JP2008088934A - Fuel pump - Google Patents

Fuel pump Download PDF

Info

Publication number
JP2008088934A
JP2008088934A JP2006272933A JP2006272933A JP2008088934A JP 2008088934 A JP2008088934 A JP 2008088934A JP 2006272933 A JP2006272933 A JP 2006272933A JP 2006272933 A JP2006272933 A JP 2006272933A JP 2008088934 A JP2008088934 A JP 2008088934A
Authority
JP
Japan
Prior art keywords
fuel
magnet
pump
discharge port
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006272933A
Other languages
Japanese (ja)
Other versions
JP4952180B2 (en
Inventor
Shinji Hazama
真司 間
Kiyonori Moroto
清規 諸戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006272933A priority Critical patent/JP4952180B2/en
Priority to US11/905,754 priority patent/US20080085199A1/en
Publication of JP2008088934A publication Critical patent/JP2008088934A/en
Application granted granted Critical
Publication of JP4952180B2 publication Critical patent/JP4952180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • F04D5/007Details of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/50Inlet or outlet
    • F05B2250/503Inlet or outlet of regenerative pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel pump allowing boosted fuel to smoothly flow to the magnet side of a motor part. <P>SOLUTION: A pump case 22 constitutes a case member for holding an impeller rotatably. When the impeller of the pump part is rotationally driven by the motor part, fuel boosted in a pump passage 202 is discharged to the permanent magnet 40 side of the motor part from a discharge port 204. Two permanent magnets 40 are installed in a circumferential direction, and clearances 208 are formed between the permanent magnets 40, 40. An imaginary straight line 220 extending in a fuel discharge direction along an inner side face 205 on the rotating direction front side of the discharge port 204 passes between the discharge port 204 side ends of the adjacent permanent magnets 40. The imaginary straight line 220 inclines onto the permanent magnet 40 side toward the rotating direction front side with respect to the end face 23 on the permanent magnet 40 side of the pump case 22. An angle α formed by the imaginary straight line 220 and the end face 23 of the pump case 22 is set in 10°≤α≤60°. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、モータ部の内部に燃料を流す燃料ポンプに関する。   The present invention relates to a fuel pump that allows fuel to flow inside a motor unit.

モータ部によりポンプ部のインペラ等の回転部材を回転駆動し、ポンプ部で昇圧した燃料をモータ部の内部に流す燃料ポンプが知られている(例えば、特許文献1〜3参照)。モータ部は、周方向に複数の磁極を形成する磁石と、この磁石の内周側に回転自在に設置された電機子等により構成される。図4に示すように、特許文献1〜3においては、燃料ポンプのポンプ部で昇圧された燃料は、回転部材を収容するポンプケース300の吐出口302から、モータ部の磁石310側に向けて吐出される。吐出口302から吐出された燃料は、図示しない電機子の外周面と磁石310の内周面との間に形成されている隙間、ならびに周方向に隣り合う磁石310と磁石310との間に形成されている隙間312を通ってモータ部の内部を流れる。
しかしながら、ポンプケース300の吐出口302から吐出される燃料が、磁石310の吐出口302側の端面314に衝突すると、磁石310と磁石310との間の隙間312に燃料が滑らかに流入せず、燃料流れの圧損が大きくなるという問題がある。
There is known a fuel pump in which a rotary member such as an impeller of a pump unit is driven to rotate by a motor unit, and fuel boosted by the pump unit is caused to flow inside the motor unit (see, for example, Patent Documents 1 to 3). The motor unit includes a magnet that forms a plurality of magnetic poles in the circumferential direction, and an armature that is rotatably installed on the inner circumferential side of the magnet. As shown in FIG. 4, in Patent Documents 1 to 3, the fuel boosted by the pump portion of the fuel pump is directed from the discharge port 302 of the pump case 300 housing the rotating member toward the magnet 310 of the motor portion. Discharged. The fuel discharged from the discharge port 302 is formed between a gap formed between the outer peripheral surface of an armature (not shown) and the inner peripheral surface of the magnet 310, and between the magnet 310 and the magnet 310 adjacent in the circumferential direction. It flows through the inside of the motor section through the gap 312 that is formed.
However, when the fuel discharged from the discharge port 302 of the pump case 300 collides with the end surface 314 of the magnet 310 on the discharge port 302 side, the fuel does not smoothly flow into the gap 312 between the magnet 310 and the magnet 310. There is a problem that the pressure loss of the fuel flow increases.

特開平5−187382号公報JP-A-5-187382 特開平6−167291号公報JP-A-6-167291 特開平6−229390号公報JP-A-6-229390

本発明は上記問題を解決するためになされたものであり、昇圧した燃料をモータ部の磁石側に滑らかに流入させる燃料ポンプを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fuel pump that allows the boosted fuel to smoothly flow into the magnet side of the motor unit.

請求項1から6に記載の発明では、回転部材を回転自在に収容するポンプケースは、回転部材の回転により昇圧された燃料を吐出口からモータ部の磁石側に向けて吐出する。そして、請求項1に記載の発明では、ポンプケースに設けた吐出口の回転方向前方の内側面に沿って燃料吐出方向に延びる仮想直線は、周方向に隣り合う磁石のポンプケース側の端部の間を通っている。この構成によれば、ポンプケースの吐出口から吐出された燃料が磁石のポンプケース側の端面に衝突することを抑制し、吐出口の回転方向前方の内側面に沿って、モータ部の磁石と磁石との間に形成されている隙間に燃料が滑らかに流入する。   In the invention according to claims 1 to 6, the pump case that rotatably accommodates the rotating member discharges the fuel whose pressure is increased by the rotation of the rotating member from the discharge port toward the magnet side of the motor unit. According to the first aspect of the present invention, the virtual straight line extending in the fuel discharge direction along the inner surface of the discharge port provided in the pump case in the rotational direction is the end of the magnet adjacent to the circumferential direction on the pump case side. Passing between. According to this configuration, the fuel discharged from the discharge port of the pump case is prevented from colliding with the end surface of the magnet on the pump case side, and the motor portion magnet and The fuel flows smoothly into the gap formed between the magnets.

請求項2に記載の発明では、ポンプケース設けた吐出口の磁石側開口の回転方向前方端部は、周方向に隣り合う磁石と磁石との間に位置している。この構成によれば、ポンプケースの吐出口から吐出された燃料がモータ部の磁石のポンプケースの端面に衝突することを抑制し、モータ部の磁石と磁石との間に形成されている隙間に燃料が滑らかに流入する。   In the invention according to claim 2, the rotation direction front end of the magnet side opening of the discharge port provided with the pump case is located between the magnets adjacent to each other in the circumferential direction. According to this configuration, the fuel discharged from the discharge port of the pump case is prevented from colliding with the end surface of the pump case of the magnet of the motor unit, and the gap formed between the magnets of the motor unit is formed in the gap. Fuel flows smoothly.

このように、請求項1および2に記載の発明では、回転部材の回転により昇圧されポンプケースの吐出口から吐出された燃料がモータ部の磁石と磁石との間に形成されている隙間に滑らかに流入することにより、モータ部の磁石側に流入する燃料流れの圧損を低減できる。また、昇圧された燃料がモータ部の磁石側に滑らかに流入することにより、燃料流れにより生じる流動音を低減できる。   As described above, in the first and second aspects of the present invention, the fuel boosted by the rotation of the rotating member and discharged from the discharge port of the pump case is smoothly formed in the gap formed between the magnets of the motor unit. The pressure loss of the fuel flow that flows into the magnet side of the motor unit can be reduced. In addition, the flow of noise generated by the fuel flow can be reduced by allowing the boosted fuel to smoothly flow into the magnet side of the motor unit.

ところで、モータ部の磁石とポンプケースの吐出口とを軸方向に極力接近させ、燃料ポンプを小型化する構成においては、磁石と磁石との間の位置とポンプケースの吐出口との位置が周方向に大きくずれていると、ポンプケースの吐出口から吐出された燃料がモータ部の磁石と磁石との間に流入するときに燃料流れの向きが大きく変わり、圧損が増加する。   By the way, in a configuration in which the magnet of the motor unit and the discharge port of the pump case are close as much as possible in the axial direction to reduce the size of the fuel pump, the position between the magnet and the discharge port of the pump case is the circumference. If the direction is greatly deviated, the direction of the fuel flow changes greatly when the fuel discharged from the discharge port of the pump case flows between the magnets of the motor unit, and the pressure loss increases.

そこで、請求項1または2記載の発明の構成を採用することにより、請求項3に記載の発明のように、吐出口の磁石側の開口と磁石のポンプケース側の端面との距離を10mm以下に接近させ燃料ポンプを小型化する構成においても、燃料流れの向きを大きく変えることなく、ポンプ部で昇圧した燃料をモータ部の磁石と磁石との間に滑らかに流入させることができる。   Therefore, by adopting the configuration of the invention according to claim 1 or 2, the distance between the opening of the discharge port on the magnet side and the end surface of the magnet on the pump case side is 10 mm or less as in the invention of claim 3. Even in a configuration in which the fuel pump is reduced in size by approaching the fuel pump, the fuel boosted by the pump unit can be smoothly introduced between the magnets of the motor unit without greatly changing the direction of the fuel flow.

請求項4に記載の発明では、磁石は周方向に2個設置されている。このように、磁石が2磁極を形成するモータ部の構成においては、必要なトルクを電機子に発生させるために磁気的に要求される磁石の円周角の大きさは、180°よりも数十°小さくてよい。例えば、請求項5に記載した発明のように、磁石の円周角を120°以上150°以下に設定できる。その結果、周方向に隣り合う磁石と磁石との間に形成される隙間が大きくなるので、ポンプ部で昇圧した燃料がモータ部の磁石と磁石との間に流入するときの圧損を低減できる。   In the invention described in claim 4, two magnets are provided in the circumferential direction. Thus, in the configuration of the motor unit in which the magnet forms two magnetic poles, the size of the circumferential angle of the magnet that is magnetically required to generate the necessary torque in the armature is a few more than 180 °. It can be 10 degrees smaller. For example, as in the invention described in claim 5, the circumferential angle of the magnet can be set to 120 ° to 150 °. As a result, the gap formed between the magnets adjacent to each other in the circumferential direction becomes large, so that the pressure loss when the fuel pressurized by the pump unit flows between the magnets and the magnets of the motor unit can be reduced.

