JP2008088963A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2008088963A
JP2008088963A JP2006273969A JP2006273969A JP2008088963A JP 2008088963 A JP2008088963 A JP 2008088963A JP 2006273969 A JP2006273969 A JP 2006273969A JP 2006273969 A JP2006273969 A JP 2006273969A JP 2008088963 A JP2008088963 A JP 2008088963A
Authority
JP
Japan
Prior art keywords
exhaust
abnormality
internal combustion
combustion engine
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006273969A
Other languages
Japanese (ja)
Inventor
Koji Ide
宏二 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006273969A priority Critical patent/JP2008088963A/en
Publication of JP2008088963A publication Critical patent/JP2008088963A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Silencers (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for an internal combustion engine capable of suppressing aggravation of exhaust emission even when abnormality occurs on either side of exhaust passages provided for every cylinder group. <P>SOLUTION: The control device is applied to the internal combustion engine wherein the exhaust passages 9L, 9R are provided for right and left banks 2L, 2R respectively, the exhaust passages 9L, 9R are provided with catalytic converters 10L, 10R respectively, and a communicating passage 11 serving for communication between the exhaust passages 9L, 9R is provided in the upstream of the catalytic converters 10L, 10R. When abnormality occurs in one of the exhaust passages 9L, 9R, selector valves 16L, 16R are operated to reduce distribution of exhaust gas flowing to the exhaust passage side with the occurrence of abnormality compared with distribution of exhaust gas flowing to the exhaust passage side without the occurrence of abnormality. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数の気筒群毎に排気通路が設けられ、かつ気筒群毎の排気通路のそれぞれに排気を浄化可能な排気浄化手段が設けられた内燃機関に適用される内燃機関の制御装置に関する。   The present invention relates to an internal combustion engine control device applied to an internal combustion engine in which an exhaust passage is provided for each of a plurality of cylinder groups, and exhaust purification means capable of purifying exhaust gas is provided in each of the exhaust passages of each cylinder group. .

左右のバンク毎に排気通路を設け、各排気通路に触媒コンバータを設けるとともに、触媒コンバータの上流側で各排気通路を相互に連通する連通路を設けた6気筒V型の内燃機関が知られている(特許文献1)。この内燃機関は連通路内で両バンクから導かれる排気の圧力波が共鳴するように連通路及び排気通路の長さと触媒コンバータの位置とをそれぞれ設定し内燃機関の高出力化を図っている。   A 6-cylinder V-type internal combustion engine is known in which an exhaust passage is provided for each of the left and right banks, a catalytic converter is provided in each exhaust passage, and a communication passage is provided on the upstream side of the catalytic converter. (Patent Document 1). In this internal combustion engine, the length of the communication passage and the exhaust passage and the position of the catalytic converter are set so that the exhaust pressure waves guided from both banks resonate in the communication passage, thereby increasing the output of the internal combustion engine.

特開平3−286135号公報Japanese Patent Laid-Open No. 3-286135

特許文献1の内燃機関は各排気通路へ導かれる排気の配分は等配分になっている。そのため、仮に触媒コンバータの故障等の異常が発生した場合、排気の配分を変更することができない。従って、異常が生じた排気通路側での排気の浄化が不十分となり、大気に排出される排気中の有害成分が増加、つまり排気エミッションが悪化するおそれがある。   In the internal combustion engine of Patent Document 1, the distribution of exhaust gas led to each exhaust passage is equally distributed. Therefore, if an abnormality such as a catalytic converter failure occurs, the distribution of exhaust gas cannot be changed. Therefore, exhaust gas purification on the exhaust passage side where abnormality has occurred becomes insufficient, and harmful components in the exhaust gas discharged to the atmosphere may increase, that is, exhaust emission may deteriorate.

そこで、本発明は気筒群毎に設けられた排気通路のいずれかの側に異常が生じた場合でも排気エミッションの悪化を抑制することができる内燃機関の制御装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a control device for an internal combustion engine that can suppress deterioration of exhaust emission even when an abnormality occurs on either side of an exhaust passage provided for each cylinder group.

本発明の内燃機関の制御装置は、複数の気筒群毎に排気通路が設けられ、気筒群毎の前記排気通路のそれぞれに排気を浄化可能な排気浄化手段が設けられ、かつ前記排気浄化手段の上流側で気筒群毎の前記排気通路を連通する連通路が設けられた内燃機関に適用される内燃機関の制御装置において、気筒群毎の前記排気通路のそれぞれに流れる排気の配分を変更可能な排気配分変更手段と、大気に排出される排気中の有害成分の増加を伴う異常が気筒群毎の前記排気通路のいずれの側に生じたかを検出する異常検出手段と、前記異常検出手段の検出結果に基づいて、前記異常が生じた排気通路側へ流れる排気の配分が前記異常が生じていない排気通路側へ流れる排気の配分に比べて小さくなるように前記排気配分変更手段を制御する排気配分制御手段と、を備えることにより、上述した課題を解決する(請求項1)。   In the control device for an internal combustion engine of the present invention, an exhaust passage is provided for each of a plurality of cylinder groups, an exhaust purification means capable of purifying exhaust is provided in each of the exhaust passages for each cylinder group, and the exhaust purification means In an internal combustion engine control device applied to an internal combustion engine provided with a communication passage communicating with the exhaust passage for each cylinder group on the upstream side, distribution of exhaust flowing through each of the exhaust passages for each cylinder group can be changed. Exhaust distribution changing means, abnormality detecting means for detecting which side of the exhaust passage for each cylinder group an abnormality accompanied by an increase in harmful components in the exhaust discharged to the atmosphere, and detection of the abnormality detecting means Based on the result, the exhaust distribution changing means for controlling the exhaust distribution changing means so that the distribution of the exhaust gas flowing to the exhaust passage side where the abnormality has occurred becomes smaller than the distribution of the exhaust gas flowing to the exhaust passage side where the abnormality has not occurred. By providing a control means, and to solve the problems described above (claim 1).

この制御装置によれば、大気に排出される排気中の有害成分の増加を伴う異常が生じた排気通路側へ流れる排気の配分がその異常が生じていない排気通路側へ流れる排気の配分に比べて小さくなるように排気配分変更手段が制御されるので、異常が生じた排気通路側への排気の流入が制限される。そのため、異常の発生に伴う大気に排出される排気中の有害成分の増加、即ち排気エミッションの悪化を抑制することができる。なお、本発明において、配分を小さくするとは異常が生じた排気通路側へ流れる排気の配分をゼロにすること、即ち異常が生じた排気通路側への排気の流入を遮断して異常が生じていない排気通路側へ複数の気筒群からの排気を全て導くことを含む概念である。   According to this control device, the distribution of the exhaust gas flowing to the exhaust passage side where an abnormality accompanied by an increase in harmful components in the exhaust gas discharged to the atmosphere is compared with the distribution of the exhaust gas flowing to the exhaust passage side where the abnormality has not occurred. Since the exhaust distribution changing means is controlled so as to be smaller, the inflow of exhaust gas to the exhaust passage side where an abnormality has occurred is restricted. Therefore, it is possible to suppress an increase in harmful components in the exhaust discharged to the atmosphere accompanying the occurrence of an abnormality, that is, deterioration of exhaust emission. In the present invention, to reduce the distribution, the distribution of the exhaust gas flowing to the exhaust passage side where the abnormality has occurred is made zero, that is, an abnormality has occurred by blocking the inflow of exhaust gas to the exhaust passage side where the abnormality has occurred. This is a concept including directing all exhaust from a plurality of cylinder groups to a non-exhaust passage side.

本発明の制御装置の一態様において、前記内燃機関には、気筒群毎に設けられた前記排気通路のそれぞれに、前記内燃機関の燃料噴射量を制御するために利用され、かつ排気の空燃比に応じた信号を出力する空燃比検出手段が設けられており、前記異常検出手段は、前記空燃比検出手段が故障したか否かを判断することにより、故障したと判断した空燃比検出手段が設けられた前記排気通路側に前記異常が生じたと判断してもよい(請求項2)。空燃比検出手段が故障すると燃料噴射量が適切に制御されずに、排気エミッションが悪化する。この態様においては、空燃比検出手段が故障した場合に異常が生じたと判断するので、空燃比検出手段の故障に伴う排気エミッションの悪化を抑制することが可能になる。   In one aspect of the control apparatus of the present invention, the internal combustion engine is used to control the fuel injection amount of the internal combustion engine in each of the exhaust passages provided for each cylinder group, and the air-fuel ratio of the exhaust gas Air-fuel ratio detecting means for outputting a signal corresponding to the air-fuel ratio detecting means, and the abnormality detecting means determines whether the air-fuel ratio detecting means determined to have failed by determining whether or not the air-fuel ratio detecting means has failed. It may be determined that the abnormality has occurred on the provided exhaust passage side (Claim 2). If the air-fuel ratio detection means fails, the fuel injection amount is not properly controlled and exhaust emission deteriorates. In this aspect, since it is determined that an abnormality has occurred when the air-fuel ratio detection means has failed, it is possible to suppress the deterioration of exhaust emissions accompanying the failure of the air-fuel ratio detection means.

本発明の制御装置の一態様において、前記内燃機関には、気筒群毎に設けられた前記排気浄化手段の上流及び下流のそれぞれに、排気の空燃比に応じた信号を出力する空燃比検出手段が設けられており、前記異常検出手段は、前記排気浄化手段の上流及び下流における空燃比に基づいて前記排気浄化手段の排気の浄化性能が低下したか否かを判断することにより、浄化性能が低下したと判断した排気浄化手段が設けられた前記排気通路側に前記異常が生じたと判断してもよい(請求項3)。排気浄化手段の排気の浄化性能が低下した場合には、排気が十分に浄化されずに大気に排出されることになるので排気エミッションが悪化する。この態様によれば、排気浄化手段の浄化性能が低下した場合に異常が生じたと判断するので、浄化性能の低下に伴う排気エミッションの悪化を抑制することができる。   In one aspect of the control apparatus of the present invention, the internal combustion engine includes an air-fuel ratio detection unit that outputs a signal corresponding to an air-fuel ratio of exhaust gas to each of upstream and downstream of the exhaust gas purification unit provided for each cylinder group. The abnormality detecting means determines whether or not the exhaust purification performance of the exhaust purification means has deteriorated based on the air-fuel ratio upstream and downstream of the exhaust purification means. It may be determined that the abnormality has occurred on the side of the exhaust passage provided with the exhaust gas purifying means that has been determined to have decreased (Claim 3). When the exhaust gas purification performance of the exhaust gas purification means is deteriorated, the exhaust gas is exhausted to the atmosphere without being sufficiently purified, and the exhaust emission deteriorates. According to this aspect, since it is determined that an abnormality has occurred when the purification performance of the exhaust purification means is reduced, it is possible to suppress the deterioration of exhaust emission accompanying the reduction in the purification performance.

本発明の一態様において、前記排気配分制御手段が、前記異常が生じた排気通路側へ流れる排気の配分が前記異常が生じていない排気通路側へ流れる排気の配分に比べて小さくなるように前記排気配分変更手段を制御しているときに、前記内燃機関のスロットル弁の開度を制限するスロットル弁開度制御手段を更に備え、前記スロットル弁開度制御手段は、前記異常が生じていない排気通路に設けられた前記排気浄化手段の浄化性能を考慮して前記スロットル弁の開度の制限量を変化させるてもよい(請求項4)。異常が生じた排気通路側への排気の配分が小さくなると、異常が生じていない排気通路側への排気の配分が大きくなる。そのため、異常が生じていない排気通路側への負担、具体的には排気浄化手段への負担が増加して排気が十分に浄化できない可能性がある。この態様においては、異常が生じていない排気通路側への排気の配分が大きくなった場合にスロットル弁の開度が制限されるので、異常が生じていない排気通路側へ流れる排気の絶対量を減らすことができる。そのため、排気浄化手段への負担が過大とならず排気エミッションの悪化を抑えることができる。しかも、この態様においては、異常が生じていない排気通路に設けられた排気浄化手段の浄化性能を考慮してスロットル弁の開度の制限量を変化させるので、スロットル弁の開度が必要以上に制限されることを防止できる。このため、内燃機関の出力低下を可能な限り抑えつつ排気エミッションの悪化を防止することができる。   In one aspect of the present invention, the exhaust distribution control means is configured so that the distribution of exhaust flowing to the exhaust passage side where the abnormality has occurred is smaller than the distribution of exhaust flowing to the exhaust passage side where the abnormality has not occurred. Throttle valve opening degree control means for limiting the opening degree of the throttle valve of the internal combustion engine when controlling the exhaust distribution changing means is further provided, and the throttle valve opening degree control means is an exhaust gas in which the abnormality has not occurred. The limit amount of the throttle valve opening may be changed in consideration of the purification performance of the exhaust gas purification means provided in the passage (claim 4). When the distribution of the exhaust to the exhaust passage side where the abnormality has occurred becomes small, the distribution of the exhaust to the exhaust passage side where the abnormality has not occurred becomes large. For this reason, there is a possibility that the burden on the exhaust passage side where no abnormality has occurred, specifically, the burden on the exhaust purification means increases, and the exhaust cannot be sufficiently purified. In this aspect, since the opening of the throttle valve is limited when the distribution of exhaust to the exhaust passage side where no abnormality has occurred increases, the absolute amount of exhaust flowing to the exhaust passage side where no abnormality has occurred is reduced. Can be reduced. Therefore, the burden on the exhaust gas purification means is not excessive and deterioration of exhaust emission can be suppressed. In addition, in this aspect, since the limit amount of the throttle valve opening is changed in consideration of the purification performance of the exhaust gas purification means provided in the exhaust passage where no abnormality has occurred, the throttle valve opening is more than necessary. It can prevent being restricted. For this reason, it is possible to prevent the exhaust emission from deteriorating while suppressing the output reduction of the internal combustion engine as much as possible.

本発明の制御装置の一態様において、前記空燃比検出手段の検出結果と目標空燃比との偏差が減少するように、前記偏差に制御ゲインを乗じた制御入力に基づいて前記内燃機関の燃料噴射量をフィードバック制御する空燃比制御手段を更に備え、前記空燃比制御手段は、前記排気配分制御手段が前記異常が生じた排気通路側へ流れる排気の配分が前記異常が生じていない排気通路側へ流れる排気の配分に比べて小さくなるように前記排気配分変更手段を制御しているときに、前記異常がいずれの排気通路側にも生じていない正常時と比べて前記制御ゲインを小さくした状態で、前記異常が生じていない排気通路側に設けられた前記空燃比検出手段の検出結果と目標空燃比との偏差が減少するように前記内燃機関の燃焼噴射量をフィードバック制御してもよい(請求項5)。いずれかの排気通路側に異常が生じた場合には、異常が生じた排気通路側へ流れるべき排気についても異常が生じていない排気通路側に設けられた空燃比検出手段にて空燃比が検出されることになる。このため、いずれの排気通路側にも異常が生じていない正常時と比べて無駄時間の大きいフィードバック系になる。これにより、正常時と同一の制御ゲインを用いたのでは異常時に内燃機関の燃料噴射量の制御が発散するおそれがある。この態様によれば、異常時において制御ゲインを正常時と比べて小さくした状態で、異常が生じていない排気通路側に設けられた空燃比検出手段の検出結果と目標空燃比との偏差が減少するように内燃機関の燃焼噴射量をフィードバック制御するので制御の発散を防止できる。その結果、異常時において空燃比が正確に制御されることになり、排気エミッションの悪化を抑制できる。   In one aspect of the control device of the present invention, the fuel injection of the internal combustion engine is performed based on a control input obtained by multiplying the deviation by a control gain so that the deviation between the detection result of the air-fuel ratio detection means and the target air-fuel ratio decreases. Air-fuel ratio control means for feedback-controlling the amount, wherein the air-fuel ratio control means is arranged such that the distribution of the exhaust gas flowing to the exhaust passage side where the abnormality has occurred is distributed to the exhaust passage side where the abnormality has not occurred. When the exhaust distribution changing means is controlled to be smaller than the distribution of the flowing exhaust, the control gain is reduced compared to the normal time when the abnormality does not occur on any exhaust passage side. The combustion injection amount of the internal combustion engine is fed back so that the deviation between the detection result of the air-fuel ratio detection means provided on the exhaust passage side where the abnormality does not occur and the target air-fuel ratio decreases. Even if your good (claim 5). When an abnormality occurs in any of the exhaust passages, the air-fuel ratio is detected by the air-fuel ratio detecting means provided on the exhaust passage side where no abnormality has occurred in the exhaust that should flow to the exhaust passage where the abnormality has occurred. Will be. For this reason, the feedback system has a large dead time compared with the normal time when no abnormality occurs on any exhaust passage side. As a result, if the same control gain as that in the normal state is used, the control of the fuel injection amount of the internal combustion engine may diverge when there is an abnormality. According to this aspect, the deviation between the detection result of the air-fuel ratio detection means provided on the exhaust passage side where no abnormality has occurred and the target air-fuel ratio is reduced in a state where the control gain is smaller than normal when the abnormality occurs. Thus, since the combustion injection amount of the internal combustion engine is feedback controlled, control divergence can be prevented. As a result, the air-fuel ratio is accurately controlled at the time of abnormality, and deterioration of exhaust emission can be suppressed.

本発明の制御装置の一態様において、前記排気配分制御手段は、前記異常によって生じ得る前記有害成分の増加量が大きいときは小さいときに比べて前記異常が生じた排気通路側へ流れる排気の配分を小さくしてもよい(請求項6)。発生した異常の態様により、異常が生じた排気通路側でも不十分ながら排気を浄化できる場合もある。そのような場合には、異常が生じた側へある程度の排気を導いても排気エミッションを悪化させることはない。この態様によれば、異常によって生じ得る有害成分の増加量が大きいほど、異常が生じた排気通路側へ流れる排気の配分が小さくなる。換言すれば、異常によって生じ得る有害成分の増加量が大きいほど、その異常が生じた排気通路側への排気の導入が制限される。逆に、異常によって生じ得る有害成分の増加量が小さいほど、その異常が生じた排気通路側への排気の導入が許容される。従って、この態様によれば、異常が生じていない排気通路側への負担を抑えつつ排気エミッションの悪化を防止することができる。   In one aspect of the control apparatus of the present invention, the exhaust distribution control means distributes the exhaust gas flowing to the exhaust passage side where the abnormality has occurred compared to when the increase amount of the harmful component that may be generated by the abnormality is small. (Claim 6). Depending on the state of the abnormality that has occurred, there are cases where the exhaust gas can be purified while being insufficient even on the exhaust passage side where the abnormality has occurred. In such a case, even if a certain amount of exhaust is introduced to the side where the abnormality has occurred, the exhaust emission is not deteriorated. According to this aspect, the larger the increase amount of harmful components that can be caused by an abnormality, the smaller the distribution of exhaust flowing to the exhaust passage side where the abnormality has occurred. In other words, the greater the increase in harmful components that can occur due to an abnormality, the more restricted the introduction of exhaust into the exhaust passage where the abnormality has occurred. Conversely, the smaller the increase in harmful components that can occur due to an abnormality, the more permitted the introduction of exhaust into the exhaust passage where the abnormality has occurred. Therefore, according to this aspect, it is possible to prevent the exhaust emission from deteriorating while suppressing the burden on the exhaust passage side where no abnormality has occurred.

以上説明したように、本発明によれば、大気に排出される排気中の有害成分の増加を伴う異常が生じた排気通路側へ流れる排気の配分がその異常が生じていない排気通路側へ流れる排気の配分に比べて小さくなるように排気配分変更手段が制御されるので、異常が生じた排気通路側への排気の流入が制限される。そのため、異常の発生に伴う大気に排出される排気中の有害成分の増加、即ち排気エミッションの悪化を抑制することができる。   As described above, according to the present invention, the distribution of the exhaust gas flowing to the exhaust passage side where the abnormality has occurred accompanied by an increase in harmful components in the exhaust gas discharged to the atmosphere flows to the exhaust passage side where the abnormality has not occurred. Since the exhaust distribution changing means is controlled to be smaller than the exhaust distribution, the inflow of exhaust gas to the exhaust passage side where an abnormality has occurred is limited. Therefore, it is possible to suppress an increase in harmful components in the exhaust discharged to the atmosphere accompanying the occurrence of an abnormality, that is, deterioration of exhaust emission.

図1は本発明の制御装置が適用された内燃機関の要部を示している。内燃機関1は左右のバンク2L、2Rに3つずつ気筒3が設けられたV型6気筒のエンジンとして構成されている。左バンク2Lの気筒3によって一つの気筒群が構成され、右バンク2Rの気筒3によって他の一つの気筒群が構成される。なお、一つの気筒群は少なくとも一つの気筒3が含まれていればよい。各気筒3に吸気を導くための吸気通路4は各バンク2L、2Rに共通に設けられた吸気マニホールド5を有している。吸気通路4には空気濾過用のエアクリーナ6が設けられるとともに、そのエアクリーナ6の下流側には空気の吸入量を調整するためのスロットル弁7が設けられている。スロットル弁7は全閉位置から全開位置までの間で開度調整可能に構成された周知のものである。吸気マニホールド5には各気筒3に燃料混合気が導かれるように吸気マニホールド5内に燃料を噴射する燃料噴射弁8が設けられている。   FIG. 1 shows a main part of an internal combustion engine to which a control device of the present invention is applied. The internal combustion engine 1 is configured as a V-type 6-cylinder engine in which three cylinders 3 are provided in each of the left and right banks 2L and 2R. One cylinder group is constituted by the cylinders 3 in the left bank 2L, and another cylinder group is constituted by the cylinders 3 in the right bank 2R. One cylinder group only needs to include at least one cylinder 3. An intake passage 4 for guiding intake air to each cylinder 3 has an intake manifold 5 provided in common to each bank 2L, 2R. An air cleaner 6 for air filtration is provided in the intake passage 4, and a throttle valve 7 for adjusting the intake amount of air is provided downstream of the air cleaner 6. The throttle valve 7 is a well-known one that can be adjusted in opening between a fully closed position and a fully open position. The intake manifold 5 is provided with a fuel injection valve 8 for injecting fuel into the intake manifold 5 so that a fuel mixture is introduced into each cylinder 3.

各気筒3に導かれた混合気は不図示の点火プラグにて着火されて燃焼する。その燃焼後、各バンクの気筒3からの排気はバンク毎に設けられた排気通路9L、9Rに導かれる。バンク毎の排気通路9L、9Rには排気を浄化するための排気浄化手段としての触媒コンバータ10L、10Rが設けられており、各触媒コンバータ10L、10Rの上流側の排気通路9L、9Rは連通路11にて互いに連通される。各触媒コンバータ10L、10Rは周知の三元触媒として構成されている。各触媒コンバータ10L、10Rの上流には上流排気センサ12L、12Rが、下流には下流排気センサ13L、13Rがそれぞれ設けられており、これらのセンサは後述する空燃比制御にて利用され、空燃比検出手段として機能する。これらのセンサは空燃比に応じた信号を出力する周知のO2センサとして構成されている。   The air-fuel mixture introduced into each cylinder 3 is ignited by a spark plug (not shown) and burned. After the combustion, the exhaust from the cylinder 3 of each bank is guided to the exhaust passages 9L and 9R provided for each bank. The exhaust passages 9L and 9R for each bank are provided with catalytic converters 10L and 10R as exhaust purification means for purifying the exhaust, and the exhaust passages 9L and 9R on the upstream side of the catalytic converters 10L and 10R are communication passages. 11 communicate with each other. Each catalytic converter 10L, 10R is configured as a known three-way catalyst. Upstream of the catalytic converters 10L and 10R, upstream exhaust sensors 12L and 12R are provided downstream, and downstream exhaust sensors 13L and 13R are provided, respectively. These sensors are used in air-fuel ratio control, which will be described later. It functions as a detection means. These sensors are configured as well-known O2 sensors that output a signal corresponding to the air-fuel ratio.

内燃機関1には、各排気通路9L、9Rに流れる排気の配分を変更するため、排気配分変更手段としての排気配分変更機構15が設けられている。排気配分変更機構15は各排気通路9L、9Rと連通路11との接続部に一つずつ設けられた二つの切替弁16L、16Rを備えている。各切替弁16L、16Rは任意の位置で開度を保持できる電磁駆動弁として構成されている。排気配分変更機構15は、これらの切替弁16L、16Rの位置を図1に示した状態から図2又は図3の状態へそれぞれ変更することにより、排気通路9L、9Rのいずれか一方の側に何らかの異常が生じた場合にその一方の側への排気の配分を他方の側への配分よりも小さくすることができる。図2は左バンク2Lに設けられた排気通路9L側に異常が生じた場合の各切替弁16L、16Rの状態を示し、図3は右バンク2Rに設けられた排気通路9R側に異常が生じた場合の切替弁16L、16Rの状態を示している。これらの図から明らかなように、本実施形態の排気配分変更機構15は左バンク2Lに設けられた排気通路9L側に異常が生じた場合には各バンクからの排気の全量が右バンク2Rに設けられた排気通路9R側に導かれ、これとは反対に右バンク2Rに設けられた排気通路9R側に異常が生じた場合には、各バンクからの排気の全量が左バンク2Lに設けられた排気通路9L側に導かれるように構成されている。つまり、排気配分変更機構15は、異常が生じた排気通路側への排気の配分が0%となり、異常が生じていない排気通路側への排気の配分が100%となるように各切替弁16L、16Rの位置を変更できる。   The internal combustion engine 1 is provided with an exhaust distribution change mechanism 15 as an exhaust distribution change means in order to change the distribution of the exhaust gas flowing through the exhaust passages 9L and 9R. The exhaust distribution changing mechanism 15 includes two switching valves 16L and 16R provided one at a connection portion between each exhaust passage 9L and 9R and the communication passage 11. Each switching valve 16L, 16R is configured as an electromagnetically driven valve that can hold the opening at an arbitrary position. The exhaust distribution changing mechanism 15 changes the position of the switching valves 16L and 16R from the state shown in FIG. 1 to the state shown in FIG. 2 or FIG. When any abnormality occurs, the distribution of exhaust gas to one side can be made smaller than the distribution to the other side. FIG. 2 shows the state of each switching valve 16L, 16R when an abnormality occurs on the exhaust passage 9L side provided in the left bank 2L, and FIG. 3 shows an abnormality on the exhaust passage 9R side provided in the right bank 2R. The state of the switching valves 16L and 16R in the case of As is apparent from these drawings, the exhaust distribution changing mechanism 15 of the present embodiment is configured such that when an abnormality occurs on the exhaust passage 9L side provided in the left bank 2L, the total amount of exhaust from each bank is transferred to the right bank 2R. When an abnormality occurs in the exhaust passage 9R provided in the right bank 2R on the contrary to the exhaust passage 9R provided, the entire amount of exhaust from each bank is provided in the left bank 2L. Further, it is configured to be guided to the exhaust passage 9L side. That is, the exhaust distribution changing mechanism 15 is configured so that the distribution of the exhaust to the exhaust passage side where the abnormality has occurred becomes 0%, and the distribution of the exhaust to the exhaust passage side where the abnormality has not occurred becomes 100%. , 16R can be changed.

排気配分変更機構15の動作はエンジンコントロールユニット(ECU)20にて制御される。ECU20は内燃機関1の運転状態を適正に制御するために設けられた周知のコンピュータであり、排気配分変更機構15の制御の他に燃料噴射量や点火時期等の内燃機関1の主要なパラメータを操作する。例えば、ECU20は内燃機関1の排気エミッションの悪化を抑えるために、上述した排気センサ12L、12R、13L、13Rの出力を利用して空燃比のフィードバック制御を実行している。即ち、ECU20は上流排気センサ12L、12Rの検出値(検出結果)と所定の目標空燃比との偏差が減少するように、その偏差に制御ゲインを乗じた制御入力に基づいて燃料噴射弁8による燃料噴射量をフィードバック制御する。更に本実施形態では、ECU20はこの制御の精度を高めるため下流排気センサ13L、13Rの検出値を利用して目標空燃比を補正している。この空燃比のフィードバック制御を実行することによりECU20が空燃比制御手段として機能する。   The operation of the exhaust distribution changing mechanism 15 is controlled by an engine control unit (ECU) 20. The ECU 20 is a well-known computer provided for properly controlling the operating state of the internal combustion engine 1. In addition to the control of the exhaust distribution changing mechanism 15, the ECU 20 sets main parameters of the internal combustion engine 1 such as the fuel injection amount and the ignition timing. Manipulate. For example, the ECU 20 performs air-fuel ratio feedback control using the outputs of the exhaust sensors 12L, 12R, 13L, and 13R described above in order to suppress deterioration of exhaust emissions of the internal combustion engine 1. That is, the ECU 20 uses the fuel injection valve 8 based on the control input obtained by multiplying the deviation by the control gain so that the deviation between the detection values (detection results) of the upstream exhaust sensors 12L and 12R and the predetermined target air-fuel ratio decreases. Feedback control of the fuel injection amount. Further, in the present embodiment, the ECU 20 corrects the target air-fuel ratio using the detection values of the downstream exhaust sensors 13L and 13R in order to increase the accuracy of this control. By executing this air-fuel ratio feedback control, the ECU 20 functions as an air-fuel ratio control means.

図4はECU20が排気配分変更機構15を制御するための排気配分変更制御の制御ルーチンの一例を示したフローチャートである。図4のルーチンのプログラムはECU20が内蔵するROM等の記憶手段に格納されており所定間隔で繰り返し実行される。図4に示すように、ECU20はステップS1において左バンク2Lの排気通路9L側に異常が生じたか否かを判定する。異常発生の有無は、その異常によって大気に排出される排気中の有害物質の増加を伴うか否か、つまりその異常によって排気エミッションが悪化するか否かを基準として判断される。具体的には、左バンク2L側に設けられた触媒コンバータ10Lの浄化性能が所定限度以下に低下するという条件及び上述した空燃比のフィードバック制御に利用される左バンク2L側の排気センサ12L、13Lのいずれかに故障が発生するという条件の少なくとも一つ条件が成立したときに、ECU20は左バンク2Lの排気通路9L側に異常が発生したと判断する。   FIG. 4 is a flowchart showing an example of a control routine of the exhaust distribution change control for the ECU 20 to control the exhaust distribution change mechanism 15. The routine program of FIG. 4 is stored in a storage means such as a ROM built in the ECU 20, and is repeatedly executed at predetermined intervals. As shown in FIG. 4, the ECU 20 determines in step S1 whether or not an abnormality has occurred on the exhaust passage 9L side of the left bank 2L. The presence / absence of an abnormality is determined based on whether or not there is an increase in harmful substances in the exhaust discharged into the atmosphere due to the abnormality, that is, whether or not the exhaust emission deteriorates due to the abnormality. Specifically, the exhaust sensor 12L, 13L on the left bank 2L side used for the condition that the purification performance of the catalytic converter 10L provided on the left bank 2L side falls below a predetermined limit and the air-fuel ratio feedback control described above. The ECU 20 determines that an abnormality has occurred on the exhaust passage 9L side of the left bank 2L when at least one of the conditions that a failure occurs in any of the above is established.

触媒コンバータ10Lの浄化性能の把握は公知の方法で実現できる。例えば、触媒コンバータ10Lの上流及び下流における空燃比に基づいて浄化性能の低下を判定することができる。触媒コンバータ10Lの浄化性能が低下すると、触媒コンバータ10Lの上流の空燃比が理論空燃比を基準としてリッチからリーンへ又はリーンからリッチへ変化した場合、上流排気センサ12Lがその変化を検出した時点から下流排気センサ12Rの出力に現れるまでの時間が正常時よりも短くなる。そこで、その短縮時間が閾値を超えた場合に触媒コンバータ10Lの浄化性能が低下したと判断することができる。排気センサ12L、13Lの故障の有無については、断線等を原因としてセンサからの出力が得られないことにより排気センサ12L、13Lが故障したと判断してもよいし、また、排気センサ12L、13Lの出力の信頼性が悪化したことをもって故障を判断してもよい。   The purification performance of the catalytic converter 10L can be grasped by a known method. For example, the reduction in purification performance can be determined based on the air-fuel ratio upstream and downstream of the catalytic converter 10L. When the purification performance of the catalytic converter 10L decreases, when the air-fuel ratio upstream of the catalytic converter 10L changes from rich to lean or from lean to rich with reference to the stoichiometric air-fuel ratio, from the time when the upstream exhaust sensor 12L detects the change. The time until it appears in the output of the downstream exhaust sensor 12R is shorter than normal. Thus, when the shortening time exceeds the threshold value, it can be determined that the purification performance of the catalytic converter 10L has deteriorated. As for the presence or absence of failure of the exhaust sensors 12L and 13L, it may be determined that the exhaust sensors 12L and 13L have failed because the output from the sensor cannot be obtained due to disconnection or the like, or the exhaust sensors 12L and 13L The failure may be determined based on the deterioration of the output reliability.

ステップS1において、左バンク2Lの排気通路9L側に異常が生じたと判断した場合にはステップS2に進み、そうでない場合はステップS6に進む。ステップS2では、ECU20は排気通路2L側への排気の配分が0%となり、排気通路2R側への排気の配分が100%となるように排気配分変更機構15の各切替弁16L、16Rの位置を図2の状態へ切り替える。続くステップS3では、ECU20は異常が生じた左バンク2L側にある排気センサ12L、13Lを利用した上述した空燃比制御を停止する。次に、ステップS4では、右バンク2R側の排気センサ12R、13Rを利用した空燃比制御において、その制御ゲインを異常時の制御ゲインに変更し、その制御ゲインに基づいて燃料噴射量を制御する。異常時の制御ゲインは制御の発散を防止する観点から正常時の制御ゲインよりも小さな値に設定されている。   If it is determined in step S1 that an abnormality has occurred on the exhaust bank 9L side of the left bank 2L, the process proceeds to step S2, and if not, the process proceeds to step S6. In step S2, the ECU 20 positions the switching valves 16L, 16R of the exhaust distribution changing mechanism 15 so that the distribution of exhaust to the exhaust passage 2L side becomes 0% and the distribution of exhaust to the exhaust passage 2R side becomes 100%. Is switched to the state shown in FIG. In subsequent step S3, the ECU 20 stops the above-described air-fuel ratio control using the exhaust sensors 12L and 13L on the left bank 2L side where the abnormality has occurred. Next, in step S4, in the air-fuel ratio control using the exhaust sensors 12R, 13R on the right bank 2R side, the control gain is changed to the control gain at the time of abnormality, and the fuel injection amount is controlled based on the control gain. . The control gain at the time of abnormality is set to a value smaller than the control gain at the time of normality from the viewpoint of preventing control divergence.

次に、ステップS5では、吸入空気量が制限されるようにスロットル弁7の開度を制限して今回のルーチンを終える。スロットル弁7の開度の制限量は内燃機関1の運転状態、触媒コンバータ10Rの温度及びその浄化性能の低下度に基づいて算出される。例えば、この制限量の算出は内燃機関1の回転数(回転速度)、触媒コンバータ10Rの温度及びその最大酸素吸蔵量の3つの物理量を変数としてスロットル弁7の開度の制限量を与えるマップをECU20の記憶手段に記憶させておき、これらの物理量をECU20が取得した上でこのマップを参照することにより実現できる。このマップは内燃機関1の回転数が高いほど、触媒コンバータ10Rの温度が低いほど、最大酸素吸蔵量が小さいほどスロットル弁7の開度の制限量が大きくなるように、換言すればスロットル弁7の開度が小さくなるように構成されている。   Next, in step S5, the opening of the throttle valve 7 is limited so that the amount of intake air is limited, and this routine is finished. The limit amount of the opening degree of the throttle valve 7 is calculated based on the operating state of the internal combustion engine 1, the temperature of the catalytic converter 10R, and the degree of reduction in its purification performance. For example, the calculation of the limit amount is a map that gives the limit amount of the opening degree of the throttle valve 7 with the three physical quantities of the rotational speed (rotational speed) of the internal combustion engine 1, the temperature of the catalytic converter 10R and the maximum oxygen storage amount as variables. This can be realized by storing in the storage means of the ECU 20 and referring to this map after the ECU 20 acquires these physical quantities. This map shows that the higher the rotational speed of the internal combustion engine 1, the lower the temperature of the catalytic converter 10R, and the smaller the maximum oxygen storage amount, the larger the limit amount of the throttle valve 7 opening, in other words, the throttle valve 7. The opening degree is configured to be small.

ステップS6では、右バンク2Rの排気通路9R側に異常が生じたか否かを判定する。異常発生の有無の判定はステップS1と同様に行われる。即ち、その異常によって大気に排出される排気中の有害物質の増加を伴うか否か、つまりその異常によって排気エミッションが悪化するか否かを基準として異常発生の有無を判断する。具体的には右バンク2R側に設けられた触媒コンバータ10Rの浄化性能が所定限度以下に低下した条件及び上述した空燃比のフィードバック制御に利用される右バンク2R側の排気センサ12R、13Rのいずれかに故障が発生した条件の少なくとも一つ条件が成立したときに、ECU20は右バンク2Rの排気通路9R側に異常が発生したと判断する。触媒コンバータ10Rの浄化性能の把握及び排気センサ12R、13Rの故障に関してはステップS1と同様である。   In step S6, it is determined whether or not an abnormality has occurred on the exhaust passage 9R side of the right bank 2R. The determination of whether or not an abnormality has occurred is performed in the same manner as in step S1. That is, whether or not an abnormality has occurred is determined on the basis of whether or not the abnormality causes an increase in harmful substances in the exhaust discharged to the atmosphere, that is, whether or not the exhaust emission deteriorates due to the abnormality. Specifically, the conditions under which the purification performance of the catalytic converter 10R provided on the right bank 2R side falls below a predetermined limit and any of the exhaust sensors 12R and 13R on the right bank 2R side used for the above-described air-fuel ratio feedback control are described. When at least one of the conditions in which the crab has occurred is satisfied, the ECU 20 determines that an abnormality has occurred on the exhaust passage 9R side of the right bank 2R. The grasping of the purification performance of the catalytic converter 10R and the failure of the exhaust sensors 12R and 13R are the same as in step S1.

ステップS6で右バンク2Rの排気通路9R側に異常が生じたと判断した場合はステップS7に進む。そうでない場合はいずれの排気通路にも異常が発生していない正常時であるのでステップS11に進み正常時制御を実行して今回のルーチンを終える。即ち、ECU20は排気が各排気通路9L、9Rに均等に配分されるように排気配分変更機構15の各切替弁16L、16Rの位置を図1の状態へ切り替えて上述した空燃比のフィードバック制御を実行する。ステップS7では、ECU20は排気通路2R側への排気の配分が0%となり、排気通路2L側への排気の配分が100%となるように排気配分変更機構15の各切替弁16L、16Rの位置を図3の状態へ切り替える。続くステップS8ではECU20は異常が生じた右バンク側にある排気センサ12R、13Rを利用した上述した空燃比制御を停止する。次にステップS9では左バンク2L側の排気センサ12L、13Lを利用した空燃比制御において、その制御ゲインを異常時の制御ゲインに変更し、その制御ゲインに基づいて燃料噴射量を制御する。異常時の制御ゲインはステップS4の場合と同様に制御の発散を防止する観点から正常時の制御ゲインよりも小さな値に設定されている。次に、ステップS10では、吸入空気量が制限されるようにスロットル弁7の開度を制限して今回のルーチンを終える。スロットル弁7の開度の制限量はステップS5と同様の方法で算出される。   If it is determined in step S6 that an abnormality has occurred on the exhaust passage 9R side of the right bank 2R, the process proceeds to step S7. Otherwise, it is normal when no abnormality has occurred in any of the exhaust passages, so the process proceeds to step S11 to execute normal control, and the current routine is finished. That is, the ECU 20 switches the positions of the switching valves 16L and 16R of the exhaust distribution changing mechanism 15 to the state shown in FIG. 1 so that the exhaust gas is evenly distributed to the exhaust passages 9L and 9R. Execute. In step S7, the ECU 20 positions the switching valves 16L and 16R of the exhaust distribution changing mechanism 15 so that the distribution of exhaust to the exhaust passage 2R side becomes 0% and the distribution of exhaust to the exhaust passage 2L side becomes 100%. Is switched to the state of FIG. In subsequent step S8, the ECU 20 stops the above-described air-fuel ratio control using the exhaust sensors 12R and 13R on the right bank side where the abnormality has occurred. Next, in step S9, in the air-fuel ratio control using the exhaust sensors 12L and 13L on the left bank 2L side, the control gain is changed to a control gain at the time of abnormality, and the fuel injection amount is controlled based on the control gain. The control gain at the time of abnormality is set to a value smaller than the control gain at the time of normality from the viewpoint of preventing control divergence, as in the case of step S4. Next, in step S10, the opening of the throttle valve 7 is limited so that the intake air amount is limited, and the current routine is finished. The limit amount of the opening degree of the throttle valve 7 is calculated by the same method as in step S5.

