of the lower end opening of the first magnetic pole is larger than the bore diameter of the upper end opening of the first magnetic pole, and the bore diameter of the upper end opening of the second magnetic pole is lower end opening of the second magnetic pole. The charged particle beam apparatus according to claim 3, wherein the absolute values of these differences coincide with each other. 請求項1から4のいずれかに記載の前記荷電粒子線装置は、荷電粒子線を用いて被露光基板上に所望のパターンを露光する露光装置であることを特徴とする荷電粒子線装置。   5. The charged particle beam apparatus according to claim 1, wherein the charged particle beam apparatus is an exposure apparatus that exposes a desired pattern on a substrate to be exposed using a charged particle beam. 請求項5に記載の露光装置を用いて前記被露光基板に露光を行う工程と、露光された前記被露光基板を現像する工程と、を備えることを特徴とするデバイス製造方法。   6. A device manufacturing method comprising: exposing the substrate to be exposed using the exposure apparatus according to claim 5; and developing the exposed substrate to be exposed.
JP2006266941A 2006-09-29 2006-09-29 Charged particle beam apparatus and device manufacturing method Expired - Fee Related JP4913521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266941A JP4913521B2 (en) 2006-09-29 2006-09-29 Charged particle beam apparatus and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006266941A JP4913521B2 (en) 2006-09-29 2006-09-29 Charged particle beam apparatus and device manufacturing method

Publications (3)

Publication Number Publication Date
JP2008091361A true JP2008091361A (en) 2008-04-17
JP2008091361A5 JP2008091361A5 (en) 2009-11-12
JP4913521B2 JP4913521B2 (en) 2012-04-11

Family

ID=39375262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266941A Expired - Fee Related JP4913521B2 (en) 2006-09-29 2006-09-29 Charged particle beam apparatus and device manufacturing method

Country Status (1)

Country Link
JP (1) JP4913521B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116764A (en) * 1996-10-11 1998-05-06 Nikon Corp Projection apparatus
JPH10255705A (en) * 1997-03-13 1998-09-25 Nikon Corp Double symmetric magnetic lenses and two step magnetic lens system
JP2006019435A (en) * 2004-06-30 2006-01-19 Canon Inc Charged particle beam exposure apparatus, and device manufacturing method using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116764A (en) * 1996-10-11 1998-05-06 Nikon Corp Projection apparatus
JPH10255705A (en) * 1997-03-13 1998-09-25 Nikon Corp Double symmetric magnetic lenses and two step magnetic lens system
JP2006019435A (en) * 2004-06-30 2006-01-19 Canon Inc Charged particle beam exposure apparatus, and device manufacturing method using the same

Also Published As

Publication number Publication date
JP4913521B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4652830B2 (en) Aberration adjustment method, device manufacturing method, and charged particle beam exposure apparatus
US7005658B2 (en) Charged particle beam exposure apparatus and method
US8143588B2 (en) Deflector array, exposure apparatus, and device manufacturing method
JP2008004597A (en) Charged particle beam drawing method, aligner, and process for fabricating device
JP4657740B2 (en) Aberration measuring apparatus for charged particle beam optical system, charged particle beam exposure apparatus including the aberration measuring apparatus, and device manufacturing method using the apparatus
JP3862639B2 (en) Exposure equipment
US6930756B2 (en) Electron beam exposure apparatus and semiconductor device manufacturing method
JP4745739B2 (en) Electrostatic lens apparatus, exposure apparatus, and device manufacturing method
US6838682B2 (en) Electron beam exposure equipment and electron beam exposure method
JP2008027965A (en) Optical system, exposure apparatus and method of manufacturing device
JP2006210455A (en) Charged particle exposure apparatus and method of fabricating device using apparatus
US20050006603A1 (en) Charged particle beam exposure method, charged particle beam exposure apparatus, and device manufacturing method
US7034314B2 (en) Projection apparatus for projecting a pattern formed on a mask onto a substrate and a control method for a projection apparatus
JP4477436B2 (en) Charged particle beam exposure system
JP4468752B2 (en) Charged particle beam exposure method, charged particle beam exposure apparatus and device manufacturing method
JP4913521B2 (en) Charged particle beam apparatus and device manufacturing method
JP5117069B2 (en) Exposure apparatus and device manufacturing method
JP3529997B2 (en) Charged particle beam optical element, charged particle beam exposure apparatus and adjustment method thereof
JP2007019061A (en) Electron beam exposure system, electronic beam defocus correction method, and measuring method of electron beam defocus
JP4356064B2 (en) Charged particle beam exposure apparatus and device manufacturing method using the apparatus
JP4559137B2 (en) Vacuum equipment manufacturing apparatus and manufacturing method
JP2006210459A (en) Charged particle beam exposure apparatus and method, and method of fabricating device
JP2004165498A (en) Charged particle beam optical lithography system, method for fabricating device
JP2000243337A (en) Charged particle beam exposure device, and manufacture of device using this device
JP2006019435A (en) Charged particle beam exposure apparatus, and device manufacturing method using the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090413

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees