JP2008088353A - Transparent polymer composition and optical member - Google Patents

Transparent polymer composition and optical member Download PDF

Info

Publication number
JP2008088353A
JP2008088353A JP2006273007A JP2006273007A JP2008088353A JP 2008088353 A JP2008088353 A JP 2008088353A JP 2006273007 A JP2006273007 A JP 2006273007A JP 2006273007 A JP2006273007 A JP 2006273007A JP 2008088353 A JP2008088353 A JP 2008088353A
Authority
JP
Japan
Prior art keywords
transparent polymer
polymer composition
fine particles
modified
inorganic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006273007A
Other languages
Japanese (ja)
Inventor
Toru Tanaka
徹 田中
Takeshi Yamashita
剛 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006273007A priority Critical patent/JP2008088353A/en
Publication of JP2008088353A publication Critical patent/JP2008088353A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent polymer composition having excellent optical properties, especially excellent transparency and high refractive index and to provide an optical member. <P>SOLUTION: The transparent polymer composition comprises photocatalytically active inorganic microparticles (A) and a transparent polymer (B) and is capable of being controlled in the refractive index by irradiation with ultraviolet rays. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光学部材等に用いられる透明高分子組成物(透明樹脂組成物)に対する分散性に優れ、その透明性や光学特性を確保しつつ、屈折率を高めることが可能な表面修飾無機微粒子、およびこれに紫外線を照射して屈折率を調整することが可能である透明高分子組成物に関する。   The present invention is a surface-modified inorganic fine particle that is excellent in dispersibility with respect to a transparent polymer composition (transparent resin composition) used for an optical member and the like, and can increase the refractive index while ensuring its transparency and optical characteristics. And a transparent polymer composition capable of adjusting the refractive index by irradiating it with ultraviolet rays.

従来、硫黄やハロゲン原子またはベンゼン環などを高分子の側鎖や主骨格に導入することによって、透明高分子の高屈折率化は行われてきた。しかし、透明高分子の屈折率は最大で1.8程度と限界があり、また、吸湿率、屈折率温度依存性、複屈折率などの光学特性が低下する場合があった。そこで種々の光学特性を付与しながら、より高屈折率化が可能な手法として、微粒子を透明高分子と共に組成物に分散させる試みが近年盛んに行われている。   Conventionally, the refractive index of transparent polymers has been increased by introducing sulfur, halogen atoms or benzene rings into the side chains and main skeleton of the polymer. However, the refractive index of the transparent polymer has a limit of about 1.8 at the maximum, and optical characteristics such as moisture absorption, refractive index temperature dependency, and birefringence may be deteriorated. In recent years, attempts to disperse fine particles in a composition together with a transparent polymer have been actively conducted as a technique capable of increasing the refractive index while imparting various optical characteristics.

ところが高い屈折率の微粒子をそれより屈折率の低い透明高分子に分散させて高屈折率化を行う場合、微粒子の粒子径や分散性に十分配慮する必要がある。一般に、光の波長より十分に小さい微粒子が完全に独立して分散された場合のみ、優れた透明性が実現することが予想されている。   However, when the refractive index is increased by dispersing fine particles having a high refractive index in a transparent polymer having a lower refractive index than that, it is necessary to give sufficient consideration to the particle size and dispersibility of the fine particles. In general, it is expected that excellent transparency is realized only when fine particles sufficiently smaller than the wavelength of light are dispersed completely independently.

しかし、実際には、粒径が光の波長より十分に小さい微粒子、特に粒径が100nm以下の微粒子を透明高分子組成物中に分散させると、微粒子が容易に凝集を起こして組成物の透明性は低下する。また、高屈折率化が期待されるチタンなどの金属酸化物の微粒子に関しては、凝集力が大きいことから、光学用途の条件を満たすような透明性を維持しながら、これを高充填分散することは従来困難であったが、特許文献1に開示された手法により、様々な樹脂への高充填分散が可能になりつつある。   However, in practice, when fine particles having a particle size sufficiently smaller than the wavelength of light, particularly fine particles having a particle size of 100 nm or less, are dispersed in the transparent polymer composition, the fine particles easily aggregate and the composition becomes transparent. Sex declines. In addition, with regard to fine particles of metal oxides such as titanium, which are expected to have a high refractive index, the cohesive force is large, so that this is highly filled and dispersed while maintaining transparency that satisfies the requirements of optical applications. Has been difficult in the past, but by the technique disclosed in Patent Document 1, high filling and dispersion in various resins is becoming possible.

上記手法によれば、分子量の大きくない修飾分子と高分子量の修飾高分子の両方で表面を修飾した無機微粒子は、透明高分子組成物中において、高充填しても凝集することなく、優れた分散性を示し、高い透明性と屈折率を有する透明高分子組成物を得ることができることが分かった。   According to the above technique, the inorganic fine particles whose surface is modified with both a modified molecule having a low molecular weight and a modified polymer having a high molecular weight are excellent in the transparent polymer composition without agglomeration even when highly filled. It was found that a transparent polymer composition exhibiting dispersibility and having high transparency and refractive index can be obtained.

ところで、ある配合量で上記無機微粒子を透明高分子組成物中に混合すると、その時点で屈折率は決まってしまい、その後、屈折率を変化させることは困難であった。このため、反射防止膜などの屈折率が異なる二層以上の多層構造や光ファイバーなど屈折率の分布が中心部と周辺部で異なるような傾斜構造のものを構成させるためには、複数回の塗膜工程などが必要となっていた。
特願2006−001366号公報
By the way, when the inorganic fine particles are mixed in the transparent polymer composition at a certain blending amount, the refractive index is determined at that time, and thereafter, it is difficult to change the refractive index. For this reason, in order to construct a multilayer structure having two or more layers having different refractive indexes, such as an antireflection film, and an inclined structure having different refractive index distributions in the central portion and the peripheral portion, such as an optical fiber, multiple coatings are required. A film process was required.
Japanese Patent Application No. 2006-001366

上記を鑑みて、本発明は、優れた光学特性、特に、優れた透明性と高い屈折率を有する透明高分子組成物及び光学部材を提供することを目的とする。   In view of the above, an object of the present invention is to provide a transparent polymer composition and an optical member having excellent optical properties, in particular, excellent transparency and a high refractive index.

本研究者らは、表面修飾無機微粒子が、透明高分子組成物中において、高充填しても凝集することなく、優れた分散性を示し、高い透明性と屈折率を有する透明高分子組成物を得ることができるということを見出し、また、光触媒活性を有する無機微粒子を用いると、紫外線照射によりこの微粒子を含有する透明高分子組成物の屈折率を低減させることがわかり、本発明を完成するに至った。   The present researchers have shown that a transparent polymer composition having excellent transparency and refractive index, in which the surface-modified inorganic fine particles exhibit excellent dispersibility without agglomeration even when filled in the transparent polymer composition. In addition, it is found that the use of inorganic fine particles having photocatalytic activity reduces the refractive index of the transparent polymer composition containing the fine particles by ultraviolet irradiation, thereby completing the present invention. It came to.

すなわち、本発明は、以下に関する。
1. 光触媒活性を有する無機微粒子(A)と透明高分子(B)を含む透明高分子組成物であって、紫外線を照射することによりその屈折率を制御することが可能である透明高分子組成物。
2. 前記無機微粒子(A)が、チタンを含有する酸化物であることを特徴とする項1に記載の透明高分子組成物。
3. 前記無機微粒子(A)の平均粒子径が1〜50nmであることを特徴とする項1または2に記載の透明高分子組成物。
4. 前記無機微粒子(A)が、分子量1000未満である修飾分子(a)と重量平均分子量1000以上である修飾高分子(b)の両方で表面を修飾してなることを特徴とする項1〜3のいずれかに記載の透明高分子組成物。
5. 前記無機微粒子(A)の表面を修飾している、前記分子量1000未満である修飾分子(a)と前記重量平均分子量1000以上である修飾高分子(b)の割合がモル比で1000:1〜1:10000であることを特徴とする項4に記載の透明高分子組成物。
6. 前記重量平均分子量1000以上である修飾高分子(b)が、前記透明高分子(B)と相溶する高分子であることを特徴とする項4または5に記載の透明高分子組成物。
7. 前記無機微粒子(A)の含有量が0.1〜95重量%であることを特徴とする項1〜6のいずれかに記載の透明高分子組成物。
8. 膜厚100〜1000nmの薄膜としたときのヘイズが、濁度計による測定で1.0%以下であることを特徴とする項1〜7のいずれかに記載の透明高分子組成物。
9. 膜厚100〜1000nmの薄膜としたときの、波長400〜800nmにおける屈折率が1.60〜2.80であることを特徴とする項1〜8のいずれかに記載の透明高分子組成物。
10. 紫外線照射後の屈折率が照射前より0.1以上小さくなることを特徴とする項1〜9のいずれかに記載の透明高分子組成物。
11. 項1〜10のいずれに記載の透明高分子組成物を用いたことを特徴とする光学部材。
That is, the present invention relates to the following.
1. A transparent polymer composition comprising inorganic fine particles (A) having photocatalytic activity and a transparent polymer (B), the refractive index of which can be controlled by irradiation with ultraviolet rays.
2. Item 2. The transparent polymer composition according to Item 1, wherein the inorganic fine particles (A) are an oxide containing titanium.
3. Item 3. The transparent polymer composition according to Item 1 or 2, wherein the inorganic fine particles (A) have an average particle size of 1 to 50 nm.
4). Item 1. The surface of the inorganic fine particles (A) is modified with both a modified molecule (a) having a molecular weight of less than 1000 and a modified polymer (b) having a weight average molecular weight of 1000 or more The transparent polymer composition according to any one of the above.
5. The ratio of the modified molecule (a) having a molecular weight of less than 1000 and the modified polymer (b) having a weight average molecular weight of 1000 or more that modifies the surface of the inorganic fine particles (A) is 1000: 1 to 1 in molar ratio. Item 5. The transparent polymer composition according to Item 4, which is 1: 10000.
6). Item 6. The transparent polymer composition according to Item 4 or 5, wherein the modified polymer (b) having a weight average molecular weight of 1000 or more is a polymer that is compatible with the transparent polymer (B).
7). Item 7. The transparent polymer composition according to any one of Items 1 to 6, wherein the content of the inorganic fine particles (A) is 0.1 to 95% by weight.
8). Item 8. The transparent polymer composition according to any one of Items 1 to 7, wherein the haze when a thin film having a thickness of 100 to 1000 nm is 1.0% or less as measured by a turbidimeter.
9. Item 9. The transparent polymer composition according to any one of Items 1 to 8, wherein the refractive index at a wavelength of 400 to 800 nm is 1.60 to 2.80 when a thin film having a thickness of 100 to 1000 nm is formed.
10. Item 10. The transparent polymer composition according to any one of Items 1 to 9, wherein the refractive index after ultraviolet irradiation is 0.1 or more smaller than that before irradiation.
11. Item 11. An optical member using the transparent polymer composition according to any one of items 1 to 10.

なお、本発明において、「透明」という用語は、光学用途に使用できる程度に光が透過することを意味し、具体的には、波長400〜800nmにおける光の透過率が90%以上で、かつヘイズが1%以下であることが望まれる。   In the present invention, the term “transparent” means that light is transmitted to such an extent that it can be used for optical purposes. Specifically, the light transmittance at a wavelength of 400 to 800 nm is 90% or more, and It is desirable that the haze is 1% or less.

本発明によれば、優れた光学特性、特に、優れた透明性と高い屈折率を有する透明高分子組成物を得ることができ、さらに光触媒活性を有する分散性に優れた無機微粒子を適用することにより、紫外線照射による屈折率制御が可能な透明高分子組成物と光学部材を提供することが可能となる。   According to the present invention, it is possible to obtain a transparent polymer composition having excellent optical properties, particularly excellent transparency and high refractive index, and further applying inorganic fine particles having photocatalytic activity and excellent dispersibility. Thus, it is possible to provide a transparent polymer composition and an optical member that can be controlled in refractive index by ultraviolet irradiation.

また、本発明の透明高分子組成物は、具体的には、カメラや眼鏡用のレンズ、光記録・些再生用機器のピックアップレンズ、フィルムレンズのハードコート材、液晶ディスプレイ、ELディスプレイ、CRTディスプレイの反射防止層やELディスプレイの輝度向上層等の光学部材(光学用材料)として好適に使用することができる。また、本発明の透明高分子組成物は、屈折率制御が容易なため、従来の光学用透明高分子では対応できなかった用途にも好適である。   Further, the transparent polymer composition of the present invention specifically includes a lens for a camera or glasses, a pickup lens for an optical recording / playback device, a hard coating material for a film lens, a liquid crystal display, an EL display, or a CRT display. It can be suitably used as an optical member (an optical material) such as an antireflection layer or a brightness enhancement layer of an EL display. Moreover, since the refractive index control is easy, the transparent polymer composition of this invention is suitable also for the use which was not able to respond with the conventional transparent polymer for optics.

以下、本発明について詳しく説明する。
本発明における光触媒活性を有する無機微粒子(A)は一種類以上の金属を含有する酸化物、硫化物で、光触媒活性を有するものであればよいが、好ましくは、紫外線領域である200〜400nmに吸収があるものである。具体的に含有されている金属はチタン、亜鉛、すず、タングステン、鉄、ニオブ、ストロンチウム、バリウム、タンタル等を挙げることができる。また、ここでいう光触媒活性とは、紫外線照射により活性化された触媒により、有機物の酸化反応が著しく促進される効果のことである。さらに、この酸化反応は照射する紫外線量に比例して激しく起こり、有機物が分解して気化したり、一もしくは二酸化炭素や水まで酸化されたりすることが知られている。
The present invention will be described in detail below.
The inorganic fine particles (A) having photocatalytic activity in the present invention may be oxides or sulfides containing one or more kinds of metals as long as they have photocatalytic activity, but preferably in the ultraviolet region of 200 to 400 nm. There is absorption. Specific examples of the metal contained include titanium, zinc, tin, tungsten, iron, niobium, strontium, barium, and tantalum. Moreover, the photocatalytic activity here is an effect that the oxidation reaction of the organic matter is remarkably accelerated by the catalyst activated by ultraviolet irradiation. Furthermore, it is known that this oxidation reaction occurs vigorously in proportion to the amount of ultraviolet rays to be irradiated, and the organic matter is decomposed and vaporized, or it is oxidized to carbon dioxide or water.

