JP4789003B2 - Fuel pump - Google Patents

Fuel pump Download PDF

Info

Publication number
JP4789003B2
JP4789003B2 JP2006095335A JP2006095335A JP4789003B2 JP 4789003 B2 JP4789003 B2 JP 4789003B2 JP 2006095335 A JP2006095335 A JP 2006095335A JP 2006095335 A JP2006095335 A JP 2006095335A JP 4789003 B2 JP4789003 B2 JP 4789003B2
Authority
JP
Japan
Prior art keywords
pump
impeller
fuel
blade
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006095335A
Other languages
Japanese (ja)
Other versions
JP2007270681A (en
Inventor
秀喜 成迫
真司 間
清利 大井
嘉男 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006095335A priority Critical patent/JP4789003B2/en
Priority to KR1020070030595A priority patent/KR100807051B1/en
Priority to CNB200710089022XA priority patent/CN100526655C/en
Priority to DE102007000191A priority patent/DE102007000191A1/en
Priority to US11/727,976 priority patent/US20070231120A1/en
Publication of JP2007270681A publication Critical patent/JP2007270681A/en
Application granted granted Critical
Publication of JP4789003B2 publication Critical patent/JP4789003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/188Rotors specially for regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、回転方向に複数形成された羽根溝を羽根板で仕切り、羽根溝に沿って形成されるポンプ通路の燃料を回転することにより昇圧する料ポンプに関する。
The present invention, a plurality formed vane grooves in the rotating direction partition with blades, to fuel pumps for boosting by rotating the fuel pump passage formed along the vane grooves.

従来、円板状のインペラの回転方向に複数の羽根溝を形成し、回転方向に隣接する羽根溝の間を羽根板で仕切り、インペラが回転することにより羽根溝に沿って形成されたポンプ通路の燃料を昇圧する燃料ポンプが知られている(例えば、特許文献1参照)。このような燃料ポンプにおいては、回転方向に隣接する羽根板同士が等角度間隔に形成されていると、図の(A)に示すように、インペラの回転に伴い、(羽根板総数)×(インペラの回転数)に相当する周波数に高い音圧ピークを有する騒音が発生する。 Conventionally, a plurality of blade grooves are formed in the rotation direction of the disk-shaped impeller, the blade grooves adjacent to each other in the rotation direction are partitioned by the blade plates, and the pump passage formed along the blade grooves by rotating the impeller There is known a fuel pump that boosts the pressure of the fuel (for example, see Patent Document 1). In such a fuel pump, when the blades adjacent to each other in the rotation direction are formed at equal angular intervals, as shown in FIG. 7 (A), as the impeller rotates, (total number of blades) × Noise having a high sound pressure peak at a frequency corresponding to (the rotational speed of the impeller) is generated.

そこで、特許文献1のように、回転方向に隣接する羽根溝(羽根板)同士の隣接角度の少なくとも一部が異なるように隣接角度を設定することにより、図の(B)に示すように、音圧ピークの周波数帯域を広げて音圧ピークを低減することが考えられる。
ところで、インペラの回転に伴い回転方向前方の羽根溝から回転方向後方の羽根溝に向けて燃料が流出、流入を次々と繰り返すことにより、インペラは燃料を旋回流にして昇圧する。このように燃料を昇圧するインペラの構成において、羽根板の隣接角度の差が大きく、羽根板により仕切られている羽根溝の回転方向の幅の差が大きくなると、羽根溝に流入する燃料量と、羽根溝から流出する燃料量との差が大きくなる。すると、旋回流を形成して燃料を昇圧する燃料ポンプのポンプ部で燃料を充分に昇圧できない。その結果、ポンプ部の昇圧効率が低下し、ポンプ部のポンプ効率が低下する。羽根板の隣接角度が同じであり羽根溝の回転方向の幅が同じであればポンプ部のポンプ効率は上昇するが、前述したように、インペラの回転に伴い発生する騒音の音圧ピークが高くなるという問題が生じる。
Therefore, as in Patent Document 1, by at least a portion of an adjacent angle between the vane grooves adjacent in the direction of rotation (slats) sets the adjacent angles differently, as shown in FIG. 7 (B) It is conceivable to reduce the sound pressure peak by expanding the frequency band of the sound pressure peak.
By the way, as the impeller rotates, the fuel flows out and inflows one after another from the blade groove at the front in the rotation direction toward the blade groove at the rear in the rotation direction, so that the impeller boosts the pressure using the fuel as a swirl flow. In the structure of the impeller that boosts the fuel in this way, when the difference in the adjacent angle of the blades is large and the difference in the width in the rotation direction of the blade grooves partitioned by the blades is large, the amount of fuel flowing into the blade grooves The difference from the amount of fuel flowing out of the blade groove becomes large. Then, the fuel cannot be sufficiently boosted by the pump portion of the fuel pump that boosts the fuel by forming a swirling flow. As a result, the boosting efficiency of the pump unit is lowered, and the pump efficiency of the pump unit is lowered. The pump efficiency of the pump section increases if the adjacent angles of the blades are the same and the width of the blade grooves in the rotation direction is the same, but as described above, the sound pressure peak of the noise generated with the impeller rotation is high. Problem arises.

ここで燃料ポンプの効率とは、(モータ効率)×(ポンプ効率)で表される。したがって、ポンプ効率が向上すると燃料ポンプの効率が向上する。モータ効率およびポンプ効率は、燃料ポンプのモータ部に供給する駆動電流をI、印加する電圧をV、モータ部のトルクをT、モータ部の回転数をN、燃料ポンプが吐出する燃料の吐出圧をP、燃料吐出量をQとすると、(モータ効率)=(T×N)/(I×V)、(ポンプ効率)=(P×Q)/(T×N)で表される。したがって、(燃料ポンプの効率)=(モータ効率)×(ポンプ効率)=(P×Q)/(I×V)である。   Here, the fuel pump efficiency is expressed by (motor efficiency) × (pump efficiency). Therefore, when the pump efficiency is improved, the efficiency of the fuel pump is improved. The motor efficiency and the pump efficiency are: the drive current supplied to the motor part of the fuel pump is I, the applied voltage is V, the torque of the motor part is T, the rotational speed of the motor part is N, and the discharge pressure of the fuel discharged from the fuel pump Is P and the fuel discharge amount is Q, (motor efficiency) = (T × N) / (I × V), (pump efficiency) = (P × Q) / (T × N). Therefore, (fuel pump efficiency) = (motor efficiency) × (pump efficiency) = (P × Q) / (I × V).

特開平11−50990号公報Japanese Patent Laid-Open No. 11-50990

本発明は上記問題を解決するためになされたものであり、騒音の音圧ピークを低減し、かつポンプ効率の低下を抑制する料ポンプを提供することを目的とする。
The present invention has been made to solve the above problems, reducing the sound pressure peaks of the noise, and an object of the invention to provide a suppressing fuel pump a decrease in pump efficiency.

請求項1記載の発明では、隣接する各羽根板における回転方向一端部同士が形成する隣接角度の最大値と最小値との差である分散幅は、2.5°≦分散幅≦4°に設定されている。分散幅<2.5°であると、隣接角度の最大値と最小値との差が小さいので、音圧ピークの周波数帯域が広がらず、音圧ピークを充分に低減することができない。また、分散幅>4°であると、羽根溝の回転方向の幅の差が大きくなり、羽根溝に流入する燃料量と、羽根溝から流出する燃料量との差が大きくなる。すると、前述したように、回転方向前方から回転方向後方の羽根溝に向けて燃料が流出、流入を次々と繰り返して燃料を昇圧する燃料ポンプのポンプ部において燃料を充分に昇圧できない。その結果、ポンプ部の昇圧効率が低下し、ポンプ部のポンプ効率が低下する。
In the first aspect of the present invention, the dispersion width, which is the difference between the maximum value and the minimum value of the adjacent angles formed by the rotation direction end portions of the adjacent blades, is 2.5 ° ≦ dispersion width ≦ 4 °. Is set to If the dispersion width is less than 2.5 °, the difference between the maximum value and the minimum value of the adjacent angle is small, so the frequency band of the sound pressure peak does not widen, and the sound pressure peak cannot be reduced sufficiently. If the dispersion width is greater than 4 °, the difference in the width of the blade groove in the rotational direction increases, and the difference between the amount of fuel flowing into the blade groove and the amount of fuel flowing out of the blade groove increases. Then, as described above, the fuel cannot sufficiently be boosted in the pump portion of the fuel pump that boosts the fuel by repeatedly flowing out and inflowing one after another from the front in the rotation direction toward the blade groove at the rear in the rotation direction. As a result, the boosting efficiency of the pump unit is lowered, and the pump efficiency of the pump unit is lowered.

それ故、請求項1記載の発明では、2.5°≦分散幅≦4°に設定することにより、インペラの回転に伴い発生する音圧ピークを低減しつつ、ポンプ効率の低下を抑制している。
ここで、隣接角度<8°であると、羽根溝の回転方向の幅が狭く、容積が小さいので、旋回流となっている燃料が羽根溝に充分に流入できない。したがって、旋回流のエネルギーを上昇させることが困難である。また、隣接角度>12°であると、羽根溝の回転方向の幅が広く、容積が大きいので、羽根溝に流入する燃料を旋回流として流出させ、旋回流のエネルギーを上昇させることが困難である。このように、旋回流のエネルギーが上昇しないと、燃料の昇圧効率が低下し、ポンプ効率が低下する。
Therefore, in the first aspect of the invention, by setting 2.5 ° ≦ dispersion width ≦ 4 °, it is possible to suppress a decrease in pump efficiency while reducing a sound pressure peak generated with the rotation of the impeller. ing.
Here, when the adjacent angle is less than 8 °, the width of the blade groove in the rotation direction is narrow and the volume is small, so that the swirling fuel cannot sufficiently flow into the blade groove. Therefore, it is difficult to increase the energy of the swirling flow. Further, if the adjacent angle is greater than 12 °, the width of the blade groove in the rotation direction is wide and the volume is large, so that it is difficult to cause the fuel flowing into the blade groove to flow out as a swirling flow and increase the energy of the swirling flow. is there. Thus, if the energy of the swirl flow does not increase, the fuel boosting efficiency decreases, and the pump efficiency decreases.

そこで、請求項に記載の発明では、8°≦隣接角度≦12°に隣接角度をそれぞれ設定することにより、インペラの回転により発生する旋回流のエネルギーを上昇させ、ポンプ効率を向上することができる。
請求項に記載の発明では、料ポンプのポンプ効率が向上し、その結果として燃料ポンプの効率が向上するとともに、燃料ポンプが発生する音圧のピークを低減できる。
Therefore, in the first aspect of the invention, by setting the adjacent angles to 8 ° ≦ adjacent angle ≦ 12 °, the energy of the swirling flow generated by the rotation of the impeller can be increased, and the pump efficiency can be improved. it can.
In the invention described in claim 1, improves pumping efficiency of the fuel pump, with the efficiency of the fuel pump is improved as a result, it is possible to reduce the peak of the sound pressure fuel pump occurs.

