JP2008089120A - Vehicle driving force control device - Google Patents

Vehicle driving force control device Download PDF

Info

Publication number
JP2008089120A
JP2008089120A JP2006271987A JP2006271987A JP2008089120A JP 2008089120 A JP2008089120 A JP 2008089120A JP 2006271987 A JP2006271987 A JP 2006271987A JP 2006271987 A JP2006271987 A JP 2006271987A JP 2008089120 A JP2008089120 A JP 2008089120A
Authority
JP
Japan
Prior art keywords
driving force
vehicle
transmission
target driving
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006271987A
Other languages
Japanese (ja)
Other versions
JP4973106B2 (en
Inventor
Hirotada Otake
宏忠 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006271987A priority Critical patent/JP4973106B2/en
Publication of JP2008089120A publication Critical patent/JP2008089120A/en
Application granted granted Critical
Publication of JP4973106B2 publication Critical patent/JP4973106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle driving force control device for effectively suppressing the rotating vibration of a driving wheel during accelerating a vehicle by promoting an up-shift change of the gear ratio of a transmission when the driving wheel has or may have rotating vibration during accelerating the vehicle. <P>SOLUTION: During accelerating the vehicle (Step 110), when detecting the rotating vibration of the driving wheel (Step 130) or determining that a travelling road is a cross road (Sep 160), the vehicle driving force control device gradually reduces target driving force Fp_t_future necessary for computing the shift stage of the transmission 16 (Steps 190, 200) until the rotating vibration of the driving wheel is over (Step 210) or cross road travel is finished (Step 220), to promote the up-shift change of the shift stage of the transmission. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、車両の駆動力制御装置に係り、更に詳細には乗員の運転操作状況及び車両の走行状況に基づいて車両の駆動力を制御する駆動力制御装置に係る。   The present invention relates to a driving force control device for a vehicle, and more particularly to a driving force control device that controls the driving force of a vehicle based on a driving operation situation of a passenger and a driving situation of the vehicle.

自動車等の車両の駆動力制御装置の一つとして、例えば本願出願人の出願にかかる下記の特許文献1に記載されている如く、運転者の加速要求に応じて車両の目標駆動力を演算し、目標駆動力に基づいてエンジンの目標スロットル開度及びトランスミッションの目標変速段を決定し、目標スロットル開度に基づいてエンジンの出力を制御すると共に目標変速段に基づいてトランスミッションの変速段を制御するよう構成された駆動力制御装置が従来より知られている。
特開2003−191774号公報
As one of driving force control devices for vehicles such as automobiles, for example, as described in the following Patent Document 1 relating to the application of the present applicant, the target driving force of the vehicle is calculated according to the driver's acceleration request. The engine target throttle opening and the transmission target gear are determined based on the target driving force, the engine output is controlled based on the target throttle opening, and the transmission gear is controlled based on the target gear. A driving force control device configured as described above is conventionally known.
JP 2003-191774 A

自動車等の車両が路面の摩擦係数が低い走行路にて加速するような場合や、左右の駆動輪に対応する路面の摩擦係数の差が大きい所謂またぎ路に於いて車両が加速するような場合には、駆動力が特定の駆動力になると駆動輪が回転振動し、駆動輪の回転振動に起因して車両の乗り心地が不快なものになったり、路面に対する駆動輪のグリップが低下し、車両の走行安定性に悪影響を及ぼしたりすることがある。
上記問題はトランスミッションの変速機が多段式の自動変速機である場合に限られるものではなく、トランスミッションの変速機が無段式の自動変速機である場合にも程度の差はあるが同様に発生する。
When a vehicle such as an automobile accelerates on a road where the friction coefficient of the road surface is low, or when the vehicle accelerates on a so-called straddle road where the difference in friction coefficient of the road surface corresponding to the left and right driving wheels is large If the driving force becomes a specific driving force, the driving wheel rotates and vibrates, the driving wheel becomes uncomfortable due to the rotating vibration of the driving wheel, the grip of the driving wheel against the road surface decreases, The running stability of the vehicle may be adversely affected.
The above problem is not limited to the case where the transmission of the transmission is a multi-stage automatic transmission. The same problem occurs to some extent when the transmission of the transmission is a continuously variable automatic transmission. To do.

上述の如き従来の駆動力制御装置に於いては、トランスミッションの目標変速段は車両の目標駆動力及び車速(又は車速に対応する値)に基づいて予め設定された変速線により一義的に決定され、車速はトランスミッションの出力回転数や車輪の回転速度に基づいて推定され、駆動輪の回転振動は考慮されないため、車両が路面の摩擦係数が低い走行路にて加速したり、またぎ路に於いて加速したりするような場合に発生する駆動輪の回転振動を防止することができない。   In the conventional driving force control apparatus as described above, the target shift speed of the transmission is uniquely determined by a preset shift line based on the target driving force of the vehicle and the vehicle speed (or a value corresponding to the vehicle speed). The vehicle speed is estimated based on the output rotation speed of the transmission and the rotation speed of the wheels, and the rotational vibration of the drive wheels is not taken into account, so the vehicle is accelerated on a road with a low friction coefficient on the road surface, Rotational vibration of the drive wheel that occurs when the vehicle accelerates cannot be prevented.

本願発明者は車両が路面の摩擦係数が低い走行路にて加速したり、またぎ路に於いて加速したりするような場合に発生する上記駆動輪の回転振動の要因について鋭意研究を行った結果、上記駆動輪の回転振動は、駆動輪の駆動力が特定の駆動力になると、路面に対する駆動輪タイヤのスリップ状態とグリップ状態との間に変化する周波数が車両の駆動系の固有振動数に近づいて駆動輪が共振し易くなることに起因して発生するものであり、トランスミッションの変速比のアップシフト変更を促進して共振し難くすることにより駆動輪の回転振動を効果的に抑制し得ることを究明した。   As a result of earnest research on the cause of the rotational vibration of the drive wheel generated when the vehicle is accelerated on a road with a low friction coefficient on the road surface or accelerated on a crossing road. Rotational vibration of the driving wheel is such that when the driving force of the driving wheel becomes a specific driving force, the frequency that changes between the slip state of the driving wheel tire with respect to the road surface and the grip state becomes the natural frequency of the driving system of the vehicle. This occurs due to the fact that the drive wheels are likely to resonate, and the rotational vibration of the drive wheels can be effectively suppressed by facilitating the upshift change of the transmission gear ratio to make it difficult to resonate. I found out.

本発明は、運転者の加速要求に応じて目標駆動力が演算され、トランスミッションの目標変速比が目標駆動力及び車速に基づいて予め設定された変速線により決定されるよう構成された従来の駆動力制御装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、本願発明者が行った研究の結果得られた知見に基づき、車両の加速時に駆動輪が回転振動するとき又はその虞れがあるときにはトランスミッションの変速比のアップシフト変更を促進することにより、車両の加速時に於ける駆動輪の回転振動を効果的に抑制することである。   The present invention relates to a conventional drive configured such that a target driving force is calculated in response to a driver's acceleration request, and a target gear ratio of the transmission is determined by a preset shift line based on the target driving force and the vehicle speed. The main object of the present invention is based on the knowledge obtained as a result of research conducted by the present inventor, and the driving wheels are not accelerated during vehicle acceleration. When rotational vibration occurs or when there is a risk of this, it is to effectively suppress the rotational vibration of the drive wheels during acceleration of the vehicle by promoting an upshift change in the transmission gear ratio.

上述の主要な課題は、本発明によれば、駆動源及びトランスミッションを含む駆動装置と、少なくとも乗員の駆動操作量に基づいて前記駆動装置の目標駆動力を演算する手段と、前記目標駆動力に基づいて前記駆動源の駆動力を制御する駆動源制御手段と、前記トランスミッションの変速比を制御する変速比制御手段とを有する車両の駆動力制御装置に於いて、前記変速比制御手段は駆動輪の回転振動を検出する手段を有し、駆動輪が回転振動しているときには前記トランスミッションの変速比のアップシフト変更を促進することを特徴とする車両の駆動力制御装置(請求項1の構成)、又は駆動源及びトランスミッションを含む駆動装置と、少なくとも乗員の駆動操作量に基づいて前記駆動装置の目標駆動力を演算する手段と、前記目標駆動力に基づいて前記駆動源の駆動力を制御する駆動源制御手段と、前記トランスミッションの変速比を制御する変速比制御手段とを有する車両の駆動力制御装置に於いて、前記変速比制御手段は走行路が左右の駆動輪に対応する路面の摩擦係数の差が大きいまたぎ路であるか否かを判定する手段を有し、走行路がまたぎ路であるときには前記トランスミッションの変速比のアップシフト変更を促進することを特徴とする車両の駆動力制御装置(請求項3の構成)によって達成される。   According to the present invention, the main problems described above include a driving device including a driving source and a transmission, means for calculating a target driving force of the driving device based on at least a driving operation amount of an occupant, and the target driving force. In the vehicle driving force control device having a driving source control means for controlling the driving force of the driving source and a transmission ratio control means for controlling the transmission gear ratio of the transmission, the transmission ratio control means is a driving wheel. The vehicle driving force control device has a means for detecting the rotational vibration of the vehicle, and promotes an upshift change of the transmission gear ratio when the driving wheel vibrates rotationally (configuration of claim 1) Or a drive device including a drive source and a transmission, means for calculating a target drive force of the drive device based on at least an occupant's drive operation amount, and the target drive In a vehicle driving force control device having a driving source control means for controlling the driving force of the driving source based on a force, and a gear ratio control means for controlling a gear ratio of the transmission, the gear ratio control means comprises: Means for determining whether or not the road is a straddle with a large difference in friction coefficient between the road surfaces corresponding to the left and right drive wheels, and when the travel path is a straddle, the transmission gear ratio upshift is changed. This is achieved by a vehicle driving force control device (structure of claim 3).

上記請求項1の構成によれば、駆動輪が回転振動しているときにはトランスミッションの変速比のアップシフト変更が促進されるので、駆動輪が回転振動しているときにもトランスミッションの変速比のアップシフト変更が促進されない従来の駆動力制御装置の場合に比して、早期に駆動輪が共振し難くい状況にすることができ、これにより駆動輪の回転振動を早期に且つ確実に終息させることができる。   According to the first aspect of the present invention, when the drive wheels are oscillating in rotation, the change in the transmission gear ratio is promoted. Therefore, even when the drive wheels are oscillating in rotation, the transmission gear ratio is increased. Compared with the case of a conventional driving force control device in which shift change is not promoted, it is possible to make it difficult for the driving wheel to resonate at an early stage, thereby terminating the rotational vibration of the driving wheel early and reliably. Can do.

また上記請求項3の構成によれば、走行路がまたぎ路であるときにはトランスミッションの変速比のアップシフト変更が促進されるので、走行路がまたぎ路であるときにもトランスミッションの変速比のアップシフト変更が促進されない従来の駆動力制御装置の場合に比して、早期に駆動輪が共振し難くい状況にすることができ、これにより駆動輪の回転振動を早期に且つ確実に抑制し、駆動輪が回転振動することを確実に且つ効果的に防止することができる。   According to the third aspect of the present invention, when the travel path is a straddle, an upshift of the transmission gear ratio is promoted. Therefore, even when the travel path is a straddle, the transmission gear ratio is upshifted. Compared to the case of a conventional driving force control device in which the change is not promoted, it is possible to make it difficult for the driving wheel to resonate at an early stage, thereby suppressing the rotational vibration of the driving wheel early and reliably and driving. It is possible to reliably and effectively prevent the wheels from rotating and vibrating.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、前記変速比制御手段は駆動輪が回転振動していないときには、前記目標駆動力に基づいて前記トランスミッションの変速比を制御し、車両が加速する状況に於いて駆動輪が回転振動しているときには、前記目標駆動力よりも小さい変速比制御用目標駆動力に基づいて前記トランスミッションの変速比を制御するよう構成される(請求項2の構成)。   Further, according to the present invention, in order to effectively achieve the above main problem, in the configuration of claim 1, the speed ratio control means is configured such that the target driving force is obtained when the driving wheel is not rotating and vibrating. The transmission gear ratio is controlled on the basis of the speed of the transmission, and when the drive wheel is rotating and oscillating in a situation where the vehicle is accelerating, the transmission gear ratio is controlled based on the target driving force for speed ratio control smaller than the target driving force. It is comprised so that a gear ratio may be controlled (structure of Claim 2).

上記請求項2の構成によれば、駆動輪が回転振動していないときには、目標駆動力に基づいてトランスミッションの変速比が制御され、車両が加速する状況に於いて駆動輪が回転振動しているときには、目標駆動力よりも小さい変速比制御用目標駆動力に基づいてトランスミッションの変速比が制御されるので、駆動輪が回転振動していないときには、少なくとも乗員の駆動操作量に基づいてトランスミッションの変速比を制御することができ、車両が加速する状況に於いて駆動輪が回転振動しているときには、目標駆動力に基づいてトランスミッションの変速比が制御される場合に比して、確実にトランスミッションの変速比のアップシフト変更を促進することができる。   According to the second aspect of the present invention, when the driving wheels are not rotating and vibrating, the transmission gear ratio is controlled based on the target driving force, and the driving wheels are rotating and vibrating in a situation where the vehicle accelerates. In some cases, the transmission gear ratio is controlled based on a target gear ratio control target driving force that is smaller than the target driving force. Therefore, when the drive wheels are not rotating and vibrating, the transmission gear shift is based on at least the occupant's driving operation amount. When the vehicle is accelerating and the drive wheels are rotating and oscillating, the transmission gear ratio can be controlled more reliably than when the transmission gear ratio is controlled based on the target drive force. An upshift change of the gear ratio can be promoted.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項3の構成に於いて、前記変速比制御手段は走行路がまたぎ路でないときには、前記目標駆動力に基づいて前記トランスミッションの変速比を制御し、車両が加速する状況に於いて走行路がまたぎ路であるときには、前記目標駆動力よりも小さい変速比制御用目標駆動力に基づいて前記トランスミッションの変速比を制御するよう構成される(請求項4の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration of claim 3, the speed ratio control means is based on the target driving force when the travel path is not a straddle. When the vehicle is accelerating and the travel path is a straddling road, the transmission gear ratio is controlled based on a target drive force for speed ratio control smaller than the target drive force. It is comprised so that it may control (the structure of Claim 4).

上記請求項4の構成によれば、変速比制御手段は走行路がまたぎ路でないときには、目標駆動力に基づいてトランスミッションの変速比が制御され、車両が加速する状況に於いて走行路がまたぎ路であるときには、目標駆動力よりも小さい変速比制御用目標駆動力に基づいてトランスミッションの変速比が制御されるので、走行路がまたぎ路でないときには、少なくとも乗員の駆動操作量に基づいてトランスミッションの変速比を制御することができ、車両が加速する状況に於いて走行路がまたぎ路であるときには、目標駆動力に基づいてトランスミッションの変速比が制御される場合に比して、確実にトランスミッションの変速比のアップシフト変更を促進することができる。   According to the fourth aspect of the present invention, when the traveling path is not a straddling path, the transmission ratio control means controls the transmission gear ratio based on the target driving force, and the traveling path is straddled in the situation where the vehicle accelerates. The transmission ratio of the transmission is controlled based on the target driving force for controlling the transmission ratio that is smaller than the target driving force. Therefore, when the travel path is not a straddle, the transmission speed of the transmission is determined based on at least the occupant's driving operation amount. The ratio of the transmission can be controlled, and when the vehicle is accelerating, the transmission path is a straddling path, and the transmission speed change is more reliable than when the transmission speed ratio is controlled based on the target driving force. A ratio upshift change can be facilitated.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至4の何れかの構成に於いて、前記変速比制御手段は乗員の駆動操作量及び車両の走行状態に基づいて基本変速比制御用目標駆動力を演算し、駆動輪が回転振動しておらず走行路がまたぎ路でないときには、前記変速比制御用目標駆動力に基づいて前記トランスミッションの変速比を制御し、車両が加速する状況に於いて駆動輪が回転振動しているとき若しくは走行路がまたぎ路であるときには、前記変速比制御用目標駆動力よりも小さい補正後の変速比制御用目標駆動力に基づいて前記トランスミッションの変速比を制御するよう構成される(請求項5の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration according to any one of claims 1 to 4, the speed ratio control means is configured such that the driving operation amount of the occupant and the travel of the vehicle The basic gear ratio control target driving force is calculated based on the state, and when the driving wheel is not rotationally oscillated and the travel path is not a straddling road, the transmission gear ratio is calculated based on the gear ratio control target driving force. When the driving wheel is rotating and oscillating in a situation where the vehicle is accelerating or the traveling road is a straddling road, the target drive for speed ratio control after correction is smaller than the target driving force for speed ratio control. The gear ratio of the transmission is controlled based on the force (configuration of claim 5).

上記請求項5の構成によれば、乗員の駆動操作量及び車両の走行状態に基づいて基本変速比制御用目標駆動力が演算され、駆動輪が回転振動しておらず走行路がまたぎ路でないときには、変速比制御用目標駆動力に基づいてトランスミッションの変速比が制御され、車両が加速する状況に於いて駆動輪が回転振動しているとき若しくは走行路がまたぎ路であるときには、変速比制御用目標駆動力よりも小さい補正後の変速比制御用目標駆動力に基づいてトランスミッションの変速比が制御されるので、駆動輪が回転振動しておらず走行路がまたぎ路でないときには、乗員の駆動操作量及び車両の走行状態に基づいてトランスミッションの変速比を制御することができ、車両が加速する状況に於いて駆動輪が回転振動しているとき若しくは走行路がまたぎ路であるときには、変速比制御用目標駆動力に基づいてトランスミッションの変速比が制御される場合に比して、確実にトランスミッションの変速比のアップシフト変更を促進することができる。   According to the configuration of the fifth aspect, the basic drive ratio control target driving force is calculated based on the driving operation amount of the occupant and the traveling state of the vehicle, and the driving wheel is not rotationally vibrated and the traveling path is not a straddle. Sometimes, the transmission gear ratio is controlled based on the target drive force for gear ratio control, and when the vehicle is accelerating, the drive wheels are rotating and vibrating, or the travel road is a straddle road, the gear ratio control is performed. Because the transmission gear ratio is controlled based on the corrected target driving force for gear ratio control that is smaller than the target driving force for driving, when the driving wheels are not rotating and the driving road is not a straddling road, The gear ratio of the transmission can be controlled based on the operation amount and the running state of the vehicle, and when the driving wheel is oscillating or running in the situation where the vehicle is accelerated When it is stride path, as compared with the case where the gear ratio of the transmission is controlled based on the speed ratio control target driving force, it can promote reliable upshift change of the gear ratio of the transmission.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項5の構成に於いて、前記変速比制御手段は車両が加速する状況に於いて駆動輪が回転振動しているとき若しくは走行路がまたぎ路であるときには、前記変速比制御用目標駆動力を漸減補正することにより前記補正後の変速比制御用目標駆動力を演算するよう構成される(請求項6の構成)。   According to the present invention, in order to effectively achieve the above main problem, in the configuration of claim 5, the transmission ratio control means causes the drive wheels to vibrate in a situation where the vehicle is accelerated. Or when the travel path is a straddling road, the speed ratio control target driving force after correction is calculated by gradually decreasing the speed ratio control target driving force. Constitution).