光触媒活性を有する物質のなかで、活性が大きく安価なものとして、チタン含有の酸化物がさらに好ましい。さらに好ましくは二酸化チタンを挙げることができる。結晶構造はアナターゼ、ルチル、ブルックカイト等が知られているが、特に限定されるものではない。   Of the substances having photocatalytic activity, titanium-containing oxides are more preferable as those having high activity and low cost. More preferably, titanium dioxide can be mentioned. Crystal structures such as anatase, rutile, and brookite are known, but are not particularly limited.

また、上記無機微粒子(A)の構造としては、例えば、上記金属1種類以上による結晶構造を形成するもの、または1種類の無機微粒子(A)に他の無機物を1種類以上の被覆したコア−シェル構造などが挙げられる。   In addition, as the structure of the inorganic fine particles (A), for example, a structure that forms a crystal structure of one or more metals, or a core in which one inorganic fine particle (A) is coated with one or more other inorganic substances. Examples include a shell structure.

上記無機微粒子(A)の粒子径は、平均粒子径として1nm以上50nm以下であることが好ましい。特に、透明高分子組成物中の光路長が長くなる場合には、より高い透明性を実現するために、1nm以上20nm以下であることが望ましい。なお、上記平均粒子径は、球状、棒状、不定形などの形状が含まれる上記無機微粒子(A)の中から無作為に選ばれた少なくとも百個以上の粒子について、透過型電子顕微鏡(TEM)によりそれぞれの粒子像の面積を測定し、これと同面積の円の直径をもって粒子径とし、公知の統計処理により平均粒子径を算出する。   The particle diameter of the inorganic fine particles (A) is preferably 1 nm or more and 50 nm or less as an average particle diameter. In particular, when the optical path length in the transparent polymer composition is increased, the thickness is preferably 1 nm or more and 20 nm or less in order to achieve higher transparency. In addition, the average particle diameter is a transmission electron microscope (TEM) for at least one hundred particles randomly selected from the inorganic fine particles (A) including shapes such as a spherical shape, a rod shape, and an irregular shape. Then, the area of each particle image is measured, and the diameter of a circle having the same area is used as the particle diameter, and the average particle diameter is calculated by a known statistical process.

また、光散乱による透明性の低下を防ぐためには、50nm以上の粒子径をもつ粒子が観察されないことが好ましい。特に、より高い透明性を実現するためには20nm以上の粒子径をもつ粒子が観察されないことが望ましい。   Moreover, in order to prevent the transparency fall by light scattering, it is preferable that the particle | grains with a particle diameter of 50 nm or more are not observed. In particular, in order to realize higher transparency, it is desirable that particles having a particle diameter of 20 nm or more are not observed.

本発明の透明高分子組成物は、上記無機微粒子(A)と透明高分子(B)とを共に組成物中に分散してなることを特徴するものである。ただし、上記無機微粒子(A)は、それ自体だけで透明な薄膜を形成することができる。薄膜を形成する方法に特に制限はないが、表面が有機物で修飾されているため、有機溶媒に分散させると透明な分散液を得て、スピンキャスト等により高い透明性と高い屈折率をもつ薄膜を形成させることができる。一方、上記無機微粒子(A)の表面を、分子量1000未満である修飾分子(a)と重量平均分子量1000以上である修飾高分子(b)の両方で修飾すると、透明高分子(B)に分散させることで、無機微粒子(A)をより高充填した透明高分子組成物を与えることができる。   The transparent polymer composition of the present invention is characterized in that both the inorganic fine particles (A) and the transparent polymer (B) are dispersed in the composition. However, the inorganic fine particles (A) can form a transparent thin film by themselves. The method of forming the thin film is not particularly limited, but the surface is modified with an organic substance, so when dispersed in an organic solvent, a transparent dispersion is obtained, and the thin film has high transparency and a high refractive index by spin casting or the like. Can be formed. On the other hand, when the surface of the inorganic fine particles (A) is modified with both the modifying molecule (a) having a molecular weight of less than 1000 and the modifying polymer (b) having a weight average molecular weight of 1000 or more, the surface of the inorganic fine particles (A) is dispersed in the transparent polymer (B). By making it, the transparent polymer composition which filled the inorganic fine particle (A) more highly can be given.

上記分子量1000未満の修飾分子(a)による修飾は、主に、無機微粒子(A)同士が直接接触して不可逆な凝集が生じることを防ぐために行うものであるが、この修飾のみを施した無機微粒子を透明高分子組成物中に高充填で分散させると、透明高分子との相溶性に限界が生じ、結果として組成物中で凝集体を形成してしまい、組成物の透明性が低下してしまう。そこで、本発明では、分子量1000未満の修飾分子(a)により、無機微粒子(A)同士の凝集を防ぎ、その上でさらに重量平均分子量1000以上である修飾高分子(b)により、無機微粒子(A)と透明高分子との相溶性を高め、透明高分子組成物における無機微粒子のさらなる高充填分散を実現した。   The modification with the modifying molecule (a) having a molecular weight of less than 1000 is mainly performed to prevent the irreversible aggregation from being caused by direct contact between the inorganic fine particles (A). If fine particles are dispersed in a transparent polymer composition with high filling, the compatibility with the transparent polymer is limited, resulting in the formation of aggregates in the composition, and the transparency of the composition decreases. End up. Therefore, in the present invention, the modification molecule (a) having a molecular weight of less than 1000 prevents aggregation of the inorganic fine particles (A), and further, the modification polymer (b) having a weight average molecular weight of 1000 or more further provides the inorganic fine particles ( The compatibility between A) and the transparent polymer was increased, and a further high filling dispersion of the inorganic fine particles in the transparent polymer composition was realized.

また、上記修飾高分子(b)は、本発明の透明高分子組成物において上記無機微粒子(A)と共に分散させる透明高分子(B)と相溶する高分子であることが好ましい。なお、本発明において「相溶する」とは、両高分子を直接混合又は混錬する方法、一旦溶媒に溶解したのち混合して溶媒を留去する方法で混合した後の混合物が優れた透明性を有していることを意味している。   The modified polymer (b) is preferably a polymer that is compatible with the transparent polymer (B) dispersed together with the inorganic fine particles (A) in the transparent polymer composition of the present invention. In the present invention, “compatible” means that the mixture after mixing by a method of directly mixing or kneading both polymers, a method of once dissolving in a solvent and mixing and distilling off the solvent is excellent. It means having a sex.

また、上記修飾高分子(b)における高分子鎖は、直鎖型や枝分かれ型などがあるが、特に制限はない。高分子鎖の形成方法も同一のモノマーを重合したもの、または異なる2種類以上のモノマーを重合したもののどちらでもよい。ただし、本発明の表面修飾無機微粒子を透明高分子と共によく分散させるためには、上記修飾高分子(b)の重量平均分子量が1000〜1000000であることが好ましい。   The polymer chain in the modified polymer (b) includes a straight chain type and a branched type, but is not particularly limited. The polymer chain may be formed by polymerizing the same monomer or polymerizing two or more different monomers. However, in order to well disperse the surface-modified inorganic fine particles of the present invention together with the transparent polymer, the modified polymer (b) preferably has a weight average molecular weight of 1,000 to 1,000,000.

上記無機微粒子(A)の表面を修飾している、前記分子量1000未満である修飾分子(a)と前記重量平均分子量1000以上である修飾高分子(b)の割合は、無機微粒子(A)が透明高分子(B)と共に分散する限り特に制約はないが、具体的には、修飾分子(a)と修飾高分子((b)がモル比で1:0.1〜1:10000であることが好ましい。無機微粒子(A)を透明高分子組成物中に高充填分散させる場合には、修飾分子(a)に対する修飾分子(b)の割合が少ないことが望ましい。   The ratio of the modified molecule (a) having a molecular weight of less than 1000 and the modified polymer (b) having a weight average molecular weight of 1000 or more, which modifies the surface of the inorganic fine particle (A), is determined by the inorganic fine particle (A). Although there is no restriction | limiting in particular as long as it disperse | distributes with a transparent polymer (B), Specifically, modified molecule (a) and modified polymer ((b) shall be 1: 0.1-1: 10000 by molar ratio. When the inorganic fine particles (A) are highly filled and dispersed in the transparent polymer composition, it is desirable that the ratio of the modifying molecule (b) to the modifying molecule (a) is small.

本発明における透明高分子(B)は、光学用途として一般に用いられ、その成形物または硬化物が透明性を有するものであれば特に制限はない。具体的には、アクリル樹脂、フェノキシ樹脂、ポリスチレン、ポリカーボナート、ポリシクロオレフィン、天然ゴム、ポリイソプレン、ポリ−1、2−ブタジエン、ポリイソブテン、ポリブテン、ポリ−2−ヘプチル−1、3−ブタジエン、ポリ−2−t−ブチル−1、3−ブタジエン、ポリ−1、3−ブタジエンなどの(ジ)エン類、ポリオキシエチレン、ポリオキシプロピレン、ポリビニルエチルエーテル、ポリビニルヘキシルエーテル、ポリビニルブチルエーテルなどのポリエーテル類、ポリビニルアセテート 、ポリビニルプロピオネートなどのポリエステル類、ポリウレタン、エチルセルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリメタクリロニトリル、ポリスルホン、ポリスルフィド等が挙げられ、これらは単独又は2種以上併用して用いることもできる。   The transparent polymer (B) in the present invention is generally used as an optical application, and is not particularly limited as long as the molded product or cured product has transparency. Specifically, acrylic resin, phenoxy resin, polystyrene, polycarbonate, polycycloolefin, natural rubber, polyisoprene, poly-1,2-butadiene, polyisobutene, polybutene, poly-2-heptyl-1,3-butadiene, (Di) enes such as poly-2-t-butyl-1,3-butadiene, poly-1,3-butadiene, polyoxyethylene, polyoxypropylene, polyvinyl ethyl ether, polyvinyl hexyl ether, polyvinyl butyl ether, and other poly Examples include ethers, polyesters such as polyvinyl acetate and polyvinyl propionate, polyurethane, ethyl cellulose, polyvinyl chloride, polyacrylonitrile, polymethacrylonitrile, polysulfone, polysulfide, and the like. It can also be used in combination with seeds or more.

上記の他にも、エチレン酢酸ビニル共重合体、エチレン−酢酸ビニル共重合体変性物、ポリエチレン、エチレン−プロピレン共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、エチレン−アクリル酸塩共重合体、アクリル酸エステル系ゴム、ポリイソブチレン、アタクチックポリプロピレン、ポリビニルブチラール、アクリロニトリル−ブタジエン共重合体、スチレン−ブタジエンブロック共重合体、スチレン−イソプレンブロック共重合体、エチレンセルロース、ポリアミド、シリコーン系ゴム、ポリクロロプレン等の合成ゴム類、シリコーン、ポリビニルエーテル等が適用可能であり、これらは単独あるいは2種以上併用して用いることもできる。   In addition to the above, ethylene vinyl acetate copolymer, ethylene-vinyl acetate copolymer modified product, polyethylene, ethylene-propylene copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene -Acrylate copolymer, acrylate rubber, polyisobutylene, atactic polypropylene, polyvinyl butyral, acrylonitrile-butadiene copolymer, styrene-butadiene block copolymer, styrene-isoprene block copolymer, ethylene cellulose, Synthetic rubbers such as polyamide, silicone rubber and polychloroprene, silicone, polyvinyl ether and the like are applicable, and these can be used alone or in combination of two or more.

さらに、上記透明高分子(B)に官能基を導入しておいて、本発明の表面修飾無機微粒子と複合化した後、官能基間の反応を起こして、透明高分子(B)のネットワーク化を図ることができる。あるいは、上記無機微粒子(A)と上記透明高分子(B)と共に、様々な反応重合性分子単独あるいは2種以上併用して用いることができる。この場合、反応重合性分子は、当該分子同士で高分子量化もしくはネットワーク化することができる。このように、本発明の透明高分子組成物は、前述の通り、本発明の表面修飾無機微粒子と透明高分子(B)を含むことを特徴とするものである。   Furthermore, after introducing a functional group into the transparent polymer (B) and compositing with the surface-modified inorganic fine particles of the present invention, a reaction between the functional groups is caused to form a network of the transparent polymer (B). Can be achieved. Alternatively, various reactive polymerizable molecules can be used alone or in combination of two or more together with the inorganic fine particles (A) and the transparent polymer (B). In this case, the reactive polymerizable molecule can be made high molecular weight or networked between the molecules. Thus, as described above, the transparent polymer composition of the present invention comprises the surface-modified inorganic fine particles of the present invention and the transparent polymer (B).

また、本発明の透明高分子組成物は、例えば、本発明の表面修飾無機微粒子を任意の溶媒に分散させたものと透明高分子(B)を任意の溶媒に溶解したものを混合する方法や溶融混錬法などにより作製することができる。また、透明高分子(B)が、透明樹脂である場合には、先に述べた二つの方法に加え、モノマー溶液中に本発明の表面修飾無機微粒子を分散させた後、熱や光などでモノマーを重合させることで透明樹脂組成物の硬化物を製造することができる。なお、本発明の透明高分子組成物の形態は、液状(ワニス状)であっても固形状(硬化物)であってもよい。また、用途に応じて、薄膜状にすることもできる。   The transparent polymer composition of the present invention is, for example, a method of mixing a dispersion of the surface-modified inorganic fine particles of the present invention in an arbitrary solvent with a solution of the transparent polymer (B) dissolved in an arbitrary solvent. It can be produced by a melt kneading method or the like. When the transparent polymer (B) is a transparent resin, in addition to the two methods described above, the surface-modified inorganic fine particles of the present invention are dispersed in the monomer solution, and then heated or lighted. A cured product of the transparent resin composition can be produced by polymerizing the monomer. In addition, the form of the transparent polymer composition of the present invention may be liquid (varnish) or solid (cured). Moreover, it can also be made into a thin film shape according to a use.