以下、本発明の複数の実施形態を図に基づいて説明する。
(第1実施形態)
本発明の第1実施形態によるインペラを用いた燃料ポンプを図2に示す。燃料ポンプ10は、例えば車両等の燃料タンク内に装着されるインタンク式のタービンポンプであり、燃料タンク内の燃料を図示しない燃料噴射弁に供給する。燃料ポンプ10の吐出圧は0.25〜1MPa、吐出量は50〜250L/h、回転数は4000〜12000rpmの範囲で設定されている。
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
A fuel pump using the impeller according to the first embodiment of the present invention is shown in FIG. The fuel pump 10 is an in-tank type turbine pump mounted in a fuel tank of a vehicle, for example, and supplies the fuel in the fuel tank to a fuel injection valve (not shown). The discharge pressure of the fuel pump 10 is set in the range of 0.25 to 1 MPa, the discharge amount is 50 to 250 L / h, and the rotation speed is 4000 to 12000 rpm.

燃料ポンプ10は、ポンプ部12と、ポンプ部12を回転駆動するモータ部13とを備えている。ハウジング14は、ポンプ部12およびモータ部13のハウジングを兼ねており、エンドカバー16およびポンプケース20をかしめている。
ポンプ部12は、ポンプケース20、22、およびインペラ30を有しているタービンポンプである。ポンプケース22はハウジング14内に圧入され、ハウジング14の段部15に軸方向に突き当てられている。ポンプケース20、22は、回転部材としてのインペラ30を回転自在に収容するケース部材である。ポンプケース20、22とインペラ30との間に、それぞれC字状のポンプ通路202が形成されている。
The fuel pump 10 includes a pump unit 12 and a motor unit 13 that rotationally drives the pump unit 12. The housing 14 also serves as a housing for the pump unit 12 and the motor unit 13, and crimps the end cover 16 and the pump case 20.
The pump unit 12 is a turbine pump having pump cases 20 and 22 and an impeller 30. The pump case 22 is press-fitted into the housing 14 and abutted against the step portion 15 of the housing 14 in the axial direction. The pump cases 20 and 22 are case members that rotatably accommodate an impeller 30 as a rotating member. C-shaped pump passages 202 are respectively formed between the pump cases 20 and 22 and the impeller 30.

図1に示すように、円板状に形成されたインペラ30の外周縁部には回転方向に複数の羽根溝36が形成されており、羽根溝36の周方向幅は不均一である。その結果、羽根溝36は回転方向に不等ピッチで配置されている。回転方向に隣接している羽根溝36は羽根板34により仕切られている。インペラ30が図2に示す電機子50の回転によりシャフト51とともに回転すると、回転方向前方の羽根溝36の径方向外側からポンプ通路202に流出した燃料は回転方向後方の羽根溝36の径方向内側に流入する。このような燃料の流出、流入を羽根溝36同士で多数繰り返すことにより、燃料は旋回流220(図4参照)となって図1に示すポンプ通路202で昇圧される。インペラ30の回転によりポンプケース20に設けられた図示しない吸入口から吸入された燃料は、インペラ30の回転によりポンプ通路202で昇圧され、ポンプケース22に設けられた図示しない吐出口からモータ部13側に圧送される。モータ部13側に圧送された燃料は、永久磁石40と電機子50との間の燃料通路206を通り、エンドカバー16に設けられた吐出口210からエンジン側に供給される。ポンプケース20に設けた空気抜き孔204は、ポンプ通路202の燃料中に含まれる空気を燃料ポンプ10の外に排出するためのものである。   As shown in FIG. 1, a plurality of blade grooves 36 are formed in the rotation direction on the outer peripheral edge portion of the impeller 30 formed in a disc shape, and the circumferential width of the blade grooves 36 is not uniform. As a result, the blade grooves 36 are arranged at unequal pitches in the rotation direction. The blade grooves 36 adjacent to each other in the rotation direction are partitioned by the blade plate 34. When the impeller 30 rotates together with the shaft 51 due to the rotation of the armature 50 shown in FIG. Flow into. By repeating such outflow and inflow of the fuel many times between the blade grooves 36, the fuel becomes a swirl flow 220 (see FIG. 4) and is pressurized in the pump passage 202 shown in FIG. The fuel sucked from the suction port (not shown) provided in the pump case 20 by the rotation of the impeller 30 is boosted in the pump passage 202 by the rotation of the impeller 30, and the motor unit 13 from the discharge port (not shown) provided in the pump case 22. Pumped to the side. The fuel pumped to the motor unit 13 side passes through the fuel passage 206 between the permanent magnet 40 and the armature 50 and is supplied to the engine side from the discharge port 210 provided in the end cover 16. The air vent hole 204 provided in the pump case 20 is for exhausting the air contained in the fuel in the pump passage 202 out of the fuel pump 10.

4分の1の円弧状に形成されている永久磁石40は、ハウジング14の内周壁に円周上に4個取り付けられている。永久磁石40は回転方向に極の異なる磁極を4個形成している。
電機子50のインペラ30側の端部が樹脂製カバー70で覆われることにより、電機子50の回転抵抗は低下している。また、電機子50のインペラ30と反対側の端部に整流子80が組み付けられている。電機子50の回転軸としてのシャフト51は、エンドカバー16とポンプケース20とにそれぞれ収容され支持されている軸受部材24により軸受けされている。
Four permanent magnets 40 formed in a quarter arc shape are attached to the inner peripheral wall of the housing 14 on the circumference. The permanent magnet 40 has four magnetic poles having different poles in the rotation direction.
Since the end of the armature 50 on the impeller 30 side is covered with the resin cover 70, the rotational resistance of the armature 50 is reduced. Further, a commutator 80 is assembled at the end of the armature 50 opposite to the impeller 30. A shaft 51 as a rotating shaft of the armature 50 is supported by a bearing member 24 housed and supported in the end cover 16 and the pump case 20.

電機子50は、回転中央部に中央コア52を有している。シャフト51は、断面六角形の筒状に形成された中央コア52に圧入されている。6個の磁極コア54は中央コア52の外周に回転方向に設置され、中央コア52と嵌合して結合している。各磁極コア54の外周に絶縁樹脂で成形されたボビン60が嵌合し、ボビン60の外周に巻線を集中巻してコイル62が形成されている。   The armature 50 has a central core 52 at the center of rotation. The shaft 51 is press-fitted into a central core 52 formed in a cylindrical shape having a hexagonal cross section. The six magnetic pole cores 54 are installed on the outer periphery of the central core 52 in the rotational direction, and are fitted and coupled to the central core 52. A bobbin 60 formed of an insulating resin is fitted to the outer periphery of each magnetic pole core 54, and a coil 62 is formed by concentrating windings on the outer periphery of the bobbin 60.

各コイル62の整流子80側の端部はコイル端子64と電気的に接続している。コイル端子64は各コイル62の回転方向位置に対応しており、整流子80側の端子84と嵌合して電気的に接続している。コイル62の整流子80と反対側であるインペラ30側の端部はコイル端子66と電気的に接続している。6個のコイル端子66は、環状の端子68により電気的に接続している。   The end of each coil 62 on the commutator 80 side is electrically connected to the coil terminal 64. The coil terminal 64 corresponds to the rotational direction position of each coil 62 and is fitted and electrically connected to the terminal 84 on the commutator 80 side. The end of the coil 62 opposite to the commutator 80 on the side of the impeller 30 is electrically connected to the coil terminal 66. The six coil terminals 66 are electrically connected by an annular terminal 68.

整流子80は一体に形成されたカセット式である。中央コア52にシャフト51を圧入した状態で、整流子80の貫通孔81にシャフト51を挿入して電機子50に整流子80を組み付けるとき、整流子80の電機子50側に突出している端子84は、それぞれ電機子50のコイル端子64に嵌合しコイル端子64と電気的に接続する。   The commutator 80 is a cassette type integrally formed. When the shaft 51 is pressed into the central core 52 and the shaft 51 is inserted into the through hole 81 of the commutator 80 and the commutator 80 is assembled to the armature 50, the terminals projecting toward the armature 50 side of the commutator 80 84 are fitted to the coil terminals 64 of the armature 50 and are electrically connected to the coil terminals 64.

整流子80は回転方向に設置された6個のセグメント82を有している。セグメント82は例えばカーボンで形成されており、セグメント82同士は、空隙および絶縁樹脂材86により電気的に絶縁されている。
各セグメント82は中間端子83を介し端子84と電気的に接続している。絶縁樹脂材86は、セグメント82(図示しないブラシとの摺動面を除く)、中間端子83、および端子84をインサート成形によって一体化し、これにより整流子80が構成されている。整流子80が電機子50とともに回転することにより、各セグメント82は順次ブラシと接触する。整流子80が回転しながらブラシと順次接触することにより、コイル62に供給される電流が整流される。永久磁石40、電機子50、整流子80および図示しないブラシは直流電動機を構成している。
The commutator 80 has six segments 82 installed in the rotational direction. The segments 82 are made of, for example, carbon, and the segments 82 are electrically insulated from each other by a gap and an insulating resin material 86.
Each segment 82 is electrically connected to the terminal 84 via the intermediate terminal 83. The insulating resin material 86 is formed by integrating the segment 82 (excluding a sliding surface with a brush (not shown)), the intermediate terminal 83, and the terminal 84 by insert molding, thereby forming the commutator 80. As the commutator 80 rotates with the armature 50, each segment 82 sequentially contacts the brush. As the commutator 80 rotates and sequentially contacts the brush, the current supplied to the coil 62 is rectified. The permanent magnet 40, the armature 50, the commutator 80, and a brush (not shown) constitute a DC motor.

(インペラ30)
インペラ30の構造をさらに詳細に説明する。
インペラ30は樹脂により円板状に一体成形されている。図1に示すように、インペラ30の外周は環状部32に囲まれており、環状部32の内周側に羽根溝36が形成されている。図3に示すように、回転方向に隣接する羽根溝36は、インペラ30の厚み方向のほぼ中心からインペラ30の厚み方向の両端面31に向けて回転方向前方に傾斜するV字状の羽根板34により仕切られている。また、図4に示すように、羽根溝36は、羽根溝36の径方向内側から径方向外側に向けて突出する仕切壁35により径方向内側の一部を仕切られているが、仕切壁35の径方向外側で回転軸方向に貫通している。軸方向両側のポンプ通路202から羽根溝36内に流入した燃料は、この仕切壁35により回転軸方向両側で逆方向に回転する旋回流220となる。
(Impeller 30)
The structure of the impeller 30 will be described in more detail.
The impeller 30 is integrally formed in a disc shape with resin. As shown in FIG. 1, the outer periphery of the impeller 30 is surrounded by an annular portion 32, and a blade groove 36 is formed on the inner peripheral side of the annular portion 32. As shown in FIG. 3, the blade grooves 36 adjacent to each other in the rotational direction are V-shaped blades that are inclined forward in the rotational direction from substantially the center in the thickness direction of the impeller 30 toward both end surfaces 31 in the thickness direction of the impeller 30. 34 is partitioned. As shown in FIG. 4, the blade groove 36 is partly divided on the radially inner side by a partition wall 35 protruding from the radially inner side of the blade groove 36 toward the radially outer side. It penetrates in the direction of the rotation axis on the outside in the radial direction. The fuel that has flowed into the blade groove 36 from the pump passages 202 on both sides in the axial direction becomes a swirl flow 220 that rotates in opposite directions on both sides in the rotation axis direction by the partition wall 35.

