JP5018051B2 - Vehicle driving force control device - Google Patents

Vehicle driving force control device Download PDF

Info

Publication number
JP5018051B2
JP5018051B2 JP2006330011A JP2006330011A JP5018051B2 JP 5018051 B2 JP5018051 B2 JP 5018051B2 JP 2006330011 A JP2006330011 A JP 2006330011A JP 2006330011 A JP2006330011 A JP 2006330011A JP 5018051 B2 JP5018051 B2 JP 5018051B2
Authority
JP
Japan
Prior art keywords
driving force
driving
wheels
force
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006330011A
Other languages
Japanese (ja)
Other versions
JP2008144788A (en
Inventor
浩二 中井
健 鯉渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006330011A priority Critical patent/JP5018051B2/en
Publication of JP2008144788A publication Critical patent/JP2008144788A/en
Application granted granted Critical
Publication of JP5018051B2 publication Critical patent/JP5018051B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Retarders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for controlling the vehicle driving force, which apparatus can avoid the remarkable deterioration of the behavior to be generated when the tire gripping force of a driving wheel of the vehicle has exceeded its critical value in an accelerating period of the vehicle in the neighborhood of the critical performance, and can be safely used for practical use. <P>SOLUTION: The apparatus for controlling the driving force executes the driving force distribution, in which the tire gripping force of at least one driving wheel exceeds the critical value earlier than those of other diving wheels, when the driving forces of a plurality of driving wheels are independently controlled in the vehicle capable of independently controlling the driving forces of a plurality of the driving wheels. The driving forces of a plurality of the driving wheels can be controlled so as to be lower than the critical limit corresponding to the tire gripping force of other driving wheels when the tire gripping force of at least one driving wheel arrives at its critical value. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、自動車等の車両の駆動力制御装置に係り、より詳細には、車両の駆動時に於ける車両の限界(加速)性能が向上されるよう車両の各輪への駆動力の配分を制御する駆動力制御装置に係る。   The present invention relates to a driving force control device for a vehicle such as an automobile. More specifically, the present invention relates to the distribution of driving force to each wheel of a vehicle so as to improve the limit (acceleration) performance of the vehicle when driving the vehicle. The present invention relates to a driving force control device to be controlled.

車両の運動制御の分野に於いて、車輪のタイヤグリップ力を最大限に利用して旋回加速時の限界性能を向上するために、即ち、安定的に出力可能な最大加速度をより増大する目的で、車両に於ける前後左右車輪間の駆動力配分を制御することが提案されている(例えば、特許文献1、非特許文献1参照)。旋回中の車両に於いて、車輪の駆動力を単に一様に発生可能な最大限まで増大すると、一部の駆動輪のタイヤグリップ力(駆動力(前後力)と横力とのベクトル和)がその限界を越えてスリップ状態となるため、操縦性が悪化し、その他の車輪に於いて駆動力が増大可能であっても、車両全体として、それ以上駆動力が上げられなくなる。また、無理に駆動力を上げたとしても車両にその旋回方向を変更するヨーモーメントが惹起され、車両の加速方向が必ずしも運転者の所望の方向に一致しないこととなる。そこで、上記の如き旋回加速時の限界性能の向上を目的とする駆動力配分制御では、車両の旋回方向を変えるヨーモーメントを打ち消しつつ(ヨーレート変化を抑制しつつ)、タイヤグリップ力を最大限まで(いずれのタイヤもスリップしない限界まで)増大されるよう駆動輪の駆動力又は駆動トルクの左右輪間又は前後左右輪間の配分を調節し、これにより、所望の旋回方向への加速度を可能な限り増大することが提案されている。そのような車両の限界性能を引き上げる駆動力配分が達成されれば、車両がより高速にて走行可能になるとともに、高加速度にて旋回中でも車輪がスリップすることなく駆動エネルギーが最大限にて車両の加速に利用されることとなるので、車両駆動時のエネルギー効率も向上する。   In the field of vehicle motion control, in order to improve the limit performance during turning acceleration by making the best use of the tire grip force of the wheels, that is, for the purpose of further increasing the maximum acceleration that can be stably output. It has been proposed to control the driving force distribution between the front, rear, left and right wheels in a vehicle (see, for example, Patent Document 1 and Non-Patent Document 1). In a turning vehicle, when the driving force of the wheels is simply increased to the maximum that can be generated uniformly, the tire grip force of some driving wheels (vector sum of driving force (front / rear force) and lateral force) However, since the vehicle is slipping beyond the limit, the maneuverability is deteriorated, and even if the driving force can be increased at other wheels, the driving force cannot be further increased as a whole vehicle. Even if the driving force is forcibly increased, a yaw moment that changes the turning direction is induced in the vehicle, and the acceleration direction of the vehicle does not necessarily coincide with the direction desired by the driver. Therefore, in the driving force distribution control aiming at improving the limit performance at the time of turning acceleration as described above, the tire grip force is maximized while canceling the yaw moment that changes the turning direction of the vehicle (suppressing the yaw rate change). By adjusting the distribution of the driving force or driving torque between the left and right wheels or between the front and rear and left and right wheels so that it is increased (to the limit that no tire slips), this enables acceleration in the desired turning direction It has been proposed to increase as much as possible. If the driving force distribution that raises the limit performance of such a vehicle is achieved, the vehicle can run at a higher speed, and the vehicle can maximize the driving energy without slipping the wheel even during turning at a high acceleration. Therefore, the energy efficiency when driving the vehicle is also improved.

しかしながら、従前に於いて、上記の如き駆動力配分制御は、通常の車両の構成では、実行されてもエネルギー効率的に余り有利にならず、従って、あまり実用化されていない。自動車等の車両に於いて、制動力又は制動トルクは、各輪の制動装置を独立に調節することによって自在に配分することが可能であるが、駆動力又は駆動トルクは、特別な車両を除き、基本的には、単一のエンジン又はモーター等の駆動装置から各左右駆動輪へ均等に配分される(四輪駆動車では、周知の如く、前後輪へのトルク配分がセンタデフ等により行われている。)。かかる構成に於いて、左右車輪間に駆動力又は駆動トルクの差を与えようとする場合には、各駆動輪の駆動トルクは、トラクション制御(TRC)の如く、駆動装置から車輪へ伝達される駆動トルクに対して各輪にて制動装置による制動トルクを付与することにより調節されることとなる。つまり、配分制御に従う駆動力の左右差を得るためには、駆動装置から車輪へ一旦与えられた駆動エネルギーが制動により消費されて無駄になり、従って、駆動力配分制御が実行されてもエネルギー効率的にあまり有利にならない。   However, conventionally, the driving force distribution control as described above is not very advantageous in terms of energy efficiency even if it is executed in a normal vehicle configuration, and is therefore not practically used. In vehicles such as automobiles, the braking force or braking torque can be freely distributed by independently adjusting the braking device of each wheel. Basically, a single engine or motor or other drive device is evenly distributed to the left and right drive wheels (in a four-wheel drive vehicle, as is well known, torque distribution to the front and rear wheels is performed by a center differential or the like. ing.). In such a configuration, when a difference in driving force or driving torque is to be applied between the left and right wheels, the driving torque of each driving wheel is transmitted from the driving device to the wheel as in traction control (TRC). The driving torque is adjusted by applying a braking torque by a braking device at each wheel. In other words, in order to obtain the left-right difference of the driving force according to the distribution control, the driving energy once given from the driving device to the wheels is consumed by the braking and is wasted, so even if the driving force distribution control is executed, the energy efficiency Is not very advantageous.

だが、近年、所謂、駆動力可変配分デフの進歩により、単一の駆動装置からの駆動トルクを(前後だけでなく)左右の駆動輪へ自在に配分することが廉価に達成可能となってきたことから、駆動力配分制御も通常の車両に於いて実用的な制御の一つとなりつつある。そのような駆動力可変配分デフの機能を利用した駆動力配分制御の例は、例えば、非特許文献1に提案されている。
特開2005−67229 「四輪駆動力自在制御システムの開発」 森淳、芝端康二 社団法人自動車技術開 学術講演会前刷集 No.76-05,p.19-24
However, in recent years, with the advancement of so-called variable driving force distribution differentials, it has become possible to achieve low-cost distribution of drive torque from a single drive device to the left and right drive wheels (not just front and rear). Therefore, driving force distribution control is becoming one of practical controls in ordinary vehicles. An example of the driving force distribution control using the function of such a driving force variable distribution differential is proposed in Non-Patent Document 1, for example.
JP 2005-67229 A “Development of a four-wheel drive force free control system” Satoshi Mori, Koji Shibata Preliminary Journal of Automotive Technology Development No.76-05, p.19-24

上記の如き駆動力配分制御では、旋回中の車両の車輪間に於ける荷重移動を考慮して、所望の旋回方向について発生可能な最大加速度を与える前後左右輪への駆動力又は駆動トルクの最適な配分が決定される。その際、車両の駆動系(駆動装置から駆動輪まで)の構造が、各輪への駆動力を自在に配分できるよう構成されていれば、後述の本発明の実施形態の説明の欄にて説明される如く、ヨーレート(又は横加速度)を一定に維持しつつ駆動輪全輪のタイヤグリップ力を最大限まで増大した状態を達成する最適な駆動力配分が決定可能であることが分かっている。従って、かかる制御によれば、各駆動輪のタイヤグリップ力を限界まで増大した状態にて所望の旋回方向について達成可能な最大の加速度が得られ、その状態では、既に触れたように、理論上、全駆動輪がスリップせず、駆動輪へ与えられたエネルギーが全て、車両の加速に寄与することになるので、エネルギー効率も向上される。   In the driving force distribution control as described above, the optimum driving force or driving torque to the front, rear, left and right wheels that gives the maximum acceleration that can be generated in the desired turning direction is considered in consideration of load movement between the wheels of the turning vehicle. Allocation is determined. At that time, if the structure of the drive system of the vehicle (from the drive device to the drive wheels) is configured so that the drive force to each wheel can be freely distributed, in the description of the embodiment of the present invention described later. As will be explained, it has been found that an optimal driving force distribution can be determined that achieves a state where the tire grip force of all the driving wheels is increased to the maximum while maintaining the yaw rate (or lateral acceleration) constant. . Therefore, according to such control, the maximum acceleration that can be achieved in the desired turning direction can be obtained with the tire grip force of each driving wheel increased to the limit. In this state, as already mentioned, theoretically, Since all the driving wheels do not slip and all the energy given to the driving wheels contributes to the acceleration of the vehicle, the energy efficiency is also improved.

しかしながら、上記の如き駆動力配分制御に従って、実際の車両が限界性能にて加速旋回している間に、車両の総駆動力が更に増大して或いは路面状態の変化若しくはその他の外乱により駆動輪のタイヤグリップ力が限界を越えてしまうと、駆動輪全輪がタイヤグリップ力を最大限まで増大された状態から一斉にスリップ状態になる可能性がある(駆動輪全輪のタイヤ力が一斉に最大(又は限界)摩擦円を越える)。もしそうなると、車両の挙動が急激に悪化し、極度の不安定状態に陥り、また、グリップ状態を維持する駆動輪が(殆ど)なくなってしまうと、車両の挙動を安定化状態に戻すことも困難となる。   However, according to the driving force distribution control as described above, while the actual vehicle is accelerating and turning at the limit performance, the total driving force of the vehicle further increases, or the change of the road surface condition or other disturbance causes the driving wheel to move. If the tire grip force exceeds the limit, there is a possibility that all the drive wheels will slip all at once from the state where the tire grip force is increased to the maximum (the tire force of all the drive wheels is maximum simultaneously) (Or beyond) the friction circle). If this happens, the behavior of the vehicle will deteriorate rapidly, and it will become extremely unstable, and it will be difficult to return the behavior of the vehicle to a stable state if there are almost no drive wheels that maintain the grip state. It becomes.

かくして、上記の如き加速限界性能の向上のための駆動力配分制御を安全に実用化するためには、タイヤグリップ力が限界を越えた場合に車両の挙動の著しい悪化が発生し得ることついても配慮されるべきであるが、このことは、従前の駆動力配分制御に於いては、あまり考慮されていない。   Thus, in order to safely implement the driving force distribution control for improving the acceleration limit performance as described above, the vehicle behavior may be significantly deteriorated when the tire grip force exceeds the limit. Although this should be taken into consideration, this is not considered much in the conventional driving force distribution control.