また、本発明の表面修飾無機微粒子を含む透明高分子組成物中の含有量には特に制限はないが0.1〜95重量%であることが好ましい。この含有量は透明高分子組成物を空気雰囲気下、900度まで昇温速度10〜50度/分で加熱し熱分解して得られる残渣より正確に測定できる。   The content in the transparent polymer composition containing the surface-modified inorganic fine particles of the present invention is not particularly limited, but is preferably 0.1 to 95% by weight. This content can be accurately measured from the residue obtained by heating and thermally decomposing the transparent polymer composition up to 900 ° C. at a heating rate of 10 to 50 ° C./min.

また、本発明の透明高分子組成物は、膜厚100〜1000nmの薄膜としたときのヘイズが、濁度計による測定で1%以下であることが好ましく、また、膜厚100〜1000nmの薄膜にしたときの、波長400〜800nmにおける屈折率が1.60〜2.80であることが好ましい。なお、これらの物性の測定方法は以下の実施例で詳述する。   In addition, the transparent polymer composition of the present invention preferably has a haze of 1% or less as measured by a turbidimeter when a thin film having a film thickness of 100 to 1000 nm is used, and a thin film having a film thickness of 100 to 1000 nm. The refractive index at a wavelength of 400 to 800 nm is preferably 1.60 to 2.80. In addition, the measuring method of these physical properties is explained in full detail in a following example.

本発明の透明高分子組成物に400〜800nmの紫外線を照射すると、照射部分の屈折率が低下する。これは、光触媒活性を有する上記無機微粒子(A)の周辺部分の高分子の酸化反応が促進し、分解もしくは気化することによって空隙が生じ、屈折率の低下をもたらすためである。照射する紫外線に制限はないが、一般に市販されているような高圧水銀ランプ、低圧水銀ランプ等の紫外線を発生させるものであればよい。   When the transparent polymer composition of the present invention is irradiated with ultraviolet rays having a wavelength of 400 to 800 nm, the refractive index of the irradiated portion is lowered. This is because the oxidation reaction of the polymer in the peripheral part of the inorganic fine particles (A) having photocatalytic activity is promoted, and voids are generated by decomposition or vaporization, resulting in a decrease in refractive index. Although there is no restriction | limiting in the ultraviolet-ray to irradiate, What is necessary is just to generate | occur | produce ultraviolet rays, such as a high pressure mercury lamp and a low pressure mercury lamp which are generally marketed.

ただし、照射する範囲としない範囲をマスク等して区別すると屈折率がこのなる2層構造やパターンの形成が可能である。また、照射強度を調整することで、透明高分子組成物中の照射された紫外線量を制御し、組成物中で屈折率を傾斜させることができる。より多く紫外線が照射された場所はその量に比例して屈折率の低下量も大きくなるためである。このようにして屈折率傾斜材料の設計も可能である。   However, if the range to be irradiated and the range not to be irradiated are distinguished using a mask or the like, it is possible to form a two-layer structure or pattern having this refractive index. In addition, by adjusting the irradiation intensity, the amount of irradiated ultraviolet light in the transparent polymer composition can be controlled, and the refractive index can be inclined in the composition. This is because the amount of decrease in the refractive index is increased in proportion to the amount of the ultraviolet rays irradiated more. In this way, it is possible to design a gradient index material.

これらの紫外線による屈折率調整は、透明高分子組成物が高い透明性を有していることによって初めて可能である。また、この際、ヘイズの上昇や透過率の低下は起きない。これは上記無機微粒子(A)の周辺部でのみ空隙ができたため、粒子の凝集や樹脂の不透明化といった現象が起きないためである。   The refractive index adjustment by these ultraviolet rays is possible for the first time because the transparent polymer composition has high transparency. At this time, no increase in haze or decrease in transmittance occurs. This is because voids are formed only in the peripheral portion of the inorganic fine particles (A), and thus phenomena such as particle aggregation and resin opacification do not occur.

以下、実施例に基づき本発明をさらに詳細に説明するが、本発明は下記の実施例に制限されるものではない。
<実施例1>
(酸化チタン微粒子の合成例)
温度計、還流コンデンサーを備えた100ml三つ口フラスコにトリオクチルホスフィンオキシド5.0g(アルドリッチ製、分子量=386.63)、四塩化チタン0.76g(和光純薬工業製)、ノルマルヘプタデカン30.0g(和光純薬工業製)を加え、窒素雰囲気下で攪拌しながら摂氏280度まで加熱した。280℃に到達後、この温度を維持しながらテトライソプロポキシチタン1.14g(和光純薬工業製)を加えた。そのまま5分間攪拌した後、放冷したところ、沈殿が析出した。傾斜して上澄み液を除き、沈殿を2−プロパノール、アセトンの順で洗浄して、分子量1000未満の修飾分子により修飾された酸化チタン微粒子(平均粒径14nm)0.33gを沈殿として得た。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not restrict | limited to the following Example.
<Example 1>
(Synthesis example of titanium oxide fine particles)
In a 100 ml three-necked flask equipped with a thermometer and a reflux condenser, 5.0 g of trioctylphosphine oxide (manufactured by Aldrich, molecular weight = 386.63), 0.76 g of titanium tetrachloride (manufactured by Wako Pure Chemical Industries), normal heptadecane 30 0.0 g (manufactured by Wako Pure Chemical Industries, Ltd.) was added and heated to 280 degrees Celsius with stirring under a nitrogen atmosphere. After reaching 280 ° C., 1.14 g of tetraisopropoxy titanium (manufactured by Wako Pure Chemical Industries, Ltd.) was added while maintaining this temperature. The mixture was stirred as it was for 5 minutes and then allowed to cool, whereby a precipitate was deposited. The supernatant was removed by inclining, and the precipitate was washed with 2-propanol and acetone in this order to obtain 0.33 g of titanium oxide fine particles (average particle size: 14 nm) modified with a modifying molecule having a molecular weight of less than 1000 as a precipitate.