請求項6に記載の発明では、吐出口の回転方向前方の内側面に沿って燃料吐出方向に延びる仮想直線は、ポンプケースの磁石側の端面に対し、回転方向前方に向かうにしたがい磁石側に10°以上60°以下の角度で傾斜している。この構成によれば、回転部材の回転により昇圧された燃料は、吐出口において燃料流れの向きを大きく変えることなく、吐出口の回転方向前方の内側面に沿ってモータ部の磁石側に向けて滑らかに吐出される。   In the sixth aspect of the present invention, the imaginary straight line extending in the fuel discharge direction along the inner surface of the discharge port in the rotation direction forward is on the magnet side as it goes forward in the rotation direction with respect to the end surface on the magnet side of the pump case. It is inclined at an angle of 10 ° to 60 °. According to this configuration, the fuel whose pressure has been increased by the rotation of the rotating member is directed toward the magnet side of the motor unit along the inner surface of the discharge port in the rotation direction without greatly changing the direction of fuel flow at the discharge port. It is discharged smoothly.

以下、本発明の実施形態を図に基づいて説明する。
(第1実施形態)
本発明の第1実施形態による燃料ポンプを図2に示す。燃料ポンプ10は、例えば二輪自動車または四輪自動車等に搭載された図示しない燃料タンク内に収容されるインタンク式のタービンポンプである。燃料ポンプ10は、燃料タンクから吸入した燃料を昇圧しエンジン側に供給する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
A fuel pump according to a first embodiment of the present invention is shown in FIG. The fuel pump 10 is an in-tank type turbine pump accommodated in a fuel tank (not shown) mounted on, for example, a two-wheeled vehicle or a four-wheeled vehicle. The fuel pump 10 boosts the fuel sucked from the fuel tank and supplies it to the engine side.

燃料ポンプ10は、ポンプ部12と、ポンプ部12を回転駆動するモータ部13とを備えている。ハウジング14は、ポンプ部12およびモータ部13のハウジングを兼ねており、軸方向両端部でポンプケース20およびエンドカバー74をそれぞれかしめている。ハウジング14がポンプケース20をかしめることにより、ポンプケース22はポンプケース20とハウジング14の段差15との間に挟持されている。また、ハウジング14がエンドカバー74をかしめることにより、ベアリングホルダ70はエンドカバー74とハウジング14の段差16との間に挟持されている。ベアリングホルダ70およびエンドカバー74は樹脂製である。   The fuel pump 10 includes a pump unit 12 and a motor unit 13 that rotationally drives the pump unit 12. The housing 14 also serves as a housing for the pump unit 12 and the motor unit 13, and the pump case 20 and the end cover 74 are caulked at both ends in the axial direction. As the housing 14 caulks the pump case 20, the pump case 22 is sandwiched between the pump case 20 and the step 15 of the housing 14. Further, the housing 14 caulks the end cover 74 so that the bearing holder 70 is sandwiched between the end cover 74 and the step 16 of the housing 14. The bearing holder 70 and the end cover 74 are made of resin.

ポンプ部12は、ポンプケース20、22、およびインペラ30を有しているタービンポンプである。ポンプ部12は、モータ部13に対し電機子50の回転軸方向の一方側に設置されている。電機子50の回転軸としてのシャフト56に、回転部材としてのインペラ30が組み付けられている。ポンプケース20、22は、インペラ30を回転自在に収容するケース部材である。ポンプケース20には、ポンプ通路202に燃料を吸入するための吸入口200が形成されている。ポンプ通路202は、インペラ30の外周縁に沿ってインペラ30の回転軸方向両側にC字状に形成されている。円板状に形成されたインペラ30の外周縁部には回転方向に複数の羽根溝が形成されている。インペラ30が電機子50の回転によりシャフト56とともに回転すると、回転方向前方の羽根溝から回転方向後方の羽根溝に向けて燃料が流出、流入を多数繰り返すことにより、燃料は旋回流となってポンプ通路202で昇圧される。   The pump unit 12 is a turbine pump having pump cases 20 and 22 and an impeller 30. The pump unit 12 is installed on one side of the armature 50 in the rotation axis direction with respect to the motor unit 13. An impeller 30 as a rotating member is assembled to a shaft 56 as a rotating shaft of the armature 50. The pump cases 20 and 22 are case members that accommodate the impeller 30 rotatably. The pump case 20 has a suction port 200 for sucking fuel into the pump passage 202. The pump passage 202 is formed in a C shape on both sides of the impeller 30 in the rotation axis direction along the outer peripheral edge of the impeller 30. A plurality of blade grooves are formed in the rotation direction on the outer peripheral edge portion of the impeller 30 formed in a disk shape. When the impeller 30 rotates together with the shaft 56 due to the rotation of the armature 50, the fuel flows out from the blade groove at the front in the rotation direction toward the blade groove at the rear in the rotation direction, and the fuel is turned into a swirl flow by repeating many inflows. The pressure is increased in the passage 202.

インペラ30の回転により吸入口200から吸入された燃料は、インペラ30の回転によりポンプ通路202で昇圧される。インペラ30の回転軸方向両側のポンプ通路202で昇圧された燃料は、モータ部13側のポンプケース22に設けられた吐出口204で合流し、吐出口204からモータ部13の永久磁石40側に吐出される。   The fuel sucked from the suction port 200 by the rotation of the impeller 30 is pressurized in the pump passage 202 by the rotation of the impeller 30. The fuel pressurized by the pump passages 202 on both sides in the rotation axis direction of the impeller 30 is merged at the discharge port 204 provided in the pump case 22 on the motor unit 13 side, and from the discharge port 204 to the permanent magnet 40 side of the motor unit 13. Discharged.

図1に示すように、吐出口204の回転方向前方の内側面205に沿って燃料吐出方向に延びる仮想直線220は、隣り合う永久磁石40のポンプケース22側の端部の間を通っている。仮想直線220は、ポンプケース22の永久磁石40側の端面23に対し、回転方向前方に向かうにしたがい永久磁石40側に傾斜している。仮想直線220とポンプケース22の端面23とが形成する角度αは、10°≦α≦60°に設定されている。吐出口204は、永久磁石40の間に周方向に2箇所形成されている隙間208のうち、板ばね42が設置されている隙間208に対応する周方向位置付近に形成されている。板ばね42は薄板で形成されているので、隙間208を通過する燃料流れの圧損を極力低減できる。   As shown in FIG. 1, an imaginary straight line 220 extending in the fuel discharge direction along the inner side surface 205 of the discharge port 204 in the rotation direction passes between the ends of the adjacent permanent magnets 40 on the pump case 22 side. . The virtual straight line 220 is inclined to the permanent magnet 40 side as it goes forward in the rotational direction with respect to the end surface 23 of the pump case 22 on the permanent magnet 40 side. The angle α formed by the virtual straight line 220 and the end face 23 of the pump case 22 is set to 10 ° ≦ α ≦ 60 °. The discharge port 204 is formed in the vicinity of a circumferential position corresponding to the gap 208 in which the leaf spring 42 is installed among the gaps 208 formed in the circumferential direction between the permanent magnets 40. Since the leaf spring 42 is formed of a thin plate, the pressure loss of the fuel flow passing through the gap 208 can be reduced as much as possible.

図2において、ポンプ部12の吐出口204から吐出された燃料は、永久磁石40と永久磁石40との間に形成された隙間208、ならびに永久磁石40の内周面と電機子50の外周面との間に形成された燃料通路210を通り、エンドカバー74に設けられた吐出口212からエンジン側に供給される。このように、ポンプ部12で昇圧された燃料がモータ部13の内部を流れるので、燃料は、モータ部13を冷却するとともに、モータ部13の内部の摺動部を潤滑する。吐出口212には逆止弁90が収容されており、この逆止弁90が吐出口212から吐出された燃料の逆流を防止している。   In FIG. 2, the fuel discharged from the discharge port 204 of the pump unit 12 includes a gap 208 formed between the permanent magnet 40 and the inner peripheral surface of the permanent magnet 40 and the outer peripheral surface of the armature 50. The fuel is supplied to the engine side from a discharge port 212 provided in the end cover 74. As described above, the fuel boosted by the pump unit 12 flows through the motor unit 13, so that the fuel cools the motor unit 13 and lubricates the sliding unit inside the motor unit 13. A check valve 90 is accommodated in the discharge port 212, and the check valve 90 prevents the backflow of fuel discharged from the discharge port 212.

モータ部13は、永久磁石40、電機子50、整流子60、ブラシ80、およびチョークコイル82等から構成されている。永久磁石40は、円弧状に形成されており、ハウジング14の内周壁に周方向に2個取り付けられている。そして、永久磁石40は、周方向に極の異なる2磁極を形成している。
図1に示すように、永久磁石40の円周角θは、120°≦θ≦150°に設定されている。したがって、周方向に設置された2個の永久磁石40の間には隙間208が2箇所形成されている。隙間208には、図2に示す板ばね42と、整流子60側からポンプ部12側に延びるベアリングホルダ70の支持部72とが設置されている。板ばね42および支持部72は、永久磁石40の周方向の位置ずれを防止している。また、永久磁石40のポンプケース22側の端面41と吐出口204の永久磁石40側の開口206との距離dは、d≦10mmに設定されている。
The motor unit 13 includes a permanent magnet 40, an armature 50, a commutator 60, a brush 80, a choke coil 82, and the like. The permanent magnets 40 are formed in an arc shape and are attached to the inner peripheral wall of the housing 14 in the circumferential direction. The permanent magnet 40 forms two magnetic poles having different poles in the circumferential direction.
As shown in FIG. 1, the circumferential angle θ of the permanent magnet 40 is set to 120 ° ≦ θ ≦ 150 °. Therefore, two gaps 208 are formed between the two permanent magnets 40 installed in the circumferential direction. In the gap 208, the leaf spring 42 shown in FIG. 2 and the support portion 72 of the bearing holder 70 extending from the commutator 60 side to the pump portion 12 side are installed. The leaf spring 42 and the support portion 72 prevent the circumferential displacement of the permanent magnet 40. The distance d between the end surface 41 of the permanent magnet 40 on the pump case 22 side and the opening 206 of the discharge port 204 on the permanent magnet 40 side is set to d ≦ 10 mm.

