JP2008088497A - Electrode for discharge surface-treatment - Google Patents

Electrode for discharge surface-treatment Download PDF

Info

Publication number
JP2008088497A
JP2008088497A JP2006270664A JP2006270664A JP2008088497A JP 2008088497 A JP2008088497 A JP 2008088497A JP 2006270664 A JP2006270664 A JP 2006270664A JP 2006270664 A JP2006270664 A JP 2006270664A JP 2008088497 A JP2008088497 A JP 2008088497A
Authority
JP
Japan
Prior art keywords
powder
discharge surface
surface treatment
alloy
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006270664A
Other languages
Japanese (ja)
Inventor
Takeshi Araki
健 荒木
Yoshikazu Nakano
善和 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006270664A priority Critical patent/JP2008088497A/en
Publication of JP2008088497A publication Critical patent/JP2008088497A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for discharge surface-treatment, which can be manufactured without being sintered and has high heat resistance and low electric resistance. <P>SOLUTION: The electrode for the discharge surface-treatment is made from a compact formed by pressurizing a mixed powder containing an alloy powder and an electroconductive powder. The alloy powder is at least one powder selected from the group consisting of a Co-Cr-based alloy, a Ni-Cr-based alloy and an Fe-Cr-based alloy. The electroconductive powder is at least one powder selected from the group consisting of Ni, Co, Fe, W, Mo and C. The ratio of the average particle size of the electroconductivity powder to that of the alloy powder is 0.2 or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、放電表面処理用電極に関するものである。詳細には、本発明は、電極と被加工物との間にパルス状の放電を発生させ、その放電エネルギにより被加工物の表面に電極材料から成る被膜を形成する放電表面処理において使用される電極に関するものである。   The present invention relates to an electrode for discharge surface treatment. Specifically, the present invention is used in a discharge surface treatment in which a pulsed discharge is generated between an electrode and a workpiece, and a coating film made of an electrode material is formed on the surface of the workpiece by the discharge energy. It relates to an electrode.

放電表面処理では、電極と被加工物との間にパルス状の放電を発生させるため、該電極には高熱抵抗及び低電気抵抗であることが要求される。そこで、従来の放電表面処理用電極では、該電極を構成する材料に金属微粉末又は合金微粉末を用いることにより熱抵抗を確保し、また、これらの微粉末を加圧成形した後、焼結することにより低電気抵抗を確保している。
このような放電表面処理用電極としては、例えば、耐摩耗合金、耐熱合金及び耐食合金等として知られているCo−Cr系、Ni−Cr系及びFe−Cr系の合金粉末を材料とするものがある(例えば、特許文献1参照)。かかる放電表面処理用電極では、電気抵抗の高いCr酸化膜が該合金の表面に存在するので、焼結熱処理して粉末粒子を拡散結合させることにより電気抵抗を低下させている。
In the discharge surface treatment, in order to generate a pulsed discharge between the electrode and the workpiece, the electrode is required to have high thermal resistance and low electric resistance. Therefore, in the conventional electrode for surface treatment of discharge, thermal resistance is ensured by using metal fine powder or alloy fine powder as the material constituting the electrode, and after sintering these fine powders, This ensures low electrical resistance.
Such discharge surface treatment electrodes are made of, for example, Co—Cr, Ni—Cr, and Fe—Cr alloy powders known as wear resistant alloys, heat resistant alloys, and corrosion resistant alloys. (For example, refer to Patent Document 1). In such a discharge surface treatment electrode, since a Cr oxide film having a high electric resistance exists on the surface of the alloy, the electric resistance is lowered by diffusion-bonding powder particles by sintering heat treatment.

国際公開第2004/011696号パンフレット(7頁24〜30行)International Publication No. 2004/011696 (7 pages, 24-30 lines)

しかしながら、特許文献1の放電表面処理用電極は、高熱抵抗であるものの、電気抵抗を低下させるのに焼結処理が必要であり、かかる放電表面処理用電極を製造する際に多大な時間及びコストを要するという問題があった。
従って、本発明は、上記のような問題を解決するためになされたものであり、焼結処理することなしに製造することができ、且つ高熱抵抗及び低電気抵抗(具体的には、電極に必要な10Ωcm以下の低電気抵抗率を有する)である放電表面処理用電極を提供することを目的とする。
However, although the discharge surface treatment electrode of Patent Document 1 has a high thermal resistance, a sintering process is required to reduce the electrical resistance, and a great amount of time and cost is required when manufacturing such a discharge surface treatment electrode. There was a problem of requiring.
Therefore, the present invention has been made to solve the above problems, and can be manufactured without performing a sintering process, and has a high thermal resistance and a low electrical resistance (specifically, an electrode). It is an object of the present invention to provide a discharge surface treatment electrode having a required low electrical resistivity of 10 Ωcm or less.

そこで、本発明者らは上記のような問題を解決すべく鋭意研究した結果、特定の合金粉末と特定の導電性粉末との平均粒径比を所定の範囲とすることで、上記のような問題を解決することができることに想到し、本発明を完成するに至った。
すなわち、本発明は、合金粉末と導電性粉末とを含む混合粉末の加圧成形体からなる放電表面処理用電極であって、前記合金粉末が、Co−Cr系合金、Ni−Cr系合金及びFe−Cr系合金からなる群から選択される1種類以上の粉末であり、前記導電性粉末が、Ni、Co、Fe、W、Mo及びCからなる群から選択される1種類以上の粉末であり、前記合金粉末に対する前記導電性粉末の平均粒径比が、0.2以下であることを特徴とする放電表面処理用電極である。
Therefore, as a result of intensive studies to solve the above problems, the present inventors have determined that the average particle size ratio between the specific alloy powder and the specific conductive powder is within a predetermined range as described above. The inventor came up with the idea that the problem could be solved and completed the present invention.
That is, the present invention is a discharge surface treatment electrode comprising a pressure-formed body of a mixed powder containing an alloy powder and a conductive powder, the alloy powder comprising a Co—Cr alloy, a Ni—Cr alloy, and One or more types of powders selected from the group consisting of Fe-Cr alloys, and the conductive powder is one or more types of powders selected from the group consisting of Ni, Co, Fe, W, Mo and C. The discharge surface treatment electrode is characterized in that an average particle diameter ratio of the conductive powder to the alloy powder is 0.2 or less.

本発明によれば、合金粉末の間に導電性粉末が連続的に分布し、導電性粉末同士が接触・連結してネットワークを形成するので、焼結処理することなく、高熱抵抗及び低電気抵抗(具体的には、電極に必要な10Ωcm以下の低電気抵抗率を有する)の放電表面処理用電極を提供することができる。   According to the present invention, the conductive powder is continuously distributed between the alloy powders, and the conductive powders are contacted and connected to form a network, so that high thermal resistance and low electrical resistance can be obtained without sintering treatment. An electrode for discharge surface treatment (specifically, having a low electrical resistivity of 10 Ωcm or less required for the electrode) can be provided.

実施の形態1.
以下に、図面を参照して本発明の実施の形態について説明する。
図1は、本発明の実施の形態における放電表面処理用電極の断面図である。図1において、放電表面処理用電極は、合金粉末1と導電性粉末2とを含む混合粉末の加圧成形体であり、合金粉末1と、この合金粉末1の間に連続的に分布している導電性粉末2とから構成されている。
ここで、合金粉末1に対する導電性粉末2の平均粒径比は、0.2以下であり、0.02〜0.1であることが好ましい。かかる範囲の平均粒径比であれば、放電表面処理用電極において、導電性粉末2同士が接触・連結してネットワークを形成することが可能となる。そうすると、導電性粉末2のネットワークを通じて電気が流れるようになり、放電表面処理用電極全体としての電気抵抗が低下する。かかる平均粒径比が0.2を超えると、図2に示すように、合金粉末1の間に導電性粉末2が連続的に分布せず、導電性粉末2同士のネットワークが形成されないため、放電表面処理用電極全体としての電気抵抗が低下しない。
Embodiment 1 FIG.
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view of an electrode for discharge surface treatment in an embodiment of the present invention. In FIG. 1, the discharge surface treatment electrode is a pressure-formed body of a mixed powder containing an alloy powder 1 and a conductive powder 2, and is continuously distributed between the alloy powder 1 and the alloy powder 1. And conductive powder 2.
Here, the average particle diameter ratio of the conductive powder 2 to the alloy powder 1 is 0.2 or less, and preferably 0.02 to 0.1. If the average particle size ratio is in this range, the conductive powder 2 can be brought into contact with and connected to each other in the discharge surface treatment electrode to form a network. If it does so, electricity will flow through the network of the electroconductive powder 2, and the electrical resistance as the whole electrode for discharge surface treatment will fall. When the average particle size ratio exceeds 0.2, as shown in FIG. 2, the conductive powder 2 is not continuously distributed between the alloy powders 1 and a network of the conductive powders 2 is not formed. The electrical resistance of the discharge surface treatment electrode as a whole does not decrease.

合金粉末1は、Co−Cr系合金、Ni−Cr系合金及びFe−Cr系合金からなる群から選択される1種類以上の粉末である。かかる合金粉末1は、耐熱性、耐摩耗性及び耐食性に優れている。Co−Cr系合金は、その他の成分として、Mo、Ni、Fe、Si、W及びC等を含むことができる。また、Ni−Cr系合金は、その他の成分として、Mo、Co、Al及びFe等を含むことができる。さらに、Fe−Cr系合金は、その他の成分として、Mo、Ni、Mn、Si及びC等を含むことができる。これら合金における各元素の割合は、特に限定されることはなく、所望の特性に応じて適宜調整すればよい。
また、合金粉末1の平均粒径は、10μm以下であることが好ましく、0.5〜5μmであることがより好ましい。このような範囲の平均粒径を有する合金粉末1であれば、粉末の凝着性が高くなり、成形体の強度を高めることができる。かかる合金粉末1の平均粒径が10μmを超えると、成形体の強度が低下してしまうことがあるので好ましくない。
The alloy powder 1 is one or more kinds of powders selected from the group consisting of a Co—Cr alloy, a Ni—Cr alloy, and a Fe—Cr alloy. Such alloy powder 1 is excellent in heat resistance, wear resistance and corrosion resistance. The Co—Cr alloy can contain Mo, Ni, Fe, Si, W, C, and the like as other components. Further, the Ni—Cr alloy can contain Mo, Co, Al, Fe, and the like as other components. Further, the Fe—Cr alloy can contain Mo, Ni, Mn, Si, C, and the like as other components. The ratio of each element in these alloys is not particularly limited, and may be appropriately adjusted according to desired characteristics.
The average particle size of the alloy powder 1 is preferably 10 μm or less, and more preferably 0.5 to 5 μm. If the alloy powder 1 has an average particle size in such a range, the adhesion of the powder becomes high, and the strength of the compact can be increased. If the average particle size of the alloy powder 1 exceeds 10 μm, the strength of the compact may be lowered, which is not preferable.

導電性粉末2は、Ni、Co、Fe、W、Mo及びCからなる群から選択される1種類以上である。かかる導電性粉末2は、導電性のみならず耐熱性にも優れている。
また、導電性粉末2の平均粒径は、2μm以下であることが好ましく、0.02〜0.5μmであることがより好ましい。このような範囲の平均粒径を有する導電性粉末2であれば、粉末の凝着性が高くなり、成形体の強度を高めることができる。かかる導電性粉末2の平均粒径が2μmを超えると、成形体の強度が低下してしまうことがあるので好ましくない。
The conductive powder 2 is at least one selected from the group consisting of Ni, Co, Fe, W, Mo, and C. Such conductive powder 2 is excellent not only in conductivity but also in heat resistance.
Moreover, it is preferable that the average particle diameter of the electroconductive powder 2 is 2 micrometers or less, and it is more preferable that it is 0.02-0.5 micrometer. If it is the electroconductive powder 2 which has the average particle diameter of such a range, the adhesiveness of powder will become high and the intensity | strength of a molded object can be raised. When the average particle diameter of the conductive powder 2 exceeds 2 μm, the strength of the molded body may be lowered, which is not preferable.

合金粉末1と導電性粉末2との重量比は、60:40〜92:8が好ましく、75:25〜90:10がより好ましい。合金粉末1と導電性粉末2との混合粉末において導電性粉末2が8重量%以上であれば導電性粉末2同士のネットワークが確実に形成され、また、かかる混合粉末において合金粉末1が60重量%以上であれば成形体中の合金粉末1同士の間隔が一定の範囲内となり、放電表面処理の際に形成される被膜の組成が均一となる。   The weight ratio of the alloy powder 1 and the conductive powder 2 is preferably 60:40 to 92: 8, and more preferably 75:25 to 90:10. If the conductive powder 2 in the mixed powder of the alloy powder 1 and the conductive powder 2 is 8% by weight or more, a network of the conductive powders 2 is surely formed. In the mixed powder, the alloy powder 1 is 60% by weight. If it is% or more, the distance between the alloy powders 1 in the compact is within a certain range, and the composition of the film formed during the discharge surface treatment becomes uniform.

本発明の放電表面処理用電極では、加圧成型時における金型と混合粉末との摩擦抵抗を低減する観点から、ステアリン酸系の潤滑材を混合粉末に含有させることができる。
かかるステアリン酸系の潤滑材の例としては、ステアリン酸カルシウム、ステアリン酸亜鉛等を挙げることができる。
かかるステアリン酸系の潤滑材を用いる場合、その配合量は、合金粉末1と導電性粉末2との混合粉末100重量部あたり、0.1〜2重量部が好ましく、0.2〜0.7重量部がより好ましい。かかる潤滑材の配合量が0.1重量部以上であれば、加圧成形時における金型と混合粉末との摩擦抵抗を低減する効果が確実に得られ、また、潤滑材の配合量が2重量部以下であれば、成形体に必要な強度が得られる。
In the discharge surface treatment electrode of the present invention, a stearic acid-based lubricant can be contained in the mixed powder from the viewpoint of reducing the frictional resistance between the mold and the mixed powder during pressure molding.
Examples of such stearic acid-based lubricants include calcium stearate and zinc stearate.
When such a stearic acid-based lubricant is used, the blending amount is preferably 0.1 to 2 parts by weight per 100 parts by weight of the mixed powder of the alloy powder 1 and the conductive powder 2, and 0.2 to 0.7 parts by weight. Part by weight is more preferred. If the blending amount of the lubricant is 0.1 parts by weight or more, the effect of reducing the frictional resistance between the mold and the mixed powder during the pressure molding can be surely obtained, and the blending amount of the lubricant is 2 If the amount is not more than parts by weight, the strength required for the molded article can be obtained.

本発明の放電表面処理用電極は、合金粉末1及び導電性粉末2を混合して混合粉末を調製し、該混合粉末を加圧成形することによって製造することができる。また、ステアリン酸系の潤滑材を用いる場合は、合金粉末1と、導電性粉末2と、ステアリン酸系の潤滑材とを混合して混合粉末を調製すればよい。かかる混合の順序は、特に限定されることはなく、例えば、合金粉末1と導電性粉末2とを混合して混合粉末を調製した後、該混合粉末にステアリン酸系の潤滑材を加えてさらに混合すればよい。   The electrode for discharge surface treatment of the present invention can be produced by preparing a mixed powder by mixing the alloy powder 1 and the conductive powder 2, and press-molding the mixed powder. When using a stearic acid-based lubricant, alloy powder 1, conductive powder 2, and stearic acid-based lubricant may be mixed to prepare a mixed powder. The order of such mixing is not particularly limited. For example, the alloy powder 1 and the conductive powder 2 are mixed to prepare a mixed powder, and then a stearic acid-based lubricant is added to the mixed powder. What is necessary is just to mix.