また上記請求項6の構成によれば、車両が加速する状況に於いて駆動輪が回転振動しているとき若しくは走行路がまたぎ路であるときには、変速比制御用目標駆動力が漸減補正されることにより補正後の変速比制御用目標駆動力が演算されるので、変速比制御用目標駆動力が急激に低下変化することを確実に防止しつつ、トランスミッションの変速比のアップシフト変更を確実に促進することができる。   According to the sixth aspect of the present invention, the target drive force for speed ratio control is gradually corrected when the driving wheels are rotating and vibrating in a situation where the vehicle is accelerating or when the travel path is a straddle path. As a result, the corrected gear ratio control target driving force is calculated, so that the gear ratio control target driving force can be prevented from suddenly decreasing and reliably changing the transmission gear ratio upshift. Can be promoted.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至6の何れかの構成に於いて、前記トランスミッションは多段式の自動変速機を含んでいるよう構成される(請求項7の構成)。   According to the present invention, in order to effectively achieve the above-mentioned main problems, in the structure according to any one of claims 1 to 6, the transmission includes a multi-stage automatic transmission. (Structure of claim 7).

また上記請求項7の構成によれば、トランスミッションは多段式の自動変速機を含んでいるので、トランスミッションの変速段のアップシフトを確実に促進することができ、これにより車両の加速時に於ける駆動輪の回転振動を効果的に抑制ことができる。
[課題解決手段の好ましい態様]
According to the seventh aspect of the present invention, since the transmission includes the multi-stage automatic transmission, it is possible to surely promote the upshifting of the transmission gear stage, thereby driving during acceleration of the vehicle. The rotational vibration of the wheel can be effectively suppressed.
[Preferred embodiment of problem solving means]

本発明の一つの好ましい態様によれば、上記請求項1乃至7の何れかの構成に於いて、駆動力制御装置は少なくとも駆動装置の駆動力を制御することにより駆動輪の駆動スリップを抑制するトラクション制御を行うトラクション制御手段を有し、トラクション制御が必要であるときには駆動輪の駆動スリップを抑制するためのトラクション制御の目標駆動力を演算すると共に、トラクション制御の目標駆動力よりも大きいトラクション制御時の変速比制御用目標駆動力を演算し、トラクション制御の目標駆動力に基づいて駆動装置を制御すると共に、トラクション制御時の変速比制御用目標駆動力に基づいてトランスミッションの変速比を制御し、トラクション制御が必要である状況にて駆動輪が回転振動しているとき若しくは走行路がまたぎ路であるときには、トラクション制御時の変速比制御用目標駆動力よりも小さい補正後の変速比制御用目標駆動力に基づいてトランスミッションの変速比を制御するよう構成される(好ましい態様1)。   According to one preferable aspect of the present invention, in the configuration according to any one of claims 1 to 7, the driving force control device suppresses driving slip of the driving wheel by controlling at least the driving force of the driving device. Traction control means for performing traction control. When traction control is necessary, the traction control target drive force for suppressing drive slip of the drive wheels is calculated, and the traction control is larger than the traction control target drive force. The target drive force for speed ratio control is calculated and the drive unit is controlled based on the target drive force for traction control, and the transmission gear ratio is controlled based on the target drive force for speed ratio control during traction control. When the drive wheel is rotating or vibrating in a situation where traction control is necessary, When a road is arranged to control the gear ratio of the transmission based on the transmission ratio control target driving force after smaller correction than the speed ratio control target driving force at the time of traction control (preferred embodiment 1).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至7の何れかの構成に於いて、駆動力制御装置は少なくとも駆動装置の駆動力を制御することにより車両の挙動を安定化させる挙動制御を行う挙動制御手段を有し、挙動制御が必要であるときには駆動輪の駆動スリップを抑制するための挙動制御の目標駆動力を演算すると共に、挙動制御の目標駆動力よりも大きい挙動制御時の変速比制御用目標駆動力を演算し、挙動制御の目標駆動力に基づいて駆動装置を制御すると共に、挙動制御時の変速比制御用目標駆動力に基づいてトランスミッションの変速比を制御し、挙動制御が必要である状況にて駆動輪が回転振動しているとき若しくは走行路がまたぎ路であるときには、挙動制御時の変速比制御用目標駆動力よりも小さい補正後の変速比制御用目標駆動力に基づいてトランスミッションの変速比を制御するよう構成される(好ましい態様2)。   According to another preferred embodiment of the present invention, in any one of the first to seventh aspects, the driving force control device stabilizes the behavior of the vehicle by controlling at least the driving force of the driving device. The behavior control means for performing behavior control is performed, and when behavior control is necessary, the behavior control target driving force for suppressing the drive slip of the driving wheel is calculated and the behavior is larger than the behavior control target driving force. Calculates the target drive force for speed ratio control during control, controls the drive unit based on the target drive force for behavior control, and controls the transmission gear ratio based on the target drive force for speed ratio control during behavior control However, when the driving wheel is rotating and vibrating in a situation where behavior control is necessary, or when the traveling road is a straddling road, the corrected driving speed is smaller than the target driving force for gear ratio control during behavior control. To control the transmission ratio of the transmission based on the speed ratio control target driving force composed (preferred embodiment 2).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至7又は上記好ましい態様1又は2の構成に於いて、トランスミッションは無段式の自動変速機を含んでいるよう構成される(好ましい態様3)。   According to another preferred embodiment of the present invention, in the configuration of the above-described claims 1 to 7 or the preferred embodiment 1 or 2, the transmission is configured to include a continuously variable automatic transmission ( Preferred embodiment 3).

本発明の他の一つの好ましい態様によれば、上記請求項6又は上記好ましい態様1乃至3の何れかの構成に於いて、前記変速比制御手段は駆動輪が回転振動せず且つ走行路がまたぎ路ではない状況になったときには、前記変速比制御用目標駆動力を漸増補正することにより前記補正後の変速比制御用目標駆動力を駆動装置の目標駆動力に漸次近付けるよう構成される(好ましい態様4)。   According to another preferred aspect of the present invention, in the structure according to claim 6 or any of preferred aspects 1 to 3, the transmission ratio control means is such that the drive wheel does not vibrate and the travel path is When a situation other than a crossroad is reached, the gear ratio control target driving force is gradually increased and corrected to gradually bring the corrected gear ratio control target driving force closer to the target driving force of the driving device ( Preferred embodiment 4).

以下に添付の図を参照しつつ、本発明を好ましい実施例について詳細に説明する。   The present invention will now be described in detail with reference to the accompanying drawings.

図1は後輪駆動車に適用された本発明による車両の駆動力制御装置の一つの実施例を示す概略構成図、図2は実施例1の制御系を示すブロック図である。   FIG. 1 is a schematic configuration diagram showing one embodiment of a vehicle driving force control apparatus according to the present invention applied to a rear wheel drive vehicle, and FIG. 2 is a block diagram showing a control system of the first embodiment.

図1に於いて、10はエンジンを示しており、エンジン10の駆動力はトルクコンバータ12及び歯車式変速機構14を含むオートマチックトランスミッション16を介してプロペラシャフト18へ伝達される。エンジン10及びオートマチックトランスミッション16は互いに共働して車両の駆動装置10Aを構成している。   In FIG. 1, reference numeral 10 denotes an engine, and the driving force of the engine 10 is transmitted to a propeller shaft 18 via an automatic transmission 16 including a torque converter 12 and a gear-type transmission mechanism 14. The engine 10 and the automatic transmission 16 cooperate with each other to constitute a vehicle drive device 10A.

プロペラシャフト18の駆動力はディファレンシャル20により左後輪車軸22L及び右後輪車軸22Rへ伝達され、これにより駆動輪である左右の後輪24RL及び24RRが回転駆動される。一方左右の前輪24FL及び24FRは従動輪であると共に操舵輪であり、図1には示されていないが、運転者によるステアリングホイールの転舵に応答して駆動されるラック・アンド・ピニオン式のパワーステアリング装置によりタイロッドを介して操舵される。   The driving force of the propeller shaft 18 is transmitted to the left rear wheel axle 22L and the right rear wheel axle 22R by the differential 20, whereby the left and right rear wheels 24RL and 24RR which are driving wheels are rotationally driven. On the other hand, the left and right front wheels 24FL and 24FR are both driven wheels and steered wheels, which are not shown in FIG. 1, but are rack and pinion type driven in response to steering of the steering wheel by the driver. It is steered via a tie rod by a power steering device.

左右の前輪24FL、24FR及び左右の後輪24RL、24RRの制動力は制動装置26の油圧回路28により対応するホイールシリンダ30FL、30FR、30RL、30RRの制動圧が制御されることによって制御される。図1には示されていないが、油圧回路28はオイルリザーバ、オイルポンプ、種々の弁装置等を含んでいる。   The braking forces of the left and right front wheels 24FL, 24FR and the left and right rear wheels 24RL, 24RR are controlled by controlling the braking pressures of the corresponding wheel cylinders 30FL, 30FR, 30RL, 30RR by the hydraulic circuit 28 of the braking device 26. Although not shown in FIG. 1, the hydraulic circuit 28 includes an oil reservoir, an oil pump, various valve devices, and the like.

車両の制駆動力は統合制御電子制御装置32により制御される。統合制御電子制御装置32は通常時には運転者によるアクセルぺダル34の操作やエンジン負荷等に応じてエンジン10の出力及びトランスミッション16の変速段を制御すると共に、運転者によるブレーキペダル36の踏み込み操作に応じて油圧回路28を制御し、また必要に応じて車両の走行運動を制御すべくエンジン10の出力及びトランスミッション16の変速段を制御すると共に、油圧回路28を制御し、これにより車両の制駆動力を制御する。   The braking / driving force of the vehicle is controlled by the integrated control electronic control unit 32. The integrated control electronic control unit 32 normally controls the output of the engine 10 and the gear position of the transmission 16 according to the operation of the accelerator pedal 34 by the driver, the engine load, and the like, and allows the driver to depress the brake pedal 36. The hydraulic circuit 28 is controlled accordingly, and if necessary, the output of the engine 10 and the gear stage of the transmission 16 are controlled so as to control the running motion of the vehicle, and the hydraulic circuit 28 is controlled to thereby control and drive the vehicle. Control the power.

図2に示されている如く、統合制御電子制御装置32は駆動力制御電子制御装置40と車両運動制御電子制御装置42とを含み、駆動力制御電子制御装置40及び車両運動制御電子制御装置42は相互に必要な情報の授受を行い、互いに共働して運転者の駆動要求及び制動要求に応じて車両の制駆動力を制御すると共に、各車輪の制駆動力の制御によって車両の走行運動を安定化させる。尚図2には詳細に示されていないが、駆動力制御電子制御装置40及び車両運動制御電子制御装置42はそれぞれCPUとROMとRAMと入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続されたマイクロコンピュータ及び駆動回路よりなっていてよい。   As shown in FIG. 2, the integrated control electronic control device 32 includes a driving force control electronic control device 40 and a vehicle motion control electronic control device 42, and the driving force control electronic control device 40 and the vehicle motion control electronic control device 42. Exchanges necessary information with each other, and cooperates with each other to control the braking / driving force of the vehicle according to the driver's driving request and braking request, and also to control the vehicle's running motion by controlling the braking / driving force of each wheel. To stabilize. Although not shown in detail in FIG. 2, the driving force control electronic control device 40 and the vehicle motion control electronic control device 42 each have a CPU, a ROM, a RAM, and an input / output port device, which are bidirectional. The microcomputer and the drive circuit may be connected to each other by a common bus.

図2に示されている如く、駆動力制御電子制御装置40は運転者要求目標駆動力演算部44、調停部46、分配部48、発生駆動力演算部50を有し、車両運動制御電子制御装置42は運動状態推定部54、制駆動力分配部56、修正目標駆動力演算部58を有している。   As shown in FIG. 2, the driving force control electronic control device 40 includes a driver request target driving force calculation unit 44, an arbitration unit 46, a distribution unit 48, and a generated driving force calculation unit 50. The apparatus 42 includes a motion state estimation unit 54, a braking / driving force distribution unit 56, and a corrected target driving force calculation unit 58.

運転者要求目標駆動力演算部44にはアクセルペダル34に設けられたアクセル開度センサの如き駆動操作量検出センサ62より運転者の駆動操作量Aを示す信号が入力される。運転者要求目標駆動力演算部44は運転者の駆動操作量Aに基づいて運転者要求目標駆動力Fp_dvmを演算し、運転者要求目標駆動力Fp_dvmを示す信号を調停部46へ出力すると共に、車両運動制御電子制御装置42の運動状態推定部54及び修正目標駆動力演算部58へ出力する。   A signal indicating the driving operation amount A of the driver is input to the driver request target driving force calculation unit 44 from a driving operation amount detection sensor 62 such as an accelerator opening sensor provided in the accelerator pedal 34. The driver required target driving force calculating unit 44 calculates the driver required target driving force Fp_dvm based on the driving operation amount A of the driver, and outputs a signal indicating the driver required target driving force Fp_dvm to the arbitrating unit 46. This is output to the motion state estimation unit 54 and the corrected target driving force calculation unit 58 of the vehicle motion control electronic control device 42.

調停部46には上記運転者要求目標駆動力Fp_dvmを示す信号に加えて、車両運動制御電子制御装置42の制駆動力分配部56より制駆動力分配後の目標駆動力Fp_t_nowを示す信号及び制駆動力分配後の目標駆動力Fp_t_nowがあるか否か(ONのとき「あり」、OFFのとき「なし」)を示すフラグF_FP_NOW信号が入力され、また修正目標駆動力演算部58より修正目標駆動力Fp_t_futureを示す信号及び修正目標駆動力Fp_t_futureがあるか否か(ONのとき「あり」、OFFのとき「なし」)を示すフラグF_FP_FUTURE信号が入力される。   In addition to the signal indicating the driver required target driving force Fp_dvm, the arbitration unit 46 receives a signal indicating the target driving force Fp_t_now after the braking / driving force distribution from the braking / driving force distributing unit 56 of the vehicle motion control electronic control unit 42 and the control. A flag F_FP_NOW signal indicating whether or not the target driving force Fp_t_now after the driving force distribution is present (“Yes” when ON, “No” when OFF) is input, and the corrected target driving force calculation unit 58 corrects the target driving force. A signal indicating the force Fp_t_future and a flag F_FP_FUTURE signal indicating whether or not there is a corrected target driving force Fp_t_future (“Yes” when ON, “No” when OFF) are input.

調停部46は、フラグF_FP_NOW信号がOFFであるときには、調停後の目標駆動力Fp_nowを運転者要求目標駆動力Fp_dvmに設定し、フラグF_FP_FUTURE信号がOFFであるときには、調停後の修正目標駆動力Fp_futureを運転者要求目標駆動力Fp_dvmに設定する。これに対し調停部46は、フラグF_FP_NOW信号がONであるときには、調停後の目標駆動力Fp_nowを制駆動力分配後の目標駆動力Fp_t_nowに設定し、フラグF_FP_FUTURE信号がONであるときには、調停後の修正目標駆動力Fp_futureを修正目標駆動力Fp_t_futureに設定する。   When the flag F_FP_NOW signal is OFF, the arbitration unit 46 sets the target driving force Fp_now after the arbitration to the driver request target driving force Fp_dvm, and when the flag F_FP_FUTURE signal is OFF, the corrected target driving force Fp_future after arbitration is set. Is set to the driver required target driving force Fp_dvm. On the other hand, the arbitration unit 46 sets the target driving force Fp_now after the arbitration to the target driving force Fp_t_now after the braking / driving force distribution when the flag F_FP_NOW signal is ON, and after the arbitration when the flag F_FP_FUTURE signal is ON. The corrected target driving force Fp_future is set to the corrected target driving force Fp_t_future.

分配部48には調停部46より調停後の目標駆動力Fp_nowを示す信号及び調停後の修正目標駆動力Fp_futureを示す信号が入力され、回転数センサ76よりトランスミッション16の出力回転数Ntoutを示す信号が入力される。分配部48は調停後の目標駆動力Fp_nowに基づいて目標エンジン出力トルクTetを演算すると共に目標エンジン出力トルクTetを示す信号をエンジン制御装置64へ出力し、また調停後の修正目標駆動力Fp_future及びトランスミッション16の出力回転数Ntoutに基づいて図4に示された変速線図に従ってトランスミッションの目標変速段Stを演算すると共に目標変速段Stを示す信号を自動変速機制御装置66へ出力し、これにより車両の駆動トルクFp、即ちエンジン10及びトランスミッション16よりなる駆動装置10Aの出力トルクが調停後の目標駆動力Fp_nowになるよう制御する。   A signal indicating the target driving force Fp_now after arbitration and a signal indicating the corrected target driving force Fp_future after arbitration are input from the arbitrating unit 46 to the distribution unit 48, and a signal indicating the output rotational speed Ntout of the transmission 16 from the rotational speed sensor 76. Is entered. The distribution unit 48 calculates the target engine output torque Tet based on the target driving force Fp_now after the arbitration, and outputs a signal indicating the target engine output torque Tet to the engine control device 64, and the corrected target driving force Fp_future after the arbitration and Based on the output rotational speed Ntout of the transmission 16, the target shift stage St of the transmission is calculated according to the shift diagram shown in FIG. 4, and a signal indicating the target shift stage St is output to the automatic transmission control device 66. Control is performed so that the vehicle driving torque Fp, that is, the output torque of the driving device 10A including the engine 10 and the transmission 16, becomes the target driving force Fp_now after the arbitration.