図4の制御を実行することにより、異常が生じた排気通路側への排気の流入が排気配分変更機構15にて阻止されるので、排気エミッションの悪化を防止できる。また、異常が生じた側の排気センサを利用した空燃比制御が停止され、しかも異常が生じていない側の排気センサを利用した空燃比制御において制御ゲインが小さく設定されるので、制御の発散を防止でき排気エミッションの悪化の防止に貢献できる。また、異常が発生した場合にはスロットル弁7の開度が制限されて多量の排気が一方の排気通路側へ流入することが防止されるので、排気エミッションの悪化を防止できる。しかも、その制限量は内燃機関1の運転状態の他に、触媒コンバータの浄化性能を考慮して決定されるので、スロットル弁7の開度の制限が過剰とならず、内燃機関1の出力低下を抑えることができる。   By executing the control of FIG. 4, the exhaust distribution change mechanism 15 prevents the inflow of exhaust gas to the exhaust passage side where an abnormality has occurred, so that deterioration of exhaust emission can be prevented. In addition, since the air-fuel ratio control using the exhaust sensor on the side where the abnormality has occurred is stopped, and the control gain is set small in the air-fuel ratio control using the exhaust sensor on the side where no abnormality has occurred, the control divergence is reduced. This can prevent the deterioration of exhaust emissions. Further, when an abnormality occurs, the opening degree of the throttle valve 7 is limited and a large amount of exhaust gas is prevented from flowing into one of the exhaust passages, so that deterioration of exhaust emission can be prevented. Moreover, since the limit amount is determined in consideration of the purification performance of the catalytic converter in addition to the operating state of the internal combustion engine 1, the opening degree of the throttle valve 7 is not excessively limited and the output of the internal combustion engine 1 is reduced. Can be suppressed.

図4の制御において、ECU20は、ステップS1及びステップS6を実行することにより本発明に係る異常検出手段として、ステップS2及びステップS7を実行することにより本発明に係る排気配分制御手段として、ステップS4及びステップS9を実行することにより本発明に係る空燃比制御手段として、ステップS5及びステップS10を実行することにより本発明に係るスロットル弁開度制御手段としてそれぞれ機能する。   In the control of FIG. 4, the ECU 20 executes step S1 and step S6 as an abnormality detection unit according to the present invention, and executes step S2 and step S7 as an exhaust distribution control unit according to the present invention. By executing Step S9, the air-fuel ratio control means according to the present invention functions as the throttle valve opening degree control means according to the present invention by executing Step S5 and Step S10.

但し本発明は以上の実施の形態に限定されず、本発明の要旨の範囲内で種々の形態にて実施できる。上述した形態では、一方の排気通路側に異常が生じた場合、異常が生じた排気通路側への排気の流入を遮断し、異常が生じていない排気通路側へ排気の全量を導くようにしているが本発明はこの形態に限定されない。即ち、異常が生じた排気通路側への排気の配分が異常が生じていない排気通路側への排気の配分に比べて小さくなればよい。そのため、異常の程度を考慮して異常が生じた排気通路側への排気の流入を許容しても構わない。   However, the present invention is not limited to the above embodiment, and can be implemented in various forms within the scope of the gist of the present invention. In the embodiment described above, when an abnormality occurs on one exhaust passage side, the inflow of exhaust gas to the exhaust passage side where the abnormality has occurred is blocked, and the entire amount of exhaust gas is guided to the exhaust passage side where no abnormality has occurred. However, the present invention is not limited to this form. That is, the distribution of exhaust gas to the exhaust passage side where abnormality has occurred may be smaller than the distribution of exhaust gas to the exhaust passage side where abnormality has not occurred. Therefore, in consideration of the degree of abnormality, inflow of exhaust gas to the exhaust passage side where abnormality has occurred may be allowed.

図5は、異常の程度を考慮して各排気通路側への排気の配分を変更する他の形態に係る排気配分変更制御の制御ルーチンの一例を示したフローチャートである。なお、図5において図4と同一処理には同一の符号を付して説明を省略する。図5に示すように、ステップS1で左バンク2Lの排気通路9L側に異常が生じたと判断したときは、ステップS21に進んでその異常に伴う大気に排出され得る有害成分の増加量を算出する。この増加量は正常時と比較したものである。触媒コンバータ10Lの浄化性能が低下すると、その低下度に応じて未浄化の有害成分が増加する。また、排気の絶対量に応じて有害成分も増加する。そこで、その増加量の算出は、例えば内燃機関1の回転数と触媒コンバータ10Lの浄化性能の低下度とを変数として有害成分の増加量を与えるマップをECU20の記憶手段に記憶させておき、ECU20がこれらのパラメータを取得した上でこのマップを参照することにより実現できる。触媒コンバータ10Lの浄化性能の低下度は、上述したように空燃比変化を上流排気センサ12Lが検出してから下流排気センサ13Lの出力に現れるまでの時間等の浄化性能の低下度に相関する物理量に基づいて取得できる。   FIG. 5 is a flowchart showing an example of a control routine of the exhaust distribution change control according to another embodiment in which the distribution of exhaust gas to each exhaust passage side is changed in consideration of the degree of abnormality. In FIG. 5, the same processes as those in FIG. As shown in FIG. 5, when it is determined in step S1 that an abnormality has occurred on the exhaust passage 9L side of the left bank 2L, the process proceeds to step S21, and an increase amount of harmful components that can be discharged into the atmosphere accompanying the abnormality is calculated. . This increase is compared to normal. When the purification performance of the catalytic converter 10L decreases, unpurified harmful components increase in accordance with the degree of decrease. Also, harmful components increase according to the absolute amount of exhaust. Therefore, the increase amount is calculated, for example, by storing in the storage means of the ECU 20 a map that gives the increase amount of harmful components using the rotational speed of the internal combustion engine 1 and the degree of reduction in the purification performance of the catalytic converter 10L as variables. Can be realized by referring to this map after obtaining these parameters. The degree of reduction in the purification performance of the catalytic converter 10L is a physical quantity that correlates with the degree of reduction in the purification performance such as the time from when the upstream exhaust sensor 12L detects the air-fuel ratio change until it appears in the output of the downstream exhaust sensor 13L as described above. Can be obtained based on

次に、ステップS22では、ステップS21で算出した有害成分の増加量に応じて排気通路9L側への排気の配分を算出する。この配分は有害成分の増加量が大きいときは小さいときに比べて排気通路9L側への配分が小さくなるように設定されたマップ等を利用して算出できる。続いて、ステップS23では、ステップS22で算出した配分で各排気通路に排気が導かれるように、排気配分変更機構15の各切替弁16L、16Rの開度を設定する。なお、排気通路9R側に異常が生じた場合もステップS71〜ステップS73にて上記と同様の処理が行われる。その他の処理は図4と同様であるので説明を省略する。図5の制御によれば、異常が生じた排気通路側へも異常の程度を考慮して排気の導入が許容されるため、異常が生じていない排気通路側への負担を抑えつつ排気エミッションの悪化を防止することができる。   Next, in step S22, the distribution of the exhaust gas to the exhaust passage 9L side is calculated according to the increase amount of the harmful component calculated in step S21. This distribution can be calculated by using a map or the like set so that the distribution to the exhaust passage 9L becomes smaller when the increase amount of harmful components is large than when it is small. Subsequently, in step S23, the opening degree of each switching valve 16L, 16R of the exhaust distribution changing mechanism 15 is set so that the exhaust is guided to each exhaust passage with the distribution calculated in step S22. Even when an abnormality occurs on the exhaust passage 9R side, the same processing as described above is performed in steps S71 to S73. The other processes are the same as those in FIG. According to the control of FIG. 5, since the introduction of exhaust is allowed to the exhaust passage side where the abnormality has occurred in consideration of the degree of abnormality, the burden on the exhaust passage side where the abnormality has not occurred is suppressed while reducing the exhaust emission. Deterioration can be prevented.