図3に示すように、羽根溝36の回転方向後方の後方面37の少なくとも径方向内側は径方向内側から径方向外側に向けて回転方向後方に傾斜している。そして、羽根溝36の後方面37の径方向内側端37aと径方向外側端37bとを結ぶ線分110は、径方向内側端37aからインペラ30の半径102上を径方向外側に延びる直線104に対して径方向外側に向かうにしたがい回転方向後方に傾斜している。つまり、後方面37は、径方向外側に向けて回転方向後方に傾斜している。図3において符号100はインペラ30の回転軸を示している。羽根溝36の後方面37の径方向内側端37a、径方向外側端37bは、羽根板34の回転方向の一端部、本実施形態では羽根板34の回転方向前方の端部における径方向内側端34a、径方向外側端34bでもある。   As shown in FIG. 3, at least the radially inner side of the rear surface 37 at the rear of the blade groove 36 in the rotational direction is inclined rearward in the rotational direction from the radially inner side to the radially outer side. A line segment 110 connecting the radially inner end 37a and the radially outer end 37b of the rear surface 37 of the blade groove 36 is a straight line 104 extending radially outward from the radially inner end 37a on the radius 102 of the impeller 30. On the other hand, it is inclined backward in the rotational direction as it goes radially outward. That is, the rear surface 37 is inclined rearward in the rotational direction toward the radially outer side. In FIG. 3, reference numeral 100 indicates the rotation axis of the impeller 30. The radially inner end 37a and the radially outer end 37b of the rear surface 37 of the blade groove 36 are one end in the rotational direction of the blade plate 34, in this embodiment, the radially inner end at the front end in the rotational direction of the blade plate 34. 34a and radially outer end 34b.

ここで、図1に示すように、回転方向に隣接する羽根板34同士において、羽根板34の回転方向一端部である径方向外側端34bと回転軸100とを結ぶ直線104が形成する隣接角度をθとすると、隣接角度θの最大値θmaxと最小値θminとの差である分散幅(θmax−θmin)は、2.5°≦分散幅≦4°に設定されている。 Here, as shown in FIG. 1, the adjacent angle formed by the straight line 104 connecting the radially outer end 34 b that is one end portion of the blade plate 34 in the rotation direction and the rotation shaft 100 between the blade plates 34 adjacent to each other in the rotation direction. Is θ, the dispersion width (θ max −θ min ), which is the difference between the maximum value θ max and the minimum value θ min of the adjacent angle θ, is set to 2.5 ° ≦ dispersion width ≦ 4 °.

インペラ30が回転すると、羽根板34の隣接角度が等しい場合には、図の(A)に示すように、(羽根板総数)×(インペラの回転数)に相当する周波数に高い音圧ピークを有する騒音が発生する。そして、羽根板34の隣接角度の分散幅が小さいと、音圧ピークの周波数帯域が広がらないので、隣接角度が等しい場合と同様に音圧ピークを低減できない。しかし、羽根板34の隣接角度の分散幅が小さいと、羽根溝36に流入する燃料量と、羽根溝36から流出する燃料量との差が小さくなる。その結果、インペラ30の回転に伴い羽根溝36への流入、羽根溝36からの流出を繰り返すことにより燃料を昇圧する昇圧効率が上昇するので、ポンプ部12のポンプ効率および燃料ポンプ10の効率が上昇する。 When the impeller 30 rotates, when the same adjacent angle of the blade plate 34, as shown in FIG. 7 (A), high sound pressure peak in the frequency corresponding to (slats total) × (rotating speed of the impeller) Noise is generated. And if the dispersion | distribution width of the adjacent angle of the blade board 34 is small, since the frequency band of a sound pressure peak does not spread, a sound pressure peak cannot be reduced like the case where an adjacent angle is equal. However, if the dispersion width of the adjacent angle of the blade plate 34 is small, the difference between the amount of fuel flowing into the blade groove 36 and the amount of fuel flowing out of the blade groove 36 becomes small. As a result, the boosting efficiency for boosting the fuel is increased by repeating the inflow into the blade groove 36 and the outflow from the blade groove 36 as the impeller 30 rotates, so that the pump efficiency of the pump unit 12 and the efficiency of the fuel pump 10 are increased. To rise.

一方、羽根板34の隣接角度の分散幅が大きくなると、図の(B)に示すように、音圧ピークの周波数帯域が分散し音圧ピークを低減できる。しかし、隣接角度の分散幅が大きいと、羽根溝36に流入する燃料量と、羽根溝36から流出する燃料量との差が大きくなる。その結果、インペラ30の回転に伴い羽根溝36への流入、羽根溝36からの流出を繰り返すことにより燃料を昇圧するポンプ部12の昇圧効率が低下するので、ポンプ部12のポンプ効率および燃料ポンプ10の効率が低下する。 On the other hand, the dispersion width of the adjacent angle of the blade plate 34 is increased, as shown in FIG. 7 (B), the frequency band of the sound pressure peak can be reduced dispersed sound pressure peak. However, if the dispersion width at the adjacent angle is large, the difference between the amount of fuel flowing into the blade groove 36 and the amount of fuel flowing out of the blade groove 36 increases. As a result, the pumping efficiency of the pump section 12 and the fuel pump are reduced because the pumping section 12 that boosts fuel decreases by repeatedly flowing into and out of the blade groove 36 as the impeller 30 rotates. The efficiency of 10 is reduced.