本発明によれば、車両がその限界性能又はその近傍(以下、「限界領域」とする。)にて加速中に駆動輪のタイヤグリップ力が限界を越えた場合に発生し得る車両挙動の著しい悪化を回避し、駆動力配分制御を安全に実用化できるよう改良された車両の駆動力制御装置が提供される。なお、本発明の構成は、上記の如き車両の旋回加速時の限界性能を向上するための駆動力配分制御を実行する駆動力制御装置に於いて特に有用であるが、その他の目的の駆動力制御に於いて適用されてもよいことは理解されるべきである。   According to the present invention, the vehicle behavior that may occur when the tire grip force of the driving wheel exceeds the limit during acceleration of the vehicle at or near its limit performance (hereinafter referred to as “limit region”) is significant. Provided is a vehicle driving force control apparatus that is improved so as to avoid deterioration and to safely implement driving force distribution control. The configuration of the present invention is particularly useful in the driving force control apparatus that executes the driving force distribution control for improving the limit performance at the time of turning acceleration of the vehicle as described above. It should be understood that it may be applied in control.

上記の如き本発明の駆動力制御装置は、車両の複数の駆動輪の駆動力を各々独立に調節可能な車両に用いられる駆動力制御装置であって、複数の駆動輪の駆動力を各々独立に制御する際に、少なくとも一つの駆動輪のタイヤグリップ力がその他の駆動輪のタイヤグリップ力よりも先に限界を超える駆動力配分を実行することを特徴とする。かかる構成によれば、総駆動力の増大又はその他の外乱により、車輪のタイヤグリップ力が限界を超える場合であっても、少なくとも一つの駆動輪だけが、先にその限界を越えるように駆動力を配分することにより、駆動輪のタイヤグリップ力が一斉に限界を越えることを回避し、従前に比して車両の運動がより安全なものとなることが期待される。なお、車両が四輪駆動車の場合、車両が旋回加速中のとき、他の車輪よりも先にタイヤスリップ力が限界を超える駆動輪は、旋回中に最も余裕のある(タイヤグリップ力の限界が大きい)旋回外側の前輪であってよい。また、前輪駆動車又は後輪駆動車に於いて、駆動輪が左右一対の車輪であるときには、一方の駆動輪が他方より先に限界を越えるように駆動力が制御されるところ、その一方の駆動輪は、旋回外側であってよい。   The driving force control device of the present invention as described above is a driving force control device used in a vehicle that can independently adjust the driving forces of a plurality of driving wheels of a vehicle, and each of the driving forces of a plurality of driving wheels is independent. In the control, the tire grip force of at least one drive wheel is over the limit before the tire grip force of the other drive wheels is executed. According to such a configuration, even if the tire grip force of the wheel exceeds the limit due to an increase in the total driving force or other disturbance, the driving force is set so that only at least one driving wheel exceeds the limit first. It is expected that the tire grip force of the drive wheels will not exceed the limit all at once, and the movement of the vehicle will be safer than before. If the vehicle is a four-wheel drive vehicle and the vehicle is accelerating turning, the driving wheel whose tire slip force exceeds the limit before other wheels has the most margin during turning (the limit of tire grip force). May be the front wheel outside the turn. In the front-wheel drive vehicle or the rear-wheel drive vehicle, when the drive wheels are a pair of left and right wheels, the drive force is controlled so that one drive wheel exceeds the limit before the other. The drive wheel may be on the outside of the turn.

上記の本発明の構成は、例えば、前記の少なくとも一つの駆動輪のタイヤグリップ力がその限界に達するときに、その他の駆動輪のタイヤグリップ力が対応する限界より低くなるように又はタイヤグリップ力の大きさが対応する限界より低い値まで増大することが許されるように複数の駆動輪の駆動力を制御することにより達成されてよい。駆動輪の全てではなく、一部の駆動輪に於いてのみ、タイヤグリップ力が限界となるように駆動力を制御することにより、総駆動力の増大又は外乱によって車両全体又は駆動輪全輪のタイヤグリップ力が増大した場合(又はタイヤグリップ力がその対応する限界値に対して相対的に大きくなった場合)であっても、タイヤグリップ力が限界に達している駆動輪はその限界を超えてスリップ状態となるが、その他の駆動輪は、グリップ状態に維持される可能性が高くなる。従って、従前の如く、駆動輪が一斉にスリップして車両挙動が極度に悪化するといったことが回避される。   The above-described configuration of the present invention is such that, for example, when the tire grip force of the at least one driving wheel reaches its limit, the tire grip force of the other driving wheel becomes lower than the corresponding limit, or the tire grip force This may be achieved by controlling the driving force of the plurality of drive wheels such that the magnitude of is allowed to increase to a value below the corresponding limit. By controlling the driving force so that the tire grip force becomes the limit only for some of the driving wheels, but not all of the driving wheels, the increase in the total driving force or disturbance of the entire vehicle or all the driving wheels Even when the tire grip force is increased (or when the tire grip force is relatively large with respect to the corresponding limit value), the driving wheel whose tire grip force has reached the limit exceeds the limit. However, the other drive wheels are more likely to be kept in the grip state. Therefore, it is avoided that the driving wheels slip all at once and the vehicle behavior is extremely deteriorated as before.

実施の態様に於いて、本発明の装置は、車両の所望の旋回方向を表す目標旋回状態量を決定する手段と、複数の駆動輪上に於ける路面摩擦係数を決定する手段と、車両の現在の総駆動力から複数の駆動輪への駆動力の配分を決定する手段とを含み、駆動力の配分を決定する手段が、総駆動力と路面摩擦係数を用いて目標旋回状態量を維持する駆動力の配分を決定するよう構成されていてよい。このとき、駆動力の配分は、前記の少なくとも一つの駆動輪のタイヤグリップ力が限界に到達するとき、その他の駆動輪のタイヤグリップ力は、各々対応する限界よりも低くなる配分とされる。(「駆動力の配分」とは、各駆動輪への駆動力の分布である。)かかる駆動力配分状態であれば、車両の総駆動力が更に増大した場合又はその他の外乱の影響で、全駆動輪のタイヤグリップ力が各々対応する限界に対して相対的に増大した場合でも、先ず、最初に限界を越えるのは、既にタイヤグリップ力が限界に到達した駆動輪のみとなり、その他の駆動輪に於いては、タイヤグリップ力が維持され、従って、極度の車両挙動の悪化又は不安定化が回避されることとなる。なお、車両の所望の旋回方向を表す「目標旋回状態量」とは、車両の旋回方向を示す任意の量の目標値、即ち、運転者の操舵による舵角、舵角により決定される目標ヨーレート又は目標横加速度であってよい。   In an embodiment, the apparatus of the present invention comprises means for determining a target turning state quantity representing a desired turning direction of the vehicle, means for determining a road surface friction coefficient on a plurality of drive wheels, Means for determining the distribution of the driving force from the current total driving force to a plurality of driving wheels, and the means for determining the distribution of the driving force maintains the target turning state quantity using the total driving force and the road surface friction coefficient It may be configured to determine the distribution of the driving force to be performed. At this time, the distribution of the driving force is such that when the tire grip force of the at least one driving wheel reaches the limit, the tire grip force of the other driving wheels becomes lower than the corresponding limit. ("Distribution of driving force" is a distribution of driving force to each driving wheel.) In such a driving force distribution state, when the total driving force of the vehicle further increases or due to the influence of other disturbances, Even if the tire grip force of all drive wheels increases relative to the corresponding limit, the limit is first exceeded only for the drive wheel whose tire grip force has already reached the limit. In the wheel, tire grip is maintained, thus avoiding extreme deterioration or instability of vehicle behavior. The “target turning state amount” representing the desired turning direction of the vehicle is an arbitrary amount of target value indicating the turning direction of the vehicle, that is, the target yaw rate determined by the steering angle and the steering angle by the driver's steering. Or it may be a target lateral acceleration.

上記の制御の態様に於いて、各輪に配分される駆動力は、各輪のタイヤグリップ力がその各々の限界に対してどの程度近づいているかに応じて決定される。つまり、タイヤグリップ力の限界値が制御に於ける基準値になるところ、タイヤグリップ力の限界値の絶対的な大きさは、路面の摩擦係数や車輪の荷重の関数であり、車輪毎に又路面状況に応じて変化するので制御に於ける基準値として取り扱いにくい。そこで、本発明の装置に於いては、各輪のタイヤグリップ力がその各々の限界に対してどの程度近づいているかを表すための指標として、タイヤグリップ力の限界値に対するタイヤグリップ力の比である「タイヤ負荷率」を採用し(タイヤ負荷率は、タイヤグリップ力がその限界値に近づくほど大きくなり、タイヤグリップ力が限界値に到達すると1となる。)、各輪の駆動力の配分は、タイヤ負荷率に基づいて決定されるようになっていてよい。その場合、上記の制御装置に於いて、駆動力の配分を決定する手段により算出される駆動力の配分は、複数の駆動輪の各々のタイヤ負荷率を各々の所定値を超えないよう制限する配分であり、そこに於いて、少なくとも一つの駆動輪のタイヤ負荷率の所定値がその他の駆動輪のタイヤ負荷率の所定値よりも大きく設定され、これにより、車両の総駆動力の増大又はその他の外乱の影響により、駆動輪のタイヤ負荷率を一斉に増大する事態が発生したとき、少なくとも一つの駆動輪のタイヤグリップ力が先に限界を越えるようにすることができることとなる。   In the above control mode, the driving force distributed to each wheel is determined according to how close the tire grip force of each wheel is to its respective limit. In other words, where the limit value of the tire grip force becomes the reference value in the control, the absolute value of the limit value of the tire grip force is a function of the friction coefficient of the road surface and the wheel load. Since it changes according to the road surface condition, it is difficult to handle as a reference value in control. Therefore, in the device of the present invention, the ratio of the tire grip force to the limit value of the tire grip force is used as an index for expressing how close the tire grip force of each wheel is to the respective limit. A certain “tire load factor” is adopted (the tire load factor increases as the tire grip force approaches its limit value, and becomes 1 when the tire grip force reaches the limit value), and the distribution of the driving force of each wheel May be determined based on the tire load factor. In that case, in the control device, the distribution of the driving force calculated by the means for determining the distribution of the driving force limits the tire load factor of each of the plurality of driving wheels so as not to exceed the respective predetermined value. A predetermined value of the tire load factor of at least one drive wheel is set to be greater than a predetermined value of the tire load factor of the other drive wheels, thereby increasing the total driving force of the vehicle or When a situation occurs in which the tire load factor of the drive wheels increases at the same time due to the influence of other disturbances, the tire grip force of at least one of the drive wheels can first exceed the limit.

また、上記の実施の態様に於いて、車両が四輪駆動車であり、車両の前後左右の車輪が駆動輪であるとき、駆動力の配分は、車両の総駆動力を前後輪間の駆動力配分比と、左右前輪間の駆動力配分比と、左右後輪間の駆動力配分比とに基づいて決定することができる。従って、駆動力を制御する場合、路面摩擦係数と総駆動力と目標旋回状態量から、上記三つの配分比が決定され、これにより、駆動力の配分が決定されることとなる。また、車両が二輪駆動車であれば、駆動力の配分は車両の総駆動力を左右の駆動輪間へ配分する駆動力配分比に基づいて決定され、この場合には、路面の摩擦係数と総駆動力と目標旋回状態量から左右の駆動輪間の駆動力配分比が決定され、かかる駆動力配分比が達成されるよう駆動力が制御されることとなる。   In the above-described embodiment, when the vehicle is a four-wheel drive vehicle and the front, rear, left, and right wheels of the vehicle are drive wheels, the distribution of the drive force is based on the total drive force of the vehicle being driven between the front and rear wheels. It can be determined based on the force distribution ratio, the driving force distribution ratio between the left and right front wheels, and the driving force distribution ratio between the left and right rear wheels. Therefore, when controlling the driving force, the above three distribution ratios are determined from the road surface friction coefficient, the total driving force, and the target turning state quantity, thereby determining the distribution of the driving force. If the vehicle is a two-wheel drive vehicle, the distribution of the driving force is determined based on a driving force distribution ratio that distributes the total driving force of the vehicle between the left and right driving wheels. In this case, the friction coefficient of the road surface The driving force distribution ratio between the left and right driving wheels is determined from the total driving force and the target turning state quantity, and the driving force is controlled so that the driving force distribution ratio is achieved.