各材料の混合方法としては、特に限定されることはなく、従来公知の方法に従い、撹拌混合させればよい。
また、混合粉末の加圧成形の方法としては、特に制限されることはなく、従来公知の押出成形、圧縮成形等を行うことができる。ここで、加圧成形における負荷圧力としては、50〜500MPaが好ましい。負荷圧力が50MPa未満であると、所望の成形体の強度が得られないことがある。一方、負荷圧力が500MPaを超えると、成形体の密度が高くなりすぎて熱抵抗が大きく低下し、放電表面処理の際に電極がうまく溶けずに被膜が形成できないことがある。
The mixing method of each material is not particularly limited, and may be agitated and mixed according to a conventionally known method.
In addition, the method for pressure forming the mixed powder is not particularly limited, and conventionally known extrusion molding, compression molding, and the like can be performed. Here, the load pressure in the pressure molding is preferably 50 to 500 MPa. If the load pressure is less than 50 MPa, the strength of the desired molded article may not be obtained. On the other hand, when the load pressure exceeds 500 MPa, the density of the molded body becomes too high, and the thermal resistance is greatly reduced, and the electrode may not be melted well during the discharge surface treatment, and a film may not be formed.

このような本発明の放電表面処理用電極の製造方法によれば、合金粉末1及び導電性粉末2を含む混合粉末を加圧成形するだけで、合金粉末1の間に導電性粉末2が連続的に分布し、導電性粉末2同士が接触・連結してネットワークが形成され、放電表面処理用電極の低電気抵抗を確保することができる。よって、本発明の放電表面処理用電極の製造では、焼結処理が要求されない。   According to the method for manufacturing an electrode for discharge surface treatment of the present invention as described above, the conductive powder 2 is continuously formed between the alloy powders 1 simply by pressure-molding the mixed powder containing the alloy powder 1 and the conductive powder 2. Thus, the conductive powders 2 are contacted and connected to each other to form a network, and the low electrical resistance of the discharge surface treatment electrode can be ensured. Therefore, in the production of the discharge surface treatment electrode of the present invention, no sintering treatment is required.

以下、実施例により本発明の詳細を説明するが、これらによって本発明が限定されるものではない。
[実施例1]
実施例1では、合金粉末に対する導電性粉末の平均粒径比を0.02〜1の間で変化させた際の放電表面処理用電極の電気抵抗率の変化を調べた。
平均粒径が5μmのCo−Cr系合金粉末(組成:30重量%Cr−8重量%W−62重量%Co)と、0.1〜5μmの種々の平均粒径を有するNi粉末とを92:8の重量比で撹拌混合して混合粉末を調製した。次いで、得られた混合粉末を金型内に入れ、100MPaの圧力で加圧することによって、20mm×10mm×板厚1〜2mmの放電表面処理用電極を作製した。
このようにして得られた放電表面処理用電極の電気抵抗率を四探針法により測定した。その結果を図3に示す。なお、かかる実施例で用いたCo−Cr系合金粉末の電気抵抗率は6×10Ωcm、及びNi粉末の電気抵抗率は2×10−5Ωcmであった。
EXAMPLES Hereinafter, although an Example demonstrates the detail of this invention, this invention is not limited by these.
[Example 1]
In Example 1, the change in electrical resistivity of the electrode for discharge surface treatment when the average particle size ratio of the conductive powder to the alloy powder was changed between 0.02 and 1 was examined.
92 Co-Cr alloy powder having an average particle size of 5 μm (composition: 30 wt% Cr-8 wt% W-62 wt% Co) and Ni powder having various average particle diameters of 0.1 to 5 μm : A mixed powder was prepared by stirring and mixing at a weight ratio of 8. Subsequently, the obtained mixed powder was put in a mold and pressed at a pressure of 100 MPa, thereby producing a discharge surface treatment electrode having a size of 20 mm × 10 mm × plate thickness of 1 to 2 mm.
The electrical resistivity of the discharge surface treatment electrode thus obtained was measured by the four probe method. The result is shown in FIG. The electrical resistivity of the Co—Cr alloy powder used in this example was 6 × 10 3 Ωcm, and the electrical resistivity of the Ni powder was 2 × 10 −5 Ωcm.

図3に示されているように、合金粉末に対する導電性粉末の平均粒径比が0.2以下になると、放電表面処理用電極の電気抵抗率が著しく低下した。これは、図1に示すように、導電性粉末が連続的に繋がったネットワークが合金粉末の間に形成され、該ネットワークを通じて電気が流れることにより、放電表面処理用電極全体としての電気抵抗率が低下することに起因していると考えられる。
一方、合金粉末に対する導電性粉末の平均粒径比が0.2を超えると、平均粒径比が0.2以下のものと比べて放電表面処理用電極の電気抵抗率が2桁以上高かった。これは、図2に示すように導電性粉末が合金粉末に対して非連続的に分布することに起因していると考えられる。
As shown in FIG. 3, when the average particle size ratio of the conductive powder to the alloy powder was 0.2 or less, the electrical resistivity of the discharge surface treatment electrode was significantly reduced. As shown in FIG. 1, a network in which conductive powders are continuously connected is formed between alloy powders, and electricity flows through the network, so that the electrical resistivity of the entire discharge surface treatment electrode is increased. This is thought to be due to the decline.
On the other hand, when the average particle size ratio of the conductive powder to the alloy powder exceeded 0.2, the electrical resistivity of the discharge surface treatment electrode was two orders of magnitude higher than that of the average particle size ratio of 0.2 or less. . This is considered due to the fact that the conductive powder is discontinuously distributed with respect to the alloy powder as shown in FIG.