ここで、分散幅と音圧ピークおよびポンプ効率との特性を図5に示す。グラフ300は、分散幅と音圧ピークとの関係を示し、グラフ302は、分散幅とポンプ効率との関係を示している。図5の特性から、音圧ピークが135dB以下であり、かつ羽根板34の隣接角度がすべて等しい場合、つまり分散幅が0°の場合の最適値に比べてポンプ効率の低下が1%以下になる分散幅の範囲は、2.5°≦分散幅≦4°であることが分かる。このように、2.5°≦分散幅≦4°の範囲に分散幅を設定することにより、音圧ピークを低減するとともに、ポンプ効率の低下を抑制できる。   Here, the characteristics of the dispersion width, the sound pressure peak, and the pump efficiency are shown in FIG. A graph 300 shows a relationship between the dispersion width and the sound pressure peak, and a graph 302 shows a relationship between the dispersion width and the pump efficiency. From the characteristics shown in FIG. 5, when the sound pressure peak is 135 dB or less and the adjacent angles of the blades 34 are all equal, that is, the pump efficiency is reduced to 1% or less compared to the optimum value when the dispersion width is 0 °. It can be seen that the range of the dispersion width is 2.5 ° ≦ dispersion width ≦ 4 °. Thus, by setting the dispersion width in the range of 2.5 ° ≦ dispersion width ≦ 4 °, it is possible to reduce the sound pressure peak and suppress the pump efficiency from decreasing.

また、分散幅だけでなく、図6のグラフ310に示すように、隣接角度自体の大きさもポンプ効率に影響する。図6は、インペラのすべての羽根板の隣接角度を等しくした場合の、隣接角度とポンプ効率との関係を示している。
隣接角度<8°であると、羽根溝36の回転方向の幅が狭く、容積が小さくなるので、旋回流となっている燃料が羽根溝36に充分に流入できない。したがって、旋回流のエネルギーを上昇させることが困難である。また、隣接角度>12°であると、羽根溝36の回転方向の幅が広く、容積が大きくなるので、羽根溝36に流入する燃料を旋回流として流出させ、旋回流のエネルギーを上昇させることが困難である。このように、旋回流のエネルギーが上昇しないと、燃料の昇圧効率が低下し、ポンプ効率が低下する。
Further, not only the dispersion width but also the size of the adjacent angle itself affects the pump efficiency as shown in the graph 310 of FIG. FIG. 6 shows the relationship between the adjacent angle and the pump efficiency when the adjacent angles of all the blades of the impeller are made equal.
If the adjacent angle is less than 8 °, the width of the blade groove 36 in the rotational direction is narrow and the volume is small, so that the swirling fuel cannot sufficiently flow into the blade groove 36. Therefore, it is difficult to increase the energy of the swirling flow. Further, when the adjacent angle> 12 °, the width of the blade groove 36 in the rotation direction is wide and the volume increases, so that the fuel flowing into the blade groove 36 is discharged as a swirl flow, and the energy of the swirl flow is increased. Is difficult. Thus, if the energy of the swirl flow does not increase, the fuel boosting efficiency decreases, and the pump efficiency decreases.

これに対し、すべての羽根板の隣接角度を等しくしたインペラにおいて、8°≦隣接角度≦12°の範囲に隣接角度が設定されていれば、図6に示すように、ポンプ効率の低下は最適値の1%以下の範囲に抑えられる。したがって、本実施形態のように、羽根板34の隣接角度を不均一にする場合にも、不均一な隣接角度の範囲を8°≦隣接角度≦12°の範囲にそれぞれ設定することにより、2.5°≦分散幅≦4°の範囲において、ポンプ効率の低下を最適値の1%以下の範囲に容易に抑えることができる。   On the other hand, if the adjacent angle is set in the range of 8 ° ≦ adjacent angle ≦ 12 ° in the impeller in which the adjacent angles of all the blades are equal, the reduction in pump efficiency is optimal as shown in FIG. It is suppressed to a range of 1% or less of the value. Accordingly, even when the adjacent angles of the blades 34 are made non-uniform as in this embodiment, the non-uniform adjacent angle range is set to 8 ° ≦ adjacent angle ≦ 12 °, respectively. In the range of 0.5 ° ≦ dispersion width ≦ 4 °, the decrease in pump efficiency can be easily suppressed to a range of 1% or less of the optimum value.

以上説明したように第1実施形態では、回転方向に隣接している羽根板34の隣接角度を不均一にした分散幅を、2.5°≦分散幅≦4°に設定することにより、インペラ30の回転に伴い発生する騒音の音圧ピークを低減するとともに、燃料ポンプ10のポンプ部12のポンプ効率の低下を極力抑制することができる。   As described above, in the first embodiment, the impeller is set to 2.5 ° ≦ dispersion width ≦ 4 ° by setting the dispersion width in which the adjacent angles of the blades 34 adjacent to each other in the rotation direction to be nonuniform. While reducing the sound pressure peak of the noise generated with the rotation of 30, it is possible to suppress the decrease in pump efficiency of the pump unit 12 of the fuel pump 10 as much as possible.

また、第1実施形態では、羽根溝36の径方向外側を環状部32が覆っており、インペラ30の外周側にポンプ通路が形成されていない。その結果、ポンプ通路202で昇圧される燃料圧力の回転方向の差圧がインペラ30の径方向に直接加わらないので、インペラ30に径方向に加わる力が減少する。これにより、インペラ30の回転軸がずれることを防止できるので、インペラ30が滑らかに回転できる。   In the first embodiment, the annular portion 32 covers the radially outer side of the blade groove 36, and no pump passage is formed on the outer peripheral side of the impeller 30. As a result, the differential pressure in the rotational direction of the fuel pressure boosted in the pump passage 202 is not directly applied in the radial direction of the impeller 30, so that the force applied to the impeller 30 in the radial direction is reduced. Thereby, since it can prevent that the rotating shaft of the impeller 30 shifts | deviates, the impeller 30 can rotate smoothly.

また上記複数の実施形態では、燃料ポンプのモータ部をブラシモータにしたが、モータ部をブラシレスモータにしてもよい。
このように、本発明は、上記複数の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。
In the above embodiments, the motor unit of the fuel pump is a brush motor, but the motor unit may be a brushless motor.
As described above, the present invention is not limited to the above-described plurality of embodiments, and can be applied to various embodiments without departing from the gist thereof.