ところで、本発明の装置は、駆動輪のタイヤグリップ力がその限界に近くなったときだけ、本発明による駆動力の配分制御を実行するようになっていてよい。そこで、本発明の装置に於いては、いずれか一つ又はそれ以上の駆動輪のタイヤグリップ力又はタイヤ負荷率が、所定の閾値を超えて、即ち、その限界に近づいたときに、総駆動力と路面摩擦係数を用いて目標旋回状態量を維持する駆動力の配分が決定されるようになっていてよい。所定の閾値は、実験的に又は理論的に設定されてよい。これにより、総駆動力と路面摩擦係数と目標旋回状態量を用いた駆動力の配分の算出は、タイヤ負荷率又はタイヤグリップ力が所定の閾値以上の場合だけでよくなるので、装置のための計算量が大幅に低減される。   By the way, the device of the present invention may execute the driving force distribution control according to the present invention only when the tire grip force of the driving wheel approaches its limit. Therefore, in the apparatus of the present invention, when the tire grip force or the tire load factor of any one or more drive wheels exceeds a predetermined threshold value, that is, approaches the limit, The distribution of the driving force for maintaining the target turning state quantity may be determined using the force and the road surface friction coefficient. The predetermined threshold may be set experimentally or theoretically. As a result, the calculation of the driving force distribution using the total driving force, the road surface friction coefficient, and the target turning state quantity only needs to be performed when the tire load factor or the tire grip force is equal to or greater than a predetermined threshold. The amount is greatly reduced.

なお、上記の実施の態様の一連の構成によれば、駆動力配分制御の実行中、少なくとも一つの駆動輪のタイヤグリップ力又はタイヤ負荷率は、その限界まで増大することが許され、その他の駆動輪のタイヤグリップ力又はタイヤ負荷率が限界未満に制限されるよう駆動力の配分が設定されるところ、タイヤグリップ力又はタイヤ負荷率が限界まで増大することが許される「少なくとも一つの駆動輪」は、車両の旋回方向に応じて決定されよい。かかる「少なくとも一つの駆動輪」は、車両が四輪駆動車であれば、旋回外側前輪、車両が二輪駆動車であれば、旋回外側前輪又は後輪であってよい。   Note that, according to the series of configurations of the above-described embodiment, during the execution of the driving force distribution control, the tire grip force or the tire load factor of at least one driving wheel is allowed to increase to the limit, and the other When the distribution of the driving force is set so that the tire grip force or the tire load factor of the driving wheel is limited to less than the limit, the “at least one driving wheel is allowed to increase the tire grip force or the tire load factor to the limit. "May be determined according to the turning direction of the vehicle. The “at least one driving wheel” may be a front outer wheel when the vehicle is a four-wheel drive vehicle, or a front outer wheel or a rear wheel when the vehicle is a two-wheel drive vehicle.

本発明は、総じて、車両の加速中(特に旋回加速中)に於いて、駆動輪のタイヤグリップ力を超えるような事態が発生しても、駆動輪全輪のタイヤグリップ力が一斉に限界を越えて、駆動輪全輪がスリップ状態になることが回避されるよう駆動力配分を制御する駆動力制御装置であるということができる。かかる本発明の構成によれば、車両の限界性能にて走行する場合に於いても、特定の駆動輪を除いて、タイヤグリップ力を限界まで増大させないので、駆動輪全輪のタイヤグリップ力を限界まで増大した場合に比べ、発生可能な最大加速度は、低減されることとなる(「車両の限界性能を最大化する制御」を、車両の駆動輪全てのタイヤグリップ力の限界まで増大した状態とする制御と定義するならば、本発明の場合、厳密には、限界性能に於ける最大化は実行されない。)。しかしながら、発生可能な最大加速度を若干低減する代わりに、駆動輪全輪が一斉にスリップ状態に陥る可能性を低減し、これにより、制御の安全性が向上され、駆動力配分制御が、従前に比してより実用的なものとなる。   In general, the present invention limits the tire grip force of all the drive wheels all at once even if a situation that exceeds the tire grip force of the drive wheels occurs during acceleration of the vehicle (particularly during turning acceleration). Beyond this, it can be said that the driving force control device controls the driving force distribution so that all the driving wheels are prevented from slipping. According to the configuration of the present invention, even when the vehicle is driven at the limit performance of the vehicle, the tire grip force is not increased to the limit except for the specific drive wheel. The maximum acceleration that can be generated is reduced compared to the case where the limit is increased (the control that maximizes the limit performance of the vehicle is increased to the limit of the tire grip force of all the driving wheels of the vehicle). Strictly speaking, in the case of the present invention, maximization in the limit performance is not performed.) However, instead of slightly reducing the maximum acceleration that can be generated, the possibility of all the drive wheels falling into a slip state at the same time is reduced, thereby improving the safety of the control and driving force distribution control in the past. In comparison, it becomes more practical.

理解されるべきことは、本発明の制御は、従前の駆動力制御とは、制御の狙いが異なることである。従前に於いて提案されている駆動力制御又は駆動力配分制御は、限界加速性能を向上する目的で駆動力配分する場合も含めて、主として、個々の車輪のタイヤグリップ力が限界を越えないように、即ち、車輪のスリップ状態そのものが発生しないよう個々の車輪の駆動力の大きさ又は配分を制御するものであり、換言すれば、従前の制御は、いずれの車輪もスリップ状態に陥らないようすることで、制御の安全性を図ろうとするものである(しかしながら、その場合、車両の全ての駆動輪のタイヤグリップ力が限界値まで増大する状態が許されるので、もしその状態で、何等かの理由で総駆動力が増大するなどして全車輪の駆動力が増大すると、全て又は殆どの駆動輪が一斉にスリップ状態になり、従って、車両の挙動が極度に不安定化することとなる。)。他方、本発明の場合は、車輪のスリップ状態の発生そのものを抑制するというよりは、車輪のスリップが仮に生じたとしても、そのときには駆動輪が一斉にスリップ状態に陥ることのないよう駆動力の配分を制御して、制御の安全性を図ろうとするものであり、本発明の制御の狙いは、車輪がスリップ状態に陥った後の安全性の確保である。   It should be understood that the control of the present invention has a different control objective from the conventional driving force control. The driving force control or the driving force distribution control that has been proposed in the past mainly includes the case where the tire grip force of each wheel does not exceed the limit, including the case of distributing the driving force for the purpose of improving the limit acceleration performance. In other words, the magnitude or distribution of the driving force of each wheel is controlled so that the slip state of the wheel itself does not occur. In other words, the previous control does not cause any wheel to slip. (However, in this case, a state in which the tire grip force of all the driving wheels of the vehicle increases to a limit value is allowed. If, for example, the total driving force increases, the driving force of all wheels increases, all or most of the driving wheels slip all at once, and therefore the behavior of the vehicle becomes extremely unstable. Become a.). On the other hand, in the case of the present invention, rather than suppressing the occurrence of the slip state of the wheel itself, even if the slip of the wheel occurs, the driving force of the driving wheel is prevented from falling into the slip state at that time. The distribution is controlled to control safety, and the aim of the control of the present invention is to ensure safety after the wheel falls into a slip state.

本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。   Other objects and advantages of the present invention will become apparent from the following description of preferred embodiments of the present invention.

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。図中、同一の符号は、同一の部位を示す。   The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings. In the figure, the same reference numerals indicate the same parts.

装置の構成
図1は、本発明の駆動力制御装置の好ましい実施形態が搭載される四輪自動車を模式的に示している。同図に於いて、左右前輪12FL、12FRと、左右後輪12RL、12RRを有する車両10には、通常の態様にて、運転者によるアクセルペダル14の踏込みに応じて輪に駆動力を発生する駆動装置16と、左右前輪を操舵するステアリング装置30が搭載される。駆動装置16に於いて、図示の例では、エンジン18からの駆動トルク或いは回転駆動力は、トランスミッション(変速機)20を経て、センタデフ(又はトランスファ)22へ伝達され、更に、前輪側駆動力可変デフ24及び後輪側駆動力可変デフ26を介して、前輪12FL、12FR及び後輪12RL、12RRへそれぞれ伝達される(エンジン18に代えて電動機が用いられる電気式、或いは、エンジンと電動機との双方を有するハイブリッド式の駆動装置であってもよい。)。また、ステアリング装置30は、運転者によって回転されるステアリングホイール32の回転を、ステアリングギア機構34を介して、タイロッド36L、Rへ伝達し、前輪12FL、FRを転舵する。なお、簡単のため図示していないが、車両10には、通常の車両と同様に各輪に制動力を発生する制動系装置が設けられる。
Diagram 1 of the device is a four-wheeled vehicle in which the preferred embodiment of the driving force control device of the present invention is mounted is schematically shown. In the figure, in a vehicle 10 having left and right front wheels 12FL and 12FR and left and right rear wheels 12RL and 12RR, a driving force is generated in all the wheels in accordance with the depression of the accelerator pedal 14 by the driver in a normal manner. And a steering device 30 for steering the left and right front wheels. In the illustrated example of the drive device 16, the driving torque or rotational driving force from the engine 18 is transmitted to the center differential (or transfer) 22 via the transmission (transmission) 20, and further, the front wheel side driving force is variable. It is transmitted to the front wheels 12FL, 12FR and the rear wheels 12RL, 12RR via the differential 24 and the rear wheel side driving force variable differential 26, respectively (electric type in which an electric motor is used instead of the engine 18 or between the engine and the electric motor) It may be a hybrid drive device having both. Further, the steering device 30 transmits the rotation of the steering wheel 32 rotated by the driver to the tie rods 36L, R via the steering gear mechanism 34, and steers the front wheels 12FL, FR. Although not shown for simplicity, the vehicle 10 is provided with a braking system device that generates a braking force on each wheel in the same manner as a normal vehicle.

上記の構成に於いて、センタデフに於ける前後輪間の駆動力配分比k、前輪側及び後輪側駆動力可変デフのそれぞれの左右輪間の駆動力配分比kf、krは、通常時は、基本的には、駆動装置16からの駆動力が全車輪に均等に分配するよう設定される(ベース設定。ただし、センタデフで分配される前後輪の駆動力は、任意の目的で均等でない場合が有り得る。)。しかしながら、各輪のタイヤグリップ力が増大して、その限界に近づき、本発明の駆動力制御装置による駆動力配分制御を実行する際に、後に説明される如き駆動力配分を実現するべく配分比が変更される。各デフの駆動力配分比の可変幅は、実際の車両に搭載されるデフに於いて、その具体的な構造・形式等により制限されるが、本明細書に於いては、本発明の駆動力制御装置に要求され得る配分比の全範囲を実現可能であるものとする。   In the above configuration, the driving force distribution ratio k between the front and rear wheels in the center differential, and the driving force distribution ratios kf and kr between the left and right wheels of the front wheel side and rear wheel side variable driving force differentials are normally set. Basically, the driving force from the driving device 16 is set to be distributed evenly to all the wheels (base setting. However, the driving force of the front and rear wheels distributed by the center differential is not uniform for any purpose. There can be.) However, when the tire grip force of each wheel increases and approaches its limit, when executing the driving force distribution control by the driving force control device of the present invention, the distribution ratio is to realize the driving force distribution as described later. Is changed. The variable width of the driving force distribution ratio of each differential is limited by the specific structure and type of the differential mounted on the actual vehicle. However, in this specification, the driving of the present invention is limited. It is assumed that the entire range of distribution ratios that can be required for the force control device is feasible.