本発明に係る制御装置は、気筒群を3つ以上持ち、気筒群毎に排気通路が設けられ、かつ気筒群毎の排気通路のそれぞれに排気浄化手段が設けられた内燃機関にも適用することができる。例えば、図6に示すように、3つの気筒群毎に排気通路30A、30B、30Cが設けられ、これらの排気通路30A、30B、30Cのそれぞれに排気浄化手段としての触媒コンバータ31A、31B、31Cが設けられ、かつ触媒コンバータ31A、31B、31Cの上流において各排気通路30A、30B、30Cを相互に連通する連通路32が設けられた内燃機関100に本発明に係る制御装置を適用できる。図6の内燃機関100には、連通路32と各排気通路30A、30B、30Cとの接続部と、各触媒コンバータ31A、31B、31Cとの間に3つの切替弁33A、33B、33Cが設けられた排気配分変更機構34が排気配分変更手段として設けられている。この排気配分変更機構34の各切替弁33A、33B、33Cの開度を、内燃機関100を制御するECU40にて任意に操作することにより、各排気通路側への排気の配分を適宜に変更することができる。図6の構成においてECU40が実施する制御ルーチンは図4及び図5の制御ルーチンと同様で構わない。その制御ルーチンをECU40が実行することで、ECU40は本発明に係る異常検出手段及び排気配分変更手段としてそれぞれ機能することができる。また、ECU40は各触媒コンバータ31A、31B、31Cの上流及び下流のそれぞれに設けられた上流排気センサ35A、35B、35C及び下流排気センサ36A、36B、36Cの出力を利用して上述した空燃比制御を実行し、本発明に係る空燃比制御手段としても機能する。更にECU40は各排気通路側への排気の配分を変更した場合に内燃機関100のスロットル弁(不図示)の開度を制限し、本発明に係るスロットル弁開度制御手段としても機能する。   The control device according to the present invention is also applied to an internal combustion engine having three or more cylinder groups, an exhaust passage provided for each cylinder group, and an exhaust purification means provided in each exhaust passage for each cylinder group. Can do. For example, as shown in FIG. 6, exhaust passages 30A, 30B, 30C are provided for each of the three cylinder groups, and catalytic converters 31A, 31B, 31C as exhaust purification means are provided in these exhaust passages 30A, 30B, 30C, respectively. And the control apparatus according to the present invention can be applied to the internal combustion engine 100 provided with the communication passage 32 that communicates the exhaust passages 30A, 30B, and 30C with each other upstream of the catalytic converters 31A, 31B, and 31C. In the internal combustion engine 100 of FIG. 6, three switching valves 33A, 33B, and 33C are provided between the connection portions of the communication passage 32 and the exhaust passages 30A, 30B, and 30C and the catalytic converters 31A, 31B, and 31C. The exhaust distribution changing mechanism 34 is provided as exhaust distribution changing means. By arbitrarily operating the opening degree of each switching valve 33A, 33B, 33C of the exhaust distribution changing mechanism 34 by the ECU 40 that controls the internal combustion engine 100, the distribution of the exhaust gas to each exhaust passage side is appropriately changed. be able to. The control routine executed by the ECU 40 in the configuration of FIG. 6 may be the same as the control routines of FIGS. 4 and 5. When the ECU 40 executes the control routine, the ECU 40 can function as an abnormality detection unit and an exhaust distribution change unit according to the present invention. The ECU 40 uses the outputs of the upstream exhaust sensors 35A, 35B, 35C and the downstream exhaust sensors 36A, 36B, 36C provided upstream and downstream of the catalytic converters 31A, 31B, 31C, respectively, to control the air-fuel ratio described above. And also functions as air-fuel ratio control means according to the present invention. Further, the ECU 40 limits the opening degree of a throttle valve (not shown) of the internal combustion engine 100 when the distribution of exhaust gas to each exhaust passage side is changed, and also functions as a throttle valve opening control means according to the present invention.

本発明の制御装置が適用された内燃機関の要部を示した図。The figure which showed the principal part of the internal combustion engine to which the control apparatus of this invention was applied. 左バンクに設けられた排気通路側に異常が生じた場合の各切替弁の状態を示した図。The figure which showed the state of each switching valve when abnormality arises in the exhaust passage side provided in the left bank. 右バンクに設けられた排気通路側に異常が生じた場合の各切替弁の状態を示した図。The figure which showed the state of each switching valve when abnormality arises in the exhaust passage side provided in the right bank. 排気配分変更制御の制御ルーチンの一例を示したフローチャート。The flowchart which showed an example of the control routine of exhaust distribution change control. 他の形態に係る排気配分変更制御の制御ルーチンの一例を示したフローチャート。The flowchart which showed an example of the control routine of the exhaust distribution change control which concerns on another form. 本発明の制御装置が適用された内燃機関の他の形態を示した図。The figure which showed the other form of the internal combustion engine to which the control apparatus of this invention was applied.

符号の説明Explanation of symbols

1、100 内燃機関
2L 左バンク(気筒群)
2R 右バンク(気筒群)
7 スロットル弁
9L、9R 排気通路
10L、10R 触媒コンバータ(排気浄化手段)
11 連通路
15 排気配分変更機構(排気配分変更手段)
12L、12R、35A、35B、35C 上流排気センサ(空燃比検出手段)
13L、13R、36A、36B、36C 下流排気センサ(空燃比検出手段)
20、40 ECU(異常検出手段、排気配分制御手段、スロットル弁開度制御手段、空燃比制御手段)
1,100 Internal combustion engine 2L Left bank (cylinder group)
2R right bank (cylinder group)
7 Throttle valves 9L, 9R Exhaust passages 10L, 10R Catalytic converter (exhaust purification means)
11 Communication path 15 Exhaust distribution change mechanism (Exhaust distribution change means)
12L, 12R, 35A, 35B, 35C Upstream exhaust sensor (air-fuel ratio detection means)
13L, 13R, 36A, 36B, 36C Downstream exhaust sensor (air-fuel ratio detection means)
20, 40 ECU (abnormality detection means, exhaust distribution control means, throttle valve opening control means, air-fuel ratio control means)

Claims (6)