[実施例2]
表1に示す組成及び平均粒径のCo−Cr系合金粉末と、表1に示す平均粒径のCo粉末とを、9:1の重量比で撹拌混合して混合粉末を調製した。次いで、得られた混合粉末を金型内に入れ、100MPaの圧力で加圧することによって、20mm×10mm×板厚1〜2mmの放電表面処理用電極(本発明品1〜10)を作製した。
[比較例1]
比較例1では、従来の焼結法により放電表面処理用電極を作製した。
表1に示す組成及び粒径のCo−Cr系合金粉末を金型内に入れ、100MPaの圧力で加圧した後、600℃で2時間焼結させることによって、20mm×10mm×板厚1〜2mmの放電表面処理用電極(比較品1)を作製した。
実施例2及び比較例1で得られた放電表面処理用電極の電気抵抗率を四探針法により測定した。その結果を表1に示す。なお、かかる実施例及び比較例で用いたCo−Cr系合金粉末の電気抵抗率は5〜10×10Ωcm、及びCo粉末の電気抵抗率は1×10−4Ωcmであった。
[Example 2]
A mixed powder was prepared by stirring and mixing the Co—Cr alloy powder having the composition and average particle size shown in Table 1 and the Co powder having the average particle size shown in Table 1 at a weight ratio of 9: 1. Subsequently, the obtained mixed powder was put in a mold and pressed at a pressure of 100 MPa, thereby producing discharge surface treatment electrodes (invention products 1 to 10) of 20 mm × 10 mm × plate thickness 1 to 2 mm.
[Comparative Example 1]
In Comparative Example 1, a discharge surface treatment electrode was produced by a conventional sintering method.
A Co—Cr-based alloy powder having the composition and particle size shown in Table 1 is placed in a mold, pressed at a pressure of 100 MPa, and then sintered at 600 ° C. for 2 hours, whereby 20 mm × 10 mm × plate thickness 1 to 1 A 2 mm discharge surface treatment electrode (Comparative Product 1) was prepared.
The electrical resistivity of the discharge surface treatment electrodes obtained in Example 2 and Comparative Example 1 was measured by the four-probe method. The results are shown in Table 1. In addition, the electrical resistivity of the Co—Cr-based alloy powder used in the examples and comparative examples was 5 to 10 × 10 3 Ωcm, and the electrical resistivity of the Co powder was 1 × 10 −4 Ωcm.

Figure 2008088497
Figure 2008088497

表1に示されているように、本発明品1〜10の放電表面処理用電極の電気抵抗率はいずれも10Ωcm以下であり、放電表面処理用電極として良好な電気抵抗率を有していた。また、本発明品1〜5の放電表面処理用電極は、焼結法により作製した比較品1の放電表面処理用電極と同程度に電気抵抗率が低かった。   As shown in Table 1, the electrical resistivity of the discharge surface treatment electrodes of the products 1 to 10 of the present invention was 10 Ωcm or less, and had good electrical resistivity as the discharge surface treatment electrode. . Moreover, the electrical surface resistivity of the discharge surface treatment electrodes of the inventive products 1 to 5 was as low as that of the discharge surface treatment electrode of the comparative product 1 produced by the sintering method.

[実施例3]
表2に示す組成及び平均粒径のNi−Cr系合金粉末と、表2に示す平均粒径のNi粉末とを、9:1の重量比で撹拌混合して混合粉末を調製した。次いで、得られた混合粉末を金型内に入れ、100MPaの圧力で加圧することによって、20mm×10mm×板厚1〜2mmの放電表面処理用電極(本発明品11〜18)を作製した。
このようにして得られた放電表面処理用電極の電気抵抗率を四探針法により測定した。その結果を表2に示す。なお、かかる実施例で用いたNi−Cr系合金粉末の電気抵抗率は3〜8×10Ωcm、及びNi粉末の電気抵抗率は2×10−5Ωcmであった。
[Example 3]
A mixed powder was prepared by stirring and mixing the Ni—Cr alloy powder having the composition and average particle size shown in Table 2 and the Ni powder having the average particle size shown in Table 2 at a weight ratio of 9: 1. Next, the obtained mixed powder was put in a mold and pressed at a pressure of 100 MPa to produce discharge surface treatment electrodes (invention products 11 to 18) of 20 mm × 10 mm × plate thickness 1 to 2 mm.
The electrical resistivity of the discharge surface treatment electrode thus obtained was measured by the four probe method. The results are shown in Table 2. In addition, the electrical resistivity of the Ni—Cr-based alloy powder used in this example was 3 to 8 × 10 3 Ωcm, and the electrical resistivity of the Ni powder was 2 × 10 −5 Ωcm.

Figure 2008088497
Figure 2008088497

表2に示されているように、本発明品11〜18の放電表面処理用電極の電気抵抗率はいずれも1Ωcm以下であり、放電表面処理用電極として優れた電気抵抗率を有していた。   As shown in Table 2, the electrical resistivity of the discharge surface treatment electrodes of the products 11 to 18 of the present invention was 1 Ωcm or less, and had excellent electrical resistivity as a discharge surface treatment electrode. .