本発明の駆動力制御装置の構成及び作動は、電子制御装置50により実現される。電子制御装置50は、通常の形式の、双方向コモン・バスにより相互に連結されたCPU、ROM、RAM及び入出力ポート装置を有するマイクロコンピュータ及び駆動回路を含んでいてよい。電子制御装置50には、各輪に搭載された車輪速センサ40i(iは、特に断らない限り、FL、FR、RL、RR、即ち、左前輪、右前輪、左後輪、右後輪の値であることを示す。)からの車輪速Vwiを表す信号と、車両の各部に設けられたセンサからのエンジンの回転速Er、アクセルペダル踏込量θa、ステアリングシャフト32aに設けられた操舵角センサ32bからの操舵角δ等の信号が入力される。なお、上記以外に、本実施形態の車両に於いて実行されるべき各種制御に必要な種々のパラメータを得るための各種検出信号、例えば、ヨーレートセンサにより検出されるヨーレート、Gセンサにより検出される前後加速度又は横加速度、各輪に設けられた荷重センサからの各輪の垂直荷重が入力されてよいことは理解されるべきである。そして、後に説明される態様にて決定された各デフの駆動力配分比k、kf、krが対応するデフの制御器(例えば、クラッチを作動する液圧式制御機械など(図示せず))へ送信される。   The configuration and operation of the driving force control device of the present invention are realized by the electronic control device 50. The electronic control unit 50 may include a microcomputer having a CPU, a ROM, a RAM, and an input / output port device, which are connected to each other by a bidirectional common bus, and a driving circuit. The electronic control unit 50 includes wheel speed sensors 40i (i are FL, FR, RL, RR, that is, a left front wheel, a right front wheel, a left rear wheel, a right rear wheel, unless otherwise specified). And a signal representing the wheel speed Vwi from the sensor, a rotational speed Er of the engine from a sensor provided in each part of the vehicle, an accelerator pedal depression amount θa, and a steering angle sensor provided in the steering shaft 32a. A signal such as a steering angle δ from 32b is input. In addition to the above, various detection signals for obtaining various parameters necessary for various controls to be executed in the vehicle of the present embodiment, for example, the yaw rate detected by the yaw rate sensor, and detected by the G sensor. It should be understood that longitudinal acceleration or lateral acceleration, and the vertical load of each wheel from a load sensor provided on each wheel may be input. Then, to the differential controller corresponding to the differential driving force distribution ratios k, kf, kr determined in the manner described later (for example, a hydraulic control machine (not shown) that operates the clutch). Sent.

駆動力配分制御の作動
本実施形態の駆動力制御装置に於ける駆動力配分制御は、概して述べれば、所謂、限界性能を最大化する駆動力配分制御、即ち、車輪(図1の車両は、四輪駆動車なので、全てが駆動輪。)のタイヤグリップ力がその限界値に近づいた際に、車輪がスリップすることなく、車両の所望の進行方向への加速度をできるだけ増大できるよう駆動装置16から各車輪へ伝達される駆動力(又は駆動トルク)の配分を制御するものである。かかる制御に於いて、車両の所望の進行方向とは、運転者の操舵による舵角δにより決定され、舵角δの変動に応じて車両の旋回方向も変動される。従って、車両の所望の旋回方向を表す指標(目標旋回状態量)として、舵角δにより定められるヨーレート(目標ヨーレート)が用いられる。また、駆動装置16から出力される総駆動力は、運転者によるアクセルペダルの踏込量θa又はエンジン回転数Erに基づいて決定され、タイヤグリップ力(車輪上の駆動力(前後力)と横力とのベクトル和)の限界は、各輪に於ける路面摩擦係数と接地荷重の関数として決定される。そして、各車輪の荷重は、車両の前後加速度(総駆動力の関数)と横加速度(ヨーレートの関数)による荷重移動量の関数である。従って、結局、上記の駆動力配分制御では、現在の総駆動力を各輪へ割り当てる際、総駆動力と路面摩擦係数と目標ヨーレートを参照パラメータとして、(舵角δ一定のときには)目標ヨーレートが変化しないように、且、最大の加速度を与える(いずれのタイヤもスリップしない)各輪への駆動力の配分量又は配分比が決定される。[本明細書に於いて、路面摩擦係数は、車輪に於いて、(路面摩擦係数)×(接地荷重)により最大(限界)摩擦力を与える摩擦係数であり、車輪のスリップ率に依存して変化する(みかけの)摩擦係数の最大値である。]
Operation of Driving Force Distribution Control The driving force distribution control in the driving force control apparatus of the present embodiment is generally described as driving force distribution control that maximizes the limit performance, that is, wheels (the vehicle in FIG. When the tire grip force of the four-wheel drive vehicle is all about drive wheels) approaches the limit value, the drive device 16 can increase the acceleration in the desired traveling direction of the vehicle as much as possible without slipping the wheels. The distribution of the driving force (or driving torque) transmitted from each wheel to each wheel is controlled. In this control, the desired traveling direction of the vehicle is determined by the steering angle δ by the driver's steering, and the turning direction of the vehicle is also changed according to the fluctuation of the steering angle δ. Therefore, the yaw rate (target yaw rate) determined by the steering angle δ is used as an index (target turning state amount) representing the desired turning direction of the vehicle. The total driving force output from the driving device 16 is determined based on the accelerator pedal depression amount θa by the driver or the engine rotational speed Er, and the tire grip force (the driving force on the wheel (front / rear force) and the lateral force) is determined. Is determined as a function of the road friction coefficient and the ground contact load at each wheel. The load of each wheel is a function of the load movement amount by the longitudinal acceleration (function of total driving force) and lateral acceleration (function of yaw rate) of the vehicle. Therefore, after all, in the above driving force distribution control, when the current total driving force is assigned to each wheel, the target yaw rate is set (when the steering angle δ is constant) using the total driving force, the road surface friction coefficient, and the target yaw rate as reference parameters. The distribution amount or the distribution ratio of the driving force to each wheel that does not change and gives the maximum acceleration (no tire slips) is determined. [In this specification, the road surface friction coefficient is a friction coefficient that gives the maximum (limit) friction force by (road surface friction coefficient) x (contact load) in the wheel, and depends on the slip ratio of the wheel. It is the maximum value of the changing (apparent) friction coefficient. ]

かかる駆動力配分制御に於いて、従前では、駆動輪の全てに於いて、タイヤグリップ力がその対応する限界値まで増大することが許されるよう駆動力の配分が決定され実行されていた。しかしながら、本発明に於いては、一つの駆動輪に於いては、タイヤグリップ力がその対応する限界値まで増大することが許されるが、その他の駆動輪に於いては、タイヤグリップ力は、その対応する限界値よりも低い値、例えば、限界値の90%を越えないように駆動力の配分が実行される。   In the driving force distribution control, the driving force distribution has been determined and executed so that the tire grip force is allowed to increase to the corresponding limit value in all the driving wheels. However, in the present invention, in one drive wheel, the tire grip force is allowed to increase to its corresponding limit value, but in the other drive wheels, the tire grip force is The driving force is distributed so as not to exceed a value lower than the corresponding limit value, for example, 90% of the limit value.

図2は、本発明の駆動力制御装置の制御処理をフローチャートの形式で表したものである(図示の制御処理は、車両の運転中、常に実行されていてよい。)。同図を参照して、処理に於いては、まず、制御に於いて参照されるパラメータ、即ち、アクセルペダルの踏込量θa又はエンジンの回転数Er等から、現在のエンジン出力において、全車輪へ与えることのできる総駆動力Dtと、車輪速Vwi及び車速Vs(例えば、全車輪速の平均値或いは最低値などであってよい。)等に基づいて任意の方法により推定される路面摩擦係数μと、舵角δ及び車速Vs等により決定される目標ヨーレートγtとがそれぞれ取得又は算出される(ステップ10)。目標ヨーレートγtは、車両がニュートラルステアリングを実現すると仮定した場合のよく知られた舵角δとヨーレートとの関係式により、
γt=(Vs/l)δ …(1)
と決定されてよい。なお、ここで、lは、前後輪の車軸間距離(ホイールベース)である。また、左旋回方向を正としている。
FIG. 2 shows a control process of the driving force control apparatus of the present invention in the form of a flowchart (the illustrated control process may always be executed during operation of the vehicle). Referring to the figure, in the processing, first, from the parameters referred in the control, that is, the accelerator pedal depression amount θa or the engine speed Er, etc., all the wheels at the current engine output are obtained. The road surface friction coefficient μ estimated by an arbitrary method based on the total driving force Dt that can be applied, the wheel speed Vwi and the vehicle speed Vs (for example, the average value or the minimum value of all wheel speeds). And the target yaw rate γt determined by the steering angle δ, the vehicle speed Vs, and the like are respectively acquired or calculated (step 10). The target yaw rate γt is a well-known relational expression between the steering angle δ and the yaw rate when it is assumed that the vehicle achieves neutral steering.
γt = (Vs / l) δ (1)
May be determined. Here, l is the distance between the axles of the front and rear wheels (wheel base). The left turn direction is positive.

次いで、駆動力配分比を前記のベース設定から変更するか否かを決定するために、現在の全車輪のタイヤ負荷率etiが算出される(ステップ20)。タイヤ負荷率は、既に触れたように、現在のタイヤグリップ力とその限界値との比であり、下記の式により定義される(図2(B)参照)。
eti=(Di+Fi1/2/μ・Wi・g …(2)
ここに於いて、Diは、各輪の前後力(駆動力)、Fiは、各輪の横力、Wiは、各輪の垂直荷重、gは、重力加速度を示す。Di、Fi、Wiは、それぞれ、下記の要領にて計算されてよい。
Next, in order to determine whether or not to change the driving force distribution ratio from the base setting, the current tire load factors eti of all the wheels are calculated (step 20). As already mentioned, the tire load factor is a ratio between the current tire grip force and its limit value, and is defined by the following equation (see FIG. 2B).
eti = (Di 2 + Fi 2 ) 1/2 / μ · Wi · g (2)
Here, Di is the longitudinal force (driving force) of each wheel, Fi is the lateral force of each wheel, Wi is the vertical load of each wheel, and g is the gravitational acceleration. Di, Fi, and Wi may be calculated in the following manner, respectively.

各輪の前後力Diは、加速中であれば、総駆動力Dtを現在のデフの駆動力配分比k(センタ)、kf(前輪側)、kr(後輪側)を用いて、下記の式により算出される。(ここで、kは、後輪への駆動力の配分割合、kfは、両前輪に割り当てられた駆動力の右前輪への駆動力の配分割合、krは、両後輪に割り当てられた駆動力の右後輪への駆動力の配分割合に定義されている。)
FL=Dt・(1−k)・(1−kf) …(3)
FR=Dt・(1−k)・kf
RL=Dt・k・(1−kr)
FR=Dt・k・kr
k、kf、krは、既に述べた如く、本発明による限界性能向上のための駆動力配分制御が実行されていないときは、ベース設定であることは理解されるべきである。
If the longitudinal force Di of each wheel is accelerating, the total driving force Dt is expressed as follows using the current differential driving force distribution ratio k (center), kf (front wheel side), kr (rear wheel side). Calculated by the formula. (Where k is the distribution ratio of the driving force to the rear wheels, kf is the distribution ratio of the driving force allocated to both front wheels to the right front wheel, and kr is the driving allocated to both rear wheels. (It is defined as the distribution ratio of driving force to the right rear wheel of force)
D FL = Dt · (1-k) · (1-kf) (3)
D FR = Dt · (1−k) · kf
D RL = Dt · k · (1-kr)
D FR = Dt · k · kr
It should be understood that k, kf, and kr are base settings when the driving force distribution control for improving the limit performance according to the present invention is not executed as described above.

また、各輪の垂直荷重Wiは、車両の加速による前後方向の荷重移動量Δxと前後輪それぞれに於ける遠心力による横方向の荷重移動量Δyf、Δyrとの影響を考慮すると、下記の式により与えられる。
FL=(1/2)M・l/l−(1/2)Δx−Δyf …(4)
FR=(1/2)M・l/l−(1/2)Δx+Δyf
RL=(1/2)M・l/l+(1/2)Δx−Δyr
FR=(1/2)M・lf/l+(1/2)Δx+Δyr
ここで、Mは、車両重量、lf、lrは、それぞれ、前後輪軸から車両の重心までの距離である。車両の加速による前後方向の荷重移動量Δx及び遠心力による横方向の荷重移動量Δyf、Δyrは、
Δx=H・Dt/(l・g) …(5)
Δyf=H・M・Rf・Yg/(Tr・g)
Δyr=H・M・Rr・Yg/(Tr・g)
で与えられる。なお、ここで、Hは、重心高、Rf、Rgは、それぞれ、前後輪に於けるロール剛性配分、Trは、トレッド長である。そして、Ygは、横加速度であり、
Yg=Vs・γt …(6)
で与えられる(車両の現在のヨーレートは、車両の状態が正常であれば、目標ヨーレートに一致していると考えてよい。)。
The vertical load Wi of each wheel is calculated by the following equation in consideration of the influence of the load movement amount Δx in the longitudinal direction due to acceleration of the vehicle and the lateral load movement amounts Δyf and Δyr due to the centrifugal force in the respective front and rear wheels. Given by.
W FL = (1/2) M · l r / l− (1/2) Δx−Δyf (4)
W FR = (1/2) M · l r / l− (1/2) Δx + Δyf
W RL = (1/2) M · l f / l + (1/2) Δx−Δyr
W FR = (1/2) M · lf / l + (1/2) Δx + Δyr
Here, M is the vehicle weight, and lf and lr are distances from the front and rear wheel shafts to the center of gravity of the vehicle, respectively. The amount of forward load movement Δx due to vehicle acceleration and the amount of lateral load displacement Δyf, Δyr due to centrifugal force are:
Δx = H · Dt / (l · g) (5)
Δyf = H · M · Rf · Yg / (Tr · g)
Δyr = H · M · Rr · Yg / (Tr · g)
Given in. Here, H is the height of the center of gravity, Rf and Rg are the roll stiffness distribution in the front and rear wheels, and Tr is the tread length. Yg is the lateral acceleration,
Yg = Vs · γt (6)
(If the vehicle is in a normal state, the current yaw rate of the vehicle may be considered to match the target yaw rate.)