(修飾高分子合成例1)
温度計、還流コンデンサーを備えた100ml三つ口フラスコに4,4’−アゾビス(4−シアノ吉草酸)(和光純薬工業製)3.34g、塩化チオニル(和光純薬工業製)10mlを加え窒素雰囲気下で30分間還流させた。還流後0℃に冷却したヘキサン80mlを加えたところ、沈殿が析出した。傾斜して上澄みを除き、再び0℃に冷却したヘキサン80mlを沈殿に加え激しく振り、沈殿を濾別して減圧乾燥して2.71gの生成物(I)(下記化学式(I))を得た。さらに100ml三つ口フラスコに上記で得た生成物(I)0.18g、THF30ml、メタクリル酸メチル(和光純薬工業製)6.0gを加え、アルゴンバブリングして溶存酸素を除いた。攪拌しながらアルゴン雰囲気下、70℃で5時間加熱した後、放冷して末端官能ポリメタクリル酸メチル(以下、PMMA)修飾高分子(II)(下記一般式(II)、重量平均分子量36600)のテトラヒドロフラン溶液を得た。
(Modified polymer synthesis example 1)
To a 100 ml three-necked flask equipped with a thermometer and a reflux condenser was added 3.34 g of 4,4′-azobis (4-cyanovaleric acid) (manufactured by Wako Pure Chemical Industries) and 10 ml of thionyl chloride (manufactured by Wako Pure Chemical Industries). The mixture was refluxed for 30 minutes under a nitrogen atmosphere. When 80 ml of hexane cooled to 0 ° C. was added after refluxing, a precipitate was deposited. The supernatant was removed by inclining, and 80 ml of hexane cooled again to 0 ° C. was added to the precipitate and shaken vigorously. The precipitate was filtered and dried under reduced pressure to obtain 2.71 g of product (I) (the following chemical formula (I)). Further, 0.18 g of the product (I) obtained above, 30 ml of THF and 6.0 g of methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) were added to a 100 ml three-necked flask, and dissolved oxygen was removed by argon bubbling. After stirring for 5 hours at 70 ° C. in an argon atmosphere while stirring, the polymer is allowed to cool and modified with terminal functional polymethyl methacrylate (hereinafter, PMMA) modified polymer (II) (the following general formula (II), weight average molecular weight 36600) A tetrahydrofuran solution was obtained.

Figure 2008088353
Figure 2008088353

Figure 2008088353
Figure 2008088353

(修飾高分子による微粒子の修飾処理例1)
上記酸化チタン微粒子の合成例で得た酸化チタン微粒子0.20gをテトラヒドロフラン5.0mlに分散させた分散液と、上記修飾高分子合成例1で得た末端能PMMA修飾高分子のテトラヒドロフラン溶液1.0mlを、還流コンデンサーを備えた30ml二つ口フラスコに加え、窒素雰囲気下で加熱して8時間還流させた。その後、放冷して室温に戻し、内容物をメタノール20ml中に滴下したところ、沈殿が生成した。この沈殿を濾別して0.18gのPMMA修飾酸化チタン微粒子の固体を得た。
(Example 1 of modifying fine particles with a modified polymer)
1. A dispersion obtained by dispersing 0.20 g of titanium oxide fine particles obtained in the above-mentioned titanium oxide fine particle synthesis example in 5.0 ml of tetrahydrofuran, and a tetrahydrofuran solution of the terminal ability PMMA-modified polymer obtained in the modified polymer synthesis example 1. 0 ml was added to a 30 ml two-necked flask equipped with a reflux condenser and heated under a nitrogen atmosphere to reflux for 8 hours. Then, it stood to cool and returned to room temperature, and when the content was dripped in 20 ml of methanol, precipitation produced | generated. This precipitate was separated by filtration to obtain 0.18 g of a solid of PMMA-modified titanium oxide fine particles.

(透明高分子組成物作製例1)
上記処理例1で得たPMMA修飾酸化チタン微粒子0.18gをトルエン1.0mlに分散させた分散液とPMMA(三菱レイヨン製、分子量=40000、屈折率1.49)0.100gをトルエン5.0mlに溶解したPMMAトルエン溶液を混合し、これをスライドガラス上およびシリコンウエハー上にスピンコートして厚み300nm〜800nmの透明高分子組成物を作製した。
(Transparent polymer composition preparation example 1)
A dispersion obtained by dispersing 0.18 g of the PMMA-modified titanium oxide fine particles obtained in the above treatment example 1 in 1.0 ml of toluene and 0.100 g of PMMA (Mitsubishi Rayon, molecular weight = 40000, refractive index 1.49) are added to toluene 5. A PMMA toluene solution dissolved in 0 ml was mixed and spin-coated on a slide glass and a silicon wafer to prepare a transparent polymer composition having a thickness of 300 nm to 800 nm.

<比較例1>
(修飾酸化ジルコニウム微粒子合成例)
温度計、還流コンデンサーを備えた100ml三つ口フラスコにトリオクチルホスフィンオキシド20.0g(アルドリッチ製、分子量=386.63)、四塩化ジルコニウム1.16g(アルドリッチ製)、テトライソプロポキシジルコニウム1.56g(アルドリッチ製)を加え、窒素雰囲気下で攪拌しながら摂氏340度まで加熱した。340℃に到達後、そのまま2時間攪拌した後、放冷して室温とした。ついでアセトン50mlを加えたところ、沈殿が生成した。傾斜して上澄み液を除き、沈殿をアセトンで洗浄して、分子量1000未満の修飾分子により修飾された酸化ジルコニウム微粒子(平均粒径4nm)0.54gを沈殿として得た。
<Comparative Example 1>
(Synthesis example of modified zirconium oxide fine particles)
In a 100 ml three-necked flask equipped with a thermometer and a reflux condenser, 20.0 g of trioctylphosphine oxide (manufactured by Aldrich, molecular weight = 386.63), 1.16 g of zirconium tetrachloride (manufactured by Aldrich), 1.56 g of tetraisopropoxyzirconium (Aldrich) was added and heated to 340 degrees Celsius with stirring under a nitrogen atmosphere. After reaching 340 ° C., the mixture was stirred as it was for 2 hours and then allowed to cool to room temperature. Subsequently, 50 ml of acetone was added, and a precipitate was formed. The supernatant was removed by inclining, and the precipitate was washed with acetone to obtain 0.54 g of zirconium oxide fine particles (average particle size 4 nm) modified with a modifying molecule having a molecular weight of less than 1000 as a precipitate.

(修飾高分子による微粒子の修飾処理例2)
上記酸化ジルコニウム微粒子合成例で得た修飾酸化ジルコニウムナノ粒子0.54gをテトラヒドロフラン5.0mlに分散させた分散液と、上記修飾高分子合成例1で得た末端能PMMA修飾高分子のテトラヒドロフラン溶液1.0mlを、還流コンデンサーを備えた30ml二つ口フラスコに加え、窒素雰囲気下で加熱して8時間還流させた。その後、放冷して室温に戻し、内容物をメタノール20ml中に滴下したところ、沈殿が生成した。この沈殿を濾別して0.50gのPMMA修飾酸化ジルコニム微粒子の固体を得た。
(Example 2 of modifying fine particles with a modified polymer)
A dispersion obtained by dispersing 0.54 g of the modified zirconium oxide nanoparticles obtained in the above-mentioned zirconium oxide fine particle synthesis example in 5.0 ml of tetrahydrofuran, and a tetrahydrofuran solution 1 of the terminal ability PMMA-modified polymer obtained in the modified polymer synthesis example 1 0.0 ml was added to a 30 ml two-necked flask equipped with a reflux condenser and heated under a nitrogen atmosphere to reflux for 8 hours. Then, it stood to cool and returned to room temperature, and when the content was dripped in 20 ml of methanol, precipitation produced | generated. This precipitate was separated by filtration to obtain 0.50 g of PMMA-modified zirconium oxide fine particles as a solid.