発生駆動力演算部50にはエンジン制御装置64より現在のエンジン出力トルクTeaを示す信号が入力され、また自動変速機制御装置66より現在の変速段Saを示す信号が入力される。発生駆動力演算部50は現在のエンジン出力トルクTea及び現在の変速段Saに基づいて車両の現在の駆動トルクFp_currentを演算し、車両の現在の駆動トルクFp_currentを示す信号を車両運動制御電子制御装置42の運動状態推定部54へ出力する。また発生駆動力演算部50は車両の現在の駆動トルクFp_current及び現在の変速段Saを示す信号を車両運動制御電子制御装置42の修正目標駆動力演算部58へ出力する。   A signal indicating the current engine output torque Tea is input from the engine control device 64 to the generated driving force calculation unit 50, and a signal indicating the current gear stage Sa is input from the automatic transmission control device 66. The generated driving force calculation unit 50 calculates the current driving torque Fp_current of the vehicle based on the current engine output torque Tea and the current shift speed Sa, and a signal indicating the current driving torque Fp_current of the vehicle is transmitted to the vehicle motion control electronic control unit. It outputs to the motion state estimation part 54 of 42. The generated driving force calculation unit 50 outputs a signal indicating the current driving torque Fp_current of the vehicle and the current shift speed Sa to the corrected target driving force calculation unit 58 of the vehicle motion control electronic control unit 42.

運動状態推定部54は車輪速度センサ68i(i=fl、fr、rl、rr)により検出される各車輪の車輪速度Vwi(i=fl、fr、rl、rr)に基づき当技術分野に於いて公知の要領にて車体速度Vbを演算すると共に、左右後輪の駆動スリップ量SArl、SArrを演算し、駆動スリップ量SArl、SArrがトラクション制御(TRC制御)開始の基準値SAs(正の定数)よりも大きくなり、トラクション制御の開始条件が成立すると、トラクション制御の終了条件が成立するまで、当該車輪の駆動スリップ量を所定の範囲内にするためのトラクション制御の目標駆動力Fp_t_now_trcを演算する。   The motion state estimation unit 54 is based on the wheel speed Vwi (i = fl, fr, rl, rr) of each wheel detected by the wheel speed sensor 68i (i = fl, fr, rl, rr). The vehicle speed Vb is calculated in a known manner, and the driving slip amounts SArl and SArr of the left and right rear wheels are calculated. The driving slip amounts SArl and SArr are the reference values SAs (positive constants) for starting the traction control (TRC control). When the traction control start condition is satisfied, the traction control target drive force Fp_t_now_trc for keeping the drive slip amount of the wheel within a predetermined range is calculated until the traction control end condition is satisfied.

また運動状態推定部54には駆動力制御電子制御装置40の運転者要求目標駆動力演算部44よりの運転者要求目標駆動力Fp_dvmを示す信号及び発生駆動力演算部50よりの車両の現在の駆動トルクFp_currentを示す信号に加えて、図2には示されていないが、図1に示されている如く車輪速度センサ68i(i=fl、fr、rl、rr)より各車輪の車輪速度Vwi(i=fl、fr、rl、rr)を示す信号が入力され、また操舵角センサ、前後加速度センサ、横加速度センサ、ヨーレートセンサの如き車両状態量検出センサ70より操舵角θ、車両の前後加速度Gx、車両の横加速度Gy、車両のヨーレートγを示す信号等が入力される。   The motion state estimation unit 54 also includes a signal indicating the driver required target driving force Fp_dvm from the driver required target driving force calculation unit 44 of the driving force control electronic control unit 40 and the current vehicle current from the generated driving force calculation unit 50. In addition to the signal indicating the driving torque Fp_current, although not shown in FIG. 2, the wheel speed Vwi of each wheel is obtained from the wheel speed sensor 68i (i = fl, fr, rl, rr) as shown in FIG. (I = fl, fr, rl, rr) is input, and the steering angle θ and the vehicle longitudinal acceleration are detected by the vehicle state quantity detection sensor 70 such as a steering angle sensor, a longitudinal acceleration sensor, a lateral acceleration sensor, and a yaw rate sensor. A signal indicating Gx, lateral acceleration Gy of the vehicle, yaw rate γ of the vehicle, and the like are input.

運動状態推定部54は各車輪の車輪速度に基づく車体速度Vb及び操舵角θに基づいて当技術分野に於いて公知の要領にて車両の目標ヨーレートγtを演算し、車両の実際のヨーレートγと目標ヨーレートγtとの偏差Δγに基づいて車両の挙動を判定し、ヨーレート偏差Δγの大きさが大きく車両の挙動の制御が必要であるときには、ヨーレート偏差Δγの大きさを小さくするための目標駆動力として目標駆動力Fp_t_now_vscを演算する。   The motion state estimation unit 54 calculates the target yaw rate γt of the vehicle based on the vehicle body speed Vb based on the wheel speed of each wheel and the steering angle θ in a manner known in the art, and calculates the actual yaw rate γ of the vehicle. Based on the deviation Δγ from the target yaw rate γt, the behavior of the vehicle is determined. When the yaw rate deviation Δγ is large and the vehicle behavior needs to be controlled, the target driving force for reducing the magnitude of the yaw rate deviation Δγ As a result, the target driving force Fp_t_now_vsc is calculated.

尚運動状態推定部54は制動時には車両の前後加速度Gx等の車両状態量に基づき当技術分野に於いて公知の要領にて車両のスピンの程度を示すスピン状態量SS及び車両のドリフトアウトの程度を示すドリフトアウト状態量DSを演算し、スピン状態量SS及びドリフトアウト状態量DSに基づき車両の挙動を判定し、車両の挙動がスピン状態又はドリフトアウト状態であるときにはこれらを抑制するための挙動制御の各車輪の目標制動力Fbvti(i=fl、fr、rl、rr)を演算する。   It should be noted that the motion state estimation unit 54 at the time of braking is based on the vehicle state amount such as the longitudinal acceleration Gx of the vehicle, and the spin state amount SS indicating the degree of vehicle spin and the degree of vehicle drift-out in a manner known in the art. Is calculated, and the behavior of the vehicle is determined based on the spin state amount SS and the drift-out state amount DS. When the vehicle behavior is in the spin state or the drift-out state, a behavior for suppressing these is shown. The target braking force Fbvti (i = fl, fr, rl, rr) of each wheel for control is calculated.

尚車両挙動の判定及び車両の走行運動を安定化させるための挙動制御の目標駆動力Fp_t_now_vscや目標制動力Fbvtiの演算自体は本発明の要旨をなすものではなく、当技術分野に於いて公知の任意の要領にて行われてよい。   Note that the calculation of the target driving force Fp_t_now_vsc and the target braking force Fbvti for determining the behavior of the vehicle and controlling the behavior for stabilizing the traveling motion of the vehicle itself does not form the gist of the present invention, and is well known in the art. It may be performed in any manner.

また運動状態推定部54は後述の如く当技術分野に於いて公知の要領にて路面の摩擦係数μ及び各車輪の横力Fwyi(i=fl、fr、rl、rr)を推定し、路面の摩擦係数μがその基準値μo(正の定数)よりも大きく且つ何れかの車輪の横力Fwyiが基準値Fwyo(正の定数)よりも大きいときには、車両が高横力旋回状態にあると判定する。   In addition, the motion state estimation unit 54 estimates the friction coefficient μ of the road surface and the lateral force Fwyi (i = fl, fr, rl, rr) of each wheel in a manner known in the art as will be described later. When the friction coefficient μ is larger than the reference value μo (positive constant) and the lateral force Fwyi of any wheel is larger than the reference value Fwyo (positive constant), it is determined that the vehicle is in a high lateral force turning state. To do.

また運動状態推定部54は車両の挙動が安定しておりトラクション制御も挙動制御も不要であり車両が高横力旋回状態にはないときには、車両の目標制駆動力F_tを運転者要求目標駆動力Fp_dvmに設定して車両の目標制駆動力F_tを示す信号を制駆動力分配部56へ出力する。これに対し運動状態推定部54は、トラクション制御が必要であると判定したときには、車両の目標制駆動力F_tをトラクション制御の目標駆動力Fp_t_now_trcに設定すると共に、トラクション制御の判定結果及び車両の目標制駆動力F_tを示す信号を制駆動力分配部56へ出力する。また運動状態推定部54は、挙動制御が必要であると判定したときには、車両の目標制駆動力F_tを挙動制御の目標駆動力Fp_t_now_vscに設定すると共に、車両挙動の判定結果及び車両の目標制駆動力F_tを示す信号を制駆動力分配部56へ出力する。   Further, when the behavior of the vehicle is stable, traction control and behavior control are not required, and the vehicle is not in a high lateral force turning state, the motion state estimation unit 54 uses the target braking / driving force F_t of the vehicle as the driver requested target driving force. A signal indicating the target braking / driving force F_t of the vehicle set to Fp_dvm is output to the braking / driving force distribution unit 56. On the other hand, when it is determined that the traction control is necessary, the motion state estimation unit 54 sets the target braking / driving force F_t of the vehicle to the target driving force Fp_t_now_trc of the traction control, and the determination result of the traction control and the target of the vehicle. A signal indicating the braking / driving force F_t is output to the braking / driving force distribution unit 56. Further, when the motion state estimation unit 54 determines that the behavior control is necessary, it sets the target braking / driving force F_t of the vehicle to the target driving force Fp_t_now_vsc of the behavior control, and also determines the vehicle behavior determination result and the target braking / driving of the vehicle. A signal indicating the force F_t is output to the braking / driving force distribution unit 56.

更に運動状態推定部54はトラクション制御及び挙動制御が必要であるときには、下記の式1に従ってトラクション制御の目標駆動力Fp_t_now_trc及び挙動制御の目標駆動力Fp_t_now_vscのうちの小さい方の値を車両の目標駆動力F_tとして演算し、トラクション制御及び車両挙動の判定結果及び車両の目標制駆動力F_tを示す信号を制駆動力分配部56へ出力する。
F_t=MIN(Fp_t_now_trc,Fp_t_now_vsc) ……(1)
Further, when the traction control and the behavior control are necessary, the motion state estimation unit 54 uses the smaller value of the target drive force Fp_t_now_trc for the traction control and the target drive force Fp_t_now_vsc for the behavior control according to the following formula 1. The force F_t is calculated and a signal indicating the traction control and vehicle behavior determination result and the target braking / driving force F_t of the vehicle is output to the braking / driving force distribution unit 56.
F_t = MIN (Fp_t_now_trc, Fp_t_now_vsc) (1)

制駆動力分配部56は車両の目標制駆動力F_tが正の値であり駆動力であるときには、目標制駆動力F_tを制駆動力分配後の目標駆動力Fp_t_nowとし、制駆動力分配後の目標駆動力Fp_t_nowを示す信号を駆動力制御電子制御装置40の調停部46及び修正目標駆動力演算部58へ出力し、制駆動力分配後の目標駆動力Fp_t_nowがあるか否かを示すフラグF_FP_NOW信号を調停部46へ出力する。   The braking / driving force distribution unit 56 sets the target braking / driving force F_t as the target driving force Fp_t_now after distributing the braking / driving force when the target braking / driving force F_t of the vehicle is a positive value and is a driving force. A signal indicating the target driving force Fp_t_now is output to the arbitration unit 46 and the corrected target driving force calculation unit 58 of the driving force control electronic control unit 40, and a flag F_FP_NOW indicating whether or not there is the target driving force Fp_t_now after the braking / driving force distribution The signal is output to the arbitration unit 46.

また制駆動力分配部56は各車輪の車輪速度Vwiに基づき当技術分野に於いて公知の要領にて車体速度Vbを演算すると共に、各車輪の制動スリップ量SBi(i=fl、fr、rl、rr)を演算し、制動スリップ量SBiがアンチスキッド制御(ABS制御)開始の基準値よりも大きくなり、アンチスキッド制御の開始条件が成立すると、アンチスキッド制御の終了条件が成立するまで、当該車輪の制動スリップ量を所定の範囲内にするためのアンチスキッド制御の目標制動力Fbvti(i=fl、fr、rl、rr)を演算する。   Further, the braking / driving force distribution unit 56 calculates the vehicle body speed Vb based on the wheel speed Vwi of each wheel in a manner known in the art, and the braking slip amount SBi (i = fl, fr, rl) of each wheel. , Rr), and when the braking slip amount SBi becomes larger than the reference value for starting anti-skid control (ABS control) and the anti-skid control start condition is satisfied, the anti-skid control end condition is satisfied. A target braking force Fbvti (i = fl, fr, rl, rr) for anti-skid control for bringing the braking slip amount of the wheel into a predetermined range is calculated.

また制駆動力分配部56はトラクション制御若しくは挙動制御が必要であるときには、それらの各判定結果に基づいて各車輪の目標制動力Fbvtiを演算する。そして制駆動力分配部56は目標制動力Fbvtiがあるときには、目標制動力Fbvtiを示す信号を制動力制御装置72へ出力する。   When the traction control or the behavior control is necessary, the braking / driving force distribution unit 56 calculates the target braking force Fbvti of each wheel based on each determination result. The braking / driving force distribution unit 56 outputs a signal indicating the target braking force Fbvti to the braking force control device 72 when the target braking force Fbvti is present.

制動力制御装置72にはブレーキペダル36に設けられた制動操作量検出センサ74により検出された運転者の制動操作量Fbを示す信号が入力され、また圧力センサ76i(i=fl、fr、rl、rr)により検出されたホイールシリンダ30FL〜30RRの制動圧Pbi(i=fl、fr、rl、rr)を示す信号が入力される。制動力制御装置72は運転者の制動操作量Fbに基づいて各車輪の目標制動力Fbti(i=fl、fr、rl、rr)を演算し、トラクション制御若しくは挙動制御若しくはアンチスキッド制御の目標制動力Fbvtiがあるときには、当該車輪の目標制動力Fbtiを目標制動力Fbvtiに置き換える。   A signal indicating the driver's braking operation amount Fb detected by a braking operation amount detection sensor 74 provided on the brake pedal 36 is input to the braking force control device 72, and the pressure sensor 76i (i = fl, fr, rl). , Rr), a signal indicating the braking pressure Pbi (i = fl, fr, rl, rr) of the wheel cylinders 30FL to 30RR detected is input. The braking force control device 72 calculates the target braking force Fbti (i = fl, fr, rl, rr) of each wheel based on the braking operation amount Fb of the driver, and the target control for traction control, behavior control, or anti-skid control. When there is power Fbvti, the target braking force Fbti of the wheel is replaced with the target braking force Fbvti.

そして制動力制御装置72は目標制動力Fbtiに基づいて当技術分野に於いて公知の要領にて各車輪の目標制動圧Pbti(i=fl、fr、rl、rr)を演算し、各車輪の制動圧Pbiがそれぞれ対応する目標制動圧Pbtiになるよう油圧回路28を制御することにより、各車輪の制動力Fbi(i=fl、fr、rl、rr)がそれぞれ対応する目標制動力Fbtiになるよう制御する。   Then, the braking force control device 72 calculates the target braking pressure Pbti (i = fl, fr, rl, rr) of each wheel based on the target braking force Fbti in a manner known in the art. By controlling the hydraulic circuit 28 so that the braking pressure Pbi becomes the corresponding target braking pressure Pbti, the braking force Fbi (i = fl, fr, rl, rr) of each wheel becomes the corresponding target braking force Fbti. Control as follows.

修正目標駆動力演算部58には運転者要求目標駆動力演算部44より運転者要求目標駆動力Fp_dvmを示す信号が入力され、制駆動力分配部56より制駆動力分配後の目標駆動力Fp_t_nowを示す信号が入力される。また修正目標駆動力演算部58には回転数センサ76よりトランスミッション16の出力回転数Ntoutを示す信号が入力され、μセンサ78L及び78Rよりそれぞれ左右後輪に対応する路面の摩擦係数μl及びμrを示す信号が入力される。   A signal indicating the driver required target driving force Fp_dvm is input from the driver required target driving force calculating unit 44 to the corrected target driving force calculating unit 58, and the target driving force Fp_t_now after the braking / driving force distribution is supplied from the braking / driving force distributing unit 56. Is input. A signal indicating the output rotational speed Ntout of the transmission 16 is input from the rotational speed sensor 76 to the corrected target driving force calculation unit 58, and the friction coefficients μl and μr of the road surface corresponding to the left and right rear wheels are respectively input from the μ sensors 78L and 78R. The signal shown is input.

修正目標駆動力演算部58は制駆動力分配後の目標駆動力Fp_t_nowがトラクション制御の目標駆動力Fp_t_now_trcであるときには、下記の式2に従ってフィルタ処理後のトラクション制御の目標駆動力Fp_t_now_trcfを演算すると共に、下記の式3に従って一次遅れのフィルタ処理後のトラクション制御の目標駆動力Fp_t_now_trcf及びトラクション制御の目標駆動力Fp_t_now_trcのうちの大きい方の値をトラクション制御の第一の修正目標駆動力Fp_t_future_trc1とする。
Fp_t_now_trcf=(1‐K1)/(1‐K1Z−1)Fp_t_now_trc ……(2)
Fp_t_future_trc1=MAX(Fp_t_now_trcf,Fp_t_now_trc) ……(3)
When the target driving force Fp_t_now after distribution of the braking / driving force is the traction control target driving force Fp_t_now_trc, the corrected target driving force calculator 58 calculates the traction control target driving force Fp_t_now_trcf after the filter processing according to the following equation 2. The larger one of the traction control target driving force Fp_t_now_trcf and the traction control target driving force Fp_t_now_trc after first-order lag filtering according to the following equation 3 is set as the first corrected target driving force Fp_t_future_trc1 for traction control.
Fp_t_now_trcf = (1-K1) / (1-K1Z- 1 ) Fp_t_now_trc (2)
Fp_t_future_trc1 = MAX (Fp_t_now_trcf, Fp_t_now_trc) (3)

例えば図6は運転者の加速要求が増加し、運転者要求目標駆動力Fp_dvmが増加する過程に於いてトラクション制御が実行される場合に於ける運転者要求目標駆動力Fp_dvm、トラクション制御の目標駆動力Fp_t_now_trc、トラクション制御の第一の修正目標駆動力Fp_t_future_trc1の変化の一例を示している。図6に示されている如く、トラクション制御によりトラクション制御の目標駆動力Fp_t_now_trcが運転者要求目標駆動力Fp_dvmよりも小さい値に演算されるが、トラクション制御の第一の修正目標駆動力Fp_t_future_trc1は急激には低下せず、トラクション制御の開始後徐々に低下する。   For example, FIG. 6 shows that the driver required target driving force Fp_dvm and the target driving of the traction control when the traction control is executed in the process in which the driver's acceleration request increases and the driver required target driving force Fp_dvm increases. An example of changes in the force Fp_t_now_trc and the first corrected target driving force Fp_t_future_trc1 for traction control is shown. As shown in FIG. 6, the traction control target driving force Fp_t_now_trc is calculated to be smaller than the driver required target driving force Fp_dvm by traction control, but the first corrected target driving force Fp_t_future_trc1 of traction control is abrupt. However, it gradually decreases after the start of traction control.