更に、各輪の横力は、前後輪のそれぞれに於いて遠心力に釣り合うための力から、前記の前後力Diにより発生するヨーモーメントに釣り合うための前後輪間の横力の移動分を修正し、更に左右輪間については、前記の垂直荷重に比例して配分されると考えられるので、下記の式により与えられる。

Figure 0005018051
なお、上記の式の大括弧内において、第一項が遠心力に釣り合うための力の成分であり、第二項が、前後力Diにより発生するヨーモーメントに釣り合うための前後輪間の横力の移動分である。第一項の括弧内に於いては、車両停止時の前輪又は後輪へ割り当てられる車重から加速による荷重移動量の分が補正されている。 Further, the lateral force of each wheel is corrected from the force for balancing the centrifugal force in each of the front and rear wheels to the amount of movement of the lateral force between the front and rear wheels to balance the yaw moment generated by the front and rear force Di. Further, since it is considered that the distance between the left and right wheels is distributed in proportion to the vertical load, it is given by the following equation.
Figure 0005018051
In the brackets of the above formula, the first term is a component of force for balancing the centrifugal force, and the second term is the lateral force between the front and rear wheels for balancing the yaw moment generated by the longitudinal force Di. The amount of movement. In the parentheses in the first term, the amount of load movement due to acceleration is corrected from the vehicle weight assigned to the front or rear wheels when the vehicle is stopped.

上記のWi、Fiの算出は、前輪舵角δと各輪のスリップ角を考慮して、より厳密に実行されてよく、その場合の表式は、当業者に於いて任意に構成できることは理解されるべきである。   The calculation of Wi and Fi described above may be executed more strictly in consideration of the front wheel steering angle δ and the slip angle of each wheel, and it is understood that the expression in that case can be arbitrarily configured by those skilled in the art. It should be.

かくして、上記の式(2)−(7)により、現在の各輪のタイヤ負荷率etiが算出されると、各輪のタイヤ負荷率etiが所定の閾値Thを越えているか否かが判定される(ステップ30)。所定の閾値は、例えば、0.8であってよい。また、タイヤグリップ力の限界値の大きさは、旋回外側か内側か若しくは車両の前後により異なるので(タイヤの余裕の程度が異なる)、閾値Thは、各輪で別々の値が用いられてもよい。ここで、各輪のタイヤ負荷率etiが所定の閾値Thを越えていなければ、各デフの駆動力配分比k、kf、krはベース設定のままとなる(若しくはベース設定に戻される。)(ステップ35)。しかしながら、少なくとも一つの車輪に於いて、タイヤ負荷率が閾値を越えている場合、車両の加速が限界領域に達した(ベース設定ではタイヤ負荷率に余裕をもって駆動力の分配が難しくなった)と判定され、限界性能を最大化するための駆動力配分制御を実行するべく、各デフの駆動力配分比k、kf、krの変更が行われる(ステップ40)。   Thus, when the current tire load factor eti of each wheel is calculated by the above formulas (2) to (7), it is determined whether the tire load factor eti of each wheel exceeds a predetermined threshold Th. (Step 30). The predetermined threshold may be 0.8, for example. Further, since the magnitude of the limit value of the tire grip force varies depending on whether the vehicle is outside or inside the turn or the front and rear of the vehicle (the degree of tire margin is different), the threshold value Th may be different for each wheel. Good. Here, if the tire load factor eti of each wheel does not exceed the predetermined threshold Th, the driving force distribution ratios k, kf, kr of the differentials remain at the base setting (or returned to the base setting) ( Step 35). However, if the tire load factor exceeds the threshold value for at least one wheel, the vehicle acceleration has reached the limit range (base setting makes it difficult to distribute the driving force with a margin in the tire load factor). Determination is made and the driving force distribution ratios k, kf, kr of each differential are changed to execute the driving force distribution control for maximizing the limit performance (step 40).

ステップ40に於いては、駆動力配分比k、kf、krの値は、横加速度Yg(目標ヨーレートγtより算出)、路面摩擦係数μ及び総駆動力Dtをパラメータとする予め準備された駆動力配分比k、kf、krの組み合わせのマップより選択されるようになっていてよい。マップから選択される駆動力配分比k、kf、krの組み合わせは、もし(従前の如く)全車輪に於いてタイヤグリップ力の限界までの増大を許すとすると、そのときの目標ヨーレートγt、路面摩擦係数μ及び総駆動力Dtに於いて全車輪のタイヤ負荷率が1.0以下となるようにする、即ち、各輪のタイヤグリップ力がその対応する限界値を越えないようにする組み合わせとなる。しかしながら、既に触れたように、本発明の駆動力配分制御に於いては、旋回外側前輪を除いて、タイヤ負荷率が限界値1に達することのないように、例えば、旋回外側前輪以外のタイヤ負荷率が0.9を越えて増大しないように駆動力の配分が制御される。換言すると、本発明の制御装置に於いては、マップから選択される駆動力配分比k、kf、krの組み合わせは、全車輪に於いて、タイヤ負荷率が所定値を超えないようにする組み合わせであり、かかる所定値は、旋回外側前輪については、1.0、その他の車輪については、1.0未満の任意に設定される値とされる。なお、マップの調製については、後述される。   In step 40, the values of the driving force distribution ratios k, kf, kr are prepared in advance using the lateral acceleration Yg (calculated from the target yaw rate γt), the road surface friction coefficient μ, and the total driving force Dt as parameters. The map may be selected from a combination map of distribution ratios k, kf, and kr. The combination of the driving force distribution ratios k, kf, kr selected from the map, if allowed to increase to the limit of the tire grip force in all wheels (as before), then the target yaw rate γt, road surface A combination in which the tire load factor of all wheels is 1.0 or less in the friction coefficient μ and the total driving force Dt, that is, the tire grip force of each wheel does not exceed the corresponding limit value; Become. However, as already mentioned, in the driving force distribution control of the present invention, the tire load factor does not reach the limit value 1 except for the turning outer front wheel, for example, tires other than the turning outer front wheel. The distribution of driving force is controlled so that the load factor does not increase beyond 0.9. In other words, in the control device of the present invention, the combination of the driving force distribution ratios k, kf, kr selected from the map is a combination that prevents the tire load factor from exceeding a predetermined value in all the wheels. The predetermined value is an arbitrarily set value of 1.0 for the front outer wheel and less than 1.0 for the other wheels. The map preparation will be described later.

かくして、ステップ35又はステップ40にて駆動力配分比k、kf、kr値が決定されると、各デフの制御器へ制御指令が送信され(ステップ50)、制御が繰り返される。   Thus, when the driving force distribution ratio k, kf, kr value is determined in step 35 or step 40, a control command is transmitted to the controller of each differential (step 50), and the control is repeated.

駆動力配分比マップの調整
図2のステップ40に於いて決定されるべき駆動力配分比k、kf、krの組み合わせは、全輪に於いて各々の所定の上限値(例えば、旋回外側前輪については、1.0、それ以外については、0.9)以下のタイヤ負荷率etiを与えるものでなければならない。式(2)−(7)から容易に理解される如く、タイヤ負荷率etiは、総駆動力Dt、路面摩擦係数μ、横加速度Yg(目標ヨーレートγから式(6)により算出)及び駆動力配分比k、kf、krの関数であるので、任意の路面摩擦係数μと横加速度Ygと総駆動力Dtを所与のパラメータとして、全輪に於いてタイヤ負荷率etiが各々の所定の上限値以下となる駆動力配分比k、kf、krを探索することにより、路面摩擦係数μ、横加速度Yg及び総駆動力Dtが与えられたときの駆動力配分比k、kf、krを決定することができる。
Adjustment of the driving force distribution ratio map The combination of the driving force distribution ratios k, kf, kr to be determined in step 40 of FIG. 2 is the predetermined upper limit value for all wheels (for example, the front outer wheel of the turn). The tire load factor eti must be 1.0 or less for other than 1.0. As easily understood from the equations (2) to (7), the tire load factor eti is the total driving force Dt, the road surface friction coefficient μ, the lateral acceleration Yg (calculated by the equation (6) from the target yaw rate γ) and the driving force. Since it is a function of the distribution ratios k, kf, and kr, the tire load factor eti is set to each predetermined upper limit for all wheels, with an arbitrary road friction coefficient μ, lateral acceleration Yg, and total driving force Dt as given parameters. By searching for the driving force distribution ratios k, kf, and kr that are less than or equal to the values, the driving force distribution ratios k, kf, and kr when the road surface friction coefficient μ, the lateral acceleration Yg, and the total driving force Dt are given are determined. be able to.

本発明の発明者による計算実験によれば、任意の路面摩擦係数μと横加速度Ygと総駆動力Dtを所与のパラメータとし、駆動力配分比k、kf、krの可変範囲全域に渡って、上記の式(3)の駆動力Diに於ける駆動力配分比k、kf、krの値を変更して、上記の式(2)の各輪のタイヤ負荷率etiを算出すると、全輪のタイヤ負荷率etiが所定の上限値以下となる条件、例えば、
旋回外側前輪FOについて
etFO≦1.0
それ以外について、
eti≦0.9 …(8)
(iは、旋回内側前輪、旋回外側後輪、旋回内側後輪)
を満たす駆動力配分比k、kf、krの範囲が、三次元の領域として決定されることが見出された(図3(A)参照)。また、上記の条件(8)を満たすタイヤ負荷率etiを与える駆動力配分比k、kf、krの範囲は、所与の路面摩擦係数μと横加速度Ygについて、総駆動力Dtの増大とともに縮小し(タイヤ負荷率etiは、全体的に増大する。)(図3(B)参照)、全輪のタイヤ負荷率が各々の上限値に到達して、
旋回外側前輪FOについて
etFO=1.0
それ以外について、
eti=0.9 …(8a)
となるとき、一つの駆動力配分比k、kf、krの組み合わせに収束することが見出された(図3(C))。従って、図2のステップ40に於いて用いられるマップは、車両の走行に於いて想定される路面摩擦係数μ、横加速度Yg及び総駆動力Dtの範囲全域に於いて、駆動力配分比k、kf、krをそれらの可変範囲全域についてタイヤ負荷率etiを算出して、全輪のタイヤ負荷率etiが所定の上限値以下となる駆動力配分比k、kf、krの範囲を求め、その結果得られた駆動力配分比k、kf、krの範囲内から適当な値(例えば、範囲の中心値)を選択することにより調製することができる。
According to a calculation experiment by the inventor of the present invention, an arbitrary road friction coefficient μ, lateral acceleration Yg, and total driving force Dt are given parameters, and the driving force distribution ratios k, kf, and kr are variable over the entire range. By changing the values of the driving force distribution ratios k, kf, kr in the driving force Di of the above equation (3) and calculating the tire load factor eti of each wheel of the above equation (2), all wheels The condition that the tire load factor eti is equal to or lower than a predetermined upper limit value, for example,
About the front outer wheel FO for turning et FO ≦ 1.0
Other than that,
eti ≦ 0.9 (8)
(I is the turning inner front wheel, turning outer rear wheel, turning inner rear wheel)
It was found that the ranges of the driving force distribution ratios k, kf, and kr that satisfy the above are determined as a three-dimensional region (see FIG. 3A). In addition, the range of the driving force distribution ratios k, kf, and kr that gives the tire load factor eti that satisfies the above condition (8) is reduced as the total driving force Dt increases for a given road surface friction coefficient μ and lateral acceleration Yg. (The tire load factor eti increases overall) (see FIG. 3B), and the tire load factors of all the wheels reach their respective upper limit values,
About the front outer wheel FO for turning et FO = 1.0
Other than that,
eti = 0.9 (8a)
Then, it was found that the driving force distribution ratios k, kf, and kr converge to one combination (FIG. 3C). Therefore, the map used in step 40 of FIG. 2 is the driving force distribution ratio k, over the entire range of the road surface friction coefficient μ, the lateral acceleration Yg and the total driving force Dt that is assumed in the traveling of the vehicle. The tire load factor etti is calculated for the entire variable range of kf and kr, and the ranges of the driving force distribution ratios k, kf, and kr where the tire load factor eti of all the wheels is equal to or less than a predetermined upper limit value are obtained. It can be prepared by selecting an appropriate value (for example, the center value of the range) from the range of the obtained driving force distribution ratios k, kf, and kr.