[実施例4]
表3に示す組成及び平均粒径のFe−Cr系合金粉末と、表3に示す平均粒径のFe粉末とを、9:1の重量比で撹拌混合して混合粉末を調製した。次いで、得られた混合粉末を金型内に入れ、100MPaの圧力で加圧することによって、20mm×10mm×板厚1〜2mmの放電表面処理用電極(本発明品19〜24)を作製した。
このようにして得られた放電表面処理用電極の電気抵抗率を四探針法により測定した。その結果を表3に示す。なお、かかる実施例で用いたFe−Cr系合金粉末の電気抵抗率は5〜10×10Ωcm、及びFe粉末の電気抵抗率は5×10−4Ωcmであった。
[Example 4]
A mixed powder was prepared by stirring and mixing the Fe—Cr-based alloy powder having the composition and average particle size shown in Table 3 and the Fe powder having the average particle size shown in Table 3 at a weight ratio of 9: 1. Next, the obtained mixed powder was put in a mold and pressed at a pressure of 100 MPa to produce discharge surface treatment electrodes (invention products 19 to 24) of 20 mm × 10 mm × plate thickness 1 to 2 mm.
The electrical resistivity of the discharge surface treatment electrode thus obtained was measured by the four probe method. The results are shown in Table 3. In addition, the electrical resistivity of the Fe—Cr-based alloy powder used in this example was 5 to 10 × 10 3 Ωcm, and the electrical resistivity of the Fe powder was 5 × 10 −4 Ωcm.

Figure 2008088497
Figure 2008088497

表3に示されているように、本発明品19〜24の放電表面処理用電極の電気抵抗率はいずれも10Ωcm以下であり、放電表面処理用電極として良好な電気抵抗率を有していた。   As shown in Table 3, the electrical resistivity of the discharge surface treatment electrodes of the inventive products 19 to 24 were all 10 Ωcm or less, and had good electrical resistivity as the discharge surface treatment electrode. .

[実施例5]
表4に示す組成及び平均粒径のCo−Cr系合金粉末と、表4に示す平均粒径のW粉末とを、9:1の重量比で撹拌混合して混合粉末を調製した。次いで、得られた混合粉末を金型内に入れ、100MPaの圧力で加圧することによって、20mm×10mm×板厚1〜2mmの放電表面処理用電極(本発明品25)を作製した。
[Example 5]
Co-Cr alloy powder having the composition and average particle size shown in Table 4 and W powder having the average particle size shown in Table 4 were stirred and mixed at a weight ratio of 9: 1 to prepare a mixed powder. Next, the obtained mixed powder was put in a mold and pressed at a pressure of 100 MPa to produce a discharge surface treatment electrode (invention product 25) having a size of 20 mm × 10 mm × plate thickness of 1 to 2 mm.

[実施例6]
表4に示す組成及び平均粒径のCo−Cr系合金粉末と、表4に示す平均粒径のMo粉末とを、9:1の重量比で撹拌混合して混合粉末を調製した。次いで、得られた混合粉末を金型内に入れ、100MPaの圧力で加圧することによって、20mm×10mm×板厚1〜2mmの放電表面処理用電極(本発明品26)を作製した。
[Example 6]
Co-Cr alloy powder having the composition and average particle size shown in Table 4 and Mo powder having the average particle size shown in Table 4 were stirred and mixed at a weight ratio of 9: 1 to prepare a mixed powder. Next, the obtained mixed powder was put in a mold and pressed at a pressure of 100 MPa to produce a discharge surface treatment electrode (invention product 26) of 20 mm × 10 mm × plate thickness of 1 to 2 mm.

[実施例7]
表4に示す組成及び平均粒径のCo−Cr系合金粉末と、表4に示す平均粒径のC粉末とを、97:3の重量比で撹拌混合して混合粉末を調製した。次いで、得られた混合粉末を金型内に入れ、100MPaの圧力で加圧することによって、20mm×10mm×板厚1〜2mmの放電表面処理用電極(本発明品27)を作製した。
実施例5〜7で得られた放電表面処理用電極の電気抵抗率を四探針法により測定した。その結果を表4に示す。なお、かかる実施例5〜7で用いたCo−Cr系合金粉末の電気抵抗率は7×10Ωcm、W粉末の電気抵抗率は4×10−4Ωcm、Mo粉末の電気抵抗率は3×10−4Ωcm、及びC粉末の電気抵抗率は4×10−5Ωcmであった。
[Example 7]
Co-Cr alloy powder having the composition and average particle size shown in Table 4 and C powder having the average particle size shown in Table 4 were stirred and mixed at a weight ratio of 97: 3 to prepare a mixed powder. Next, the obtained mixed powder was put in a mold and pressed at a pressure of 100 MPa to produce an electrode for discharge surface treatment (invention product 27) of 20 mm × 10 mm × plate thickness 1 to 2 mm.
The electrical resistivity of the discharge surface treatment electrodes obtained in Examples 5 to 7 was measured by the four-probe method. The results are shown in Table 4. The electrical resistivity of the Co—Cr alloy powder used in Examples 5 to 7 is 7 × 10 3 Ωcm, the electrical resistivity of W powder is 4 × 10 −4 Ωcm, and the electrical resistivity of Mo powder is 3. × 10 -4 Ωcm, and the electrical resistivity of the C powder was 4 × 10 -5 Ωcm.