複数の気筒群毎に排気通路が設けられ、気筒群毎の前記排気通路のそれぞれに排気を浄化可能な排気浄化手段が設けられ、かつ前記排気浄化手段の上流側で気筒群毎の前記排気通路を連通する連通路が設けられた内燃機関に適用される内燃機関の制御装置において、
気筒群毎の前記排気通路のそれぞれに流れる排気の配分を変更可能な排気配分変更手段と、大気に排出される排気中の有害成分の増加を伴う異常が気筒群毎の前記排気通路のいずれの側に生じたかを検出する異常検出手段と、前記異常検出手段の検出結果に基づいて、前記異常が生じた排気通路側へ流れる排気の配分が前記異常が生じていない排気通路側へ流れる排気の配分に比べて小さくなるように前記排気配分変更手段を制御する排気配分制御手段と、を備えることを特徴とする内燃機関の制御装置。
An exhaust passage is provided for each of the plurality of cylinder groups, an exhaust purification means capable of purifying exhaust is provided in each of the exhaust passages for each cylinder group, and the exhaust passage for each cylinder group is provided upstream of the exhaust purification means. In a control device for an internal combustion engine applied to an internal combustion engine provided with a communication passage communicating with
Any of the exhaust distribution changing means capable of changing the distribution of the exhaust gas flowing in each of the exhaust passages for each cylinder group, and any abnormality in the exhaust passage for each cylinder group that causes an increase in harmful components in the exhaust discharged to the atmosphere. An abnormality detection means for detecting whether the abnormality has occurred, and based on the detection result of the abnormality detection means, the distribution of the exhaust gas flowing to the exhaust passage side where the abnormality has occurred is distributed to the exhaust passage side where the abnormality has not occurred. An internal combustion engine control apparatus comprising: an exhaust distribution control unit that controls the exhaust distribution change unit so as to be smaller than the distribution.
前記内燃機関には、気筒群毎に設けられた前記排気通路のそれぞれに、前記内燃機関の燃料噴射量を制御するために利用され、かつ排気の空燃比に応じた信号を出力する空燃比検出手段が設けられており、
前記異常検出手段は、前記空燃比検出手段が故障したか否かを判断することにより、故障したと判断した空燃比検出手段が設けられた前記排気通路側に前記異常が生じたと判断することを特徴とする請求項1に記載の内燃機関の制御装置。
In the internal combustion engine, air-fuel ratio detection is used for controlling the fuel injection amount of the internal combustion engine and outputs a signal corresponding to the air-fuel ratio of the exhaust gas in each of the exhaust passages provided for each cylinder group. Means are provided,
The abnormality detection means determines whether the abnormality has occurred on the exhaust passage side provided with the air-fuel ratio detection means determined to have failed by determining whether or not the air-fuel ratio detection means has failed. The control apparatus for an internal combustion engine according to claim 1, wherein the control apparatus is an internal combustion engine.
前記内燃機関には、気筒群毎に設けられた前記排気浄化手段の上流及び下流のそれぞれに、前記内燃機関の燃料噴射量を制御するために利用され、かつ排気の空燃比に応じた信号を出力する空燃比検出手段が設けられており、
前記異常検出手段は、前記排気浄化手段の上流及び下流における空燃比に基づいて前記排気浄化手段の排気の浄化性能が低下したか否かを判断することにより、浄化性能が低下したと判断した排気浄化手段が設けられた前記排気通路側に前記異常が生じたと判断することを特徴とする請求項1に記載の内燃機関の制御装置。
In the internal combustion engine, a signal that is used to control the fuel injection amount of the internal combustion engine and that corresponds to the air-fuel ratio of the exhaust is provided upstream and downstream of the exhaust purification unit provided for each cylinder group. Air-fuel ratio detection means for output is provided,
The abnormality detecting means determines whether or not the exhaust purification performance of the exhaust purification means has deteriorated based on the air-fuel ratio upstream and downstream of the exhaust purification means, thereby determining that the purification performance has deteriorated. 2. The control apparatus for an internal combustion engine according to claim 1, wherein it is determined that the abnormality has occurred on the side of the exhaust passage provided with a purifying means.
前記排気配分制御手段が、前記異常が生じた排気通路側へ流れる排気の配分が前記異常が生じていない排気通路側へ流れる排気の配分に比べて小さくなるように前記排気配分変更手段を制御しているときに、前記内燃機関のスロットル弁の開度を制限するスロットル弁開度制御手段を更に備え、
前記スロットル弁開度制御手段は、前記異常が生じていない排気通路に設けられた前記排気浄化手段の浄化性能を考慮して前記スロットル弁の開度の制限量を変化させることを特徴とする請求項1〜3のいずれか一項に記載の内燃機関の制御装置。
The exhaust distribution control means controls the exhaust distribution change means so that the distribution of exhaust flowing to the exhaust passage side where the abnormality has occurred becomes smaller than the distribution of exhaust flowing to the exhaust passage side where the abnormality has not occurred. A throttle valve opening control means for limiting the opening of the throttle valve of the internal combustion engine,
The throttle valve opening control means changes a limit amount of the throttle valve opening in consideration of a purification performance of the exhaust purification means provided in an exhaust passage where the abnormality does not occur. Item 4. The control device for the internal combustion engine according to any one of Items 1 to 3.
前記空燃比検出手段の検出結果と目標空燃比との偏差が減少するように、前記偏差に制御ゲインを乗じた制御入力に基づいて前記内燃機関の燃料噴射量をフィードバック制御する空燃比制御手段を更に備え、
前記空燃比制御手段は、前記排気配分制御手段が前記異常が生じた排気通路側へ流れる排気の配分が前記異常が生じていない排気通路側へ流れる排気の配分に比べて小さくなるように前記排気配分変更手段を制御しているときに、前記異常がいずれの排気通路側にも生じていない正常時と比べて前記制御ゲインを小さくした状態で、前記異常が生じていない排気通路側に設けられた前記空燃比検出手段の検出結果と目標空燃比との偏差が減少するように前記内燃機関の燃焼噴射量をフィードバック制御することを特徴とする請求項2又は3に記載の内燃機関の制御装置。
Air-fuel ratio control means for feedback-controlling the fuel injection amount of the internal combustion engine based on a control input obtained by multiplying the deviation by a control gain so that the deviation between the detection result of the air-fuel ratio detection means and the target air-fuel ratio decreases. In addition,
The air-fuel ratio control means is configured so that the distribution of exhaust flowing to the exhaust passage side where the abnormality has occurred is smaller than the distribution of exhaust flowing to the exhaust passage side where the abnormality has not occurred. Provided on the exhaust passage side where the abnormality does not occur in a state where the control gain is reduced compared to the normal time when the abnormality does not occur on any exhaust passage side when controlling the distribution changing means. 4. The control apparatus for an internal combustion engine according to claim 2, wherein the combustion injection amount of the internal combustion engine is feedback-controlled so that a deviation between a detection result of the air-fuel ratio detection means and a target air-fuel ratio decreases. .
前記排気配分制御手段は、前記排気配分制御手段は、前記異常によって生じ得る前記有害成分の増加量が大きいときは小さいときに比べて前記異常が生じた排気通路側へ流れる排気の配分を小さくすることを特徴とする請求項1〜5のいずれか一項に記載の内燃機関の制御装置。   The exhaust distribution control means reduces the distribution of the exhaust gas flowing to the exhaust passage side where the abnormality has occurred, when the increase amount of the harmful component that may be caused by the abnormality is large, compared to when it is small. The control apparatus for an internal combustion engine according to any one of claims 1 to 5, wherein
JP2006273969A 2006-10-05 2006-10-05 Control device for internal combustion engine Pending JP2008088963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006273969A JP2008088963A (en) 2006-10-05 2006-10-05 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006273969A JP2008088963A (en) 2006-10-05 2006-10-05 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008088963A true JP2008088963A (en) 2008-04-17

Family

ID=39373351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006273969A Pending JP2008088963A (en) 2006-10-05 2006-10-05 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008088963A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518106A (en) * 2012-04-26 2015-06-25 ヘアマン シュニーダーHermann Schnyder Vibrating piston engine with polygonal piston

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518106A (en) * 2012-04-26 2015-06-25 ヘアマン シュニーダーHermann Schnyder Vibrating piston engine with polygonal piston

Similar Documents

Publication Publication Date Title
JP4462282B2 (en) Exhaust control device for internal combustion engine
US9719451B2 (en) Exhaust purification system of internal combustion engine
WO2015068761A1 (en) Water supply control device for in-cylinder injection internal combustion engine
JP2006299936A (en) Exhaust device for internal combustion engine and control method for internal combustion engine
JP2007332914A (en) Catalyst deterioration detecting device
JP5920368B2 (en) Control device for internal combustion engine
JP2008025522A (en) Control unit for internal combustion engine
JP4548602B2 (en) Exhaust gas purification device for internal combustion engine
JP5790419B2 (en) Control device for internal combustion engine
US20130184972A1 (en) Air-fuel ratio control apparatus for internal combustion engine and control method
JP6206653B2 (en) Engine control device
JP2008088963A (en) Control device for internal combustion engine
JP4103759B2 (en) Exhaust gas purification device for internal combustion engine
WO2015166836A1 (en) Exhaust purification device for engine
JP2010048184A (en) Air fuel ratio control device of engine
JP4093923B2 (en) Control device for variable cylinder internal combustion engine
JP7110837B2 (en) Exhaust purification system for internal combustion engine
JP2010059879A (en) Exhaust gas recirculation device for internal combustion engine
JP2008025525A (en) Control device of internal combustion engine
JP2021127701A (en) Abnormality diagnostic device for gas sensor
JP5040838B2 (en) Control device for internal combustion engine
JP2012237253A (en) Flow rate estimation device
JP2008115739A (en) Air fuel ratio control device for internal combustion engine
JP2015086707A (en) Control device of internal combustion engine
JP2008038806A (en) Exhaust emission control device of internal combustion engine