また修正目標駆動力演算部58は制駆動力分配後の目標駆動力Fp_t_nowが挙動制御の目標駆動力Fp_t_now_vscであるときには、下記の式4に従って一次遅れのフィルタ処理後の挙動制御の目標駆動力Fp_t_now_vscfを演算すると共に、下記の式5に従ってフィルタ処理後の挙動制御の目標駆動力Fp_t_now_vscf及び挙動制御の目標駆動力Fp_t_now_vscのうちの大きい方の値を挙動制御の修正目標駆動力Fp_t_future_vscとする。
Fp_t_now_vscf=(1‐K2)/(1‐K2Z−1)Fp_t_now_vsc ……(4)
Fp_t_future_vsc=MAX(Fp_t_now_vscf,Fp_t_now_vsc) ……(5)
When the target driving force Fp_t_now after distribution of braking / driving force is the target driving force Fp_t_now_vsc for behavior control, the corrected target driving force calculation unit 58 performs the target driving force Fp_t_now_vscf for behavior control after first-order lag filtering according to the following equation 4. And the larger one of the behavioral control target driving force Fp_t_now_vscf and the behavioral control target driving force Fp_t_now_vsc according to the following equation 5 is set as the behavioral control target driving force Fp_t_future_vsc.
Fp_t_now_vscf = (1-K2) / (1-K2Z- 1 ) Fp_t_now_vsc (4)
Fp_t_future_vsc = MAX (Fp_t_now_vscf, Fp_t_now_vsc) (5)

例えば図7は運転者の加速要求が増加し、運転者要求目標駆動力Fp_dvmが増加する過程に於いて挙動制御が実行される場合に於ける運転者要求目標駆動力Fp_dvm、挙動制御の目標駆動力Fp_t_now_vsc、挙動制御の修正目標駆動力Fp_t_future_vscの変化の一例を示している。図7に示されている如く、挙動制御により挙動制御の目標駆動力Fp_t_now_vscが運転者要求目標駆動力Fp_dvmよりも小さい値に演算されるが、挙動制御の修正目標駆動力Fp_t_future_vscは急激には低下せず、挙動制御の開始後徐々に低下する。   For example, FIG. 7 shows that the driver required target driving force Fp_dvm and the behavioral control target driving in the case where behavior control is executed in the process where the driver's acceleration demand increases and the driver required target driving force Fp_dvm increases. An example of changes in the force Fp_t_now_vsc and the modified target driving force Fp_t_future_vsc for behavior control is shown. As shown in FIG. 7, the behavior control target driving force Fp_t_now_vsc is calculated to be smaller than the driver-requested target driving force Fp_dvm by the behavior control, but the behavior control corrected target driving force Fp_t_future_vsc rapidly decreases. Without gradually decreasing after the start of behavior control.

また修正目標駆動力演算部58は、挙動制御の目標駆動力Fp_t_now_vscが演算されており挙動制御が必要であるとき又は車両が高横力旋回状態にあると判定されているときには、当技術分野に於いて公知の要領にて各車輪の発生前後力Fwxi及び発生横力Fwyi(i=fl、fr、rl、rr)を演算する。そして修正目標駆動力演算部58は、左右の後輪について発生前後力Fwxi及び発生横力Fwyiの二乗和平方根として左右後輪のタイヤ発生力F_current_tire_rl、F_current_tire_rrを演算し、それらの和を駆動輪のタイヤ発生力Fp_current_tireとする。   Further, the corrected target driving force calculation unit 58 calculates the behavior control target driving force Fp_t_now_vsc, and when it is determined that the behavior control is necessary or the vehicle is in a high lateral force turning state, Then, the generated longitudinal force Fwxi and the generated lateral force Fwyi (i = fl, fr, rl, rr) of each wheel are calculated in a known manner. Then, the corrected target driving force calculation unit 58 calculates the tire generating forces F_current_tire_rl and F_current_tire_rr of the left and right rear wheels as the square sum square root of the generated longitudinal force Fwxi and the generated lateral force Fwyi for the left and right rear wheels, and these sums are calculated for the driving wheels. The tire generation force is Fp_current_tire.

尚車両が前輪駆動車である場合には、駆動輪のタイヤ発生力Fp_current_tireは左右前輪のタイヤ発生力の和に設定され、車両が四輪駆動車である場合には、駆動輪のタイヤ発生力Fp_current_tireは左右前輪及び左右後輪のタイヤ発生力の和に設定される。   When the vehicle is a front-wheel drive vehicle, the tire generation force Fp_current_tire of the drive wheel is set to the sum of the tire generation forces of the left and right front wheels. When the vehicle is a four-wheel drive vehicle, the tire generation force of the drive wheel Fp_current_tire is set to the sum of the tire generating forces of the left and right front wheels and the left and right rear wheels.

また修正目標駆動力演算部58は、駆動輪のタイヤ発生力Fp_current_tireに対し下記の式6に従ってフィルタ処理後の駆動輪のタイヤ発生力Fp_current_tirefを演算すると共に、下記の式7に従ってフィルタ処理後の駆動輪のタイヤ発生力Fp_current_tiref及び駆動輪のタイヤ発生力Fp_current_tireのうちの大きい方の値を高横力旋回制御の目標駆動力Fp_t_future_tireとする。
Fp_current_tiref=(1‐K3)/(1‐K3Z−1)Fp_current_tire ……(6)
Fp_current_tire=MAX(Fp_current_tiref,Fp_current_tire) ……(7)
The corrected target driving force calculation unit 58 calculates the tire generation force Fp_current_tiref of the drive wheel after filtering according to the following equation 6 with respect to the tire generation force Fp_current_tire of the driving wheel, and the driving after filtering according to equation 7 below. The larger one of the wheel tire generating force Fp_current_tiref and the driving wheel tire generating force Fp_current_tire is set as a target driving force Fp_t_future_tire for high lateral force turning control.
Fp_current_tiref = (1-K3) / (1-K3Z- 1 ) Fp_current_tire (6)
Fp_current_tire = MAX (Fp_current_tiref, Fp_current_tire) (7)

尚上記式2、4、6に於けるフィルタ時定数K1、K2、K3は相互に異なる値であり、時にK2はK1、K3よりも大きい値に設定される。またフィルタ時定数K1、K2、K3は定数であってもよいが、図示の実施例に於いては駆動操作量検出センサ62により検出される運転者の駆動操作量Aが高いほど大きくなるよう、運転者の駆動操作量Aに応じて可変設定される。   The filter time constants K1, K2, and K3 in the above formulas 2, 4, and 6 are different from each other, and sometimes K2 is set to a value that is larger than K1 and K3. The filter time constants K1, K2, and K3 may be constants. However, in the illustrated embodiment, the higher the driver's driving operation amount A detected by the driving operation amount detection sensor 62, the larger the time constants. It is variably set according to the driving operation amount A of the driver.

また修正目標駆動力演算部58は、図4に示された変速線図を記憶しており、図3に示されたフローチャートに従ってトラクション制御の第二の修正目標駆動力Fp_t_future_trc2を演算する。   The corrected target driving force calculator 58 stores the shift diagram shown in FIG. 4 and calculates the second corrected target driving force Fp_t_future_trc2 for traction control according to the flowchart shown in FIG.

まずステップ10に於いては左右後輪の駆動スリップ量SArl及びSArrのうちの大きい方の値をSArとして、駆動スリップ量SArが基準値SAc(トラクション制御開始の基準値SAsよりも大きい正の定数)以下であるか否かの判別が行われ、否定判別が行われたときにはステップ60へ進み、肯定判別が行われたときにはステップ20へ進む。   First, in step 10, the larger one of the driving slip amounts SArl and SArr of the left and right rear wheels is SAr, and the driving slip amount SAr is a positive value larger than the reference value SAc (reference value SAs for starting traction control). ) A determination is made as to whether or not, and if a negative determination is made, the process proceeds to step 60, and if an affirmative determination is made, the process proceeds to step 20.

ステップ20に於いては現在の変速段Sa及びトランスミッション16の出力回転数Ntoutに基づき図4に示された変速線図より現在の変速段Saにて可能な駆動装置10Aの駆動力の下限値Fp_t_lowが演算され、ステップ30に於いてはμセンサ78L及び78Rにより検出された路面の摩擦係数μl及びμrの平均値が路面の摩擦係数μとして演算されると共に、路面の摩擦係数μが低いほど制御ゲインKmが小さい値になるよう、路面の摩擦係数μに基づいて図5に示されたグラフに対応するマップより制御ゲインKmが演算される。   In step 20, the lower limit value Fp_t_low of the driving force of the drive device 10A that is possible at the current gear stage Sa based on the current gear stage Sa and the output rotational speed Ntout of the transmission 16 from the shift diagram shown in FIG. In step 30, the average values of the road surface friction coefficients μl and μr detected by the μ sensors 78L and 78R are calculated as the road surface friction coefficient μ, and the control is performed as the road surface friction coefficient μ is lower. The control gain Km is calculated from a map corresponding to the graph shown in FIG. 5 based on the friction coefficient μ of the road surface so that the gain Km becomes a small value.

ステップ40に於いては制御ゲインKmと運転者要求目標駆動力Fp_dvmとの積として路面の摩擦係数μ及び運転者要求目標駆動力Fp_dvmに基づく暫定の目標駆動力Fp_t_mが演算され、ステップ50に於いては下記の式8に従って駆動力の下限値Fp_t_low及び路面の摩擦係数μに基づく目標駆動力Fp_t_mのうちの大きい方の値がトラクション制御の第二の修正目標駆動力Fp_t_future_trc2に設定される。
Fp_t_future_trc2=MAX(Fp_t_low,Fp_t_m) ……(8)
In step 40, a temporary target driving force Fp_t_m based on the friction coefficient μ of the road surface and the driver required target driving force Fp_dvm is calculated as the product of the control gain Km and the driver required target driving force Fp_dvm. Then, the larger one of the lower limit value Fp_t_low of the driving force and the target driving force Fp_t_m based on the friction coefficient μ of the road surface is set as the second corrected target driving force Fp_t_future_trc2 of the traction control according to the following formula 8.
Fp_t_future_trc2 = MAX (Fp_t_low, Fp_t_m) (8)

ステップ60及び70に於いては現在の変速段Sa及びトランスミッション16の出力回転数Ntoutに基づき図4に示された変速線図より現在の変速段Saにて可能な駆動装置10Aの駆動力の下限値Fp_t_low及び上限値Fp_t_highがそれぞれ演算され、ステップ80に於いては駆動力の下限値Fp_t_low及び上限値Fp_t_highの平均値としてトラクション制御の第二の修正目標駆動力Fp_t_future_trc2が演算される。   In steps 60 and 70, the lower limit of the driving force of the driving device 10A that is possible at the current shift stage Sa from the shift diagram shown in FIG. 4 based on the current shift stage Sa and the output rotational speed Ntout of the transmission 16. A value Fp_t_low and an upper limit value Fp_t_high are respectively calculated. In step 80, a second corrected target driving force Fp_t_future_trc2 for traction control is calculated as an average value of the lower limit value Fp_t_low and the upper limit value Fp_t_high of the driving force.

尚図示の実施例に於いては、ステップ80に於いて駆動力の下限値Fp_t_low及び上限値Fp_t_highの平均値としてトラクション制御の第二の修正目標駆動力Fp_t_future_trc2が演算されるようになっているが、第二の修正目標駆動力Fp_t_future_trc2は駆動力の下限値Fp_t_lowよりも大きく且つ上限値Fp_t_highよりも小さい値である限り、任意の要領にて演算されてよい。   In the illustrated embodiment, in step 80, the second corrected target driving force Fp_t_future_trc2 for traction control is calculated as an average value of the lower limit value Fp_t_low and the upper limit value Fp_t_high of the driving force. The second corrected target driving force Fp_t_future_trc2 may be calculated in an arbitrary manner as long as it is larger than the lower limit value Fp_t_low and smaller than the upper limit value Fp_t_high.

また図示の実施例に於いては、修正目標駆動力演算部58が図4に示された変速線図を記憶しており、該変速線図に基づいて駆動力の下限値Fp_t_low及び上限値Fp_t_highが演算されるようになっているが、修正目標駆動力演算部58が変速線図を記憶せず、駆動力の下限値Fp_t_low及び上限値Fp_t_highを示す情報が駆動力制御電子制御装置40の発生駆動力演算部50より通信により供給されるよう修正されてもよい。   In the illustrated embodiment, the corrected target driving force calculation unit 58 stores the shift diagram shown in FIG. 4, and based on the shift diagram, the lower limit value Fp_t_low and the upper limit value Fp_t_high of the driving force are stored. However, the corrected target driving force calculation unit 58 does not store the shift diagram, and information indicating the lower limit value Fp_t_low and the upper limit value Fp_t_high of the driving force is generated by the driving force control electronic control unit 40. The driving force calculation unit 50 may be modified so as to be supplied by communication.

また修正目標駆動力演算部58は、下記の式9に従ってトラクション制御の第一の修正目標駆動力Fp_t_future_trc1及び第二の修正目標駆動力Fp_t_future_trc2のうちの大きい値をトラクション制御の修正目標駆動力Fp_t_future_trcとすると共に、下記の式10に従ってトラクション制御の修正目標駆動力Fp_t_future_trc、挙動制御の修正目標駆動力Fp_t_future_vsc、高横力旋回制御の修正目標駆動力Fp_t_future_tireのうちの最も大きい値をその後の車輪及び車両の運動状態の変化に備えてトランスミッション16の変速段を決定するための基本修正目標駆動力Fp_t_future_bとする。
Fp_t_future_trc=MAX(Fp_t_future_trc1,Fp_t_future_trc2) ……(9)
Fp_t_future_b=MAX(Fp_t_future_trc,Fp_t_future_vsc,Fp_t_future_tire)
……(10)
Further, the corrected target driving force calculation unit 58 sets a larger value of the first corrected target driving force Fp_t_future_trc1 and the second corrected target driving force Fp_t_future_trc2 for traction control as the corrected target driving force Fp_t_future_trc for traction control according to the following equation (9). In addition, the largest value among the corrected target driving force Fp_t_future_trc for traction control, the corrected target driving force Fp_t_future_vsc for behavior control, and the corrected target driving force Fp_t_future_tire for high lateral force turning control is calculated in accordance with the following equation (10). A basic corrected target driving force Fp_t_future_b for determining the gear position of the transmission 16 in preparation for a change in the motion state.
Fp_t_future_trc = MAX (Fp_t_future_trc1, Fp_t_future_trc2) (9)
Fp_t_future_b = MAX (Fp_t_future_trc, Fp_t_future_vsc, Fp_t_future_tire)
...... (10)

尚図示の実施例に於いては、トラクション制御の第一の修正目標駆動力Fp_t_future_trc1及び第二の修正目標駆動力Fp_t_future_trc2のうちの大きい方の値がトラクション制御の修正目標駆動力Fp_t_future_trcとされるようになっているが、第一の修正目標駆動力Fp_t_future_trc1の演算が省略され、実施例の第二の修正目標駆動力Fp_t_future_trc2が修正目標駆動力Fp_t_future_trcとして演算されるよう修正されてもよい。   In the illustrated embodiment, the larger one of the first corrected target driving force Fp_t_future_trc1 and the second corrected target driving force Fp_t_future_trc2 for traction control is set as the corrected target driving force Fp_t_future_trc for traction control. However, the calculation of the first corrected target driving force Fp_t_future_trc1 may be omitted, and the second corrected target driving force Fp_t_future_trc2 of the embodiment may be corrected to be calculated as the corrected target driving force Fp_t_future_trc.

また図示の実施例に於いては、修正目標駆動力Fp_t_future_trc、Fp_t_future_vsc、Fp_t_future_tireはそれぞれ目標駆動力Fp_t_future_trc、Fp_t_future_vsc、Fp_current_tireに対しフィルタ処理を施すことにより演算されるようになっているが、修正目標駆動力Fp_t_future_trc、Fp_t_future_vsc、Fp_t_future_tireはそれぞれ目標駆動力Fp_t_future_trc、Fp_t_future_vsc、Fp_current_tireよりも低下勾配が小さい限り、それぞれ目標駆動力Fp_t_future_trc、Fp_t_future_vsc、Fp_current_tireに基づいて任意の要領にて演算されてよい。   In the illustrated embodiment, the corrected target driving forces Fp_t_future_trc, Fp_t_future_vsc, and Fp_t_future_tire are calculated by applying the filter processing to the target driving forces Fp_t_future_trc, Fp_t_future_vsc, and Fp_current_tire, respectively. The forces Fp_t_future_trc, Fp_t_future_vsc, and Fp_t_future_tire are set to the target driving forces Fp_t_future_trc, Fp_t_future_sc_, and Fp_t_future_trc, Fp_t_future_trc, Fp_t_future_trc, and Fp_t_future_sc, respectively.

また修正目標駆動力演算部58は、図8に示されたフローチャートに従ってトランスミッション16の変速段を決定するための最終的な目標駆動力として修正目標駆動力Fp_t_futureを演算する。   The corrected target driving force calculation unit 58 calculates the corrected target driving force Fp_t_future as the final target driving force for determining the gear position of the transmission 16 according to the flowchart shown in FIG.