(透明高分子組成物作製例2)
上記処理例2で得たPMMA修飾酸化ジルコニウム微粒子0.20gをトルエン1.0mlに分散させた分散液とPMMA(三菱レイヨン製、分子量=40000、屈折率1.49)0.100gをトルエン5.0mlに溶解したPMMAトルエン溶液を混合し、これをスライドガラス上およびシリコンウエハー上にスピンコートして厚み300nm〜800nmの透明高分子組成物を作製した。
(Transparent polymer composition preparation example 2)
A dispersion obtained by dispersing 0.20 g of the PMMA-modified zirconium oxide fine particles obtained in the above treatment example 2 in 1.0 ml of toluene and 0.100 g of PMMA (Mitsubishi Rayon, molecular weight = 40000, refractive index 1.49) are added to toluene 5. A PMMA toluene solution dissolved in 0 ml was mixed and spin-coated on a slide glass and a silicon wafer to prepare a transparent polymer composition having a thickness of 300 nm to 800 nm.

<評価>
(1)紫外線照射
ウシオ電機(株)製SP−7−250UBを用いて、365nmにおける表面での強度が5000mW/cmとなる条件下で紫外線照射を行った。
(2)屈折率及び透過率
実施例1及び比較例1で作製した各透明組成物薄膜について、日本分光製紫外可視近赤外分光計により400nm〜800nmにおける屈折率及び光の透過率を調べた。屈折率の算出方法は文献(東京大学出版会、薄膜・光デバイス、吉田貞史 矢島弘義著)中の透明膜の屈折率と膜厚を求める方法に拠った。結果を図1に示す。
<Evaluation>
(1) Ultraviolet irradiation Ultraviolet irradiation was performed under the condition that the intensity at the surface at 365 nm was 5000 mW / cm 2 using SP-7-250UB manufactured by USHIO INC.
(2) Refractive index and transmittance About each transparent composition thin film produced in Example 1 and Comparative Example 1, the refractive index and the light transmittance at 400 nm to 800 nm were examined by an ultraviolet-visible near-infrared spectrometer manufactured by JASCO Corporation. . The calculation method of the refractive index was based on the method for obtaining the refractive index and film thickness of the transparent film in the literature (University of Tokyo Press, Thin Film / Optical Device, Sadafumi Yoshida, Hiroyoshi Yajima). The results are shown in FIG.

(3)ヘイズ
実施例1、比較例1で作製した各透明高分子組成物薄膜について、日本電色工業製ヘイズメーターNDH2000によりそれぞれのヘイズを調べた。結果を下記表1に示す。
○:ヘイズ1%以下
×:ヘイズ1%以上
(4)透過率
実施例1、比較例1で作製した各透明高分子組成物薄膜について、日本分光製紫外可視近赤外分光計により400nm〜800nmにおける光の透過率を調べた。なお、スライドガラスの透過率が91%である。結果を下記表1に示す。
○:透過率が90%以上
×:透過率が90%未満
(5)作製した各透明組成物薄膜について、エスエスアイ・ナノテクノロジー製TG/DTA6300で透明高分子組成物中の無機物の重量比を測定した。結果を下記表1に示す。
(3) Haze About each transparent polymer composition thin film produced in Example 1 and Comparative Example 1, each haze was investigated by Nippon Denshoku Industries haze meter NDH2000. The results are shown in Table 1 below.
(Circle): Haze 1% or less x: Haze 1% or more (4) Transmittance About each transparent polymer composition thin film produced in Example 1 and Comparative Example 1, 400 nm to 800 nm using an ultraviolet-visible near-infrared spectrometer manufactured by JASCO Corporation. The transmittance of light was investigated. The transmittance of the slide glass is 91%. The results are shown in Table 1 below.
○: Transmittance is 90% or more X: Transmittance is less than 90% (5) For each of the prepared transparent composition thin films, the weight ratio of the inorganic substance in the transparent polymer composition is TG / DTA6300 manufactured by SSI Nanotechnology. It was measured. The results are shown in Table 1 below.

Figure 2008088353
Figure 2008088353

(6)粒子観察
実施例1、比較例1で合成した酸化チタン微粒子、酸化ジルコニウム微粒子について、日立製作所製H−9000NAR型透過型電子顕微鏡(TEM)で粒子の形状、大きさを測定した。結果を図2に示した。図2のTEM写真において、左側は酸化チタン、右側は酸化ジルコニウムである。
(6) Particle Observation About the titanium oxide fine particles and zirconium oxide fine particles synthesized in Example 1 and Comparative Example 1, the shape and size of the particles were measured with an H-9000NAR transmission electron microscope (TEM) manufactured by Hitachi. The results are shown in FIG. In the TEM photograph of FIG. 2, the left side is titanium oxide and the right side is zirconium oxide.

評価結果より、優れた光学特性、特に、優れた透明性と高い屈折率を有する透明高分子組成物を得ることができ、さらに光触媒活性を有する分散性に優れた無機微粒子を適用することにより、紫外線照射による屈折率制御が可能な透明高分子組成物と光学部材を提供することが可能となることがわかった。   From the evaluation results, it is possible to obtain a transparent polymer composition having excellent optical properties, particularly excellent transparency and high refractive index, and further by applying inorganic fine particles having excellent dispersibility having photocatalytic activity, It has been found that it is possible to provide a transparent polymer composition and an optical member capable of controlling the refractive index by ultraviolet irradiation.

照射時間と屈折率変化の関係を示すグラフである。It is a graph which shows the relationship between irradiation time and a refractive index change. 合成した酸化チタン微粒子と酸化ジルコニウム微粒子のTEM写真である(左:酸化チタン、右:酸化ジルコニウム)。It is a TEM photograph of the synthesized titanium oxide fine particles and zirconium oxide fine particles (left: titanium oxide, right: zirconium oxide).

Claims (11)

光触媒活性を有する無機微粒子(A)と透明高分子(B)を含む透明高分子組成物であって、紫外線を照射することによりその屈折率を制御することが可能である透明高分子組成物。   A transparent polymer composition comprising inorganic fine particles (A) having photocatalytic activity and a transparent polymer (B), the refractive index of which can be controlled by irradiation with ultraviolet rays. 前記無機微粒子(A)が、チタンを含有する酸化物であることを特徴とする請求項1に記載の透明高分子組成物。   The transparent polymer composition according to claim 1, wherein the inorganic fine particles (A) are an oxide containing titanium. 前記無機微粒子(A)の平均粒子径が1〜50nmであることを特徴とする請求項1または2に記載の透明高分子組成物。   The transparent polymer composition according to claim 1 or 2, wherein the inorganic fine particles (A) have an average particle diameter of 1 to 50 nm. 前記無機微粒子(A)が、分子量1000未満である修飾分子(a)と重量平均分子量1000以上である修飾高分子(b)の両方で表面を修飾してなることを特徴とする請求項1〜3のいずれかに記載の透明高分子組成物。   The surface of the inorganic fine particle (A) is modified with both a modified molecule (a) having a molecular weight of less than 1000 and a modified polymer (b) having a weight average molecular weight of 1000 or more. 4. The transparent polymer composition according to any one of 3. 前記無機微粒子(A)の表面を修飾している、前記分子量1000未満である修飾分子(a)と前記重量平均分子量1000以上である修飾高分子(b)の割合がモル比で1000:1〜1:10000であることを特徴とする請求項4に記載の透明高分子組成物。   The ratio of the modified molecule (a) having a molecular weight of less than 1000 and the modified polymer (b) having a weight average molecular weight of 1000 or more that modifies the surface of the inorganic fine particles (A) is 1000: 1 to 1 in molar ratio. It is 1: 10000, The transparent polymer composition of Claim 4 characterized by the above-mentioned. 前記重量平均分子量1000以上である修飾高分子(b)が、前記透明高分子(B)と相溶する高分子であることを特徴とする請求項4または5に記載の透明高分子組成物。   The transparent polymer composition according to claim 4 or 5, wherein the modified polymer (b) having a weight average molecular weight of 1000 or more is a polymer that is compatible with the transparent polymer (B). 前記無機微粒子(A)の含有量が0.1〜95重量%であることを特徴とする請求項1〜6のいずれかに記載の透明高分子組成物。   The transparent polymer composition according to any one of claims 1 to 6, wherein the content of the inorganic fine particles (A) is 0.1 to 95% by weight. 膜厚100〜1000nmの薄膜としたときのヘイズが、濁度計による測定で1.0%以下であることを特徴とする請求項1〜7のいずれかに記載の透明高分子組成物。   The transparent polymer composition according to any one of claims 1 to 7, wherein the haze when a thin film having a film thickness of 100 to 1000 nm is 1.0% or less as measured by a turbidimeter. 膜厚100〜1000nmの薄膜としたときの、波長400〜800nmにおける屈折率が1.60〜2.80であることを特徴とする請求項1〜8のいずれかに記載の透明高分子組成物。   The transparent polymer composition according to any one of claims 1 to 8, wherein a refractive index at a wavelength of 400 to 800 nm is 1.60 to 2.80 when a thin film having a thickness of 100 to 1000 nm is formed. . 紫外線照射後の屈折率が照射前より0.1以上小さくなることを特徴とする請求項1〜9のいずれかに記載の透明高分子組成物。   The transparent polymer composition according to any one of claims 1 to 9, wherein a refractive index after ultraviolet irradiation is 0.1 or more smaller than that before irradiation. 請求項1〜10のいずれに記載の透明高分子組成物を用いたことを特徴とする光学部材。   An optical member comprising the transparent polymer composition according to claim 1.
JP2006273007A 2006-10-04 2006-10-04 Transparent polymer composition and optical member Pending JP2008088353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006273007A JP2008088353A (en) 2006-10-04 2006-10-04 Transparent polymer composition and optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006273007A JP2008088353A (en) 2006-10-04 2006-10-04 Transparent polymer composition and optical member

Publications (1)

Publication Number Publication Date
JP2008088353A true JP2008088353A (en) 2008-04-17

Family

ID=39372826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006273007A Pending JP2008088353A (en) 2006-10-04 2006-10-04 Transparent polymer composition and optical member

Country Status (1)

Country Link
JP (1) JP2008088353A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214290A (en) * 2009-03-17 2010-09-30 Central Japan Railway Co Thin film forming method
CN102791826A (en) * 2010-03-08 2012-11-21 光学转变公司 Methods for producing photosensitive microparticles
WO2023171780A1 (en) * 2022-03-11 2023-09-14 日本電気硝子株式会社 Optical element and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147090A (en) * 2001-11-14 2003-05-21 Mitsubishi Chemicals Corp Molded article of thermoplastic resin composition including nano particles and method of production for the same
JP2005281644A (en) * 2004-03-31 2005-10-13 Catalysts & Chem Ind Co Ltd Resin additive, method for producing the same, and thermoplastic resin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147090A (en) * 2001-11-14 2003-05-21 Mitsubishi Chemicals Corp Molded article of thermoplastic resin composition including nano particles and method of production for the same
JP2005281644A (en) * 2004-03-31 2005-10-13 Catalysts & Chem Ind Co Ltd Resin additive, method for producing the same, and thermoplastic resin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214290A (en) * 2009-03-17 2010-09-30 Central Japan Railway Co Thin film forming method
CN102791826A (en) * 2010-03-08 2012-11-21 光学转变公司 Methods for producing photosensitive microparticles
CN102791826B (en) * 2010-03-08 2015-01-07 光学转变公司 Methods for producing photosensitive microparticles
WO2023171780A1 (en) * 2022-03-11 2023-09-14 日本電気硝子株式会社 Optical element and method for producing same

Similar Documents

Publication Publication Date Title
Singh et al. In situ synthesis of silver nano-particles in polymethylmethacrylate
Fielding et al. All-acrylic film-forming colloidal polymer/silica nanocomposite particles prepared by aqueous emulsion polymerization
JP5392697B2 (en) Core-shell type zinc oxide fine particles or dispersion containing the same, their production method and use
JP5345891B2 (en) Anti-glare film and method for producing the same
JP5186708B2 (en) Resin composition and molded article, film or coating agent comprising resin composition
Ingrosso et al. UV-curable nanocomposite based on methacrylic-siloxane resin and surface-modified TiO2 nanocrystals
JP4701409B2 (en) Core-shell cerium oxide polymer hybrid nanoparticles and method for producing dispersion thereof
JP2008111114A (en) Method of manufacturing dispersion of core-shell type metal oxide fine particle and dispersion thereof
TW200922868A (en) Core-shell structured metal oxide particles and method for producing the same
Ajibade et al. Synthesis and characterization of metal sulfides nanoparticles/poly (methyl methacrylate) nanocomposites
JP2007204739A (en) Transparent polymer composition and optical member using the same
de Freitas Guimarães et al. Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites
TW200927766A (en) Metal fine particle dispersant comprising polymer compound having dithiocarbamate group
KR100913272B1 (en) Preparation method of core-shell type nanocomposite particles in supercritical carbon dioxide
JP5484025B2 (en) Titanium oxide sol, resin composition using the same, optical material and optical element
JP2008088353A (en) Transparent polymer composition and optical member
Nguyen et al. Assessment of characteristics and weather stability of acrylic coating containing surface modified zirconia nanoparticles
Liou et al. Manipulation of nanoneedle and nanosphere apatite/poly (acrylic acid) nanocomposites
JP2008075078A (en) Transparent polymer composition and optical member
JP2016079050A (en) Zirconia particulate fluid dispersion containing organic acid, surface modification zirconia particulate fluid dispersion and producing method thereof, resin complex composition
Burunkova et al. Self-organization of ZnO nanoparticles on UV-curable acrylate nanocomposites
JP5046239B2 (en) Organic inorganic composite
Xu et al. Synthesis of TiO2–SiO2/polymer core–shell microspheres with a microphase‐inversion method
JP2008056864A (en) Fullerene polymer composite and its production process
JP2007093893A (en) Optical component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130307