Figure 2008088497
Figure 2008088497

表4に示されているように、本発明品25〜27の放電表面処理用電極の電気抵抗率はいずれも10Ωcm以下であり、放電表面処理用電極として良好な電気抵抗率を有していた。   As shown in Table 4, the electrical resistivity of the discharge surface treatment electrodes of the present invention products 25 to 27 was 10 Ωcm or less, and had good electrical resistivity as the discharge surface treatment electrode. .

[実施例8]
表5に示す組成及び平均粒径の各合金粉末と、表5に示す平均粒径のNi粉末とを、9:1の重量比で撹拌混合して合金粉末及びNi粉末を含む混合粉末を調製した。次いで、該混合粉末100重量部あたり0.5重量部の、表5に示すステアリン酸系の潤滑材を加えてさらに撹拌混合し、合金粉末、Ni粉末及びステアリン酸系の潤滑材を含む混合粉末を調製した。次いで、得られた混合粉末を押出機に導入し、100MPaの圧力で押出すことによって、10mm×10mm×長さ100mmの放電表面処理用電極(本発明品28〜31)を作製した。
このようにして得られた放電表面処理用電極の電気抵抗率を四探針法により測定した。その結果を表5に示す。なお、本発明品28で用いた合金粉末の電気抵抗率は5×10Ωcm、本発明品29で用いた合金粉末の電気抵抗率は6×10Ωcm、本発明品30で用いた合金粉末の電気抵抗率は7×10Ωcm、本発明品31で用いた合金粉末の電気抵抗率は6×10Ωcm、及び本発明品28〜31で用いたNi粉末の電気抵抗率は1×10−4Ωcmであった。
[Example 8]
Each alloy powder having the composition and average particle size shown in Table 5 and Ni powder having the average particle size shown in Table 5 are mixed by stirring at a weight ratio of 9: 1 to prepare a mixed powder containing the alloy powder and Ni powder. did. Next, 0.5 parts by weight of 100 parts by weight of the mixed powder is added with the stearic acid-based lubricant shown in Table 5 and further stirred and mixed to obtain a mixed powder containing alloy powder, Ni powder and stearic acid-based lubricant. Was prepared. Next, the obtained mixed powder was introduced into an extruder and extruded at a pressure of 100 MPa to produce discharge surface treatment electrodes (inventions 28 to 31 of the present invention) having a size of 10 mm × 10 mm × length 100 mm.
The electrical resistivity of the discharge surface treatment electrode thus obtained was measured by the four probe method. The results are shown in Table 5. The electrical resistivity of the alloy powder used in the product 28 of the present invention is 5 × 10 3 Ωcm, the electrical resistivity of the alloy powder used in the product 29 of the present invention is 6 × 10 3 Ωcm, and the alloy used in the product 30 of the present invention. The electrical resistivity of the powder is 7 × 10 3 Ωcm, the electrical resistivity of the alloy powder used in the product 31 of the present invention is 6 × 10 3 Ωcm, and the electrical resistivity of the Ni powder used in the products 28 to 31 of the present invention is 1. × 10 −4 Ωcm.

Figure 2008088497
Figure 2008088497

表5に示されているように、本発明品28〜31の放電表面処理用電極の電気抵抗率はいずれも1Ωcm以下であり、放電表面処理用電極として優れた電気抵抗率を有していた。
以上のことからわかるように、本発明の放電表面処理用電極は、焼結処理することなしに製造することができ、且つ高熱抵抗及び低電気抵抗である。
As shown in Table 5, the electrical resistivity of the discharge surface treatment electrodes of the products 28 to 31 of the present invention was 1 Ωcm or less, and had excellent electrical resistivity as the discharge surface treatment electrode. .
As can be seen from the above, the discharge surface treatment electrode of the present invention can be produced without sintering, and has high thermal resistance and low electrical resistance.

本発明の実施の形態における放電表面処理用電極の断面図である。It is sectional drawing of the electrode for discharge surface treatment in embodiment of this invention. 従来の放電表面処理用電極の断面図である。It is sectional drawing of the conventional electrode for discharge surface treatment. 合金粉末に対する導電性粉末の平均粒径比と放電表面処理用電極の電気抵抗率との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter ratio of the electroconductive powder with respect to an alloy powder, and the electrical resistivity of the electrode for discharge surface treatment.

符号の説明Explanation of symbols

1 合金粉末、2 導電性粉末。   1 Alloy powder, 2 Conductive powder.

Claims (3)