電機子50は、永久磁石40の内周側に回転自在に設置されている。電機子50のシャフト56は、ロータコア52に圧入されており、軸方向両端部で金属製のベアリング24、26に軸受けされている。ベアリング24はポンプケース22に支持され、ベアリング26はベアリングホルダ70に支持されている。電機子50は、磁性鋼板を軸方向に積層して形成されたロータコア52と、ロータコア52に巻回されたコイルとからなる。ロータコア52は、回転方向に複数の磁極コア54を形成している。コイルは各磁極コア54に巻線を巻回して形成されている。   The armature 50 is rotatably installed on the inner peripheral side of the permanent magnet 40. The shaft 56 of the armature 50 is press-fitted into the rotor core 52 and is supported by metal bearings 24 and 26 at both ends in the axial direction. The bearing 24 is supported by the pump case 22, and the bearing 26 is supported by the bearing holder 70. The armature 50 includes a rotor core 52 formed by laminating magnetic steel plates in the axial direction, and a coil wound around the rotor core 52. The rotor core 52 forms a plurality of magnetic pole cores 54 in the rotation direction. The coil is formed by winding a winding around each magnetic core 54.

整流子60は、平らな円板状に形成されており、電機子50に対しインペラ30と反対側のシャフト56の軸方向端部に組み付けられている。整流子60は、回転方向に設置された複数のセグメント62を有している。セグメント62は例えばカーボンで形成されており、回転方向に隣り合うセグメント62同士は隙間または絶縁樹脂材により電気的に絶縁されている。整流子60の各セグメント62は、電機子50のコイルと電気的に接続している。電機子50の回転にともない、電機子50に対して軸方向反対側の各セグメント62の端面がブラシ80と順次接触することにより、電機子50のコイルに供給される駆動電流が整流される。ポンプ端子64は、エンドカバー74に圧入されている。ポンプ端子64から、ブラシ80、整流子60を通り、電機子50のコイルに駆動電流が供給される。   The commutator 60 is formed in a flat disk shape, and is assembled to the axial end of the shaft 56 on the side opposite to the impeller 30 with respect to the armature 50. The commutator 60 has a plurality of segments 62 installed in the rotational direction. The segments 62 are made of carbon, for example, and the segments 62 adjacent in the rotation direction are electrically insulated by a gap or an insulating resin material. Each segment 62 of the commutator 60 is electrically connected to the coil of the armature 50. As the armature 50 rotates, the end surfaces of the segments 62 on the opposite side in the axial direction with respect to the armature 50 are sequentially brought into contact with the brush 80, whereby the drive current supplied to the coil of the armature 50 is rectified. The pump terminal 64 is press-fitted into the end cover 74. A driving current is supplied from the pump terminal 64 to the coil of the armature 50 through the brush 80 and the commutator 60.

以上説明した第1実施形態では、吐出口204の回転方向前方の内側面205に沿って燃料吐出方向に延びる仮想直線220が、2個の永久磁石40のポンプケース22側の端部の間を通っているので、ポンプ部12で昇圧され吐出口204から吐出された燃料は、永久磁石40の間に2箇所形成された隙間208のうち、吐出口204に近い板ばね42が設置されている隙間208に滑らかに流入する。これにより、ポンプ部12で昇圧された燃料が永久磁石40と永久磁石40との間に流入するときの燃料流れの圧損を低減できる。また、ポンプ部12で昇圧された燃料が永久磁石40と永久磁石40との間に滑らかに流入するので、ポンプ部12からモータ部13側に流入する燃料流れにより生じる流動音を低減できる。   In the first embodiment described above, the imaginary straight line 220 extending in the fuel discharge direction along the inner side surface 205 of the discharge port 204 in the rotation direction is between the end portions of the two permanent magnets 40 on the pump case 22 side. Since the fuel that has been boosted by the pump unit 12 and discharged from the discharge port 204, the leaf spring 42 close to the discharge port 204 is installed in the gap 208 formed between the permanent magnets 40. It smoothly flows into the gap 208. Thereby, the pressure loss of the fuel flow when the fuel pressurized by the pump unit 12 flows between the permanent magnet 40 and the permanent magnet 40 can be reduced. Further, since the fuel boosted by the pump unit 12 smoothly flows between the permanent magnets 40 and 40, the flow noise generated by the fuel flow flowing from the pump unit 12 to the motor unit 13 can be reduced.

また、永久磁石40の円周角θを120°≦θ≦150°に設定しているので、周方向に設置された2個の永久磁石40の間に形成される隙間208を極力大きくすることができる。これにより、ポンプ部12から永久磁石40の間の隙間208に流入する燃料流れの圧損を低減できる。
また、第1実施形態のように、永久磁石40のポンプケース22側の端面41と吐出口204の永久磁石40側の開口206との距離dをd≦10mmに設定し、ポンプ部12とモータ部13とを軸方向に接近させた構成においても、仮想直線220が2個の永久磁石40の吐出口204側の端部の間を通っているので、ポンプ部12で昇圧した燃料が永久磁石40の間の隙間208に滑らかに流入する。したがって、ポンプ部12からモータ部13に流入する燃料流れの圧損を低減しつつ、ポンプ部12とモータ部13とを接近させ、燃料ポンプ10を小型化できる。
Further, since the circumferential angle θ of the permanent magnet 40 is set to 120 ° ≦ θ ≦ 150 °, the gap 208 formed between the two permanent magnets 40 installed in the circumferential direction should be maximized. Can do. Thereby, the pressure loss of the fuel flow which flows into the clearance gap 208 between the pump part 12 and the permanent magnet 40 can be reduced.
Further, as in the first embodiment, the distance d between the end face 41 of the permanent magnet 40 on the pump case 22 side and the opening 206 of the discharge port 204 on the permanent magnet 40 side is set to d ≦ 10 mm, and the pump unit 12 and the motor Even in the configuration in which the portion 13 is close to the axial direction, the imaginary straight line 220 passes between the end portions of the two permanent magnets 40 on the discharge port 204 side, so that the fuel boosted by the pump portion 12 is the permanent magnet. 40 smoothly flows into the gap 208 between them. Therefore, while reducing the pressure loss of the fuel flow flowing into the motor unit 13 from the pump unit 12, the pump unit 12 and the motor unit 13 can be brought close to each other, and the fuel pump 10 can be downsized.