まずステップ110に於いては例えば車速Vに基づき車両が加速状態にあるか否かの判別が行われ、否定判別が行われたときには図8に示されたフローチャートによる制御が一旦終了され、肯定判別が行われたときにはステップ120へ進む。   First, at step 110, for example, it is determined whether or not the vehicle is in an accelerating state based on the vehicle speed V. When a negative determination is made, the control according to the flowchart shown in FIG. When the operation is performed, the routine proceeds to step 120.

ステップ120に於いてはフラグFaが1であるか否かの判別、即ち駆動輪が回転振動しているときの修正目標駆動力Fp_t_futureの演算制御が行われているか否かの判別が行われ、肯定判別が行われたときにはステップ210へ進み、否定判別が行われたときにはステップ130へ進む。   In step 120, it is determined whether or not the flag Fa is 1, that is, whether or not calculation control of the corrected target driving force Fp_t_future when the driving wheel is rotating and vibrating is performed. When an affirmative determination is made, the process proceeds to step 210, and when a negative determination is made, the process proceeds to step 130.

ステップ130に於いては駆動輪が回転振動しているか否かの判別が行われ、否定判別が行われたときにはステップ150へ進み、肯定判別が行われたときにはステップ140に於いてフラグFaが1にセットされた後ステップ190へ進む。   In step 130, it is determined whether or not the driving wheel is rotating and vibrating. If a negative determination is made, the process proceeds to step 150. If an affirmative determination is made, the flag Fa is set to 1 in step 140. Then, the process proceeds to step 190.

この場合駆動輪が回転振動しているか否かの判別は、当技術分野に於いて公知の任意の要領にて行われてよく、例えば左右後輪の車輪速度Vwrl、Vwrrより当技術分野に於いて公知の要領にて振動成分が抽出され、振動成分の振幅Arl、Awrrが演算され、振幅Arl及びAwrの少なくとも一方が基準値Ao(正の定数)以上であるか否かの判別により行われてよい。   In this case, whether or not the driving wheel is rotating and vibrating may be determined in any manner known in the art. For example, the wheel speeds Vwrl and Vwrr of the left and right rear wheels may be used in the art. The vibration component is extracted in a known manner, the amplitudes Arl and Awrr of the vibration component are calculated, and determination is made by determining whether at least one of the amplitudes Arl and Awr is greater than or equal to a reference value Ao (a positive constant). It's okay.

ステップ150に於いてはフラグFbが1であるか否かの判別、即ち走行路がまたぎ路であるときの修正目標駆動力Fp_t_futureの演算制御が行われているか否かの判別が行われ、肯定判別が行われたときにはステップ220へ進み、否定判別が行われたときにはステップ160へ進む。   In step 150, it is determined whether or not the flag Fb is 1, that is, whether or not the calculation control of the corrected target driving force Fp_t_future when the travel path is a crossing path is performed. When a determination is made, the process proceeds to step 220, and when a negative determination is made, the process proceeds to step 160.

ステップ160に於いては走行路がまたぎ路であるか否かの判別が行われ、否定判別が行われたときにはステップ140に於いて補正係数Kcが1にリセットされた後ステップ200へ進み、肯定判別が行われたときにはステップ180に於いてフラグFbが1にセットされた後ステップ190へ進む。   In step 160, it is determined whether or not the road is a crossing road. If a negative determination is made, the correction coefficient Kc is reset to 1 in step 140, and then the process proceeds to step 200. When the determination is made, the flag Fb is set to 1 in step 180, and then the routine proceeds to step 190.

この場合走行路がまたぎ路であるか否かの判別は、当技術分野に於いて公知の任意の要領にて行われてよく、例えば左右の路面の摩擦係数μl及びμrの差Δμが演算され、差Δμの絶対値が基準値μo(正の定数)以上であるか否かの判別により行われてよい。   In this case, the determination as to whether or not the traveling road is a straddling road may be made in any manner known in the art, for example, the difference Δμ between the friction coefficient μl and μr of the left and right road surfaces is calculated. The absolute value of the difference Δμ may be determined by determining whether or not the absolute value is greater than or equal to a reference value μo (positive constant).

ステップ190に於いてはΔKsを微小な正の定数として補正係数Kcが前サイクルのKcよりΔKsが減算された値に演算されることにより、補正係数Kcの漸減処理が行われ、ステップ200に於いては補正係数Kcと基本修正目標駆動力Fp_t_future_bとの積として修正目標駆動力Fp_t_futureが演算される。   In step 190, ΔKs is a small positive constant, and the correction coefficient Kc is calculated to be a value obtained by subtracting ΔKs from Kc in the previous cycle, so that the correction coefficient Kc is gradually reduced. In this case, the corrected target driving force Fp_t_future is calculated as the product of the correction coefficient Kc and the basic corrected target driving force Fp_t_future_b.

ステップ210に於いては例えば左右後輪の車輪速度Vwrl、Vwrrの振幅Arl及びAwrの何れも基準値Ao未満であるか否かの判別により、駆動輪の回転振動が終息したか否かの判別が行われ、否定判別が行われたときにはステップ190へ進み、肯定判別が行われたときにはステップ230へ進む。   In step 210, for example, whether or not the rotational vibration of the drive wheels has ended is determined by determining whether or not the amplitudes Arl and Awr of the wheel speeds Vwrl and Vwrr of the left and right rear wheels are both less than the reference value Ao. When a negative determination is made, the process proceeds to step 190, and when an affirmative determination is made, the process proceeds to step 230.

ステップ220に於いては例えば左右の路面の摩擦係数の差Δμの絶対値が基準値μo未満であるか否かの判別により、またぎ路での走行が終了したか否かの判別が行われ、否定判別が行われたときにはステップ190へ進み、肯定判別が行われたときにはステップ230へ進む。   In step 220, for example, by determining whether or not the absolute value of the friction coefficient difference Δμ between the left and right road surfaces is less than the reference value μo, it is determined whether or not traveling on the straddling road has ended, When a negative determination is made, the process proceeds to step 190, and when an affirmative determination is made, the process proceeds to step 230.

ステップ230に於いてはΔKeを微小な正の定数として補正係数Kcが前サイクルのKcよりΔKeが加算された値に演算されることにより、補正係数Kcの漸増処理が行われ、ステップ240に於いては補正係数Kcと基本修正目標駆動力Fp_t_future_bとの積として修正目標駆動力Fp_t_futureが演算される。   In step 230, ΔKe is a small positive constant, and the correction coefficient Kc is calculated to be a value obtained by adding ΔKe to Kc of the previous cycle, whereby the correction coefficient Kc is gradually increased. In this case, the corrected target driving force Fp_t_future is calculated as the product of the correction coefficient Kc and the basic corrected target driving force Fp_t_future_b.

ステップ250に於いては補正係数Kcの絶対値が1+ΔKe以下であるか否かの判別により、補正係数Kcの漸増処理が終了したか否かの判別が行われ、否定判別が行われたときには図8に示されたフローチャートによる制御が一旦終了され、肯定判別が行われたときにはステップ260へ進む。   In step 250, it is determined whether or not the gradual increase processing of the correction coefficient Kc is completed by determining whether or not the absolute value of the correction coefficient Kc is 1 + ΔKe or less. When the control according to the flowchart shown in FIG. 8 is once completed and an affirmative determination is made, the routine proceeds to step 260.

ステップ260に於いてはフラグFa及びFbがそれぞれ0にリセットされ、ステップ270に於いては修正目標駆動力Fp_t_futureが基本修正目標駆動力Fp_t_future_bに設定される。   In step 260, the flags Fa and Fb are each reset to 0, and in step 270, the corrected target driving force Fp_t_future is set to the basic corrected target driving force Fp_t_future_b.

更に修正目標駆動力演算部58は、トラクション制御中又は挙動制御中又は高横力旋回状態にあると判定されているときには、修正目標駆動力Fp_t_futureがあるか否かを示すフラグF_FP_FUTUREをONに設定すると共に、修正目標駆動力Fp_t_futureを示す信号及びフラグF_FP_FUTURE信号を駆動力制御電子制御装置40の調停部46へ出力し、トラクション制御及び挙動制御の何れも実行されておらず高横力旋回状態にあると判定されていないときには、修正目標駆動力Fp_t_futureがあるか否かを示すフラグF_FP_FUTUREをOFFに設定し、修正目標駆動力Fp_t_futureを0に設定すると共に、修正目標駆動力Fp_t_futureを示す信号及びフラグF_FP_FUTURE信号を駆動力制御電子制御装置40の調停部46へ出力する。   Further, the corrected target driving force calculation unit 58 sets a flag F_FP_FUTURE indicating whether or not there is a corrected target driving force Fp_t_future to ON when it is determined that traction control, behavior control, or high lateral force turning is in progress. At the same time, a signal indicating the corrected target driving force Fp_t_future and a flag F_FP_FUTURE signal are output to the arbitration unit 46 of the driving force control electronic control unit 40, and neither the traction control nor the behavior control is executed, and the high lateral force turning state is achieved. If it is not determined that there is a flag, the flag F_FP_FUTURE indicating whether or not the corrected target driving force Fp_t_future is present is set to OFF, the corrected target driving force Fp_t_future is set to 0, and the signal and flag indicating the corrected target driving force Fp_t_future The F_FP_FUTURE signal is output to the arbitration unit 46 of the driving force control electronic control unit 40.

尚トラクション制御及び挙動制御の何れも実行されておらず高横力旋回状態にあると判定されていないときには、基本修正目標駆動力Fp_t_future_bが運転者要求目標駆動力Fp_dvmに設定されてもよい。   When neither traction control nor behavior control is executed and it is determined that the vehicle is in a high lateral force turning state, the basic corrected target driving force Fp_t_future_b may be set to the driver required target driving force Fp_dvm.

次に上述の如く構成された図示の実施例の作動を車両の様々な走行状況について説明する。   Next, the operation of the illustrated embodiment configured as described above will be described in various traveling situations of the vehicle.

(1)トラクション制御も挙動制御も不要である場合
この場合は車両の挙動が安定しておりトラクション制御も挙動制御も不要であり車両が高横力旋回状態にはない場合である。
(1) When neither traction control nor behavior control is required In this case, the behavior of the vehicle is stable, neither traction control nor behavior control is required, and the vehicle is not in a high lateral force turning state.

(1−1)駆動輪は回転振動しておらず、走行路がまたぎ路でない場合
フラグF_FP_NOW及びF_FP_FUTUREはOFFであり、調停後の目標駆動力Fp_now及び調停後の修正目標駆動力Fp_futureが運転者要求目標駆動力Fp_dvmに設定されるので、目標エンジン出力トルクTet及びトランスミッション16の目標変速段Stは運転者要求目標駆動力Fp_dvmに基づいて演算され、これにより従来の駆動力制御装置の場合と同様、エンジン10の出力及びトランスミッション16の変速比は運転者の駆動要求に応じて制御される。
(1-1) When the driving wheel is not rotationally oscillated and the traveling path is not a straddling road The flags F_FP_NOW and F_FP_FUTURE are OFF, and the target driving force Fp_now after arbitration and the corrected target driving force Fp_future after arbitration are Since the required target driving force Fp_dvm is set, the target engine output torque Tet and the target gear stage St of the transmission 16 are calculated based on the driver required target driving force Fp_dvm, and as in the case of the conventional driving force control device. The output of the engine 10 and the gear ratio of the transmission 16 are controlled according to the driver's drive request.

(1−2)車両が加速中で駆動輪が回転振動している場合
駆動輪の回転振動が検出されると、まず図8に示されたフローチャートのステップ120に於いて否定判別が行われると共に、ステップ130に於いて肯定判別が行われ、また次回以降はステップ120に於いて肯定判別が行われると共に、ステップ210に於いて否定判別が行われ、これによりステップ190に於いて補正係数Kcの漸減処理が行われ、ステップ200に於いて補正係数Kcと基本修正目標駆動力Fp_t_future_bとの積として修正目標駆動力Fp_t_futureが演算される。
(1-2) When the vehicle is accelerating and the driving wheel is oscillating rotationally When the rotational vibration of the driving wheel is detected, a negative determination is first made in step 120 of the flowchart shown in FIG. In step 130, an affirmative determination is performed, and from the next time onward, an affirmative determination is performed in step 120, and a negative determination is performed in step 210, whereby the correction coefficient Kc is determined in step 190. A gradual reduction process is performed, and in step 200, the corrected target driving force Fp_t_future is calculated as the product of the correction coefficient Kc and the basic corrected target driving force Fp_t_future_b.

従って図9に示されている如く、車両の加速時に駆動輪の回転振動が開始すると、修正目標駆動力Fp_t_futureが運転者要求目標駆動力Fp_dvmよりも漸次小さくなり、トランスミッション16の目標変速段Stが運転者要求目標駆動力Fp_dvmに基づいて演算される上記(1−1)の場合に比して、トランスミッション16のアップシフトを促進し、駆動輪が共振し難くい状況にすることによって駆動輪の回転振動を早期に終息させることができる。   Accordingly, as shown in FIG. 9, when the rotational vibration of the drive wheels starts during acceleration of the vehicle, the corrected target drive force Fp_t_future becomes gradually smaller than the driver required target drive force Fp_dvm, and the target gear stage St of the transmission 16 becomes smaller. Compared to the case (1-1) calculated based on the driver required target driving force Fp_dvm, the upshift of the transmission 16 is promoted, and the driving wheel is less likely to resonate, thereby making it difficult for the driving wheel to resonate. Rotational vibration can be terminated early.

(1−3)車両が加速中で走行路がまたぎ路である場合
車両の加速時に走行路がまたぎ路であると判定されると、まず図8に示されたフローチャートのステップ150に於いて否定判別が行われると共に、ステップ160に於いて肯定判別が行われ、また次回以降はステップ150に於いて肯定判別が行われると共に、ステップ220に於いて否定判別が行われ、これにより上記(1−2)の場合と同様、車両がまたぎ路を走行していると判定されなくなるまで、ステップ190に於いて補正係数Kcの漸減処理が行われ、ステップ200に於いて補正係数Kcと基本修正目標駆動力Fp_t_future_bとの積として修正目標駆動力Fp_t_futureが演算されるので、トランスミッション16のアップシフトを促進し、駆動輪が共振によって回転振動することを効果的に抑制することができる。
(1-3) When the vehicle is accelerating and the travel path is a straddle When the travel path is determined to be a straddle during acceleration of the vehicle, first, in step 150 of the flowchart shown in FIG. At the same time, a positive determination is made at step 160, and an affirmative determination is made at step 150 and a negative determination is made at step 220 from the next time. As in the case of 2), the correction coefficient Kc is gradually reduced in step 190 until it is not determined that the vehicle is traveling on a crossing road. In step 200, the correction coefficient Kc and the basic correction target drive are performed. Since the corrected target driving force Fp_t_future is calculated as the product of the force Fp_t_future_b, the upshift of the transmission 16 is promoted, and the driving wheel vibrates due to resonance. Can be effectively suppressed.

(2)トラクション制御は必要であるが挙動制御は不要である場合
この場合は駆動輪の駆動スリップが過大でありトラクション制御は必要であるが、車両の走行運動は安定的であり挙動制御は不要である場合である。
(2) When traction control is required but behavior control is not required In this case, the drive slip of the drive wheels is excessive and traction control is required, but the vehicle's running motion is stable and behavior control is not required This is the case.

(2−1)駆動輪は回転振動しておらず、走行路がまたぎ路でない場合
制駆動力分配後の目標駆動力Fp_t_nowがトラクション制御の目標駆動力Fp_t_now_trcに基づいて設定され、トラクション制御の目標駆動力Fp_t_now_trcに基づいてトラクション制御の第一の修正目標駆動力Fp_t_future_trc1が演算されると共に、運転者の駆動要求及び路面の摩擦係数μに基づいてトランスミッション16の変速段の変更を防止するトラクション制御の第二の修正目標駆動力Fp_t_future_trc2が演算される。
(2-1) When the driving wheel is not rotationally oscillated and the travel path is not a straddle road The target driving force Fp_t_now after the distribution of braking / driving force is set based on the target driving force Fp_t_now_trc of the traction control, and the target of the traction control The first corrected target driving force Fp_t_future_trc1 for traction control is calculated based on the driving force Fp_t_now_trc, and traction control for preventing the change of the gear stage of the transmission 16 based on the driving request of the driver and the friction coefficient μ of the road surface. The second corrected target driving force Fp_t_future_trc2 is calculated.

そして第一の修正目標駆動力Fp_t_future_trc1及び第二の修正目標駆動力Fp_t_future_trc2のうちの大きい方の値がトラクション制御の修正目標駆動力Fp_t_future_trcに設定され、そしてフラグF_FP_NOW及びF_FP_FUTUREがONに設定され、調停後の目標駆動力Fp_now及び調停後の修正目標駆動力Fp_futureがそれぞれトラクション制御の目標駆動力Fp_t_now_trc、トラクション制御の修正目標駆動力Fp_t_future_trcに設定される。   The larger one of the first corrected target driving force Fp_t_future_trc1 and the second corrected target driving force Fp_t_future_trc2 is set as the corrected target driving force Fp_t_future_trc for traction control, and the flags F_FP_NOW and F_FP_FUTURE are set to ON, and arbitration is performed. The subsequent target driving force Fp_now and the corrected target driving force Fp_future after arbitration are set to the target driving force Fp_t_now_trc for traction control and the corrected target driving force Fp_t_future_trc for traction control, respectively.

従ってこの場合にはトラクション制御の目標駆動力Fp_t_now_trcに基づいて目標エンジン出力トルクTetを演算し、エンジン10の出力を確実に低下させて駆動輪の駆動スリップを効果的に低減することができると共に、目標駆動力Fp_t_now_trcよりも低下変化が小さく目標駆動力Fp_t_now_trcよりも大きいトラクション制御の修正目標駆動力Fp_t_future_trcに基づいてトランスミッション16の目標変速段Stを演算することができ、これにより車両が一時的にマンホールの如き低摩擦係数の路面を通過する際にもトラクション制御によりトランスミッション16の変速段がシフトアップされること及びこれに起因して車両が低摩擦係数の路面を通過した直後に於ける加速不足を効果的に防止することができ、またトラクション制御中にトランスミッション16の出力回転数Ntoutが増減することに起因してトランスミッション16が不必要にシフトアップされたりシフトダウンされることを効果的に防止することができる。   Therefore, in this case, the target engine output torque Tet is calculated based on the target drive force Fp_t_now_trc of traction control, and the output slip of the engine 10 can be reliably reduced to effectively reduce the drive slip of the drive wheels. The target gear stage St of the transmission 16 can be calculated based on the corrected target driving force Fp_t_future_trc of the traction control that is smaller than the target driving force Fp_t_now_trc and smaller than the target driving force Fp_t_now_trc. Even when the vehicle passes through a road surface with a low friction coefficient, the gear stage of the transmission 16 is shifted up by traction control, and as a result, the vehicle is insufficiently accelerated immediately after passing through the road surface with a low friction coefficient. Can be effectively prevented, and transmission during traction control It is possible to prevent the transmission 16 due to the output speed Ntout of emission 16 is increased or decreased is shifted down or is shifted up unnecessarily effectively.

特に図示の実施例によれば、左右後輪の駆動スリップ量SArl及びSArrのうちの大きい方の値である駆動スリップ量SArが基準値SAc以下であるときには、図3に示されたフローチャートのステップ10に於いて肯定判別が行われ、ステップ20に於いて現在の変速段Sa及びトランスミッション16の出力回転数Ntoutに基づき現在の変速段Saにて可能な駆動装置10Aの駆動力の下限値Fp_t_lowが演算され、ステップ30に於いて路面の摩擦係数μが低いほど制御ゲインKmが小さい値になるよう、路面の摩擦係数μに基づいて制御ゲインKmが演算され、ステップ40に於いて制御ゲインKmと運転者要求目標駆動力Fp_dvmとの積として暫定の目標駆動力Fp_t_mが演算され、ステップ50に於いて駆動力の下限値Fp_t_low及び路面の摩擦係数μに基づく目標駆動力Fp_t_mのうちの大きい方の値がトラクション制御の第二の修正目標駆動力Fp_t_future_trc2に設定される。   In particular, according to the illustrated embodiment, when the drive slip amount SAr, which is the larger value of the drive slip amounts SArl and SArr of the left and right rear wheels, is equal to or less than the reference value SAc, the steps of the flowchart shown in FIG. 10, an affirmative determination is made, and in step 20, the lower limit value Fp_t_low of the driving force of the driving device 10 </ b> A that is possible at the current shift speed Sa is determined based on the current shift speed Sa and the output rotational speed Ntout of the transmission 16. In step 30, the control gain Km is calculated based on the road friction coefficient μ so that the lower the road friction coefficient μ is, the smaller the control gain Km is. In step 40, the control gain Km is calculated. The provisional target driving force Fp_t_m is calculated as a product of the driver required target driving force Fp_dvm, and in step 50, the lower limit value Fp_t_low of the driving force and the friction coefficient μ of the road surface are obtained. The value of the larger of the brute target driving force Fp_t_m is set to a second corrected target driving force Fp_t_future_trc2 of traction control.

従って駆動スリップ量SArが基準値SAc以下であるときには、運転者要求目標駆動力Fp_dvm及び路面の摩擦係数μに応じてトランスミッション16の変速段の変更を抑制する値に第二の修正目標駆動力Fp_t_future_trc2を最適に設定することができると共に、トランスミッション16の変速段が不必要にシフトアップされること、特に二段のシフトアップが行われることを確実に防止することができる。   Therefore, when the drive slip amount SAr is equal to or less than the reference value SAc, the second corrected target drive force Fp_t_future_trc2 is set to a value that suppresses the change of the gear position of the transmission 16 according to the driver required target drive force Fp_dvm and the road friction coefficient μ. Can be optimally set, and it is possible to reliably prevent the gear stage of the transmission 16 from being unnecessarily shifted up, in particular, from performing two-stage upshifting.

また図示の実施例によれば、駆動スリップ量SArが基準値SAcよりも大きいときには、図3に示されたフローチャートのステップ10に於いて否定判別が行われ、ステップ60及び70に於いて現在の変速段Sa及びトランスミッション16の出力回転数Ntoutに基づき現在の変速段Saにて可能な駆動装置10Aの駆動力の下限値Fp_t_low及び上限値Fp_t_highがそれぞれ演算され、ステップ80に於いて駆動力の下限値Fp_t_low及び上限値Fp_t_highの平均値としてトラクション制御の第二の修正目標駆動力Fp_t_future_trc2が演算される。   Further, according to the illustrated embodiment, when the driving slip amount SAr is larger than the reference value SAc, a negative determination is made at step 10 of the flowchart shown in FIG. The lower limit value Fp_t_low and the upper limit value Fp_t_high of the driving device 10A that are possible at the current gear stage Sa are calculated based on the speed stage Sa and the output speed Ntout of the transmission 16, respectively. The second corrected target driving force Fp_t_future_trc2 for traction control is calculated as the average value of the value Fp_t_low and the upper limit value Fp_t_high.

従ってトランスミッション16の変速段が不必要にシフトアップされること及びシフトダウンされることを確実に防止する値として第二の修正目標駆動力Fp_t_future_trc2を演算することができ、トランスミッション16の変速段が不必要にシフトアップされること及びシフトダウンされることを確実に防止することができる。   Therefore, the second corrected target driving force Fp_t_future_trc2 can be calculated as a value that reliably prevents the transmission 16 from being shifted up and down unnecessarily, and the transmission 16 is not shifted. It is possible to reliably prevent the upshifting and the downshifting as necessary.

また図示の実施例によれば、トラクション制御の第一の修正目標駆動力Fp_t_future_trc1及び第二の修正目標駆動力Fp_t_future_trc2のうちの大きい値がトラクション制御の修正目標駆動力Fp_t_future_trcとされるので、トラクション制御が実行されている時間全体に亘りトラクション制御の修正目標駆動力Fp_t_future_trcを確実にトランスミッション16の変速段の変更が行われない値に設定することができ、これによりトラクション制御の実行中にトランスミッション16の変速段が変更されることを確実に防止することができる。   Further, according to the illustrated embodiment, the larger value of the first corrected target driving force Fp_t_future_trc1 and the second corrected target driving force Fp_t_future_trc2 for traction control is used as the corrected target driving force Fp_t_future_trc for traction control. The corrected target driving force Fp_t_future_trc for traction control can be reliably set to a value that does not change the transmission speed of the transmission 16 over the entire time during which the traction control is executed. It is possible to reliably prevent the shift speed from being changed.

例えば運転者要求目標駆動力Fp_dvmが増加する過程に於いてトラクション制御が実行され、運転者要求目標駆動力Fp_dvm、トラクション制御の目標駆動力Fp_t_now_trc、トラクション制御の第一の修正目標駆動力Fp_t_future_trc1が図6に示されている如く変化し、第二の修正目標駆動力Fp_t_future_trc2が図11(A)に示されている如く変化するとすると、トラクション制御の修正目標駆動力Fp_t_future_trcは図11(B)に示されている如く変化し、トラクション制御が実行される時間全体に亘りトラクション制御の修正目標駆動力Fp_t_future_trcを確実にトランスミッション16の変速段の変更が行われない値に設定することができる。   For example, the traction control is executed in the process of increasing the driver required target driving force Fp_dvm, and the driver required target driving force Fp_dvm, the traction control target driving force Fp_t_now_trc, and the first corrected target driving force Fp_t_future_trc1 of the traction control are illustrated. If the second corrected target driving force Fp_t_future_trc2 changes as shown in FIG. 11A, the corrected target driving force Fp_t_future_trc for traction control is shown in FIG. 11B. The correction target drive force Fp_t_future_trc of the traction control can be set to a value that does not change the transmission stage of the transmission 16 reliably over the entire time when the traction control is executed.

(2−2)車両が加速中で駆動輪が回転振動している場合
車両の加速時に駆動輪が回転振動していると判定されると、図10に示されている如く、上記(1−2)の場合と同様、駆動輪が回転振動していると判定されなくなるまで、補正係数Kcの漸減処理が行われると共に、補正係数Kcと基本修正目標駆動力Fp_t_future_bとの積として修正目標駆動力Fp_t_futureが演算される
(2-2) When the vehicle is accelerating and the driving wheel is oscillating rotationally When it is determined that the driving wheel is oscillating rotationally when the vehicle is accelerating, as shown in FIG. As in the case of 2), the correction coefficient Kc is gradually reduced until it is determined that the driving wheel is rotating and vibrating, and the corrected target driving force is calculated as the product of the correction coefficient Kc and the basic correction target driving force Fp_t_future_b. Fp_t_future is calculated

従ってトラクション制御中にトランスミッション16の出力回転数Ntoutが増減することに起因してトランスミッション16が不必要にシフトアップされることを効果的に防止しつつ、車両の加速時に駆動輪が回転振動しているときにはトランスミッション16のアップシフトを促進し、駆動輪の共振に起因する回転振動を効果的に且つ早期に終息させることができる。   Accordingly, during the traction control, the drive wheel rotates and vibrates during vehicle acceleration while effectively preventing the transmission 16 from being unnecessarily shifted up due to the increase or decrease in the output rotation speed Ntout of the transmission 16. In this case, the upshift of the transmission 16 can be promoted, and the rotational vibration caused by the resonance of the drive wheel can be effectively and quickly terminated.

(2−3)車両が加速中で走行路がまたぎ路である場合
車両の加速時に走行路がまたぎ路であると判定されると、上記(1−3)の場合と同様、車両がまたぎ路を走行していると判定されなくなるまで、補正係数Kcの漸減処理が行われると共に、補正係数Kcと基本修正目標駆動力Fp_t_future_bとの積として修正目標駆動力Fp_t_futureが演算される。
(2-3) When the vehicle is accelerating and the travel path is a straddle When the travel path is determined to be a straddle during acceleration of the vehicle, the vehicle is straddle as in the case of (1-3) above. The correction coefficient Kc is gradually decreased until it is determined that the vehicle is traveling, and the corrected target driving force Fp_t_future is calculated as the product of the correction coefficient Kc and the basic corrected target driving force Fp_t_future_b.

従ってトラクション制御中にトランスミッション16の出力回転数Ntoutが増減することに起因してトランスミッション16が不必要にシフトアップされることを効果的に防止しつつ、車両の加速時に車両がまたぎ路を走行しているときにはトランスミッション16のアップシフトを促進し、駆動輪が共振によって回転振動することを効果的に抑制することができる。   Accordingly, during the traction control, the vehicle travels on the straddle during acceleration of the vehicle while effectively preventing the transmission 16 from being unnecessarily shifted up due to the increase or decrease in the output rotational speed Ntout of the transmission 16. In this case, the upshift of the transmission 16 can be promoted, and the drive wheels can be effectively suppressed from rotating and vibrating due to resonance.

尚上記(2−2)及び(2−3)の場合の基本修正目標駆動力Fp_t_future_bはトラクション制御の修正目標駆動力Fp_t_future_trcであり、修正目標駆動力Fp_t_futureはトラクション制御の修正目標駆動力Fp_t_future_trcよりも小さい値に演算される。   Note that the basic corrected target driving force Fp_t_future_b in the cases (2-2) and (2-3) is the corrected target driving force Fp_t_future_trc for traction control, and the corrected target driving force Fp_t_future is more than the corrected target driving force Fp_t_future_trc for traction control. Calculated to a smaller value.

(3)トラクション制御は不要であるが挙動制御は必要である場合
この場合は駆動輪の駆動力は過剰ではなくトラクション制御は不要であるが、車両の走行運動は不安定であり車両の駆動力の低減制御による挙動制御は必要である場合である。
(3) When traction control is not necessary but behavior control is necessary In this case, the driving force of the drive wheels is not excessive and traction control is unnecessary, but the traveling motion of the vehicle is unstable and the driving force of the vehicle This is a case where behavior control by reduction control is necessary.

(3−1)駆動輪は回転振動しておらず、走行路がまたぎ路でない場合
制駆動力分配後の目標駆動力Fp_t_nowが挙動制御の目標駆動力Fp_t_now_vscに基づいて設定され、挙動制御の目標駆動力Fp_t_now_vscに基づいて挙動制御の修正目標駆動力Fp_t_future_vscが演算され、フラグF_FP_NOW及びF_FP_FUTUREがONに設定され、調停後の目標駆動力Fp_now及び調停後の修正目標駆動力Fp_futureがそれぞれ挙動制御の目標駆動力Fp_t_now_vsc、挙動制御の修正目標駆動力Fp_t_future_vscに設定される。
(3-1) When the driving wheel is not rotationally oscillated and the travel path is not a straddle road The target driving force Fp_t_now after the distribution of braking / driving force is set based on the target driving force Fp_t_now_vsc for behavior control, and the behavior control target Based on the driving force Fp_t_now_vsc, the corrected target driving force Fp_t_future_vsc for behavior control is calculated, the flags F_FP_NOW and F_FP_FUTURE are set to ON, and the target driving force Fp_now after arbitration and the corrected target driving force Fp_future after arbitration are the targets for behavior control, respectively. The driving force Fp_t_now_vsc and the behavioral control target driving force Fp_t_future_vsc are set.

従ってこの場合には挙動制御の目標駆動力Fp_t_now_vscに基づいて目標エンジン出力トルクTetを演算し、エンジン10の出力を確実に低下させて車両の走行運動を効果的に安定化させることができると共に、挙動制御の目標駆動力Fp_t_now_vscよりも低下変化が小さい挙動制御の修正目標駆動力Fp_t_future_vscに基づいてトランスミッション16の目標変速段Stを演算することができ、これにより車両の走行運動の不安定化が一時的である場合に挙動制御によりトランスミッション16の変速段が不必要にシフトアップされること及びこれに起因して一時的な挙動制御が完了した直後に於ける加速不足を効果的に防止することができる。   Therefore, in this case, the target engine output torque Tet is calculated based on the behavior control target driving force Fp_t_now_vsc, and the output of the engine 10 can be reliably reduced to effectively stabilize the traveling motion of the vehicle. Based on the modified target driving force Fp_t_future_vsc of the behavior control whose change in decrease is smaller than the target driving force Fp_t_now_vsc of the behavior control, the target gear stage St of the transmission 16 can be calculated, thereby temporarily destabilizing the running motion of the vehicle. In this case, it is possible to effectively prevent the speed change of the transmission 16 from being unnecessarily shifted up by the behavior control and the insufficient acceleration immediately after the temporary behavior control is completed due to this. it can.

尚車両の走行運動の不安定な状況が長く継続するような場合には、挙動制御の修正目標駆動力Fp_t_future_vscが変速線まで低下した段階でトランスミッション16の変速段がシフトアップされるので、不安定な走行状態が長く継続するような場合にも駆動力が過大な状況が長時間に亘り継続することはない。   When the unstable state of the running motion of the vehicle continues for a long time, the shift stage of the transmission 16 is shifted up when the corrected target drive force Fp_t_future_vsc of the behavior control is lowered to the shift line, so that it is unstable. Even when a long running state continues for a long time, a situation in which the driving force is excessive does not continue for a long time.

(3−2)車両が加速中で駆動輪が回転振動している場合
車両の加速時に駆動輪が回転振動していると判定されると、上記(1−2)及び(2−2)の場合と同様の処理が行われるので、トランスミッション16が不必要にシフトアップされることを効果的に防止しつつ、駆動輪が回転振動しているときにはトランスミッション16のアップシフトを促進し、駆動輪の共振による回転振動を効果的に且つ早期に終息させることができる。
(3-2) When the vehicle is accelerating and the driving wheel is oscillating and rotating When it is determined that the driving wheel is oscillating and oscillating when the vehicle is accelerating, the above (1-2) and (2-2) Since the same process is performed, the transmission 16 is effectively prevented from being shifted up unnecessarily, and when the drive wheels are rotating and oscillating, the transmission 16 is facilitated to upshift, The rotational vibration due to resonance can be effectively and quickly terminated.

(3−3)車両が加速中で走行路がまたぎ路である場合
車両の加速時に走行路がまたぎ路であると判定されると、上記(1−3)及び(2−3)の場合と同様の処理が行われるので、トランスミッション16が不必要にシフトアップされることを効果的に防止しつつ、車両がまたぎ路を走行しているときにはトランスミッション16のアップシフトを促進し、駆動輪が共振によって回転振動することを効果的に抑制することができる。
(3-3) When the vehicle is accelerating and the travel path is a straddle road When the travel path is determined to be a straddle road during acceleration of the vehicle, the cases (1-3) and (2-3) above Since the same processing is performed, the transmission 16 is effectively prevented from being shifted up unnecessarily, and when the vehicle is traveling on a crossing road, the transmission 16 is promoted to shift up and the drive wheels resonate. Thus, it is possible to effectively suppress rotational vibration.

尚上記(3−2)及び(3−3)の場合の基本修正目標駆動力Fp_t_future_bは挙動制御の修正目標駆動力Fp_t_future_vscであり、修正目標駆動力Fp_t_futureは挙動制御の修正目標駆動力Fp_t_future_vscよりも小さい値に演算される。   Note that the basic corrected target driving force Fp_t_future_b in the cases (3-2) and (3-3) above is the corrected target driving force Fp_t_future_vsc for behavior control, and the corrected target driving force Fp_t_future is greater than the corrected target driving force Fp_t_future_vsc for behavior control. Calculated to a smaller value.

(4)トラクション制御及び挙動制御が必要である場合
この場合は駆動輪の駆動力は過剰であり車両の走行運動も不安定であることによりトラクション制御及び挙動制御の何れも必要である場合である。
(4) When traction control and behavior control are required In this case, both the traction control and the behavior control are required because the driving force of the driving wheels is excessive and the traveling motion of the vehicle is unstable. .

(4−1)駆動輪は回転振動しておらず、走行路がまたぎ路でない場合
制駆動力分配後の目標駆動力Fp_t_nowがトラクション制御の目標駆動力Fp_t_now_trc及び挙動制御の目標駆動力Fp_t_now_vscのうちの小さい方の値に設定され、修正目標駆動力Fp_t_futureがトラクション制御の目標駆動力Fp_t_now_trc、挙動制御の修正目標駆動力Fp_t_future_vsc、高横力旋回制御の修正目標駆動力Fp_t_future_tireのうちの最も大きい値に設定され、フラグF_FP_NOW及びF_FP_FUTUREがONに設定され、調停後の目標駆動力Fp_now及び調停後の修正目標駆動力Fp_futureがそれぞれ目標駆動力Fp_t_now、修正目標駆動力Fp_t_futureに設定される。
(4-1) When the driving wheel is not rotationally oscillated and the traveling path is not a straddling road The target driving force Fp_t_now after distribution of braking / driving force is the target driving force Fp_t_now_trc for traction control and the target driving force Fp_t_now_vsc for behavior control The corrected target driving force Fp_t_future is set to the largest value among the target driving force Fp_t_now_trc for traction control, the corrected target driving force Fp_t_future_vsc for behavior control, and the corrected target driving force Fp_t_future_tire for high lateral force turning control. The flag F_FP_NOW and F_FP_FUTURE are set to ON, and the target driving force Fp_now after the arbitration and the corrected target driving force Fp_future after the arbitration are set to the target driving force Fp_t_now and the corrected target driving force Fp_t_future, respectively.

従ってこの場合には目標駆動力Fp_t_nowに基づいて目標エンジン出力トルクTetを演算し、エンジン10の出力を確実に低下させて駆動輪の駆動スリップを効果的に低減すると共に車両の走行運動を効果的に安定化させることができ、また目標駆動力Fp_t_nowよりも低下変化が小さい修正目標駆動力Fp_t_futureに基づいてトランスミッション16の目標変速段Stを演算することができ、これにより駆動輪の過大な駆動スリップや車両の走行運動の不安定化が一時的である場合にトラクション制御や挙動制御によりトランスミッション16の変速段が不必要にシフトアップされること及びこれに起因して一時的なトラクション制御や挙動制御が完了した直後に於ける加速不足を効果的に防止することができる。   Therefore, in this case, the target engine output torque Tet is calculated based on the target driving force Fp_t_now, and the output of the engine 10 is surely reduced to effectively reduce the driving slip of the driving wheels and to effectively reduce the traveling motion of the vehicle. And the target gear stage St of the transmission 16 can be calculated based on the corrected target driving force Fp_t_future whose change in decrease is smaller than the target driving force Fp_t_now. Or when the running motion of the vehicle is temporarily unstable, the gear stage of the transmission 16 is unnecessarily shifted up by traction control or behavior control, and as a result, temporary traction control or behavior control. It is possible to effectively prevent insufficient acceleration immediately after the completion of.

(4−2)車両が加速中で駆動輪が回転振動している場合
車両の加速時に駆動輪が回転振動していると判定されると、上記(1−2)、(2−2)、(3−2)の場合と同様の処理が行われるので、トランスミッション16が不必要にシフトアップされることを効果的に防止しつつ、駆動輪が回転振動しているときにはトランスミッション16のアップシフトを促進し、駆動輪の共振による回転振動を効果的に且つ早期に終息させることができる。
(4-2) When the vehicle is accelerating and the driving wheel is oscillating and rotating When it is determined that the driving wheel is oscillating and oscillating during acceleration of the vehicle, the above (1-2), (2-2), Since the same processing as in the case of (3-2) is performed, it is possible to effectively prevent the transmission 16 from being shifted up unnecessarily, and to perform an upshift of the transmission 16 when the drive wheels are rotating and vibrating. The rotational vibration caused by the resonance of the drive wheel can be effectively and quickly terminated.

(4−3)車両が加速中で走行路がまたぎ路である場合
車両の加速時に走行路がまたぎ路であると判定されると、上記(1−3)、(2−3)、(3−3)の場合と同様の処理が行われるので、トランスミッション16が不必要にシフトアップされることを効果的に防止しつつ、車両がまたぎ路を走行しているときにはトランスミッション16のアップシフトを促進し、駆動輪が共振によって回転振動することを効果的に抑制することができる。
(4-3) When the vehicle is accelerating and the travel path is a straddle road When it is determined that the travel path is a straddle road during acceleration of the vehicle, the above (1-3), (2-3), (3 -3), the same processing is performed, so that it is possible to effectively prevent the transmission 16 from being shifted up unnecessarily, and promote the upshifting of the transmission 16 when the vehicle is traveling on a crossing road. And it can suppress effectively that a drive wheel carries out rotation vibration by resonance.

尚上記(4−2)及び(4−3)の場合の基本修正目標駆動力Fp_t_future_bはトラクション制御の目標駆動力Fp_t_now_trc及び挙動制御の目標駆動力Fp_t_now_vscのうちの小さい方の値であり、修正目標駆動力Fp_t_futureはトラクション制御の目標駆動力Fp_t_now_trc及び挙動制御の目標駆動力Fp_t_now_vscのうちの小さい方の値よりも小さい値に演算される。   The basic corrected target driving force Fp_t_future_b in the cases (4-2) and (4-3) is the smaller value of the target driving force Fp_t_now_trc for traction control and the target driving force Fp_t_now_vsc for behavior control. The driving force Fp_t_future is calculated to be smaller than the smaller one of the target driving force Fp_t_now_trc for traction control and the target driving force Fp_t_now_vsc for behavior control.

特に図示の実施例によれば、車両の加速時に駆動輪の回転振動が検出された場合及び車両がまたぎ路を走行していると判定された場合の何れの場合にも、それぞれ駆動輪の回転振動が終息するまで及び車両がまたぎ路を走行していると判定されなくなるまで、補正係数Kcが漸減されるので、修正目標駆動力Fp_t_futureを徐々に低下させてその急激な変化を確実に防止することができる。   In particular, according to the illustrated embodiment, the rotation of the drive wheels is detected both when the rotational vibration of the drive wheels is detected during acceleration of the vehicle and when it is determined that the vehicle is traveling on a crossing road. Since the correction coefficient Kc is gradually reduced until the vibration ends and until it is determined that the vehicle is traveling on a crossing road, the corrected target driving force Fp_t_future is gradually reduced to prevent sudden change. be able to.

また図示の実施例によれば、上記(1−2)、(2−2)、(3−2)の場合に於いて駆動輪の回転振動が終息すると、ステップ210に於いて肯定判別が行われ、また上記(1−3)、(2−3)、(3−3)の場合に於いて車両がまたぎ路を走行していると判定されなくなると、ステップ220に於いて肯定判別が行われ、ステップ230に於いて補正係数Kcが漸増処理されるので、修正目標駆動力Fp_t_futureを徐々に基本修正目標駆動力Fp_t_future_bに近付けることができ、これにより図9及び図10に示されている如く修正目標駆動力Fp_t_futureを徐々に運転者要求目標駆動力Fp_dvmに復帰させて急激な変化を確実に防止することができる。   Further, according to the illustrated embodiment, when the rotational vibration of the drive wheel ends in the above cases (1-2), (2-2), and (3-2), an affirmative determination is made in step 210. If it is not determined that the vehicle is traveling on a crossing road in the cases (1-3), (2-3), and (3-3), an affirmative determination is made in step 220. Since the correction coefficient Kc is gradually increased in step 230, the corrected target driving force Fp_t_future can be gradually brought closer to the basic corrected target driving force Fp_t_future_b, and as shown in FIG. 9 and FIG. The corrected target driving force Fp_t_future can be gradually returned to the driver request target driving force Fp_dvm to reliably prevent a sudden change.

また図示の実施例によれば、ステップ130に於いて駆動輪が回転振動しているか否かの判別が行われ、ステップ160に於いては走行路がまたぎ路であるか否かの判別が行われ、駆動輪の回転振動が検出された場合又は車両がまたぎ路を走行していると判定された場合に、補正係数Kcが漸減されることによって修正目標駆動力Fp_t_futureが徐々に低下されるので、駆動輪の回転振動が検出された場合又は車両がまたぎ路を走行していると判定された場合の何れかの場合にのみ修正目標駆動力Fp_t_futureが徐々に低下される構成の場合に比して、駆動輪の回転振動の終息や抑制を確実に達成することができる。   Further, according to the illustrated embodiment, it is determined whether or not the driving wheel is rotating and vibrating in step 130, and in step 160, it is determined whether or not the traveling road is a straddling road. When the rotational vibration of the driving wheel is detected or when it is determined that the vehicle is traveling on a crossing road, the correction target driving force Fp_t_future is gradually decreased by gradually decreasing the correction coefficient Kc. Compared to the case where the corrected target driving force Fp_t_future is gradually reduced only when the rotational vibration of the driving wheel is detected or when it is determined that the vehicle is traveling on a crossing road. Thus, it is possible to reliably achieve termination and suppression of rotational vibration of the drive wheels.

また図示の実施例によれば、フィルタ時定数K1、K2、K3は駆動操作量検出センサ62により検出される運転者の駆動操作量Aが高いほど大きくなるよう、運転者の駆動操作量Aに応じて可変設定されるので、運転者の駆動要求が高いほど修正目標駆動力Fp_t_futureの低下勾配を小さくしてトランスミッション16の変速段のシフトアップが行われ難くし、これにより車両が低摩擦係数の路面を一時的に通過した直後に於ける加速不足を効果的に防止して運転者の駆動要求を充足することができ、また運転者の駆動要求が高くないときには修正目標駆動力Fp_t_futureの低下勾配を大きくしてトランスミッション16の変速段のシフトアップが行われ易くし、これにより車両の駆動力の低減を速やかに実行することができる。   Further, according to the illustrated embodiment, the filter time constants K1, K2, and K3 are set to the driver's driving operation amount A so that the driving operation amount A detected by the driving operation amount detection sensor 62 increases as the driver's driving operation amount A increases. Accordingly, the higher the driver's drive request is, the smaller the gradient of the corrected target driving force Fp_t_future is reduced, making it difficult for the transmission 16 to shift up, thereby reducing the vehicle's friction coefficient. It is possible to effectively prevent the shortage of acceleration immediately after passing the road surface to satisfy the driver's driving request, and to decrease the corrected target driving force Fp_t_future when the driver's driving request is not high. To increase the shift speed of the transmission 16 so that the driving force of the vehicle can be quickly reduced.

また図示の実施例によれば、運動状態推定部54により車両が高横力旋回状態にあるか否かが判定され、修正目標駆動力演算部58により駆動輪のタイヤ発生力Fp_current_tireが演算されると共に、タイヤ発生力Fp_current_tireよりも低下勾配が小さい高横力旋回制御の目標駆動力Fp_t_future_tireが演算され、トランスミッション16の変速段を決定するための基本修正目標駆動力Fp_t_future_bは上記式10に従ってトラクション制御の修正目標駆動力Fp_t_future_trc、挙動制御の修正目標駆動力Fp_t_future_vsc、高横力旋回制御の修正目標駆動力Fp_t_future_tireのうちの最も大きい値に設定されるので、車両の高横力旋回状態が考慮されない場合に比して、車両が高横力旋回状態にある状況に於いてトランスミッション16がアップシフトされ難くすることができ、従って車両が高横力旋回状態にある状況に於いてトランスミッション16のアップシフトが行われることにより駆動輪の駆動力が急激に低下し、これに起因して駆動輪の横力が急激に変化し車両の挙動が急変する虞れを確実に低減することができる。   Further, according to the illustrated embodiment, it is determined whether or not the vehicle is in a high lateral force turning state by the motion state estimation unit 54, and the tire generation force Fp_current_tire of the driving wheel is calculated by the corrected target driving force calculation unit 58. At the same time, the target driving force Fp_t_future_tire of the high lateral force turning control having a lower gradient than the tire generating force Fp_current_tire is calculated, and the basic corrected target driving force Fp_t_future_b for determining the gear position of the transmission 16 is calculated according to the above equation 10. Since the maximum target driving force Fp_t_future_trc, the corrected target driving force Fp_t_future_vsc for behavior control, and the corrected target driving force Fp_t_future_tire for high lateral force turning control are set to the largest value, the high lateral force turning state of the vehicle is not considered. In comparison, the transmission 16 is less likely to be upshifted when the vehicle is in a high lateral force turning state. Therefore, when the vehicle is in a high lateral force turning state, the driving force of the driving wheel is rapidly reduced by the upshift of the transmission 16, and as a result, the lateral force of the driving wheel is drastically reduced. It is possible to reliably reduce the possibility that the vehicle behavior changes suddenly.

また図示の実施例によれば、フィルタ時定数K2はフィルタ時定数K1、K3よりも大きい値に設定されており、同一の目標駆動力の変化について見て挙動制御の修正目標駆動力Fp_t_future_vscの低下勾配はトラクション制御の修正目標駆動力Fp_t_future_trc及び高横力旋回制御の修正目標駆動力Fp_t_future_tireの低下勾配よりも大きいので、車両の走行運動が不安定である場合には駆動輪の駆動力が過剰である場合に比してトランスミッション16のアップシフトを早期に行わせることができ、これにより駆動輪の駆動力が過剰であることに起因する車両の不安定な走行状態を効果的に安定化させることができる。   Further, according to the illustrated embodiment, the filter time constant K2 is set to a value larger than the filter time constants K1 and K3, and the behavior control corrected target drive force Fp_t_future_vsc is decreased by looking at the same target drive force change. Since the gradient is larger than the decreasing gradient of the corrected target driving force Fp_t_future_trc for traction control and the corrected target driving force Fp_t_future_tire for high lateral force turning control, the driving force of the driving wheels is excessive when the vehicle travels unstable. The upshift of the transmission 16 can be performed earlier than in some cases, thereby effectively stabilizing the unstable running state of the vehicle due to the excessive driving force of the driving wheels. Can do.

以上に於いては本発明を特定の実施例について詳細に説明したが、本発明は上述の実施例に限定されるものではなく、本発明の範囲内にて他の種々の実施例が可能であることは当業者にとって明らかであろう。   Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.

例えば上述の実施例に於いては、ステップ130に於いて駆動輪が回転振動しているか否かの判別が行われ、ステップ160に於いて走行路がまたぎ路であるか否かの判別が行われるようになっているが、駆動輪が回転振動しているか否かの判別及び走行路がまたぎ路であるか否かの判別の一方が省略されてもよい。   For example, in the above-described embodiment, it is determined whether or not the driving wheel is rotating and vibrating in step 130, and whether or not the traveling road is a straddling road is determined in step 160. However, one of the determination as to whether or not the driving wheel is oscillating and the determination as to whether or not the travel path is a straddle path may be omitted.

また上述の実施例に於いては、駆動輪の回転振動が終息し又は車両がまたぎ路を走行していないと判定されると、補正係数Kcが漸増処理されるようになっているが、駆動輪の回転振動が終息し又は車両がまたぎ路を走行していないと判定されると、補正係数Kcが所定の時間に亘り現在値に保持され、しかる後漸増処理されるよう修正されてもよい。   In the above-described embodiment, the correction coefficient Kc is gradually increased when it is determined that the rotational vibration of the drive wheels has ended or the vehicle is not traveling on the crossing road. When it is determined that the rotational vibration of the wheel has ended or the vehicle is not traveling on a crossing road, the correction coefficient Kc may be maintained at the current value for a predetermined time, and then corrected so as to be gradually increased. .

また上述の実施例に於いては、補正係数Kcが漸減処理するための値ΔKs及び漸増処理するための値ΔKeは微小な正の定数であるが、ΔKs及びΔKeは例えば駆動輪の回転振動の度合が高いときには駆動輪の回転振動の度合が低いときに比して大きくなるよう、駆動輪の回転振動の度合に応じて可変設定されてもよく、また路面の左右の摩擦係数の差Δμの大きさが大きいときには摩擦係数の差Δμの大きさが小さいときに比して大きくなるよう、摩擦係数の差Δμの大きさに応じて可変設定されてもよい。また運転者の駆動要求量が高いときには運転者の駆動要求量が低いときに比してΔKsが小さくなるよう、ΔKsは運転者の駆動要求量に応じて可変設定されてもよい。   In the above embodiment, the value ΔKs for gradually reducing the correction coefficient Kc and the value ΔKe for gradually increasing are small positive constants. However, ΔKs and ΔKe are, for example, rotational vibrations of the drive wheels. It may be variably set according to the degree of rotational vibration of the driving wheel so that it becomes larger than when the degree of rotational vibration of the driving wheel is low. The friction coefficient difference Δμ may be set variably according to the friction coefficient difference Δμ so that the friction coefficient difference Δμ is larger when the magnitude is larger than when the friction coefficient difference Δμ is small. Further, ΔKs may be variably set according to the driver's request for driving so that ΔKs becomes smaller when the driver's request for driving is high than when the driver's request for driving is low.

また上述の実施例に於いては、補正係数Kcと基本修正目標駆動力Fp_t_future_bとの積として修正目標駆動力Fp_t_futureが演算され、駆動輪の回転振動が検出され又は車両がまたぎ路を走行していると判定されると、補正係数Kcが漸減処理されることにより、修正目標駆動力Fp_t_futureが基本修正目標駆動力Fp_t_future_bよりも小さい値に演算されようになっているが、修正目標駆動力Fp_t_futureは基本修正目標駆動力Fp_t_future_bよりも漸次小さい値に演算される限り任意の要領にて演算されてよい。   In the above-described embodiment, the corrected target driving force Fp_t_future is calculated as the product of the correction coefficient Kc and the basic corrected target driving force Fp_t_future_b, and the rotational vibration of the driving wheel is detected or the vehicle travels on the straddle. If it is determined that the corrected target driving force Fp_t_future is calculated to be smaller than the basic corrected target driving force Fp_t_future_b, the corrected target driving force Fp_t_future is calculated as follows. The calculation may be performed in an arbitrary manner as long as it is calculated to be gradually smaller than the basic correction target driving force Fp_t_future_b.

また上述の実施例に於いては、駆動輪の回転振動が検出され又は車両がまたぎ路を走行していると判定されると、トランスミッションの変速段を決定するための修正目標駆動力Fp_t_futureが漸減されることによりトランスミッションの変速比のアップシフト変更が促進されるようになっているが、修正目標駆動力Fp_t_futureが増減補正されることなく、トランスミッションの変速段を決定するための車速が漸増補正されることによりトランスミッションの変速比のアップシフト変更が促進されるよう修正されてもよい。   In the above-described embodiment, when the rotational vibration of the driving wheel is detected or it is determined that the vehicle is traveling on the crossing road, the corrected target driving force Fp_t_future for determining the transmission gear is gradually decreased. As a result, an upshift change in the transmission gear ratio is promoted. However, the corrected target driving force Fp_t_future is not increased or decreased, and the vehicle speed for determining the transmission gear is gradually increased. This may be modified so as to promote the upshift change of the transmission gear ratio.

また上述の実施例に於いては、ステップ210に於いて否定判別が行われるとステップ190へ進むようになっているが、ステップ210に於いて否定判別が行われたときにはトランスミッションの変速比のアップシフト変更が完了したか否かの判別が行われ、アップシフト変更が完了していないときにはステップ190へ進み、アップシフト変更が完了しているときにはステップ230へ進むよう修正されてもよい。   In the above embodiment, when a negative determination is made at step 210, the routine proceeds to step 190. When a negative determination is made at step 210, the transmission gear ratio is increased. A determination may be made as to whether or not the shift change has been completed. If the upshift change has not been completed, the process proceeds to step 190. If the upshift change has been completed, the process may proceed to step 230.

また上述の実施例に於いては、修正目標駆動力演算部58により高横力旋回制御の目標駆動力Fp_t_future_tireが演算され、トラクション制御の修正目標駆動力Fp_t_future_trc、挙動制御の修正目標駆動力Fp_t_future_vsc、高横力旋回制御の修正目標駆動力Fp_t_future_tireのうちの最も大きい値がトランスミッションの変速段を決定するための修正目標駆動力Fp_t_futureとされるようになっているが、本発明の駆動力制御装置はトラクション制御、高横力旋回制御の目標駆動力Fp_t_future_tireが省略され、修正目標駆動力Fp_t_futureはトラクション制御、挙動制御、高横力旋回制御の何れかが行われない車両に適用されてもよく、その場合にはそれぞれトラクション制御の修正目標駆動力Fp_t_future_trc、挙動制御の修正目標駆動力Fp_t_future_vsc、高横力旋回制御の修正目標駆動力Fp_t_future_tireの演算は省略される。   In the above-described embodiment, the target driving force Fp_t_future_tire for high lateral force turning control is calculated by the corrected target driving force calculator 58, the corrected target driving force Fp_t_future_trc for traction control, the corrected target driving force Fp_t_future_vsc for behavior control, The largest value of the corrected target driving force Fp_t_future_tire of the high lateral force turning control is set as the corrected target driving force Fp_t_future for determining the gear position of the transmission. The target driving force Fp_t_future_tire for traction control and high lateral force turning control may be omitted, and the modified target driving force Fp_t_future may be applied to a vehicle that does not perform any of traction control, behavior control, or high lateral force turning control. In each case, the corrected target driving force Fp_t_future_trc for traction control, the corrected target driving force Fp_t_future_vsc for behavior control, and the high lateral force turning control The calculation of the corrected target driving force Fp_t_future_tire is omitted.

また上述の実施例に於いては、車両は後輪駆動車であるが、本発明の駆動力制御装置は前輪駆動車や四輪駆動車に適用されてもよく、また駆動力発生源はエンジンであるが、本発明の駆動力制御装置は駆動力発生源がハイブリッドシステムである車両に適用されてもよい。   In the above embodiment, the vehicle is a rear wheel drive vehicle, but the drive force control device of the present invention may be applied to a front wheel drive vehicle or a four wheel drive vehicle, and the drive force generation source is an engine. However, the driving force control apparatus of the present invention may be applied to a vehicle whose driving force generation source is a hybrid system.

また上述の実施例に於いては、トランスミッションの変速機は多段式の自動変速機であるが、変速機は無段式の自動変速機であってもよく、その場合には修正目標駆動力Fp_t_futureに基づいて無段変速機の目標変速比が演算される。   In the above embodiment, the transmission transmission is a multi-stage automatic transmission. However, the transmission may be a continuously variable automatic transmission. In this case, the corrected target driving force Fp_t_future Based on the above, the target gear ratio of the continuously variable transmission is calculated.

後輪駆動車に適用された本発明による車両の駆動力制御装置の一つの実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the driving force control apparatus of the vehicle by this invention applied to the rear-wheel drive vehicle. 実施例の制御系を示すブロック図である。It is a block diagram which shows the control system of an Example. 実施例に於けるトラクション制御の第二の修正目標駆動力Fp_t_future_trc2の演算ルーチンを示すフローチャートである。It is a flowchart which shows the calculation routine of the 2nd correction target drive force Fp_t_future_trc2 of the traction control in an Example. 実施例に於ける変速線図を示すグラフである。It is a graph which shows the shift map in an Example. 実施例に於ける路面の摩擦係数μと制御ゲインKmとの間の関係を示すグラフである。It is a graph which shows the relationship between the friction coefficient (micro | micron | mu) of the road surface and control gain Km in an Example. 運転者の加速要求が増加し、運転者要求目標駆動力Fp_dvmが増加する過程に於いてトラクション制御が実行される場合に於ける運転者要求目標駆動力Fp_dvm、トラクション制御の目標駆動力Fp_t_now_trc、トラクション制御の第一の修正目標駆動力Fp_t_future_trc1の変化の一例を示すグラフである。The driver requested target driving force Fp_dvm, the traction control target driving force Fp_t_now_trc, the traction control when the traction control is executed in the process where the driver's acceleration request increases and the driver requested target driving force Fp_dvm increases. It is a graph which shows an example of change of the 1st correction target driving force Fp_t_future_trc1 of control. 運転者の加速要求が増加し、運転者要求目標駆動力Fp_dvmが増加する過程に於いて挙動制御が実行される場合に於ける運転者要求目標駆動力Fp_dvm、挙動制御の目標駆動力Fp_t_now_vsc、挙動制御の修正目標駆動力Fp_t_future_vscの変化の一例を示すグラフである。The driver required target driving force Fp_dvm, the behavior control target driving force Fp_t_now_vsc, the behavior when the behavior control is executed in the process where the driver's acceleration demand increases and the driver required target driving force Fp_dvm increases. It is a graph which shows an example of change of correction target driving force Fp_t_future_vsc of control. 実施例に於ける修正目標駆動力Fp_t_futureの演算ルーチンを示すフローチャートである。It is a flowchart which shows the calculation routine of the correction target drive force Fp_t_future in an Example. 運転者の加速要求が増加し、運転者要求目標駆動力Fp_dvmが増加する過程に於いて駆動輪の回転振動が検出された場合に於ける運転者要求目標駆動力Fp_dvm、基本修正目標駆動力Fp_t_futur_b、修正目標駆動力Fp_t_futurの変化の一例を示すグラフである。The driver required target driving force Fp_dvm and the basic corrected target driving force Fp_t_futur_b when the rotational vibration of the driving wheel is detected in the process where the driver's acceleration request increases and the driver required target driving force Fp_dvm increases. 10 is a graph showing an example of a change in the corrected target driving force Fp_t_futur. 運転者の加速要求が増加し、運転者要求目標駆動力Fp_dvmが増加する過程に於いてトラクション制御が実行され、駆動輪の回転振動が検出された場合に於ける運転者要求目標駆動力Fp_dvm、、トラクション制御の目標駆動力Fp_t_now_trc、トラクション制御の修正目標駆動力Fp_t_future_trc、修正目標駆動力Fp_t_futurの変化の一例を示すグラフである。In the process where the driver's acceleration demand increases and the driver's required target driving force Fp_dvm increases, the traction control is executed and the driver's required target driving force Fp_dvm when the rotational vibration of the driving wheel is detected. 10 is a graph showing an example of changes in traction control target driving force Fp_t_now_trc, traction control corrected target driving force Fp_t_future_trc, and corrected target driving force Fp_t_futur. 運転者要求目標駆動力Fp_dvmが増加する過程に於いてトラクション制御が実行される場合に於ける運転者要求目標駆動力Fp_dvm、トラクション制御の目標駆動力Fp_t_now_trc、トラクション制御の第二の修正目標駆動力Fp_t_future_trc2の変化の一例を示すグラフ(A)及びトラクション制御の修正目標駆動力Fp_t_future_trcの変化の一例を示すグラフ(B)である。Driver requested target driving force Fp_dvm, traction control target driving force Fp_t_now_trc, second correction target driving force for traction control when traction control is executed in the process of increasing the driver requested target driving force Fp_dvm It is a graph (A) which shows an example of the change of Fp_t_future_trc2, and a graph (B) which shows an example of the change of the correction target drive force Fp_t_future_trc of traction control.

符号の説明Explanation of symbols

10…エンジン、16…トランスミッション、26…制動装置、32…統合制御電子制御装置、34…アクセルぺダル、36…ブレーキぺダル、40…駆動力制御電子制御装置、42…制動力制御電子制御装置、64 エンジン制御装置、66…自動変速機制御装置、68i…車輪速度センサ、70…車両状態量検出センサ、72…制動力制御装置、74…制動操作量検出センサ、76…回転数センサ、78L、78R…μセンサ   DESCRIPTION OF SYMBOLS 10 ... Engine, 16 ... Transmission, 26 ... Braking device, 32 ... Integrated control electronic control device, 34 ... Accel pedal, 36 ... Brake pedal, 40 ... Driving force control electronic control device, 42 ... Braking force control electronic control device , 64 engine control device, 66 ... automatic transmission control device, 68i ... wheel speed sensor, 70 ... vehicle state quantity detection sensor, 72 ... braking force control device, 74 ... braking operation amount detection sensor, 76 ... rotational speed sensor, 78L , 78R ... μ sensor

Claims (7)

駆動源及びトランスミッションを含む駆動装置と、少なくとも乗員の駆動操作量に基づいて前記駆動装置の目標駆動力を演算する手段と、前記目標駆動力に基づいて前記駆動源の駆動力を制御する駆動源制御手段と、前記トランスミッションの変速比を制御する変速比制御手段とを有する車両の駆動力制御装置に於いて、前記変速比制御手段は駆動輪の回転振動を検出する手段を有し、駆動輪が回転振動しているときには前記トランスミッションの変速比のアップシフト変更を促進することを特徴とする車両の駆動力制御装置。   A driving device including a driving source and a transmission; means for calculating a target driving force of the driving device based on at least a driving operation amount of an occupant; and a driving source for controlling the driving force of the driving source based on the target driving force In a vehicle driving force control device having a control means and a gear ratio control means for controlling a gear ratio of the transmission, the gear ratio control means has means for detecting rotational vibrations of the drive wheels, A driving force control apparatus for a vehicle, characterized by accelerating an upshift change of the transmission gear ratio when the gear is rotating and vibrating. 前記変速比制御手段は駆動輪が回転振動していないときには、前記目標駆動力に基づいて前記トランスミッションの変速比を制御し、車両が加速する状況に於いて駆動輪が回転振動しているときには、前記目標駆動力よりも小さい変速比制御用目標駆動力に基づいて前記トランスミッションの変速比を制御することを特徴とする請求項1に記載の車両の駆動力制御装置。   The gear ratio control means controls the gear ratio of the transmission based on the target driving force when the driving wheel is not rotating and oscillating, and when the driving wheel is rotating and oscillating in a situation where the vehicle accelerates, The vehicle driving force control apparatus according to claim 1, wherein the transmission gear ratio of the transmission is controlled based on a gear ratio control target driving force smaller than the target driving force. 駆動源及びトランスミッションを含む駆動装置と、少なくとも乗員の駆動操作量に基づいて前記駆動装置の目標駆動力を演算する手段と、前記目標駆動力に基づいて前記駆動源の駆動力を制御する駆動源制御手段と、前記トランスミッションの変速比を制御する変速比制御手段とを有する車両の駆動力制御装置に於いて、前記変速比制御手段は走行路が左右の駆動輪に対応する路面の摩擦係数の差が大きいまたぎ路であるか否かを判定する手段を有し、走行路がまたぎ路であるときには前記トランスミッションの変速比のアップシフト変更を促進することを特徴とする車両の駆動力制御装置。   A driving device including a driving source and a transmission; means for calculating a target driving force of the driving device based on at least a driving operation amount of an occupant; and a driving source for controlling the driving force of the driving source based on the target driving force In a vehicle driving force control device having a control means and a gear ratio control means for controlling a gear ratio of the transmission, the gear ratio control means is configured to determine a friction coefficient of a road surface corresponding to a left and right drive wheel. An apparatus for controlling a driving force of a vehicle, comprising means for determining whether or not the road is a straddle with a large difference, and facilitating an upshift change of the transmission gear ratio when the travel path is a straddle. 前記変速比制御手段は走行路がまたぎ路でないときには、前記目標駆動力に基づいて前記トランスミッションの変速比を制御し、車両が加速する状況に於いて走行路がまたぎ路であるときには、前記目標駆動力よりも小さい変速比制御用目標駆動力に基づいて前記トランスミッションの変速比を制御することを特徴とする請求項3に記載の車両の駆動力制御装置。   The gear ratio control means controls the transmission gear ratio of the transmission based on the target driving force when the travel path is not a straddle, and the target drive when the travel path is a straddle in a situation where the vehicle accelerates. 4. The vehicle driving force control apparatus according to claim 3, wherein the gear ratio of the transmission is controlled based on a target driving force for gear ratio control smaller than a force. 前記変速比制御手段は乗員の駆動操作量及び車両の走行状態に基づいて変速比制御用目標駆動力を演算し、駆動輪が回転振動しておらず走行路がまたぎ路でないときには、前記変速比制御用目標駆動力に基づいて前記トランスミッションの変速比を制御し、車両が加速する状況に於いて駆動輪が回転振動しているとき若しくは走行路がまたぎ路であるときには、前記変速比制御用目標駆動力よりも小さい補正後の変速比制御用目標駆動力に基づいて前記トランスミッションの変速比を制御することを特徴とする請求項1乃至4の何れかに記載の車両の駆動力制御装置。   The gear ratio control means calculates a gear ratio control target driving force based on the driving operation amount of the occupant and the traveling state of the vehicle. When the driving wheel is not rotationally vibrated and the traveling road is not a straddling road, the gear ratio is The speed ratio of the transmission is controlled based on the target driving force for control, and when the driving wheel is rotating and oscillating in a situation where the vehicle is accelerating or the traveling road is a straddling road, the speed ratio controlling target 5. The vehicle driving force control device according to claim 1, wherein the transmission gear ratio is controlled based on a corrected gear ratio control target driving force smaller than the driving force. 6. 前記変速比制御手段は車両が加速する状況に於いて駆動輪が回転振動しているとき若しくは走行路がまたぎ路であるときには、前記変速比制御用目標駆動力を漸減補正することにより前記補正後の変速比制御用目標駆動力を演算することを特徴とする請求項5に記載の車両の駆動力制御装置。   The speed ratio control means corrects the speed ratio control target driving force by gradually decreasing and correcting the speed ratio control target driving force when the driving wheel is rotating and oscillating in a situation where the vehicle is accelerating. 6. The vehicle driving force control apparatus according to claim 5, wherein a target driving force for gear ratio control is calculated. 前記トランスミッションは多段式の自動変速機を含んでいることを特徴とする請求項1乃至6の何れかに記載の車両の駆動力制御装置。   7. The vehicle driving force control apparatus according to claim 1, wherein the transmission includes a multi-stage automatic transmission.
JP2006271987A 2006-10-03 2006-10-03 Vehicle driving force control device Active JP4973106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006271987A JP4973106B2 (en) 2006-10-03 2006-10-03 Vehicle driving force control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271987A JP4973106B2 (en) 2006-10-03 2006-10-03 Vehicle driving force control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011220341A Division JP5321862B2 (en) 2011-10-04 2011-10-04 Vehicle driving force control device

Publications (2)

Publication Number Publication Date
JP2008089120A true JP2008089120A (en) 2008-04-17
JP4973106B2 JP4973106B2 (en) 2012-07-11

Family

ID=39373473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271987A Active JP4973106B2 (en) 2006-10-03 2006-10-03 Vehicle driving force control device

Country Status (1)

Country Link
JP (1) JP4973106B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066785A (en) * 2010-09-27 2012-04-05 Fuji Heavy Ind Ltd Integrated control device of vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114146U (en) * 1984-12-27 1986-07-18
JPH02252930A (en) * 1989-03-27 1990-10-11 Toyota Motor Corp Acceleration slip controller for vehicle
JPH07324641A (en) * 1994-04-07 1995-12-12 Mitsubishi Motors Corp Driving force control device for vehicle
JPH08164834A (en) * 1994-12-14 1996-06-25 Toyota Motor Corp Acceleration slip controller
JP2006037809A (en) * 2004-07-26 2006-02-09 Advics:Kk Traction control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114146U (en) * 1984-12-27 1986-07-18
JPH02252930A (en) * 1989-03-27 1990-10-11 Toyota Motor Corp Acceleration slip controller for vehicle
JPH07324641A (en) * 1994-04-07 1995-12-12 Mitsubishi Motors Corp Driving force control device for vehicle
JPH08164834A (en) * 1994-12-14 1996-06-25 Toyota Motor Corp Acceleration slip controller
JP2006037809A (en) * 2004-07-26 2006-02-09 Advics:Kk Traction control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066785A (en) * 2010-09-27 2012-04-05 Fuji Heavy Ind Ltd Integrated control device of vehicle

Also Published As

Publication number Publication date
JP4973106B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
US6564140B2 (en) Vehicle dynamics control system and vehicle having the vehicle dynamics control system
KR101697809B1 (en) Method and braking system for influencing driving dynamics by means of braking and driving operations
CN102858607B (en) Device and method for determining abnormality of front/rear acceleration sensor
JP6653085B2 (en) Vehicle driving force control device
JP2009051369A (en) Behavior control device of vehicle
JP2008273387A (en) Vehicle speed controller of vehicle
AU2016201638A1 (en) Vibration control device and vibration control system
US8332112B2 (en) Control device for controlling drive force that operates on vehicle
US8825334B2 (en) Vehicle behavior control apparatus and vehicle behavior control method
JP5195871B2 (en) Braking force control device for vehicle
JP6791398B2 (en) Vehicle control method and vehicle control device
JP2012210921A (en) Controller for controlling drive force to be applied to vehicle
JP3840061B2 (en) Four-wheel drive vehicle
JP4114065B2 (en) Four-wheel drive vehicle behavior control device
US8818667B2 (en) Method for producing a differential torque acting on the vehicle wheels of a vehicle
JP5321862B2 (en) Vehicle driving force control device
JP4973106B2 (en) Vehicle driving force control device
JP4443582B2 (en) Understeer suppression device
JP4784741B2 (en) Vehicle driving force control device
US8682556B2 (en) Control device for controlling drive force that operates on vehicle
JP5018051B2 (en) Vehicle driving force control device
JP4910361B2 (en) Vehicle driving force control device
JP2016141221A (en) Vehicle traveling control device
WO2013008090A1 (en) Braking force control system for vehicle
JP6753534B2 (en) Vehicle control method and vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3