図4は、上記のマップの調製に於いて、或る路面摩擦係数μ及び横加速度Ygを与えた場合の駆動力配分比k、kf、krの値を決定する処理をフローチャートの形式で表したものである。なお、当業者にとって理解される如く、総駆動力があまり高くなければ、駆動力配分比k、kf、krをベース設定にしても、全輪のタイヤ負荷率は、上記の上限値以下となることは明らかであり、その場合、駆動力配分比k、kf、krを変更する必要はない(図2のステップ20、30、35の処理を参照)。そこで、例示されている処理では、まず、駆動力配分比k、kf、krをベース設定にて設定し、総駆動力を任意の低い値から増大しつつ全輪のタイヤ負荷率が算出される。(これにより、ベース設定の駆動力配分比で対応可能な総駆動力Dt、路面摩擦係数μ及び横加速度Ygの条件の範囲を確認することもできる。)。そして、総駆動力Dtが或る程度高くなり、これにより、全輪のタイヤ負荷率が上限値に或る程度近づいてきたとき、その時点から初めて駆動力配分比k、kf、krを変更してタイヤ負荷率を算出し、左右のいずれが旋回外側又は内側になっているかを考慮して上記の条件(8)を満たす駆動力配分比k、kf、krの範囲及びその中心値(マップに採用する値)の決定がなされる。   FIG. 4 shows, in the form of a flowchart, processing for determining the values of the driving force distribution ratios k, kf, and kr when a certain road surface friction coefficient μ and lateral acceleration Yg are given in the above map preparation. Is. As will be understood by those skilled in the art, if the total driving force is not very high, the tire load factor of all the wheels is not more than the above upper limit value even if the driving force distribution ratios k, kf, and kr are set as the base settings. Obviously, in this case, it is not necessary to change the driving force distribution ratios k, kf, and kr (see the processing of steps 20, 30, and 35 in FIG. 2). Therefore, in the illustrated process, first, the driving force distribution ratios k, kf, and kr are set in the base setting, and the tire load factor of all the wheels is calculated while increasing the total driving force from an arbitrarily low value. . (Accordingly, it is possible to confirm the range of conditions of the total driving force Dt, the road surface friction coefficient μ, and the lateral acceleration Yg that can be handled by the base setting driving force distribution ratio. Then, when the total driving force Dt increases to some extent, and when the tire load factor of all wheels approaches the upper limit to some extent, the driving force distribution ratios k, kf, kr are changed for the first time from that point. The tire load factor is calculated, and the range of the driving force distribution ratios k, kf, kr satisfying the above condition (8) and the center value thereof (on the map) are considered considering which of the left and right sides is outside or inside the turn. The value to be adopted is determined.

図4を参照して、まず、総駆動力Dtとして任意の低い値Dt0を設定し(ステップ100)、ベース設定の駆動力配分比k、kf、krを用いて、式(2)−(7)より、全輪のタイヤ負荷率etiが算出される(ステップ110)。そして、算出された全輪のタイヤ負荷率etiが、所定の閾値Th、例えば、0.8を越えるか否かが判定される(ステップ120)。既に述べた如く、総駆動力Dtが小さければ、タイヤ負荷率etiは、いずれも所定の閾値を越えないので(ベース設定の駆動力配分比で十分に対応可能であることを意味する。)、総駆動力を所定の量ΔDtだけ増大し(ステップ130)、ステップ110及び120が繰り返される。かかる処理は、総駆動力を徐々に増大しつついずれかのタイヤ負荷率etiが所定の閾値Thを越えるまで繰り返される。   Referring to FIG. 4, first, an arbitrary low value Dt0 is set as the total driving force Dt (step 100), and using the base setting driving force distribution ratios k, kf, kr, equations (2)-(7 ), The tire load factor eti of all the wheels is calculated (step 110). Then, it is determined whether or not the calculated tire load factor eti for all wheels exceeds a predetermined threshold Th, for example, 0.8 (step 120). As described above, if the total driving force Dt is small, the tire load factor eti does not exceed a predetermined threshold value (meaning that the base setting driving force distribution ratio can be sufficiently handled). The total driving force is increased by a predetermined amount ΔDt (step 130), and steps 110 and 120 are repeated. Such processing is repeated until any tire load factor eti exceeds a predetermined threshold Th while gradually increasing the total driving force.

タイヤ負荷率etiのいずれかが所定の閾値Thを越えたとき(ステップ120)、今度は、駆動力配分比k、kf、krの可変範囲全域について全輪のタイヤ負荷率etiが算出される(ステップ140)。ここにおいて、駆動力配分比は、可変範囲(kmin,kmax)に於いて、駆動力配分比k、kf、krをそれぞれ適当なキザミ幅Δkにて、全ての組み合わせについて全輪のタイヤ負荷率etiを算出し[k、kf、krの三次元空間に於いて、格子幅Δkの三次元格子を想定し、その格子点の全てについてタイヤ負荷率etiを算出する。]、左右のいずれが旋回外側又は内側になっているかに対応して(左旋回(Yg>0)のとき右前輪を旋回外側に設定)上記の条件(8)を与えるk、kf、krの範囲が特定される(ステップ150)。このことに関し、駆動力配分比k、kf、krの三次元空間を考えたときに、既に述べた如く、上記の条件(8)を満たす(k、kf、kr)の集合は、三次元領域として特定されることがわかっている。従って、上記の条件(8)を満たすk、kf、krの組み合わせの集合は、駆動力配分比k、kf、krの三次元空間に於ける領域の境界表面の座標を検出することにより、特定することができる。上記の条件(8)を満たすk、kf、krの領域の境界の特定は、当業者にとって任意の方法で為されることは理解されるべきである。例えば、図5に示す如く、k、kfを固定してkrを微小量Δkずつ変化させながら、タイヤ負荷率etiを算出し、条件(8)を満たすkrの下限krlowと上限krhighを決定する操作(ステップ210−270参照)を、kfを微小量Δkずつ変化させながら繰り返し(ステップ280−290参照)、また更にその操作を、kを微小量Δkずつ変化させて繰り返すことにより(ステップ300−310参照)、条件(8)を満たす領域の境界表面の座標を特定することができる。   When any of the tire load factors eti exceeds a predetermined threshold Th (step 120), this time, the tire load factors eti of all the wheels are calculated over the entire variable range of the driving force distribution ratios k, kf, and kr (step 120). Step 140). Here, the driving force distribution ratio is the variable load range (kmin, kmax), and the driving force distribution ratios k, kf, kr are set at appropriate nick widths Δk, and the tire load factors eti of all the wheels for all combinations. [A three-dimensional lattice with a lattice width Δk is assumed in the three-dimensional space of k, kf, and kr, and the tire load factor eti is calculated for all of the lattice points. ] Corresponding to whether the left or right is on the outside or inside of the turn (when the left turn (Yg> 0), the right front wheel is set to the outside of the turn), the above conditions (8) are given, and k, kf, kr A range is identified (step 150). In this regard, when considering a three-dimensional space of the driving force distribution ratios k, kf, kr, as already described, a set of (k, kf, kr) satisfying the above condition (8) is a three-dimensional region. Is known to be identified as Therefore, the set of combinations of k, kf, and kr that satisfy the above condition (8) is specified by detecting the coordinates of the boundary surface of the region in the three-dimensional space of the driving force distribution ratios k, kf, and kr. can do. It should be understood that identification of the boundaries of the k, kf, and kr regions that satisfy the above condition (8) can be done by any method for those skilled in the art. For example, as shown in FIG. 5, the tire load factor eti is calculated while k and kf are fixed and kr is changed by a minute amount Δk, and the lower limit krlow and the upper limit krhigh satisfying the condition (8) are determined. (Refer to steps 210 to 270) is repeated while changing kf by a minute amount Δk (see steps 280 to 290), and further, the operation is repeated while changing k by a minute amount Δk (steps 300 to 310). Reference), the coordinates of the boundary surface of the region satisfying the condition (8) can be specified.

次いで、ステップ150に於いて上記の条件(8)を満たすk、kf、krの領域を特定した後、k、kf、krの領域に入るk、kf、krの有意な組み合わせが存在する場合[三次元空間の格子点が存在するとき](ステップ160)、その領域の中心点の組み合わせがそのときの総駆動力Dtの駆動力配分比k、kf、krとして選択される(ステップ170)。中心点は、例えば、上記の条件(8)を満たすk、kf、krの領域の重心(境界表面の座標値k、kf、krの各々の和を境界表面の座標の数で割ったものなど)であってよい。中心点を選択するのは、どの車輪についてもタイヤ負荷率に概ね同程度の余裕があると想定されるためである(中心点は、いずれ方向についても境界表面まで距離(余裕)がある。)。   Next, in step 150, after identifying the k, kf, and kr regions that satisfy the above condition (8), there is a significant combination of k, kf, and kr that falls within the k, kf, and kr regions [ When there are three-dimensional space grid points] (step 160), the combination of the center points of the region is selected as the driving force distribution ratio k, kf, kr of the total driving force Dt at that time (step 170). The center point is, for example, the center of gravity of the region of k, kf, kr that satisfies the above condition (8) (the sum of the coordinate values k, kf, kr of the boundary surface divided by the number of coordinates of the boundary surface, etc. ). The reason why the center point is selected is that it is assumed that the tire load factor has almost the same margin for any wheel (the center point has a distance (margin) to the boundary surface in any direction). .

かくして、そのときの総駆動力Dt(及び路面摩擦係数μ及び横加速度Yg)に於ける駆動力配分比k、kf、krの選択値が決定されると、総駆動力Dtを所定増分ΔDtだけ増大し(ステップ180)、ステップ140−170が繰り返され、総駆動力Dtに於ける駆動力配分比k、kf、krの選択値が逐次的に決定される。かかる処理を繰り返し、総駆動力Dtを増大していくと、既に述べた如く、条件(8)を満たすタイヤ負荷率を与える駆動力配分比k、kf、krは、一点に収束し、即ち、タイヤ負荷率etiは、本発明の制御に於ける上限値に到達する(キザミ幅Δkの大きさによっては、計算上、タイヤ負荷率の上限を満たすk、kf、krの組み合わせ(格子点)が数個になることが有り得る。)。そこで、更に、総駆動力Dtを増大すると(ステップ180)、次のステップ160の判定に於いて、領域が存在しないこととなるので、これにより、処理が完了する。その後、路面摩擦係数μ、横加速度Ygを変更して、図4と同様の計算を繰り返し、路面摩擦係数μ、横加速度Ygについて想定される全範囲について、総駆動力Dtに対応して一連の駆動力配分比k、kf、krの選択値を決定することにより、駆動力配分比k、kf、krのマップが調製される。   Thus, when the selected values of the driving force distribution ratios k, kf, kr in the total driving force Dt (and the road surface friction coefficient μ and the lateral acceleration Yg) at that time are determined, the total driving force Dt is determined by a predetermined increment ΔDt. Increase (step 180), steps 140-170 are repeated, and the selection values of the driving force distribution ratios k, kf, kr in the total driving force Dt are sequentially determined. When this process is repeated and the total driving force Dt is increased, as already described, the driving force distribution ratios k, kf, and kr that give the tire load factor satisfying the condition (8) converge to one point, that is, The tire load factor eti reaches the upper limit in the control of the present invention (depending on the size of the knurled width Δk, a combination (grid point) of k, kf, and kr that satisfies the upper limit of the tire load factor is calculated. It can be several.) Therefore, when the total driving force Dt is further increased (step 180), the region does not exist in the determination at the next step 160, and thus the processing is completed. Thereafter, the road surface friction coefficient μ and the lateral acceleration Yg are changed, and the same calculation as in FIG. 4 is repeated, and the entire range assumed for the road surface friction coefficient μ and the lateral acceleration Yg corresponds to the total driving force Dt. A map of the driving force distribution ratios k, kf, kr is prepared by determining the selection values of the driving force distribution ratios k, kf, kr.