また、仮想直線220と端面23とが形成する角度αは、10°≦α≦60°に設定されているので、インペラ30の回転方向に向けてポンプ通路202を流れる燃料は、吐出口204において燃料流れの向きを大きく変えることなく、吐出口204の回転方向前方の内側面205に沿って吐出口204から滑らかに吐出される。   Further, since the angle α formed by the virtual straight line 220 and the end face 23 is set to 10 ° ≦ α ≦ 60 °, the fuel flowing through the pump passage 202 toward the rotation direction of the impeller 30 is discharged from the discharge port 204. Without significantly changing the direction of fuel flow, the fuel is smoothly discharged from the discharge port 204 along the inner side surface 205 of the discharge port 204 in the rotational direction.

(第2実施形態)
本発明の第2実施形態を図3に示す。尚、第1実施形態と実質的に同一構成部分に同一符号を付す。
図3に示す第2実施形態では、吐出口204の永久磁石40側の開口206の回転方向前方端部207は、周方向に設置された2個の永久磁石40の間に位置している。したがって、吐出口204から吐出された燃料は、隣り合う永久磁石40の間の隙間208に滑らかに流入する。これにより、ポンプ部12で昇圧された燃料がモータ部13側に流入するときの燃料流れの圧損を低減できる。また、ポンプ部12で昇圧された燃料が隣り合う永久磁石40の間に滑らかに流入するので、ポンプ部12からモータ部13側に流入する燃料流れにより生じる流動音を低減できる。
第2実施形態において、永久磁石40の円周角θと、永久磁石40のポンプケース22側の端面41と吐出口204の永久磁石40側の開口206との距離dと、仮想直線220とポンプケース22の端面23とが形成する角度αとは、第1実施形態と同じ範囲に設定されている。
(Second Embodiment)
A second embodiment of the present invention is shown in FIG. In addition, the same code | symbol is attached | subjected to the substantially same component as 1st Embodiment.
In the second embodiment shown in FIG. 3, the rotation direction front end 207 of the opening 206 on the permanent magnet 40 side of the discharge port 204 is located between the two permanent magnets 40 installed in the circumferential direction. Accordingly, the fuel discharged from the discharge port 204 flows smoothly into the gap 208 between the adjacent permanent magnets 40. Thereby, the pressure loss of the fuel flow when the fuel pressurized by the pump unit 12 flows into the motor unit 13 can be reduced. In addition, since the fuel boosted by the pump unit 12 smoothly flows between the adjacent permanent magnets 40, the flow noise generated by the fuel flow flowing from the pump unit 12 to the motor unit 13 can be reduced.
In the second embodiment, the circumferential angle θ of the permanent magnet 40, the distance d between the end surface 41 of the permanent magnet 40 on the pump case 22 side, and the opening 206 of the discharge port 204 on the permanent magnet 40 side, the virtual straight line 220, and the pump The angle α formed by the end surface 23 of the case 22 is set in the same range as in the first embodiment.

(他の実施形態)
上記実施形態では、周方向に2個設置された永久磁石40の円周角θを、120°≦θ≦150°に設定した。これに対し、永久磁石40の円周角θを、120°≦θ≦150°以外の範囲に設定してもよい。また、永久磁石を2個ではなく、4個以上設置してもよい。
また、永久磁石40のポンプケース22側の端面41と吐出口204の永久磁石40側の開口206との距離dを、d>10mmに設定してもよい。
(Other embodiments)
In the above embodiment, the circumferential angle θ of the two permanent magnets 40 installed in the circumferential direction is set to 120 ° ≦ θ ≦ 150 °. On the other hand, the circumferential angle θ of the permanent magnet 40 may be set in a range other than 120 ° ≦ θ ≦ 150 °. Moreover, you may install four or more permanent magnets instead of two.
Further, the distance d between the end surface 41 of the permanent magnet 40 on the pump case 22 side and the opening 206 of the discharge port 204 on the permanent magnet 40 side may be set to d> 10 mm.

また、仮想直線220と端面23とが形成する角度αを、10°≦α≦60°以外の範囲に設定してもよい。
このように、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。
Further, the angle α formed by the virtual straight line 220 and the end face 23 may be set in a range other than 10 ° ≦ α ≦ 60 °.
As described above, the present invention is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.

(A)は第1実施形態のモータ部側のポンプケースをインペラから見た図、(B)は(A)のB−B線断面図。(A) is the figure which looked at the pump case by the side of the motor part of 1st Embodiment from the impeller, (B) is the BB sectional drawing of (A). 第1実施形態の燃料ポンプを示す断面図。Sectional drawing which shows the fuel pump of 1st Embodiment. (A)は第2実施形態のモータ部側のポンプケースをインペラから見た図、(B)は(A)のB−B線断面図。(A) is the figure which looked at the pump case by the side of the motor part of 2nd Embodiment from the impeller, (B) is the BB sectional drawing of (A). (A)は従来のモータ部側のポンプケースをインペラから見た図、(B)は(A)のB−B線断面図。(A) is the figure which looked at the pump case by the side of the conventional motor part from the impeller, (B) is the BB sectional drawing of (A).

符号の説明Explanation of symbols

10:燃料ポンプ、12:ポンプ部、13:モータ部、20、22:ポンプケース、23:端面、30:インペラ(回転部材)、40:永久磁石、41:端面、50:電機子、56:シャフト(回転軸)、60:整流子、202:ポンプ通路、204:吐出口、205:内側面、206:開口、207:回転方向前方端部、208:隙間、220:仮想直線 10: Fuel pump, 12: Pump part, 13: Motor part, 20, 22: Pump case, 23: End face, 30: Impeller (rotating member), 40: Permanent magnet, 41: End face, 50: Armature, 56: Shaft (rotating shaft), 60: commutator, 202: pump passage, 204: discharge port, 205: inner surface, 206: opening, 207: front end in the rotational direction, 208: gap, 220: virtual straight line

Claims (6)

周方向に複数設置され交互に極の異なる磁極を形成する磁石であって、周方向に隣り合う前記磁石と前記磁石との間に燃料が流れる隙間を形成している磁石と、
前記磁石の内周側に回転自在に設置されている電機子と、
前記電機子に対し前記電機子の回転軸方向の一方側に設置され前記電機子とともに回転することにより燃料を昇圧する回転部材と、
前記回転部材を回転自在に収容し、前記回転部材の回転により昇圧された燃料を前記磁石側に向けて吐出する吐出口を有するポンプケースと、
を備え、
前記吐出口の回転方向前方の内側面に沿って燃料吐出方向に延びる仮想直線は、周方向に隣り合う前記磁石の前記ポンプケース側の端部と端部との間を通っている燃料ポンプ。
A plurality of magnets installed in the circumferential direction and alternately forming different magnetic poles, wherein a magnet forms a gap through which fuel flows between the magnets adjacent to each other in the circumferential direction; and
An armature rotatably installed on the inner periphery of the magnet;
A rotating member that is installed on one side of the armature with respect to the armature and that boosts fuel by rotating together with the armature;
A pump case that rotatably accommodates the rotating member and has a discharge port that discharges fuel boosted by rotation of the rotating member toward the magnet;
With
A fuel pump in which an imaginary straight line extending in the fuel discharge direction along an inner side surface in front of the discharge port in the rotation direction passes between ends of the magnet adjacent to the pump case on the pump case side.
周方向に複数設置され交互に極の異なる磁極を形成する磁石であって、周方向に隣り合う前記磁石と前記磁石との間に燃料が流れる隙間を形成している磁石と、
前記磁石の内周側に回転自在に設置されている電機子と、
前記電機子に対し前記電機子の回転軸方向の一方側に設置され前記電機子とともに回転することにより燃料を昇圧する回転部材と、
前記回転部材を回転自在に収容し、前記回転部材の回転により昇圧された燃料を前記磁石側に向けて吐出する吐出口を有するポンプケースと、
を備え、
前記吐出口の前記磁石側の開口の回転方向前方端部は、周方向に隣り合う前記磁石と前記磁石との間に位置している燃料ポンプ。
A plurality of magnets installed in the circumferential direction and alternately forming different magnetic poles, wherein a magnet forms a gap through which fuel flows between the magnets adjacent to each other in the circumferential direction; and
An armature rotatably installed on the inner periphery of the magnet;
A rotating member that is installed on one side of the armature with respect to the armature and that boosts fuel by rotating together with the armature;
A pump case that rotatably accommodates the rotating member and has a discharge port that discharges fuel boosted by rotation of the rotating member toward the magnet;
With
A fuel pump in which a rotation direction front end portion of the opening on the magnet side of the discharge port is located between the magnets adjacent to each other in the circumferential direction.
前記吐出口の前記磁石側の開口と前記磁石の前記ポンプケース側の端面との距離は、10mm以下である請求項1または2に記載の燃料ポンプ。   The fuel pump according to claim 1 or 2, wherein a distance between an opening of the discharge port on the magnet side and an end surface of the magnet on the pump case side is 10 mm or less. 前記磁石は周方向に2個設置されている請求項1から3のいずれか一項に記載の燃料ポンプ。   The fuel pump according to any one of claims 1 to 3, wherein two magnets are installed in a circumferential direction. 前記磁石の円周角は、120°以上150°以下である請求項4に記載の燃料ポンプ。   The fuel pump according to claim 4, wherein a circumferential angle of the magnet is 120 ° or more and 150 ° or less. 前記吐出口の回転方向前方の内側面に沿って燃料吐出方向に延びる仮想直線は、前記ポンプケースの前記磁石側の端面に対し、回転方向前方に向かうにしたがい前記磁石側に10°以上60°以下の角度で傾斜している請求項1から5のいずれか一項に記載の燃料ポンプ。   An imaginary straight line extending in the fuel discharge direction along the inner surface of the discharge port in the rotation direction is 10 ° or more and 60 ° toward the magnet side in the rotation direction forward with respect to the end surface on the magnet side of the pump case. The fuel pump according to any one of claims 1 to 5, wherein the fuel pump is inclined at the following angle.
JP2006272933A 2006-10-04 2006-10-04 Fuel pump Active JP4952180B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006272933A JP4952180B2 (en) 2006-10-04 2006-10-04 Fuel pump
US11/905,754 US20080085199A1 (en) 2006-10-04 2007-10-03 Fuel pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272933A JP4952180B2 (en) 2006-10-04 2006-10-04 Fuel pump

Publications (2)

Publication Number Publication Date
JP2008088934A true JP2008088934A (en) 2008-04-17
JP4952180B2 JP4952180B2 (en) 2012-06-13

Family

ID=39275067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272933A Active JP4952180B2 (en) 2006-10-04 2006-10-04 Fuel pump

Country Status (2)

Country Link
US (1) US20080085199A1 (en)
JP (1) JP4952180B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016101042A (en) * 2014-11-25 2016-05-30 株式会社ニッキ Brushless motor integrated pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9303607B2 (en) * 2012-02-17 2016-04-05 Ford Global Technologies, Llc Fuel pump with quiet cam operated suction valve
CN113423956B (en) 2019-01-16 2024-02-02 株式会社美姿把 Non-positive displacement pump and liquid supply device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62792A (en) * 1985-06-26 1987-01-06 Mitsubishi Heavy Ind Ltd Non-leak trisector air preheater
JPH09310694A (en) * 1996-05-21 1997-12-02 Denso Corp Fuel pump and its manufacture
JP2003120567A (en) * 2001-10-10 2003-04-23 Denso Corp Fuel pump

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790311A (en) * 1972-11-27 1974-02-05 Gen Motors Corp Four vane elliptical rotary air conditioning compressor
US4998865A (en) * 1988-07-11 1991-03-12 Aisan Kogyo Kabushiki Kaisha Brushless DC pump with enclosed circuit board
US5129796A (en) * 1991-02-19 1992-07-14 General Motors Corporation Automotive fuel pump
US5338165A (en) * 1991-11-25 1994-08-16 Ford Motor Company Automotive fuel pump with modular pump housing
JP3107438B2 (en) * 1992-01-14 2000-11-06 三菱電機株式会社 Electric fuel pump
US5401143A (en) * 1993-06-07 1995-03-28 Ford Motor Company Multi-stage automotive fuel pump having angeled fuel transfer passage
US5525048A (en) * 1993-12-15 1996-06-11 Walbro Corporation Cantilever armature mount for fuel pumps
DE19651650A1 (en) * 1996-12-12 1998-06-18 Bosch Gmbh Robert Flow pump
US6068456A (en) * 1998-02-17 2000-05-30 Walbro Corporation Tapered channel turbine fuel pump
US6823831B2 (en) * 1998-09-28 2004-11-30 Parker-Hannifin Corporation Flame arrestor system for fuel pump discharge
DE10043068A1 (en) * 2000-09-01 2002-03-14 Bosch Gmbh Robert Unit for delivering fuel
JP3760748B2 (en) * 2000-09-20 2006-03-29 株式会社日立製作所 Hermetic electric compressor
JP3924673B2 (en) * 2001-11-20 2007-06-06 株式会社ケーヒン Wesco type fuel pump
JP4305951B2 (en) * 2002-12-10 2009-07-29 株式会社デンソー Fuel pump
JP2005113686A (en) * 2003-10-02 2005-04-28 Aisan Ind Co Ltd Fuel pump
JP4534677B2 (en) * 2003-10-31 2010-09-01 株式会社デンソー Fuel pump
JP2006037870A (en) * 2004-07-28 2006-02-09 Aisan Ind Co Ltd Motor pump and fuel supply system equipped with motor pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62792A (en) * 1985-06-26 1987-01-06 Mitsubishi Heavy Ind Ltd Non-leak trisector air preheater
JPH09310694A (en) * 1996-05-21 1997-12-02 Denso Corp Fuel pump and its manufacture
JP2003120567A (en) * 2001-10-10 2003-04-23 Denso Corp Fuel pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016101042A (en) * 2014-11-25 2016-05-30 株式会社ニッキ Brushless motor integrated pump

Also Published As

Publication number Publication date
US20080085199A1 (en) 2008-04-10
JP4952180B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4789003B2 (en) Fuel pump
JP4797822B2 (en) Manufacturing method of fuel pump
EP3144538B1 (en) Electric pump
JP2018076786A (en) Motor pump
JP4952180B2 (en) Fuel pump
JP2009077497A (en) Electromotor and fuel pump using the same
JP4696855B2 (en) Fuel pump
JP2008101469A (en) Fuel pump
JP2006141113A (en) Fuel pump and manufacturing method of the same
JP4618434B2 (en) Fuel pump impeller and fuel pump using the same
JP5747862B2 (en) Fuel pump
JP2006161723A (en) Impeller and fuel pump using the same
US8007226B2 (en) Fuel pump
JP2005207320A (en) Fuel pump
JP2006177321A (en) Fuel pump
JP2010115019A (en) Pump motor
JP2004360678A (en) Fuel pump
JP2010115001A (en) Brushless motor
JP5172115B2 (en) Swirl compressor and method of manufacturing vortex compressor
JP4505797B2 (en) Impeller and fluid pump using the same
JP2007255405A (en) Fuel pump
JP2006046212A (en) Fuel pump
JP5207999B2 (en) Fuel pump
JP2007315236A (en) Fuel pump
JP2003120567A (en) Fuel pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R151 Written notification of patent or utility model registration

Ref document number: 4952180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250