合金粉末と導電性粉末とを含む混合粉末の加圧成形体からなる放電表面処理用電極であって、
前記合金粉末が、Co−Cr系合金、Ni−Cr系合金及びFe−Cr系合金からなる群から選択される1種類以上の粉末であり、前記導電性粉末が、Ni、Co、Fe、W、Mo及びCからなる群から選択される1種類以上の粉末であり、前記合金粉末に対する前記導電性粉末の平均粒径比が、0.2以下であることを特徴とする放電表面処理用電極。
An electrode for discharge surface treatment comprising a pressure-formed body of a mixed powder containing an alloy powder and a conductive powder,
The alloy powder is one or more kinds of powders selected from the group consisting of a Co—Cr alloy, a Ni—Cr alloy, and a Fe—Cr alloy, and the conductive powder is Ni, Co, Fe, W The electrode for discharge surface treatment, wherein the electrode is one or more kinds of powders selected from the group consisting of Mo and C, and the average particle size ratio of the conductive powder to the alloy powder is 0.2 or less .
前記合金粉末の平均粒径が、10μm以下であることを特徴とする請求項1に記載の放電表面処理用電極。   The electrode for discharge surface treatment according to claim 1, wherein an average particle diameter of the alloy powder is 10 μm or less. 前記混合粉末が、ステアリン酸、ステアリン酸亜鉛及びステアリン酸カルシウムからなる群から選択される1種類以上の潤滑材をさらに含むことを特徴とする請求項1又は2に記載の放電表面処理用電極。   The discharge surface treatment electrode according to claim 1 or 2, wherein the mixed powder further includes one or more lubricants selected from the group consisting of stearic acid, zinc stearate, and calcium stearate.
JP2006270664A 2006-10-02 2006-10-02 Electrode for discharge surface-treatment Withdrawn JP2008088497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006270664A JP2008088497A (en) 2006-10-02 2006-10-02 Electrode for discharge surface-treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006270664A JP2008088497A (en) 2006-10-02 2006-10-02 Electrode for discharge surface-treatment

Publications (1)

Publication Number Publication Date
JP2008088497A true JP2008088497A (en) 2008-04-17

Family

ID=39372956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006270664A Withdrawn JP2008088497A (en) 2006-10-02 2006-10-02 Electrode for discharge surface-treatment

Country Status (1)

Country Link
JP (1) JP2008088497A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123418A1 (en) * 2007-03-29 2008-10-16 Mitsubishi Heavy Industries, Ltd. Coating material, method for production thereof, coating method, rotor blade equipped with shroud
CN102756127A (en) * 2012-07-24 2012-10-31 宁波瑞丰汽车零部件有限公司 Upper and lower pressing plates of automobile exhaust gas recirculation valve and preparation method of upper and lower pressing plates
CN106583734A (en) * 2016-11-29 2017-04-26 中车长春轨道客车股份有限公司 Manufacturing method of stirring head special for aluminum alloy friction stirring welding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123418A1 (en) * 2007-03-29 2008-10-16 Mitsubishi Heavy Industries, Ltd. Coating material, method for production thereof, coating method, rotor blade equipped with shroud
CN102756127A (en) * 2012-07-24 2012-10-31 宁波瑞丰汽车零部件有限公司 Upper and lower pressing plates of automobile exhaust gas recirculation valve and preparation method of upper and lower pressing plates
CN106583734A (en) * 2016-11-29 2017-04-26 中车长春轨道客车股份有限公司 Manufacturing method of stirring head special for aluminum alloy friction stirring welding

Similar Documents

Publication Publication Date Title
JP6333099B2 (en) Method for producing Ag / SnO2 electrical contact powder and method for producing Ag / SnO2 electrical contact material
CN103695682B (en) A kind of silver oxide contact material and preparation method and products thereof with strengthening substrate performance additive
EP1436436A1 (en) Composite material containing tungsten and bronze
JP2005314806A (en) Powder of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high electric conductivity and high toughness, and production method thereof
TW200838631A (en) Iron/copper composite powder for powder metallurgy and process for producing the same
JP2023106573A (en) Copper alloy powder, layered/molded product, method for producing layered/molded product, and various metal parts
JP2010106257A (en) Conductive polyethylene resin composition, conductive polyethylene resin molding, sliding bearing, and sliding sheet
EP2436462B1 (en) A powder metallurgy method using iron-based mixed powder
JP6333098B2 (en) Method for producing Ag / SnO2 electrical contact powder and method for producing Ag / SnO2 electrical contact material
JP6343447B2 (en) Electrical contact material and manufacturing method thereof
US20170284466A1 (en) Plain bearing or part thereof, method for producing same and use of a cucrzr alloy as a plain bearing material
JP2017095792A (en) Method for generating porous spherical type iron-based alloy powder by reduction reaction and powder and sintered body thereof
JP5250388B2 (en) Composite metal glass having both strength and conductivity and method for producing the same
JP7001685B2 (en) Copper powder for laminated molding and its manufacturing method
TWI565838B (en) Copper powder and the use of its copper paste, conductive paint, conductive film, and copper powder manufacturing methods
JP2009114486A (en) Sintering assistant, aluminum-containing copper-based alloy powder to be sintered, and sintered compact formed by sintering the aluminum-containing copper-based alloy powder
JP2008088497A (en) Electrode for discharge surface-treatment
CN103667767B (en) Preparation method of a kind of silver-colored nickel contact material with enhancing substrate performance additive and products thereof
JP5579480B2 (en) Molybdenum alloy
WO2012066826A1 (en) METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRICAL CONTACT MATERIAL AND ELECTRICAL CONTACT MATERIAL PRODUCED BY THE METHOD
JP2009155702A (en) Method for manufacturing titanium powder sintered compact
JP2013535228A (en) Low specific heat composite material for thermal cycler
CN1167838A (en) Fe-Cr-Al alloy and its making method
TW201034773A (en) Composition of particulate materials for forming self-lubricating products in sintered steel, product in self-lubricating sintered steel and process for obtaining self-lubricating products in sintered steel
JP2018184639A (en) Coated particle and formed body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120117