実際の走行中の車両に於いて、上記の駆動力配分比k、kf、krのマップにより各デフの駆動力配分比が設定されると、各輪に於いて(旋回方向に対応して左右のいずれかが旋回外側に設定された)条件(8)が満たされるよう駆動力が調節されることとなる。また、マップの算出に於いて、横加速度Ygがパラメータとして用いられているので、制御時、目標ヨーレートに対応する横加速度Ygに於けるマップの値(k、kf、kr)を選択することにより、制御後の駆動力の配分に於いても横加速度及びヨーレートは、その目標値に維持され、従って、車両は、所望の方向に加速されることとなる。   In the actual traveling vehicle, when the driving force distribution ratio of each differential is set by the map of the driving force distribution ratios k, kf, and kr described above, in each wheel (right and left corresponding to the turning direction) The driving force is adjusted so as to satisfy the condition (8) (one of the above is set to the outside of the turn). Further, since the lateral acceleration Yg is used as a parameter in the calculation of the map, by selecting the map value (k, kf, kr) in the lateral acceleration Yg corresponding to the target yaw rate during control. Even in the distribution of the driving force after the control, the lateral acceleration and the yaw rate are maintained at their target values, so that the vehicle is accelerated in a desired direction.

総駆動力Dt若しくは横加速度Ygの増大又は路面摩擦係数の減少によって全輪のタイヤ負荷率が増大すると、駆動力配分比k、kf、krのマップに従って各輪駆動力が配分されるので、最終的には、必ず、上記の条件(8a)に到達する。その状態に於いては、旋回外側前輪以外は、タイヤ負荷率は、1.0以下なので、限界に到達はしていない。従って、更に、タイヤ負荷率を増大しようとする作用が車両に加わり、旋回外側前輪がその限界を越えたとしても、その他の車輪は、限界を越えずにグリップ状態を維持することが期待され、これにより、車両挙動の著しい悪化を回避できることとなる(旋回外側前輪がスリップし始めると、VSCやその他の挙動安定化する任意の制御装置が作動することが期待される。その場合に、旋回外側前輪以外がグリップ状態を維持することにより、挙動の修復が、全輪がスリップする場合に比べてより良好に実行されるであろう。)。   When the tire load factor of all the wheels increases due to the increase in the total driving force Dt or the lateral acceleration Yg or the decrease in the road friction coefficient, each wheel driving force is distributed according to the map of the driving force distribution ratio k, kf, kr. Therefore, the above condition (8a) is always reached. In this state, the tire load factor is 1.0 or less except for the front outer wheel, so the limit has not been reached. Therefore, even if the effect of increasing the tire load factor is added to the vehicle and the front outer wheel of the turn exceeds the limit, the other wheels are expected to maintain the grip state without exceeding the limit. As a result, it is possible to avoid a significant deterioration in the vehicle behavior (when the front wheel outside the turn begins to slip, it is expected that the VSC and other control devices that stabilize the behavior will be activated. By maintaining the grip state except for the front wheels, behavioral repair will be performed better than if all wheels slip.)

なお、上記のマップの調製に於いて、駆動力配分比k、kf、krをベース設定から変更する処理は、タイヤ負荷率が閾値Thを越えた後(ステップ120)から実行するようになっているが、総駆動力の初期値Dt0から駆動力配分比k、kf、krの領域の算出及びその中心値の決定の手順により、駆動力配分比k、kf、krを決定するようになっていてもよい(ただし、計算量とマップのデータ量は、増大する。)。その場合、図2のステップ20、30、35は、省略され、常にステップ40が実行されるようになっていてよい。また、上記のマップの調製に於いて、タイヤ負荷率の閾値Thは、条件(8a)、即ち、上限値に設定されてもよい。そうして調製されたマップを用いると、駆動力配分比を種々変更する駆動力配分制御は、車両の走行中、ベース設定の駆動力配分比では、条件(8)を満たすことができなくなったときに初めて、実行されることとなる。この場合、ベース設定の駆動力配分比が、使用可能な限界まで使用されることになり、いずれかの車輪のタイヤ負荷率が上限値を超えた途端に駆動力配分比がベース設定から変更されることになるので、変化が急激になる可能性がある。更に、調製されるマップは、総駆動力Dt、摩擦係数μ及び横加速度Ygを変数とした駆動力配分比の組(k、kf、kr)により構成されるので、図4のマップの調製過程では、摩擦係数μ及び横加速度Ygが固定され、総駆動力Dtを徐々に増大した算出処理が例示されているが、総駆動力Dtと、摩擦係数μ及び横加速度Ygのうちの一方を固定して、摩擦係数μ及び横加速度Ygのうちの他方を徐々に変化させても同様のマップが調製されることは理解されるべきである。   In the above map preparation, the process of changing the driving force distribution ratios k, kf, kr from the base setting is executed after the tire load ratio exceeds the threshold Th (step 120). However, the driving force distribution ratios k, kf, and kr are determined by the procedure of calculating the region of the driving force distribution ratios k, kf, and kr from the initial value Dt0 of the total driving force and determining the center value thereof. (However, the amount of calculation and the amount of map data increase.) In that case, steps 20, 30, and 35 in FIG. 2 may be omitted, and step 40 may always be executed. In the above map preparation, the tire load factor threshold Th may be set to the condition (8a), that is, the upper limit value. When the map prepared in this way is used, the driving force distribution control for changing the driving force distribution ratio cannot satisfy the condition (8) with the base setting driving force distribution ratio while the vehicle is running. Sometimes it will be executed for the first time. In this case, the driving force distribution ratio of the base setting is used up to the usable limit, and the driving force distribution ratio is changed from the base setting as soon as the tire load factor of any wheel exceeds the upper limit value. Change is likely to be abrupt. Further, since the prepared map is composed of a set of driving force distribution ratios (k, kf, kr) using the total driving force Dt, the friction coefficient μ, and the lateral acceleration Yg as variables, the map preparation process shown in FIG. In the example, calculation processing is illustrated in which the friction coefficient μ and the lateral acceleration Yg are fixed and the total driving force Dt is gradually increased. However, the total driving force Dt and one of the friction coefficient μ and the lateral acceleration Yg are fixed. Thus, it should be understood that a similar map can be prepared by gradually changing the other one of the friction coefficient μ and the lateral acceleration Yg.

二輪駆動車の場合
上記の四輪駆動車の場合の駆動力配分制御は、二輪駆動車の場合にも同様に実施することができる。車両の走行中の制御は、図2に示されている処理と同様であってよい。ただし、前輪駆動車については、左右前輪のみが駆動輪になるので、タイヤ負荷率は、左右前輪だけ算出される。その場合、式(3)−(7)は、k=0と置けばよい。また、後輪駆動車については、左右後輪のみが駆動輪になるので、タイヤ負荷率は、左右後輪だけ算出される。その場合、式(3)−(7)は、k=1と置けばよい。マップの調製については図4と同様に実行されてよい。なお、ステップ140に於いては、前輪駆動車については、kfのみ、後輪駆動車については、krのみを変更するだけでよい。条件(8)、(8a)は、
旋回外輪について etOUT≦1.0
旋回内輪について etIN≦0.9 …(9)
に修正される。
In the case of a two-wheel drive vehicle, the driving force distribution control in the case of a four-wheel drive vehicle can be similarly performed in the case of a two-wheel drive vehicle. The control during traveling of the vehicle may be the same as the process shown in FIG. However, for front-wheel drive vehicles, only the left and right front wheels are drive wheels, so the tire load factor is calculated only for the left and right front wheels. In that case, the equations (3) to (7) may be set as k = 0. In the rear wheel drive vehicle, only the left and right rear wheels are drive wheels, so the tire load factor is calculated only for the left and right rear wheels. In that case, equations (3)-(7) may be set as k = 1. Map preparation may be performed as in FIG. In step 140, it is only necessary to change only kf for the front wheel drive vehicle and only kr for the rear wheel drive vehicle. Conditions (8) and (8a)
About turning outer wheel et OUT ≦ 1.0
About turning inner ring et IN ≦ 0.9 (9)
To be corrected.

以上の説明は、本発明の実施の形態に関連してなされているが、当業者にとつて多くの修正及び変更が容易に可能であり、本発明は、上記に例示された実施形態のみに限定されるものではなく、本発明の概念から逸脱することなく種々の装置に適用されることは明らかであろう。   Although the above description has been made in relation to the embodiment of the present invention, many modifications and changes can be easily made by those skilled in the art, and the present invention is limited to the embodiment exemplified above. It will be apparent that the invention is not limited and applies to various devices without departing from the inventive concept.

例えば、図2のステップ40の駆動力配分比k、kf、krの決定は、予め調製されたマップから決定されるようになっているが、車両の制御中にそのときの目標ヨーレートγt、路面摩擦係数μ及び総駆動力Dtを用いて逐次算出されてもよい。(二輪駆動車の場合、変更すべき駆動力配分比は、1つなので、制御中に計算してもさほどに時間を要しない。)また、本発明の原理は、各輪の制動による駆動力配分する場合、或いは、各輪に駆動用モータ(インホイールモータ)が備えられ駆動力が各輪にて制御される場合に適用可能であり、そのような場合も本発明の範囲に属する。   For example, the determination of the driving force distribution ratios k, kf, and kr in step 40 of FIG. 2 is determined from a map prepared in advance, but during the vehicle control, the target yaw rate γt and the road surface at that time It may be calculated sequentially using the friction coefficient μ and the total driving force Dt. (In the case of a two-wheel drive vehicle, since the driving force distribution ratio to be changed is one, it does not take much time to calculate during control.) The principle of the present invention is the driving force by braking of each wheel. It can be applied to the case of distribution, or when each wheel is provided with a driving motor (in-wheel motor) and the driving force is controlled by each wheel, and such a case also belongs to the scope of the present invention.

図1Aは、本発明による駆動力制御装置の好ましい実施形態が実現される自動車の模式図を示している。FIG. 1A shows a schematic diagram of an automobile in which a preferred embodiment of a driving force control apparatus according to the present invention is realized. 図2(A)は、本発明の好ましい実施形態の制御装置の作動をフローチャートの形式で表した図である。図2(B)は、タイヤ負荷率について説明する図である。FIG. 2A is a flowchart showing the operation of the control device according to the preferred embodiment of the present invention. FIG. 2B is a diagram illustrating the tire load factor. 図3は、或る路面摩擦係数μ、横加速度Ygに於いて、総駆動力Dtが増大するとともに、全駆動輪のタイヤ負荷率が上限値以下となる駆動力配分比の組み合わせの範囲が変化することを説明する図である。図では、(k,kf,kr)の三次元空間に於いて、条件(8)を満たす領域の境界面が示されている。(k,kf,kr)の変更範囲は、kは、0〜1.0、kf、krは、0.5〜1.0とした。また、路面摩擦係数μ=1.0、横加速度Yg=4.9m/s(左旋回中)とした。図3(A)は、総駆動力Dt=2400Nmのときの条件(8)を満たす領域(利用可能範囲)を示し、ベース設定の点が領域内(二つの境界に挟まれた領域)に存在する。図3(B)は、Dt=3800Nmのときの条件(8)を満たす領域(の境界面)を示しており、領域が収縮し、ベース設定の点は領域外となる(もしk,kf,krがベース設定のままだと、いずれかの車輪が限界を越えスリップすることとなる。k,kf,krを領域内の収まるよう設定することにより、車両の限界性能が増大する。)。図3(C)は、条件(8a)を満たす(k,kf,kr)であり、図示の計算例に於いては、Dt=4260Nmのとき、k=0.53、kf=0.82、kr=0.62の1点に収束した。FIG. 3 shows a change in the combination range of driving force distribution ratios in which the tire driving factors of all the driving wheels are less than or equal to the upper limit values as the total driving force Dt increases at a certain road surface friction coefficient μ and lateral acceleration Yg. It is a figure explaining what to do. In the figure, in the three-dimensional space of (k, kf, kr), the boundary surface of the region that satisfies the condition (8) is shown. The change range of (k, kf, kr) is 0 to 1.0 for k and 0.5 to 1.0 for kf and kr. Further, the road surface friction coefficient μ = 1.0 and the lateral acceleration Yg = 4.9 m / s 2 (while turning left). FIG. 3A shows an area (usable range) that satisfies the condition (8) when the total driving force Dt = 2400 Nm, and a base setting point exists in the area (an area between two boundaries). To do. FIG. 3B shows a region (boundary surface thereof) that satisfies the condition (8) when Dt = 3800 Nm. The region contracts and the base setting point is outside the region (if k, kf, If kr remains at the base setting, one of the wheels will slip beyond the limit, and by setting k, kf, kr within the range, the limit performance of the vehicle will increase. FIG. 3C shows (k, kf, kr) that satisfies the condition (8a). In the illustrated calculation example, when Dt = 4260 Nm, k = 0.53, kf = 0.82, It converged to one point of kr = 0.62. 図4は、図2のステップ40で用いられる駆動力配分比の組み合わせのマップを調製する手順をフローチャートの形式で表した図である。図中、k,kf,krの利用可能範囲とは、条件(8)を満たすk,kf,krの三次元領域のことである。FIG. 4 is a flowchart showing a procedure for preparing a map of combinations of driving force distribution ratios used in step 40 of FIG. In the figure, the usable range of k, kf, and kr is a three-dimensional region of k, kf, and kr that satisfies the condition (8). 図5は、或る路面摩擦係数μ、横加速度Yg及び総駆動力Dtに於いて、全駆動輪のタイヤ負荷率が上限値以下となる駆動力配分比の組み合わせの領域を決定する手順をフローチャートの形式で表したものである。Nullは、値が無いことを意味する。Δk及び配分比の可変範囲[kmin,kmax]は、デフ毎に異なっていてもよい。S225は、S220がイエスになった後、ノーになるときには、krの下限、上限が決定されていることになるので、それ以後krを変更した計算の実行を省略するためのものである。kf、kについても同様の処理がなされよい。FIG. 5 is a flowchart illustrating a procedure for determining a combination region of a driving force distribution ratio in which a tire load factor of all driving wheels is equal to or less than an upper limit value in a certain road surface friction coefficient μ, a lateral acceleration Yg, and a total driving force Dt. It is expressed in the form of Null means no value. The variable range [kmin, kmax] of Δk and the distribution ratio may be different for each differential. S225 is for omitting the execution of calculation after changing kr since the lower limit and the upper limit of kr are determined when S220 becomes YES after S220 becomes YES. Similar processing may be performed for kf and k.