(A)は第1実施形態によるインペラを燃料吸入側から見た全体図、(B)は(A)の羽根溝部分の拡大図。(A) is the whole view which looked at the impeller by 1st Embodiment from the fuel suction side, (B) is an enlarged view of the blade groove part of (A). 第1実施形態の燃料ポンプを示す断面図。Sectional drawing which shows the fuel pump of 1st Embodiment. (A)は第1実施形態によるインペラの羽根溝を燃料吸入側から見た模式図、(B)は(A)のB−B線断面図。(A) is the schematic diagram which looked at the blade groove | channel of the impeller by 1st Embodiment from the fuel suction side, (B) is the BB sectional drawing of (A). 図2に示すポンプ通路の拡大図。The enlarged view of the pump channel | path shown in FIG. 分散幅と音圧ピークおよびポンプ効率との関係を示す特性図。The characteristic view which shows the relationship between dispersion width, a sound pressure peak, and pump efficiency. 隣接角度とポンプ効率との関係を示す特性図。The characteristic view which shows the relationship between an adjacent angle and pump efficiency. (A)は等間隔羽根板、(B)は不等間隔羽根板の音圧ピークを示す特性図。(A) is a characteristic figure which shows the sound pressure peak of an equally spaced blade board, (B) is an unevenly spaced blade board.

符号の説明Explanation of symbols

10:燃料ポンプ、12:ポンプ部、13:モータ部、20、22:ポンプケース(ケース部材)、30、90:インペラ、34、94:羽根板、34b:径方向外側端(回転方向一端部)、36、92:羽根溝、100:回転軸、202:ポンプ通路、220:旋回流 DESCRIPTION OF SYMBOLS 10: Fuel pump, 12: Pump part, 13: Motor part, 20, 22: Pump case (case member), 30, 90: Impeller, 34, 94: Blade plate, 34b: Radial direction outer end (one end part of rotation direction) ), 36, 92: blade groove, 100: rotating shaft, 202: pump passage, 220: swirling flow

Claims (1)

モータ部と、
回転方向に複数の羽根溝が設けられ、前記モータ部の回転駆動力により回転するインペラと、
前記羽根溝の径方向外側に形成されている環状部と、
前記環状部に隣接して回転方向前方に傾斜して複数形成され、回転方向に隣接する前記羽根溝の間を仕切る羽根板と、
前記インペラを回転自在に収容し、前記インペラの回転方向に沿ってC字状に形成されるポンプ通路を有するケース部材と、
を備え、
隣接する前記羽根板における回転方向一端部同士が形成する隣接角度は8°〜12°の範囲であり、前記隣接角度の最大値と最小値との差は、2.5°〜4°の範囲であって、
前記インペラの回転数が4000rpm〜12000rpmの範囲において、吐出圧が0.25Mpa以上1MPa以下であり、吐出量が50L/h以上250L/h以下であることを特徴とする燃料ポンプ。
A motor section;
An impeller provided with a plurality of blade grooves in the rotation direction and rotated by a rotational driving force of the motor unit ;
An annular portion formed on the radially outer side of the blade groove;
A plurality of blade plates that are inclined to the front in the rotational direction adjacent to the annular portion and partition between the blade grooves adjacent in the rotational direction; and
A case member that rotatably accommodates the impeller and has a pump passage formed in a C shape along the rotation direction of the impeller ;
With
The adjacent angle formed by the rotation direction end portions of the adjacent blades is in the range of 8 ° to 12 °, and the difference between the maximum value and the minimum value of the adjacent angle is in the range of 2.5 ° to 4 °. Because
A fuel pump, wherein the impeller has a rotation speed of 4000 rpm to 12000 rpm, a discharge pressure of 0.25 MPa to 1 MPa, and a discharge amount of 50 L / h to 250 L / h.
JP2006095335A 2006-03-30 2006-03-30 Fuel pump Active JP4789003B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006095335A JP4789003B2 (en) 2006-03-30 2006-03-30 Fuel pump
KR1020070030595A KR100807051B1 (en) 2006-03-30 2007-03-29 Impeller for fuel pump and fuel pump in which the impeller is employed
CNB200710089022XA CN100526655C (en) 2006-03-30 2007-03-29 Impeller for fuel oil pump and fuel oil pump using the same
DE102007000191A DE102007000191A1 (en) 2006-03-30 2007-03-29 Impeller for e.g. turbine pump, has wings formed adjacent to each other in direction of rotation of impeller, where angle of adjacent wing is formed around axis of rotation of impeller and between ends of wings in direction of rotation
US11/727,976 US20070231120A1 (en) 2006-03-30 2007-03-29 Impeller for fuel pump and fuel pump in which the impeller is employed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095335A JP4789003B2 (en) 2006-03-30 2006-03-30 Fuel pump

Publications (2)

Publication Number Publication Date
JP2007270681A JP2007270681A (en) 2007-10-18
JP4789003B2 true JP4789003B2 (en) 2011-10-05

Family

ID=38460406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095335A Active JP4789003B2 (en) 2006-03-30 2006-03-30 Fuel pump

Country Status (5)

Country Link
US (1) US20070231120A1 (en)
JP (1) JP4789003B2 (en)
KR (1) KR100807051B1 (en)
CN (1) CN100526655C (en)
DE (1) DE102007000191A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872294B1 (en) * 2008-08-29 2008-12-05 현담산업 주식회사 Uneven pitch impeller for fuel pump
KR101039586B1 (en) * 2009-02-06 2011-06-09 산일테크(주) Impeller module for fuel pump
JP5627217B2 (en) * 2009-11-11 2014-11-19 愛三工業株式会社 Fuel pump
US9249806B2 (en) 2011-02-04 2016-02-02 Ti Group Automotive Systems, L.L.C. Impeller and fluid pump
KR101222017B1 (en) 2011-04-05 2013-02-08 주식회사 코아비스 Impeller of fuel pump for vehicle
CN102434490B (en) * 2011-12-12 2014-07-16 重庆平江实业有限责任公司 Electric fuel pump impeller
KR101609225B1 (en) 2014-11-19 2016-04-05 주식회사 코아비스 Turbine fuel pump for vehicle
CN105782109B (en) * 2016-03-06 2020-05-12 亿德机电科技(福建)有限公司 Special pump vortex impeller for combustor
JP6659911B2 (en) * 2017-03-13 2020-03-04 株式会社ミツバ Impeller
CN108678992B (en) * 2018-04-24 2020-10-16 宁波洛卡特汽车零部件有限公司 Production method of impeller for electric fuel pump
CN109340172A (en) * 2018-12-10 2019-02-15 广州竞标新能源汽车部件股份有限公司 A kind of fuel pump impeller
CN109458358A (en) * 2019-01-21 2019-03-12 中国工程物理研究院机械制造工艺研究所 A kind of antivibration molecular pump herringbone movable vane wheel

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3006603A (en) * 1954-08-25 1961-10-31 Gen Electric Turbo-machine blade spacing with modulated pitch
US3418991A (en) * 1967-06-12 1968-12-31 Gen Motors Corp Vehicle fuel system
US3951567A (en) * 1971-12-18 1976-04-20 Ulrich Rohs Side channel compressor
JPS5525555A (en) * 1978-08-12 1980-02-23 Hitachi Ltd Impeller
DE3708336C2 (en) * 1987-03-14 1996-02-15 Bosch Gmbh Robert Impeller for conveying a medium
US4881871A (en) * 1987-04-10 1989-11-21 Speck-Pumpenfabrik, Walter Speck Kg Peripheral pump
US5163810A (en) * 1990-03-28 1992-11-17 Coltec Industries Inc Toric pump
JP3307019B2 (en) * 1992-12-08 2002-07-24 株式会社デンソー Regenerative pump
US5310308A (en) * 1993-10-04 1994-05-10 Ford Motor Company Automotive fuel pump housing with rotary pumping element
JPH07133786A (en) * 1993-11-10 1995-05-23 Aisan Ind Co Ltd Impeller type pump
JPH09119390A (en) * 1995-10-26 1997-05-06 Aisan Ind Co Ltd Fuel pump device
JPH09126178A (en) * 1995-10-27 1997-05-13 Aisan Ind Co Ltd Fuel pump device
US5762469A (en) * 1996-10-16 1998-06-09 Ford Motor Company Impeller for a regenerative turbine fuel pump
JP3826508B2 (en) * 1997-08-06 2006-09-27 株式会社デンソー Fuel pump
US6113363A (en) * 1999-02-17 2000-09-05 Walbro Corporation Turbine fuel pump
DE10013907A1 (en) * 2000-03-21 2001-09-27 Mannesmann Vdo Ag Fuel feed pump for vehicle has small variations in angular spacing of blades
US6454520B1 (en) * 2000-05-16 2002-09-24 Delphi Technologies, Inc. Enhanced v-blade impeller design for a regenerative turbine
US6439833B1 (en) * 2000-08-31 2002-08-27 Delphi Technologies, Inc. V-blade impeller design for a regenerative turbine
JP4827319B2 (en) * 2001-05-09 2011-11-30 株式会社ミツバ Liquid pump impeller
JP2003193991A (en) * 2001-12-25 2003-07-09 Aisan Ind Co Ltd Fuel pump
US6932562B2 (en) * 2002-06-18 2005-08-23 Ti Group Automotive Systems, L.L.C. Single stage, dual channel turbine fuel pump
US6824361B2 (en) * 2002-07-24 2004-11-30 Visteon Global Technologies, Inc. Automotive fuel pump impeller with staggered vanes
JP4062007B2 (en) * 2002-08-05 2008-03-19 三菱電機株式会社 Electric fuel pump
US6984099B2 (en) * 2003-05-06 2006-01-10 Visteon Global Technologies, Inc. Fuel pump impeller

Also Published As

Publication number Publication date
JP2007270681A (en) 2007-10-18
DE102007000191A1 (en) 2007-10-04
KR100807051B1 (en) 2008-02-25
KR20070098622A (en) 2007-10-05
CN100526655C (en) 2009-08-12
CN101046211A (en) 2007-10-03
US20070231120A1 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4789003B2 (en) Fuel pump
JP4623217B2 (en) Fuel supply pump
KR100838910B1 (en) Impeller and fluid pump having the same
JP2007321570A (en) Fuel pump
JP4618434B2 (en) Fuel pump impeller and fuel pump using the same
JP2010249055A (en) Fuel pump
US20080138189A1 (en) Fuel pump and fuel feed apparatus having the same
JP2009068458A (en) Fuel pump
JP2006141113A (en) Fuel pump and manufacturing method of the same
JP5747862B2 (en) Fuel pump
JP4630123B2 (en) Fluid pump
JP2006161723A (en) Impeller and fuel pump using the same
JP2008101469A (en) Fuel pump
JP2008163934A (en) Fuel pump and fuel feed apparatus using the same
JP4158154B2 (en) Electric motor and fuel pump using the same
JP4952180B2 (en) Fuel pump
JP2001522434A (en) Transport equipment for fuel
JP2004360678A (en) Fuel pump
JP3788505B2 (en) Fuel pump
JP2007255405A (en) Fuel pump
JP2007187010A (en) Fuel pump
KR102240734B1 (en) Electric pump
JP2007166693A (en) Axial motor and fuel pump
JP2006177321A (en) Fuel pump
JP2006046212A (en) Fuel pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4789003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250