符号の説明Explanation of symbols

10…車体
12FL、FR、RL、RR…車輪
14…アクセルペダル
16…駆動装置
18…エンジン
20…変速機
22…センタデフ
24…前輪駆動力可変デフ
26…後輪駆動力可変デフ
30…操舵装置
32…ステアリングホイール
32…操舵角センサ
40FL、FR、RL、RR…車輪速センサ
50…電子制御装置
DESCRIPTION OF SYMBOLS 10 ... Vehicle body 12FL, FR, RL, RR ... Wheel 14 ... Accelerator pedal 16 ... Drive device 18 ... Engine 20 ... Transmission 22 ... Center differential 24 ... Front wheel drive force variable differential 26 ... Rear wheel drive force variable differential 30 ... Steering device 32 ... Steering wheel 32 ... Steering angle sensor 40FL, FR, RL, RR ... Wheel speed sensor 50 ... Electronic control unit

Claims (10)

車両の複数の駆動輪の駆動力を各々独立に調節可能な車両の駆動力制御装置であって、前記複数の駆動輪の駆動力を各々独立に制御する際に、少なくとも一つの駆動輪に於いて許される、タイヤグリップ力の限界値に対するタイヤグリップ力の比であるタイヤ負荷率がその他の駆動輪に於いて許されるタイヤ負荷率よりも高くなるよう駆動力配分を実行することを特徴とする装置。 A vehicle driving force control device capable of independently adjusting the driving forces of a plurality of driving wheels of a vehicle, wherein the driving forces of the plurality of driving wheels are controlled independently by at least one driving wheel. The distribution of the driving force is performed so that the tire load factor, which is the ratio of the tire grip force to the limit value of the tire grip force, which is permitted in this case, is higher than the tire load factor permitted in the other driving wheels. apparatus. 請求項1の装置であって、前記少なくとも一つの駆動輪のタイヤグリップ力がその限界に達するときに、前記その他の駆動輪のタイヤグリップ力が対応する限界より低くなるよう前記複数の駆動輪の駆動力を制御することを特徴とする装置。   2. The apparatus of claim 1, wherein when the tire grip force of the at least one drive wheel reaches its limit, the tire grip force of the other drive wheel is lower than a corresponding limit. A device characterized by controlling a driving force. 請求項1の装置であって、前記少なくとも一つの駆動輪のタイヤグリップ力がその限界に達するときに、前記その他の駆動輪のタイヤグリップ力の大きさが対応する限界より低い値まで増大することが許されるよう前記複数の駆動輪の駆動力を制御することを特徴とする装置。   2. The apparatus of claim 1, wherein when the tire grip force of the at least one drive wheel reaches its limit, the magnitude of the tire grip force of the other drive wheel increases to a value lower than the corresponding limit. A device for controlling a driving force of the plurality of driving wheels so as to allow the driving force. 請求項1乃至3の装置であって、前記車両の前後左右の車輪が前記複数の駆動輪であり、前記車両の旋回時に前記少なくとも一つの駆動輪が旋回外側の前輪であることを特徴とする装置。   4. The apparatus according to claim 1, wherein the front, rear, left and right wheels of the vehicle are the plurality of drive wheels, and the at least one drive wheel is a front wheel outside the turn when the vehicle turns. apparatus. 請求項1乃至3の装置であって、前記複数の駆動輪が左右一対の駆動輪であり、前記少なくとも一つの駆動輪が前記左右一対の駆動輪の一方であり、前記その他の駆動輪が前記左右一対の駆動輪の他方であることを特徴とする装置。   4. The apparatus according to claim 1, wherein the plurality of driving wheels are a pair of left and right driving wheels, the at least one driving wheel is one of the pair of left and right driving wheels, and the other driving wheel is the device. A device that is the other of a pair of left and right drive wheels. 請求項1乃至3の装置であって、前記車両の所望の旋回方向を表す目標旋回状態量を決定する手段と、前記複数の駆動輪上に於ける路面摩擦係数を決定する手段と前記車両の現在の総駆動力から前記複数の駆動輪への駆動力の配分を決定する手段と、前記駆動力の配分に従って前記複数の駆動輪の駆動力を独立に制御する手段を含み、前記駆動力の配分を決定する手段が前記総駆動力と前記路面摩擦係数を用いて前記目標旋回状態量を維持する駆動力の配分を決定し、前記駆動力の配分が前記少なくとも一つの駆動輪のタイヤグリップ力が限界に到達するとき、その他の駆動輪のタイヤグリップ力が対応する限界よりも低くなる配分であることを特徴とする装置。 4. The apparatus according to claim 1, wherein means for determining a target turning state amount representing a desired turning direction of the vehicle , means for determining a road surface friction coefficient on the plurality of drive wheels, and the vehicle. Means for determining the distribution of the driving force from the current total driving force to the plurality of driving wheels, and means for independently controlling the driving force of the plurality of driving wheels according to the distribution of the driving force, Means for determining the distribution of the driving force determines the distribution of the driving force for maintaining the target turning state quantity using the total driving force and the road surface friction coefficient, and the distribution of the driving force is a tire grip of the at least one driving wheel. When the force reaches the limit, the distribution is such that the tire grip force of the other drive wheels is lower than the corresponding limit. 請求項6の装置であって、更に前記複数の駆動輪のタイヤグリップ力の限界値に対するタイヤグリップ力の比であるタイヤ負荷率を決定する手段を含み、前記タイヤ負荷率が所定の閾値を超えたときに前記駆動力の配分を決定する手段が前記総駆動力と前記路面摩擦係数を用いて前記目標旋回状態量を維持する駆動力の配分を算出することを特徴とする装置。   7. The apparatus of claim 6, further comprising means for determining a tire load factor that is a ratio of a tire grip force to a limit value of the tire grip force of the plurality of drive wheels, wherein the tire load factor exceeds a predetermined threshold value. The means for determining the distribution of the driving force at the time calculates the distribution of the driving force for maintaining the target turning state quantity using the total driving force and the road surface friction coefficient. 請求項6の装置であって、前記車両の前後左右の車輪が駆動輪であり、前記駆動力の配分が前記車両の総駆動力を前後輪間の駆動力配分比と、左右前輪間の駆動力配分比と、左右後輪間の駆動力配分比とに基づいて決定されることを特徴とする装置。   7. The apparatus according to claim 6, wherein the front, rear, left and right wheels of the vehicle are driving wheels, and the distribution of the driving force is determined by the total driving force of the vehicle, the driving force distribution ratio between the front and rear wheels, and the driving between the left and right front wheels. The apparatus is determined based on a force distribution ratio and a driving force distribution ratio between the left and right rear wheels. 請求項6の装置であって、前記複数の駆動輪が左右一対の駆動輪であり、前記駆動力の配分が前記左右の駆動輪間の駆動力配分比に基づいて決定されることを特徴とする装置。   7. The apparatus according to claim 6, wherein the plurality of driving wheels are a pair of left and right driving wheels, and the distribution of the driving force is determined based on a driving force distribution ratio between the left and right driving wheels. Device to do. 請求項6の装置であって、前記目標旋回状態量が運転者の操舵による舵角、前記舵角から決定される目標ヨーレート及び目標横加速度から成る群から選択されることを特徴とする装置。   7. The apparatus according to claim 6, wherein the target turning state quantity is selected from the group consisting of a steering angle by a driver's steering, a target yaw rate determined from the steering angle, and a target lateral acceleration.
JP2006330011A 2006-12-06 2006-12-06 Vehicle driving force control device Expired - Fee Related JP5018051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006330011A JP5018051B2 (en) 2006-12-06 2006-12-06 Vehicle driving force control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006330011A JP5018051B2 (en) 2006-12-06 2006-12-06 Vehicle driving force control device

Publications (2)

Publication Number Publication Date
JP2008144788A JP2008144788A (en) 2008-06-26
JP5018051B2 true JP5018051B2 (en) 2012-09-05

Family

ID=39605197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006330011A Expired - Fee Related JP5018051B2 (en) 2006-12-06 2006-12-06 Vehicle driving force control device

Country Status (1)

Country Link
JP (1) JP5018051B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126045A (en) * 2008-11-28 2010-06-10 Nissan Motor Co Ltd Driving force controller for vehicle, and method therefor
JP2019217838A (en) * 2018-06-18 2019-12-26 株式会社ジェイテクト Control device of four-wheel-drive vehicle
KR20220086734A (en) * 2020-12-16 2022-06-24 현대자동차주식회사 Method for estimating maximum tire-road surface coefficient of friction
JP7361071B2 (en) * 2021-06-04 2023-10-13 本田技研工業株式会社 Drive control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3144717B2 (en) * 1992-09-17 2001-03-12 富士重工業株式会社 Torque distribution control method for four-wheel drive vehicle
JP3617680B2 (en) * 1995-01-31 2005-02-09 富士重工業株式会社 4-wheel drive traction control system

Also Published As

Publication number Publication date
JP2008144788A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
CN109747632B (en) Torque distribution method for double-power-source driven vehicle
CN108216240B (en) Method and apparatus for controlling front and rear wheel torque distribution for four-wheel drive vehicle
KR101697809B1 (en) Method and braking system for influencing driving dynamics by means of braking and driving operations
JP6377162B2 (en) Vehicle control system and method
JP2006335171A (en) Driving/braking force control device for vehicle
JP2005162097A (en) Transmission system for four-wheel drive vehicle
JP5195871B2 (en) Braking force control device for vehicle
JP2023505897A (en) Method for automatically controlling driven shaft of motor vehicle and motor vehicle
US9199650B2 (en) Vehicle driving force control device
US8315774B2 (en) Vehicle driving-force control device
JP5082694B2 (en) Vehicle driving force distribution control device
KR101316862B1 (en) Torque vectoring systen for vehicle and control method for vehicle
JP5018051B2 (en) Vehicle driving force control device
KR20210071133A (en) Electronic stability control method for vehicle
JP4600126B2 (en) Vehicle attitude control device
JP3840061B2 (en) Four-wheel drive vehicle
JP6519206B2 (en) Vehicle travel control device
US8818667B2 (en) Method for producing a differential torque acting on the vehicle wheels of a vehicle
JP5125669B2 (en) Vehicle speed estimation device for four-wheel drive vehicles
JP2007261484A (en) Driving force distribution controller for vehicle
JP2011161957A (en) Central controller
JP4784741B2 (en) Vehicle driving force control device
JP2004115010A (en) Method to adjust travelling characteristic by giving influence to avoid under-steering
JP6418080B2 (en) Electric vehicle traveling control device
JP6141751B2 (en) Driving force distribution control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees