JP5186708B2 - Resin composition and molded article, film or coating agent comprising resin composition - Google Patents

Resin composition and molded article, film or coating agent comprising resin composition Download PDF

Info

Publication number
JP5186708B2
JP5186708B2 JP2006289868A JP2006289868A JP5186708B2 JP 5186708 B2 JP5186708 B2 JP 5186708B2 JP 2006289868 A JP2006289868 A JP 2006289868A JP 2006289868 A JP2006289868 A JP 2006289868A JP 5186708 B2 JP5186708 B2 JP 5186708B2
Authority
JP
Japan
Prior art keywords
fine particles
transparent
resin composition
ethylene
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006289868A
Other languages
Japanese (ja)
Other versions
JP2008106129A (en
Inventor
剛 山下
幸彦 山下
徹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2006289868A priority Critical patent/JP5186708B2/en
Publication of JP2008106129A publication Critical patent/JP2008106129A/en
Application granted granted Critical
Publication of JP5186708B2 publication Critical patent/JP5186708B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、透明高分子への分散性に優れ、透明性高分子中に分散する優れた透明性と光学特性をもつ透明組成物が得られる無機微粒子を用いた樹脂組成物及び樹脂組成物からなる成形品、フィルム又はコーティング剤に関する。 The present invention is excellent in dispersibility in the transparent polymer resin composition and a resin composition transparent composition having excellent transparency and optical properties dispersed with inorganic fine particles obtained in transparency in the polymer It relates to a molded article, a film or a coating agent.

透明高分子の高屈折率化は従来、硫黄やハロゲン原子又はベンゼン環などの芳香族化合物を高分子中に導入することによって行われてきた。しかし、屈折率の向上には限界があり、
また、吸湿率、屈折率温度依存性、複屈折率などの光学特性が低下する場合があった。そこで種々の光学特性を付与しながら、より高屈折率化が可能な手法として、微粒子を透明高分子に分散させる試みが近年盛んに行われている。
Conventionally, the refractive index of transparent polymers has been increased by introducing aromatic compounds such as sulfur, halogen atoms or benzene rings into the polymer. However, there is a limit to improving the refractive index,
In addition, optical characteristics such as moisture absorption, refractive index temperature dependency, and birefringence may be deteriorated. In recent years, attempts have been actively made to disperse fine particles in a transparent polymer as a technique capable of increasing the refractive index while imparting various optical characteristics.

透明性を実現させるには微粒子と透明高分子の屈折率がそれぞれ近いものを混合することが最も容易であり、この場合、微粒子の大きさや分散性はあまり問題にならない。
しかし、高い屈折率の微粒子をそれより屈折率の低い透明高分子に分散させて高屈折率化を行う場合、微粒子の粒子径や分散性に十分配慮する必要がある。
In order to achieve transparency, it is easiest to mix fine particles and transparent polymers having similar refractive indexes, and in this case, the size and dispersibility of the fine particles are not a problem.
However, when increasing the refractive index by dispersing fine particles having a high refractive index in a transparent polymer having a lower refractive index, it is necessary to give sufficient consideration to the particle size and dispersibility of the fine particles.

一般に、光の波長より十分に小さい微粒子が完全に独立して分散された場合のみ、優れた透明性が実現することが予想されている。しかし、実際には微粒子を高分子中に分散させると、その微粒子の大きさが小さく、特に100nm以下になると、容易に凝集を起こして組成物の透明性は低下する。   In general, it is expected that excellent transparency is realized only when fine particles sufficiently smaller than the wavelength of light are dispersed completely independently. However, in practice, when the fine particles are dispersed in the polymer, the size of the fine particles is small. Particularly when the particle size is 100 nm or less, aggregation easily occurs and the transparency of the composition is lowered.

また、高屈折率化が期待されるチタンなどの金属酸化物の微粒子に関しては、凝集力が大きいことから、光学用途の条件を満たすような透明性を維持しながら、透明分散中に高充填分散する技術は未だ開発されていない。   In addition, with regard to fine particles of metal oxides such as titanium, which are expected to have a high refractive index, the cohesive force is large. This technology has not been developed yet.

微粒子を高分子中に分散させる方法として、特許文献1や非特許文献1には微粒子合成の際、微粒子表面に官能基を導入し、当該官能基と反応する官能基を有する高分子と複合することにより微粒子の分散を図る方法が挙げられている。   As a method for dispersing fine particles in a polymer, Patent Document 1 and Non-Patent Document 1 introduce a functional group on the surface of the fine particle when synthesizing the fine particle and combine it with a polymer having a functional group that reacts with the functional group. The method of aiming at dispersion | distribution of microparticles | fine-particles by this is mentioned.

しかし、これらの手法では微粒子合成の際、2種類以上の官能基をもつ分子が必要となり、また、微粒子を分散させる高分子にも当該官能基と反応する官能基を必ず導入しなければいけないなど制限が多い。
特開平11−043556号公報 チャンリー・リュー(Changli.Lu)ら著、「ジャーナル オブ マテリアルズ ケミストリー(J.Mater.Chem)」、(米国)、13巻、2003年、p.2189−2195
However, these methods require molecules having two or more types of functional groups for fine particle synthesis, and a functional group that reacts with the functional groups must be introduced into the polymer in which the fine particles are dispersed. There are many restrictions.
Japanese Patent Laid-Open No. 11-043556 Changli. Lu et al., “Journal of Materials Chemistry” (USA), Vol. 13, 2003, p. 2189-2195

これとは別に無機微粒子を有機溶剤に分散させるため、高分子カップリング剤を用いる方法が特許文献2で挙げられている。
しかし、高分子のみで粒子を修飾した場合、透明高分子に分散させて得られた透明組成物中での微粒子の重量が相対的に減少してしまう恐れがある。
特開平05−269365号公報
In addition to this, Patent Document 2 discloses a method using a polymer coupling agent in order to disperse inorganic fine particles in an organic solvent.
However, when the particles are modified with only the polymer, the weight of the fine particles in the transparent composition obtained by dispersing in the transparent polymer may be relatively reduced.
JP 05-269365 A

例えば、高屈折率化を達成するためには、微粒子の充填量を透明高分子に対して十分に増やすことが必要となる。非特許文献1では屈折率は1.645のポリウレタンメタクリレートマクロマーに屈折率2.36の硫化亜鉛を重量部で80%以上加えることで屈折率1.75以上の組成物が得られている。   For example, in order to achieve a high refractive index, it is necessary to sufficiently increase the filling amount of the fine particles with respect to the transparent polymer. In Non-Patent Document 1, a composition having a refractive index of 1.75 or more is obtained by adding 80% or more by weight of zinc sulfide having a refractive index of 2.36 to a polyurethane methacrylate macromer having a refractive index of 1.645.

このように高屈折率化には単に微粒子を透明高分子中に分散させるだけでなく、高充填することが不可欠で、少ない修飾剤の量で透明性が得られるのに十分な分散性のある微粒子の修飾方法の開発が期待される。   Thus, in order to increase the refractive index, it is indispensable not only to disperse the fine particles in the transparent polymer but also to have a high filling, and it has sufficient dispersibility to obtain transparency with a small amount of modifier. Development of a fine particle modification method is expected.

また、無機微粒子を高分子中に分散させた組成物は屈折率以外に、金属酸化物に特有の波長分散などの光学的特性も、従来の透明高分子と大きく異なることが期待できる。   In addition to the refractive index, a composition in which inorganic fine particles are dispersed in a polymer can be expected to have optical properties such as wavelength dispersion characteristic of a metal oxide that are significantly different from those of conventional transparent polymers.

本発明の目的は透明高分子に分散させて、透明性に優れた、高屈折率化可能で、優れた光学特性をもつ透明組成物が得られる、分散性に優れた高屈折率の無機微粒子を用いた樹脂組成物及び樹脂組成物からなる成形品、フィルム又はコーティング剤を提供するものである。 The object of the present invention is to disperse in a transparent polymer to obtain a transparent composition having excellent transparency, a high refractive index, and a transparent composition having excellent optical properties. The present invention provides a resin composition using a child and a molded article, film or coating agent comprising the resin composition.

本発明者らは無機微粒子を凝集させることなく透明高分子に分散させ、また、微粒子の透明高分子中で高充填化する技術を鋭意検討したところ、分子量の大きくない修飾分子と高分子量の修飾高分子の両方で微粒子を修飾すると、微粒子を透明高分子中に大きな凝集体を生じることなく高充填化させ、優れた透明性をもつ組成物が得られることを見出した。   The inventors of the present invention have intensively studied a technique for dispersing inorganic fine particles in a transparent polymer without agglomerating and making the fine particles highly packed in the transparent polymer. It has been found that when fine particles are modified with both polymers, the fine particles are highly filled without forming large aggregates in the transparent polymer, and a composition having excellent transparency can be obtained.

本発明は、無機微粒子(A)が、表面が有機物(B)で修飾され、透明高分子(C)に分散させ透明組成物(D)であって、このうち(A)〜(C)が、(A)無機微粒子がチタン、ジルコニウム、亜鉛、アルミニウムの中から選択される1種類以上を含有する酸化物であり、粒子径が1〜50nmである無機微粒子、(B)有機物が、分子量1000未満である修飾分子(a)及び無機微粒子表面上に導入された開始剤(b)を起点としてリビングラジカル重合によって主骨格を形成する高分子(c)及び(C)透明高分子がアクリル樹脂、フェノキシ樹脂、ポリスチレン、ポリカーボナート、ポリシクロオレフィン、天然ゴム、ポリイソプレン、ポリ−1,2−ブタジエン、ポリイソブテン、ポリブテン、ポリ−2−ヘプチル−1,3−ブタジエン、ポリ−2−t−ブチル−1,3−ブタジエン、ポリ−1,3−ブタジエン、ポリオキシエチレン、ポリオキシプロピレン、ポリビニルエチルエーテル、ポリビニルヘキシルエーテル、ポリビニルブチルエーテル、ポリビニルアセテート、ポリビニルプロピオネート、ポリウレタン、エチルセルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリメタクリロニトリル、ポリスルホン、ポリスルフィド、エチレン酢酸ビニル共重合体、エチレン−酢酸ビニル共重合体変性物、ポリエチレン、エチレン−プロピレン共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、エチレン−アクリル酸塩共重合体、アクリル酸エステル系ゴム、ポリイソブチレン、アタクチックポリプロピレン、ポリビニルブチラール、アクリロニトリル−ブタジエン共重合体、スチレン−ブタジエンブロック共重合体、スチレン−イソプレンブロック共重合体、エチレンセルロース、ポリアミド、シリコーン系ゴム、ポリクロロプレン、シリコーン、ポリビニルエーテルから選択される少なくとも一種であり、前記有機物(B)の分子量1000未満である修飾分子(a)が塩類、ホスフィンオキシド、アシル化合物、エステル類、ホスフィン類、アミン化合物又はピリジン類から選ばれる一種以上であり、前記有機物(B)の開始剤(b)が有する無機微粒子表面に存在する水酸基と反応して結合する官能基が、リン酸、カルボン酸、酸ハライド、酸無水物、イソシアナ−ト、グリシジル基、クロロシラン基、アルコキシシラン基から選ばれる一種以上であり、且つ前記透明組成物(D)を透明基板上に膜厚100〜1000nmの薄膜に形成したときのヘイズが濁度計による測定で1%以下である樹脂組成物に関する。
また、本発明は、前記有機物(B)の開始剤(b)が2−ブロモプロピオン酸である前記の樹脂組成物に関する。
The present invention relates to a transparent composition (D) in which inorganic fine particles (A) are modified with an organic substance (B) and dispersed in a transparent polymer (C), of which (A) to (C) (A) The inorganic fine particles are oxides containing one or more selected from titanium, zirconium, zinc, and aluminum, the inorganic fine particles having a particle diameter of 1 to 50 nm, and (B) the organic substance has a molecular weight. Polymers (c) and (C) which form a main skeleton by living radical polymerization starting from a modified molecule (a) less than 1000 and an initiator (b) introduced on the surface of inorganic fine particles are acrylic resins. , Phenoxy resin, polystyrene, polycarbonate, polycycloolefin, natural rubber, polyisoprene, poly-1,2-butadiene, polyisobutene, polybutene, poly-2-heptyl-1,3 Butadiene, poly-2-t-butyl-1,3-butadiene, poly-1,3-butadiene, polyoxyethylene, polyoxypropylene, polyvinyl ethyl ether, polyvinyl hexyl ether, polyvinyl butyl ether, polyvinyl acetate, polyvinyl propionate , Polyurethane, ethyl cellulose, polyvinyl chloride, polyacrylonitrile, polymethacrylonitrile, polysulfone, polysulfide, ethylene vinyl acetate copolymer, ethylene-vinyl acetate copolymer modified product, polyethylene, ethylene-propylene copolymer, ethylene-acrylic Acid copolymer, ethylene-acrylate copolymer, ethylene-acrylate copolymer, acrylate rubber, polyisobutylene, atactic polypropylene, polyvinyl Is at least one selected from tyral, acrylonitrile-butadiene copolymer, styrene-butadiene block copolymer, styrene-isoprene block copolymer, ethylene cellulose, polyamide, silicone rubber, polychloroprene, silicone, polyvinyl ether, The modified molecule (a) having a molecular weight of less than 1000 of the organic substance (B) is at least one selected from salts, phosphine oxides, acyl compounds, esters, phosphines, amine compounds or pyridines, and the organic substance (B) The functional group that reacts with and binds to the hydroxyl group present on the surface of the inorganic fine particles of the initiator (b) is phosphoric acid, carboxylic acid, acid halide, acid anhydride, isocyanate, glycidyl group, chlorosilane group, alkoxysilane group One or more types selected from And it is related with the resin composition whose haze when the said transparent composition (D) is formed in a thin film with a film thickness of 100-1000 nm on a transparent substrate is 1% or less by the measurement with a turbidimeter .
Moreover, this invention relates to the said resin composition whose initiator (b) of the said organic substance (B) is 2-bromopropionic acid.

また、本発明は、透明組成物(D)が、シリコンウエハー上で膜厚100〜1000nmの薄膜を形成したとき、400〜800nmの波長でのエリプソメーターによる測定で屈折率が1.60以上3.0以下、アッベ数が40以下である前記の無機微粒子に関する。   In the present invention, when the transparent composition (D) forms a thin film having a thickness of 100 to 1000 nm on a silicon wafer, the refractive index is 1.60 or more as measured by an ellipsometer at a wavelength of 400 to 800 nm. 0.0 or less and the Abbe number is 40 or less.

また、本発明は、有機物(B)の高分子(c)のリビングラジカル重合が、原子移動ラジカル重合である前記の樹脂組成物に関する
た、本発明は、透明組成物(D)が窒素雰囲気下摂600度30分間熱分解して得られる残渣が熱分解前の重量の30〜95%である前記の樹脂組成物に関する。
The present invention also relates to the resin composition, wherein the living radical polymerization of the polymer (c) of the organic substance (B) is atom transfer radical polymerization .
Also, the present invention relates to a transparent composition (D) said resin composition is 30 to 95% resulting residue is weight before pyrolysis decomposes 600 ° for 30 minutes heat Celsius under a nitrogen atmosphere.

らに、本発明は、前記の樹脂組成物からなる成形品、フィルム又はコーティング剤に関する。 Et al is, the present invention provides a molded article comprising the resin composition, a film or a coating agent.

本発明で用いる無機微粒子は透明高分子中に高充填しても透明性に優れた樹脂組成物を与え、その透明樹脂組成物の屈折率制御が可能で、波長分散が極めて大きいという利点を有し、この樹脂組成物からなる成形品、フィルム又はコーティング剤として好適である。 The inorganic fine particles used in the present invention give a resin composition excellent in transparency even when highly filled in a transparent polymer, and have an advantage that the refractive index of the transparent resin composition can be controlled and wavelength dispersion is extremely large. And it is suitable as a molded article, a film or a coating agent comprising this resin composition.

以下、本発明について詳しく説明する。
本発明において、無機微粒子とは光学用の透明高分子より高屈折率であることが好ましく、具体的にはチタン、ジルコニウム、亜鉛、アルミニウムの中から選択される1種類以上を含有する酸化物であり、粒子の形状は問わない。また、この中から選択される1種類以上の成分による結晶構造を形成するもの又は1種類の無機微粒子に他の無機物を1種類以上の被覆したコア−シェル構造などが挙げられる。
The present invention will be described in detail below.
In the present invention, the inorganic fine particles preferably have a higher refractive index than the transparent polymer for optical use, and specifically, an oxide containing one or more selected from titanium, zirconium, zinc, and aluminum. Yes, the shape of the particles does not matter. Examples thereof include those that form a crystal structure with one or more components selected from these, or core-shell structures in which one inorganic fine particle is coated with one or more other inorganic substances.

無機微粒子の粒子径は平均粒子径1nm以上50nm以下であることが好ましい。特に透明組成物中の光路長が長くなった場合、より高い透明性を実現するためには1nm以上20nm以下であることが望ましい。平均粒子径は透過型電子顕微鏡(TEM)による観察で決定する。   The particle diameter of the inorganic fine particles is preferably 1 nm to 50 nm in average particle diameter. In particular, when the optical path length in the transparent composition is increased, the thickness is preferably 1 nm or more and 20 nm or less in order to achieve higher transparency. The average particle size is determined by observation with a transmission electron microscope (TEM).

粒子の形状は球状、棒状、不定形等があるので、観察された粒子像の面積と同面積の円の直径をもって粒子径と定義する。この粒子径を用いて平均粒径を公知の統計処理により平均粒子径を算出するが、粒子は無作為に選ばれた少なくとも百個以上から粒子径を求め、統計処理に用いる。 Since the particle shape includes a spherical shape, a rod shape, an indeterminate shape, and the like, the diameter of a circle having the same area as the area of the observed particle image is defined as the particle diameter. Using this particle diameter, the average particle diameter is calculated by a known statistical process. The particle diameter is determined from at least 100 particles selected at random, and used for the statistical process.

無機微粒子の製造法については特に制限はないが、高屈折率化を実現するためには結晶性のよい粒子が得られる方法が好ましい。具体的には粉砕法などの固相法、気相反応法などの気相法、コロイド法、均一沈殿法、水熱合成法、マイクロエマルジョン法、ホットソープ法等の液相法などがある。   The method for producing the inorganic fine particles is not particularly limited, but a method capable of obtaining particles having good crystallinity is preferable in order to achieve a high refractive index. Specific examples include a solid phase method such as a pulverization method, a gas phase method such as a gas phase reaction method, a colloidal method, a uniform precipitation method, a hydrothermal synthesis method, a microemulsion method, and a liquid phase method such as a hot soap method.

無機微粒子の製造後の状態は粉末固体状でも溶媒分散状態でもよいが、修飾後に無機微粒子が不可逆な凝集を起こさないようにする必要がある。そのため、もっとも効果的な手法は分子量1000以下の修飾分子によって無機微粒子を被覆し、微粒子表面同士を直接接触させない方法がよい。   The state after the production of the inorganic fine particles may be in a powdered solid state or a solvent dispersed state, but it is necessary to prevent the irreversible aggregation of the inorganic fine particles after modification. Therefore, the most effective method is a method in which inorganic fine particles are covered with a modifying molecule having a molecular weight of 1000 or less and the surfaces of the fine particles are not brought into direct contact with each other.

修飾分子を修飾させるために様々な方法がある。一つは、無機微粒子表面に存在する水酸基が、様々な官能基と化学反応を起こして結合を作ること利用するもので、この化学反応を利用して官能基を有する化合物を微粒子表面に修飾することが可能である。   There are various ways to modify a modifying molecule. One is that hydroxyl groups present on the surface of inorganic fine particles cause chemical reactions with various functional groups to form bonds, and this chemical reaction is used to modify compounds having functional groups on the surface of the fine particles. It is possible.

また、粒子表面の電荷や水素結合などと弱い引力性相互作用をする官能基を有する分子を用いると、微粒子表面をこの修飾分子で修飾することが可能である。これら二つが有力な修飾方法であり、それぞれ単独又は双方同時に用いることができる。   In addition, when a molecule having a functional group that has a weak attractive interaction with a charge or hydrogen bond on the particle surface is used, the surface of the fine particle can be modified with this modifying molecule. These two are effective modification methods, and each can be used alone or simultaneously.

これらの手法によって粒子自体の不可逆な凝集を防ぐことはできるが、この手法のみで修飾した無機微粒子を透明高分子中に分散させると、樹脂との相溶性に限界があるため、樹脂中で粒子の凝集体を形成する。そのため、特に微粒子を高充填化した場合、透明性が著しく低下してしまう。   Although these methods can prevent irreversible aggregation of the particles themselves, if inorganic fine particles modified only by this method are dispersed in a transparent polymer, the compatibility with the resin is limited. Agglomerates. Therefore, especially when the fine particles are highly filled, the transparency is remarkably lowered.

本発明では、凝集を防ぐための修飾分子と、樹脂との相溶性を高めるための高分子量の高分子修飾分子の両方を用いて修飾することで、無機微粒子の高充填かつ均一分散を達成し、透明な組成物が得られる。   In the present invention, by using both a modifying molecule for preventing aggregation and a high molecular weight modifying molecule for improving compatibility with the resin, high packing and uniform dispersion of inorganic fine particles can be achieved. A transparent composition is obtained.

本発明の修飾分子(a)は、粒子表面と引力性相互作用する官能基であれば特に制限はないが、具体的には、スルホン酸塩、カルボン酸塩、リン酸塩、亜リン酸塩、硝酸塩、亜硝酸塩、アンモニウム塩等の塩類;トリフェニルフォスフィンオキシド、トリオクチルフォスフィンオキサイド、トリブチルフォスフィンオキサイド等のホスフィンオキシド;アシル化合物;エステル類;トリフェニルフォスフィン、トリオクチルフォスフィン、トリブチルフォスフィン等のホスフィン類;トリオクチルアミン、トリブチルアミン、トリエチルアミン、オクチルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、オクチルアニリン、デシルアニリン、ウンデシルアニリン、ドデシルアニリン、トリデシルアニリン、テトラデシルアニリン、ペンタデシルアニリン、ヘキサデシルアニリン、ヘプタデシルアニリン、オクタデシルアニリン等のアミン化合物又はピリジン類が挙げられる。これらの官能基は弱い相互作用のため、微粒子を有機溶剤中に分散したり、加熱したりすると微粒子から解離することがある。そのため、開始剤(b)を粒子表面に導入することが可能である。   The modifying molecule (a) of the present invention is not particularly limited as long as it is a functional group that has an attractive interaction with the particle surface. Specifically, sulfonate, carboxylate, phosphate, phosphite , Nitrates, nitrites, ammonium salts, etc .; phosphine oxides such as triphenylphosphine oxide, trioctylphosphine oxide, tributylphosphine oxide; acyl compounds; esters; triphenylphosphine, trioctylphosphine, tributyl Phosphine and other phosphines; trioctylamine, tributylamine, triethylamine, octylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine Emissions, octyl aniline, decyl aniline, undecyl aniline, dodecyl aniline, tridecyl aniline, tetradecyl aniline, pentadecyl aniline, hexadecyl aniline, heptadecyl aniline include amine compounds or pyridine such as octadecyl aniline. Since these functional groups interact weakly, the fine particles may be dissociated from the fine particles when dispersed in an organic solvent or heated. Therefore, it is possible to introduce the initiator (b) to the particle surface.

本発明の開始剤(b)が有する官能基は、微粒子表面の水酸基と反応させて結合を生成するものであれば特に制限はないが、具体的には、リン酸、カルボン酸、酸ハライド、酸無水物、イソシアナ−ト、グリシジル基、クロロシラン基、アルコキシシラン基が挙げられる。これらの官能基は微粒子表面上で化学結合を形成するので、一旦修飾すると解離させることが困難である。   The functional group of the initiator (b) of the present invention is not particularly limited as long as it reacts with the hydroxyl group on the surface of the fine particles to form a bond. Specifically, phosphoric acid, carboxylic acid, acid halide, An acid anhydride, an isocyanate, a glycidyl group, a chlorosilane group, and an alkoxysilane group are mentioned. Since these functional groups form chemical bonds on the surface of the fine particles, it is difficult to dissociate them once they are modified.

本発明の修飾高分子(c)は無機微粒子表面に導入された開始点から原子移動ラジカル重合により、その高分子鎖を伸長させるものである。よって修飾高分子は無機微粒子表面と化学結合を介して強固に結合している。また原子移動ラジカル重合によって高分子の重合量の精密な制御が可能である。   The modified polymer (c) of the present invention is a polymer chain that is elongated from the starting point introduced on the surface of the inorganic fine particles by atom transfer radical polymerization. Therefore, the modified polymer is firmly bonded to the surface of the inorganic fine particle through a chemical bond. In addition, the amount of polymer polymerization can be precisely controlled by atom transfer radical polymerization.

修飾高分子(c)は透明高分子(C)と相溶する高分子であれば特に制限はない。ここで相溶するとは両方の高分子を直接混合又は混錬する方法、一旦溶媒に溶解したのち混合して溶媒を留去する方法で混合した後の混合物が優れた透明性を有する場合であることである。   The modified polymer (c) is not particularly limited as long as it is a polymer compatible with the transparent polymer (C). The term "compatible" refers to a method in which both polymers are directly mixed or kneaded, and the mixture after mixing by a method in which the polymer is once dissolved and then mixed and the solvent is distilled off has excellent transparency. That is.

高分子鎖は直鎖型、枝分かれ型等があるが、本発明に用いる高分子鎖については特に制限はない。高分子鎖の形成方法も同一のモノマーを重合したもの又は異なる2種類以上のモノマーを重合したもののどちらでもよい。ただし、微粒子を透明高分子中によく分散させるためには重量平均分子量が1000〜1000000であることが好ましい。   The polymer chain includes a linear type and a branched type, but the polymer chain used in the present invention is not particularly limited. The polymer chain may be formed by polymerizing the same monomer or polymerizing two or more different monomers. However, in order to disperse fine particles well in the transparent polymer, the weight average molecular weight is preferably 1,000 to 1,000,000.

本発明の無機微粒子に施す修飾高分子と修飾分子との割合は、微粒子が透明高分子に分散する限り特に制約はないが、無機微粒子を透明高分子中に高充填させるためには、修飾分子に対して修飾高分子がなるべく少ないことが好ましい。具体的にはモル比で1:0.1〜1:10000であることが望ましい。   The ratio of the modified polymer to the modified molecule applied to the inorganic fine particles of the present invention is not particularly limited as long as the fine particles are dispersed in the transparent polymer. However, in order to highly fill the inorganic fine particles in the transparent polymer, the modified molecules In contrast, it is preferable that the amount of the modified polymer is as small as possible. Specifically, it is desirable that the molar ratio is 1: 0.1 to 1: 10000.

本発明の透明高分子(C)は光学用途に用いられ優れた透明性を有する限り制限はないが、具体的にはアクリル樹脂、フェノキシ樹脂、ポリスチレン、ポリカーボナート、ポリシクロオレフィン、天然ゴム、ポリイソプレン、ポリ−1、2−ブタジエン、ポリイソブテン、ポリブテン、ポリ−2−ヘプチル−1、3−ブタジエン、ポリ−2−t−ブチル−1、3−ブタジエン、ポリ−1、3−ブタジエン等の(ジ)エン類、ポリオキシエチレン、ポリオキシプロピレン、ポリビニルエチルエーテル、ポリビニルヘキシルエーテル、ポリビニルブチルエーテル等のポリエーテル類、ポリビニルアセテート 、ポリビニルプロピオネート等のポリエステル類、ポリウレタン、エチルセルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリメタクリロニトリル、ポリスルホン、ポリスルフィド等が挙げられる。   The transparent polymer (C) of the present invention is not limited as long as it is used for optical applications and has excellent transparency. Specifically, acrylic resin, phenoxy resin, polystyrene, polycarbonate, polycycloolefin, natural rubber, poly Such as isoprene, poly-1,2-butadiene, polyisobutene, polybutene, poly-2-heptyl-1,3-butadiene, poly-2-t-butyl-1,3-butadiene, poly-1,3-butadiene, etc. Di) enes, polyoxyethylene, polyoxypropylene, polyvinyl ethyl ether, polyvinyl hexyl ether, polyvinyl butyl ether, and other polyethers, polyvinyl acetate, polyesters such as polyvinyl propionate, polyurethane, ethyl cellulose, polyvinyl chloride, poly Acrylonitrile, polymeta Rironitoriru, polysulfone, polysulfide, and the like.

その他にも、エチレン酢酸ビニル共重合体、エチレン−酢酸ビニル共重合体変性物、ポリエチレン、エチレン−プロピレン共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、エチレン−アクリル酸塩共重合体、アクリル酸エステル系ゴム、ポリイソブチレン、アタクチックポリプロピレン、ポリビニルブチラール、アクリロニトリル−ブタジエン共重合体、スチレン−ブタジエンブロック共重合体、スチレン−イソプレンブロック共重合体、エチレンセルロース、ポリアミド、シリコーン系ゴム、ポリクロロプレン等の合成ゴム類、シリコーン、ポリビニルエーテル等が適用可能であり、単独又は2種以上併用して用いられる。   In addition, ethylene vinyl acetate copolymer, modified ethylene-vinyl acetate copolymer, polyethylene, ethylene-propylene copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-acrylic Acid salt copolymer, acrylic ester rubber, polyisobutylene, atactic polypropylene, polyvinyl butyral, acrylonitrile-butadiene copolymer, styrene-butadiene block copolymer, styrene-isoprene block copolymer, ethylene cellulose, polyamide, Synthetic rubbers such as silicone rubber and polychloroprene, silicone, polyvinyl ether and the like are applicable, and are used alone or in combination of two or more.

さらに、これら高分子に官能基を導入しておいて、無機微粒子と複合化した後、高分子の官能基間の反応を起こして、高分子のネットーワーク化を図ることができる。また、透明とは光学用途に使用できることを指し、400〜800nmの波長で吸収がなくヘイズが1%以下であることである。 Furthermore, after functional groups are introduced into these polymers and complexed with inorganic fine particles, a reaction between the functional groups of the polymers is caused to form a network of the polymers. Further, the term “transparent” means that it can be used for optical applications, and it means that there is no absorption at a wavelength of 400 to 800 nm and the haze is 1% or less.

透明組成物(D)の製造方法は特に制限はない。具体的には、溶融混練法や無機微粒子を溶剤に分散させ、一方で高分子を溶剤に溶解させ、両者を溶液混合した上で溶剤を除去する方法などが挙げられる。   There is no restriction | limiting in particular in the manufacturing method of transparent composition (D). Specific examples include a melt-kneading method and a method in which inorganic fine particles are dispersed in a solvent, while a polymer is dissolved in the solvent, and the solvent is removed after both are mixed in solution.

無機微粒子と透明樹脂との樹脂組成物に関しても、製造方法は特に制限するものではない。ただし具体的には、先に述べた二つの方法に加え、モノマー中に分散させて、熱や光などでモノマーを硬化させて樹脂を形成する方法が挙げられる。これらの方法から、成形品、フィルム、コーティング剤が得られる。   The production method is not particularly limited with respect to the resin composition of inorganic fine particles and transparent resin. However, specifically, in addition to the two methods described above, there is a method in which a resin is formed by dispersing in a monomer and curing the monomer with heat or light. From these methods, molded articles, films and coating agents are obtained.

光学特性を評価する簡便な方法としては、修飾された無機微粒子と透明高分子を溶媒中に分散又は溶解し、基板上にスピンキャストする方法がある。透明組成物の屈折率の評価は、基板にシリコンウエハーを用いて膜厚100〜1000nmの薄膜の評価用サンプルを作製し、エリプソメーターによる屈折率の値が400〜800nmの波長で1.6以上3.0以下であることが好ましい。またアッベ数が40以下であることが好ましい。   As a simple method for evaluating optical characteristics, there is a method in which modified inorganic fine particles and transparent polymer are dispersed or dissolved in a solvent and spin-cast on a substrate. Evaluation of the refractive index of the transparent composition was performed by preparing a sample for evaluation of a thin film having a film thickness of 100 to 1000 nm using a silicon wafer as a substrate, and having a refractive index value by an ellipsometer of 1.6 or more at a wavelength of 400 to 800 nm. It is preferable that it is 3.0 or less. The Abbe number is preferably 40 or less.

無機微粒子の組成物中の含有量には特に制限はないが、透明高分子の高屈折率化を行うためには組成物に対する無機物の比率が30〜95%であることが好ましい。さらに高屈折率化をするためには40〜95%であることが好ましい。無機微粒子の組成物中の含有量は窒素雰囲気下摂氏600度30分間熱分解して得られる残渣で正確に測定できる。   Although there is no restriction | limiting in particular in content in the composition of an inorganic fine particle, In order to raise the refractive index of a transparent polymer, it is preferable that the ratio of the inorganic substance with respect to a composition is 30 to 95%. In order to further increase the refractive index, it is preferably 40 to 95%. The content of the inorganic fine particles in the composition can be accurately measured by a residue obtained by thermal decomposition at 600 ° C. for 30 minutes in a nitrogen atmosphere.

組成物の透明性を確認するためには基板にスライドガラスなどの透明材を用いて膜厚100〜1000nmの薄膜の評価用サンプルを作製し、ヘイズメーターによるヘイズ測定値が1%以下であることが好ましい。   In order to confirm the transparency of the composition, a sample for evaluation of a thin film having a film thickness of 100 to 1000 nm is prepared on a substrate using a transparent material such as a slide glass, and a haze measurement value by a haze meter is 1% or less. Is preferred.

以下、実施例に基づき本発明をさらに詳細に説明するが、本発明は下記の実施例に制限
するものではない。
[酸化チタン微粒子の合成例1]
温度計、還流コンデンサを備えた100ml三口フラスコにトリオクチルホスフィン1
2.0g(アルドリッチ製)、四塩化チタン2.8g(和光純薬工業製)を加え、窒素雰
囲気下で攪拌しながら摂氏250度まで加熱した。250℃に到達後、テトライソプロ
ポキシチタン4.3g(和光純薬工業製)を加えた。そのまま20分間攪拌した後、放冷
したところ沈殿が析出した。傾斜して上澄み液を除き沈殿をアセトンで2回洗浄して3.
13gの酸化チタン微粒子を得た。



EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not restrict | limited to the following Example.
[Synthesis Example 1 of Titanium Oxide Fine Particles]
Trioctylphosphine 1 in a 100 ml three-necked flask equipped with a thermometer and a reflux condenser
2.0 g (manufactured by Aldrich) and 2.8 g of titanium tetrachloride (manufactured by Wako Pure Chemical Industries, Ltd.) were added, and the mixture was heated to 250 degrees Celsius with stirring under a nitrogen atmosphere. After reaching 250 ° C., 4.3 g of tetraisopropoxy titanium (manufactured by Wako Pure Chemical Industries, Ltd.) was added. After stirring for 20 minutes as it was, the mixture was allowed to cool and a precipitate was deposited. 2. Incline, remove the supernatant and wash the precipitate twice with acetone.
13 g of titanium oxide fine particles were obtained.



[酸化チタン微粒子表面への開始剤の導入合成例1]
酸化チタン微粒子合成例1の酸化チタン微粒子2.55gを還流コンデンサーを備えた50ml二口フラスコに秤量し、キシレン16ml(和光純薬工業製)、2−ブロモプロピオン酸2.44g(和光純薬工業製)を加えた。窒素雰囲気下で加熱し1時間還流した。加熱後放冷して室温に戻し、内容物をアセトン40mlに滴下したところ、沈殿が生成した。沈殿をアセトンで洗浄し、開始剤導入酸化チタン微粒子2.42gを得た。
[Synthesis Example 1 of Introducing Initiator to Titanium Oxide Fine Particle Surface]
Titanium oxide fine particles 2.55 g of titanium oxide fine particles of Synthesis Example 1 were weighed into a 50 ml two-necked flask equipped with a reflux condenser, xylene 16 ml (manufactured by Wako Pure Chemical Industries), and 2-bromopropionic acid 2.44 g (Wako Pure Chemical Industries, Ltd.). Made). Heated under a nitrogen atmosphere and refluxed for 1 hour. After heating, the mixture was allowed to cool to room temperature, and the contents were added dropwise to 40 ml of acetone, resulting in the formation of a precipitate. The precipitate was washed with acetone to obtain 2.42 g of initiator-introduced titanium oxide fine particles.

[高分子修飾処理例1]
酸化チタン微粒子表面への開始剤の導入合成例1の開始剤導入酸化チタン450mg、臭化銅(I)45mg(アルドリッチ社製)を50ml二口ナスフラスコに秤量し、スチレンモノマー3ml(和光純薬工業製)を加え、アルゴンバブリングして溶存酸素を除去した。攪拌しながらアルゴン雰囲気下110度で1時間攪拌した後、放冷して室温に戻し内容物をメタノール10ml中に滴下したところ沈殿が析出した。沈殿をメタノールで洗浄しPS修飾酸化チタン微粒子の固体を得た。
[Polymer modification treatment example 1]
Introducing initiator onto the surface of titanium oxide fine particles 450 mg of the initiator-introduced titanium oxide of Example 1 and 45 mg of copper (I) bromide (Aldrich) were weighed into a 50 ml two-necked eggplant flask and 3 ml of styrene monomer (Wako Pure Chemical Industries, Ltd.) Kogyo) was added, and dissolved oxygen was removed by argon bubbling. After stirring at 110 ° C. for 1 hour under stirring in an argon atmosphere, the mixture was allowed to cool, returned to room temperature, and the contents were dropped into 10 ml of methanol, resulting in precipitation. The precipitate was washed with methanol to obtain PS-modified titanium oxide fine particle solids.

[高分子修飾処理例2]
酸化チタン微粒子表面への開始剤の導入合成例1の開始剤導入酸化チタン450mg、臭化銅(I)45mg(アルドリッチ社製)を50ml二口ナスフラスコに秤量し、スチレンモノマー3ml(和光純薬工業製)を加え、アルゴンバブリングして溶存酸素を除去した。攪拌しながらアルゴン雰囲気下110度で3時間攪拌した後、放冷して室温に戻し内容物をメタノール10ml中に滴下したところ沈殿が析出した。沈殿をメタノールで洗浄しPS修飾酸化チタン微粒子の固体を得た。
[Polymer modification treatment example 2]
Introducing initiator onto the surface of titanium oxide fine particles 450 mg of the initiator-introduced titanium oxide of Example 1 and 45 mg of copper (I) bromide (Aldrich) were weighed into a 50 ml two-necked eggplant flask and 3 ml of styrene monomer (Wako Pure Chemical Industries, Ltd.) Kogyo) was added, and dissolved oxygen was removed by argon bubbling. After stirring at 110 ° C. for 3 hours under stirring in an argon atmosphere, the mixture was allowed to cool, returned to room temperature, and the contents were dropped into 10 ml of methanol, resulting in precipitation. The precipitate was washed with methanol to obtain PS-modified titanium oxide fine particle solids.

[高分子修飾処理例3]
酸化チタン微粒子表面への開始剤の導入合成例1の開始剤導入酸化チタン450mg、臭化銅(I)45mg(アルドリッチ社製)を50ml二口ナスフラスコに秤量し、スチレンモノマー3ml(和光純薬工業製)を加え、アルゴンバブリングして溶存酸素を除去した。攪拌しながらアルゴン雰囲気下110度で5時間攪拌した後、放冷して室温に戻し内容物をメタノール10ml中に滴下したところ沈殿が析出した。沈殿をメタノールで洗浄しPS修飾酸化チタン微粒子の固体を得た。
[Polymer modification treatment example 3]
Introducing initiator onto the surface of titanium oxide fine particles 450 mg of the initiator-introduced titanium oxide of Example 1 and 45 mg of copper (I) bromide (Aldrich) were weighed into a 50 ml two-necked eggplant flask and 3 ml of styrene monomer (Wako Pure Chemical Industries, Ltd.) Kogyo) was added, and dissolved oxygen was removed by argon bubbling. After stirring at 110 ° C. for 5 hours under stirring in an argon atmosphere, the mixture was allowed to cool, returned to room temperature, and the contents were dropped into 10 ml of methanol, resulting in precipitation. The precipitate was washed with methanol to obtain PS-modified titanium oxide fine particle solids.

比較例1
[透明組成物作製例1]
酸化チタン微粒子合成例1の酸化チタン微粒子にトルエンを加えて分散させ、ナノ粒子のトルエン分散液を調整した。さらにポリスチレン(PS、アルファアエザー製、分子量=100000)をトルエンに溶解させPSトルエン溶液を調整した。両者を所定量混合した液をつくり、その液をスライドガラス上又はシリコンウエハー上にスピンコートして透明組成物を作製した。
Comparative Example 1
[Transparent composition production example 1]
Toluene was added to and dispersed in the titanium oxide fine particles of the titanium oxide fine particle synthesis example 1 to prepare a toluene dispersion of nanoparticles. Furthermore, polystyrene (PS, manufactured by Alpha Aether, molecular weight = 100000) was dissolved in toluene to prepare a PS toluene solution. A liquid was prepared by mixing a predetermined amount of both, and the liquid was spin-coated on a slide glass or a silicon wafer to prepare a transparent composition.

実施例1
[透明組成物作成例2]
高分子修飾処理例1のPS修飾酸化チタン微粒子をトルエンに分散させ、PS修飾酸化チタン微粒子のトルエン分散液を調整した。さらにポリスチレンをトルエンに溶解させPSトルエン溶液を調整した。両者を所定量混合した液をつくり、その液をスライドガラス上又はシリコンウエハー上にスピンコートして透明組成物を作製した。
Example 1
[Transparent composition preparation example 2]
The PS-modified titanium oxide fine particles of Polymer Modification Example 1 were dispersed in toluene to prepare a toluene dispersion of PS-modified titanium oxide fine particles. Furthermore, polystyrene was dissolved in toluene to prepare a PS toluene solution. A liquid was prepared by mixing a predetermined amount of both, and the liquid was spin-coated on a slide glass or a silicon wafer to prepare a transparent composition.

実施例2
[透明組成物作成例3]
高分子修飾処理例2のPS修飾酸化チタン微粒子をトルエンに分散させ、PS修飾酸化チタン微粒子のトルエン分散液を調整した。さらにポリスチレンをトルエンに溶解させPSトルエン溶液を調整した。両者を所定量混合した液をつくり、その液をスライドガラス上又はシリコンウエハー上にスピンコートして透明組成物を作製した。
Example 2
[Transparent composition preparation example 3]
The PS-modified titanium oxide fine particles of Polymer Modification Example 2 were dispersed in toluene to prepare a toluene dispersion of PS-modified titanium oxide fine particles. Furthermore, polystyrene was dissolved in toluene to prepare a PS toluene solution. A liquid was prepared by mixing a predetermined amount of both, and the liquid was spin-coated on a slide glass or a silicon wafer to prepare a transparent composition.

実施例3
[透明組成物作成例4]
高分子修飾処理例3のPS修飾酸化チタン微粒子をトルエンに分散させ、PS修飾酸化チタン微粒子のトルエン分散液を調整した。さらにポリスチレンをトルエンに溶解させPSトルエン溶液を調整した。両者を所定量混合した液をつくり、その液をスライドガラス上あるいはシリコンウエハー上にスピンコートして透明組成物を作製した。
Example 3
[Transparent composition preparation example 4]
The PS-modified titanium oxide fine particles of Polymer Modification Example 3 were dispersed in toluene to prepare a toluene dispersion of PS-modified titanium oxide fine particles. Furthermore, polystyrene was dissolved in toluene to prepare a PS toluene solution. A liquid was prepared by mixing a predetermined amount of both, and the liquid was spin-coated on a slide glass or a silicon wafer to prepare a transparent composition.

透明組成物の評価は以下の通りに行った。
[1]重量比分析
実施例1〜3で作製した透明組成物についてTG/DTA6300(エスエスアイ・ナノテクノロジー製)で透明組成物中の無機物の重量比を評価した。その結果を図1、2に示す。
The transparent composition was evaluated as follows.
[1] Weight ratio analysis About the transparent composition produced in Examples 1-3, the weight ratio of the inorganic substance in a transparent composition was evaluated by TG / DTA6300 (made by SS nanotechnology). The results are shown in FIGS.

[2]ヘイズ
比較例1、実施例1〜3の透明組成物についてヘイズメーターNDH2000(日本電色工業製)でヘイズを調べた。その結果を図1に示す。
[2] Haze The haze was investigated with the haze meter NDH2000 (made by Nippon Denshoku Industries) about the transparent composition of the comparative example 1 and Examples 1-3. The result is shown in FIG.

[3]屈折率
実施例1〜3で作製した透明組成物について自動エリプソメーターDVA−36LA(溝尻光学工業所製)で波長633nmにおける屈折率を測定した。測定した値を図2に示す。
[3] Refractive Index The transparent compositions prepared in Examples 1 to 3 were measured for refractive index at a wavelength of 633 nm using an automatic ellipsometer DVA-36LA (manufactured by Mizojiri Optical Industry). The measured values are shown in FIG.

本発明の無機微粒子は修飾分子、修飾高分子で修飾を施した高屈折率を有する無機微粒子であり、透明高分子に分散させると、優れた透明性を持ちながら任意に屈折率の調節ができ、また大きな波長分散性をもたせることができる。そのため光学材料分野、例えばカメラや眼鏡用のレンズ、光記録・再生用機器のピックアップレンズ、フィルムレンズのハードコート材として使用できる。また、液晶ディスプレイ、ELディスプレイ、CRTディスプレイの反射防止層やELディスプレイの輝度向上層にも使用できる。
特に酸化チタンを分散させた透明組成物は波長分散が大きいという特徴をもつため、現在光学用の透明高分子では適用できなかった用途に適用が可能となる。
The inorganic fine particles of the present invention are inorganic fine particles having a high refractive index modified with a modifying molecule or a modified polymer. When dispersed in a transparent polymer, the refractive index can be arbitrarily adjusted while having excellent transparency. In addition, a large wavelength dispersion can be provided. Therefore, it can be used as a hard coating material for optical materials, for example, lenses for cameras and glasses, pickup lenses for optical recording / reproducing equipment, and film lenses. It can also be used for an antireflection layer of a liquid crystal display, an EL display, and a CRT display, and a brightness enhancement layer of an EL display.
In particular, since a transparent composition in which titanium oxide is dispersed has a characteristic of large wavelength dispersion, it can be applied to applications that could not be applied to optically transparent polymers at present.

ヘイズと無機物重量比の関係を示すグラフである。It is a graph which shows the relationship between a haze and an inorganic substance weight ratio. 屈折率と無機物重量比の関係を示すグラフである。It is a graph which shows the relationship between a refractive index and an inorganic substance weight ratio.

Claims (6)

無機微粒子(A)が、表面が有機物(B)で修飾され、透明高分子(C)に分散された透明組成物(D)であって、このうち(A)〜(C)が、(A)無機微粒子がチタン、ジルコニウム、亜鉛、アルミニウムの中から選択される1種類以上を含有する酸化物であり、粒子径が1〜50nmである無機微粒子、
(B)有機物が、分子量1000未満である修飾分子(a)及び無機微粒子表面上に導入された開始剤(b)を起点としてリビングラジカル重合によって主骨格を形成する高分子(c)及び(C)透明高分子がアクリル樹脂、フェノキシ樹脂、ポリスチレン、ポリカーボナート、ポリシクロオレフィン、天然ゴム、ポリイソプレン、ポリ−1,2−ブタジエン、ポリイソブテン、ポリブテン、ポリ−2−ヘプチル−1,3−ブタジエン、ポリ−2−t−ブチル−1,3−ブタジエン、ポリ−1,3−ブタジエン、ポリオキシエチレン、ポリオキシプロピレン、ポリビニルエチルエーテル、ポリビニルヘキシルエーテル、ポリビニルブチルエーテル、ポリビニルアセテート、ポリビニルプロピオネート、ポリウレタン、エチルセルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリメタクリロニトリル、ポリスルホン、ポリスルフィド、エチレン酢酸ビニル共重合体、エチレン−酢酸ビニル共重合体変性物、ポリエチレン、エチレン−プロピレン共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、エチレン−アクリル酸塩共重合体、アクリル酸エステル系ゴム、ポリイソブチレン、アタクチックポリプロピレン、ポリビニルブチラール、アクリロニトリル−ブタジエン共重合体、スチレン−ブタジエンブロック共重合体、スチレン−イソプレンブロック共重合体、エチレンセルロース、ポリアミド、シリコーン系ゴム、ポリクロロプレン、シリコーン、ポリビニルエーテルから選択される少なくとも一種であり、前記有機物(B)の分子量1000未満である修飾分子(a)が塩類、ホスフィンオキシド、アシル化合物、エステル類、ホスフィン類、アミン化合物又はピリジン類から選ばれる一種以上であり、前記有機物(B)の開始剤(b)が有する無機微粒子表面に存在する水酸基と反応して結合する官能基が、リン酸、カルボン酸、酸ハライド、酸無水物、イソシアナ−ト、グリシジル基、クロロシラン基、アルコキシシラン基から選ばれる一種以上であり、且つ前記透明組成物(D)を透明基板上に膜厚100〜1000nmの薄膜に形成したときのヘイズが濁度計による測定で1%以下である樹脂組成物。
Inorganic fine particles (A) is surface modified with an organic substance (B), a transparent polymer dispersed transparent composition (C) (D), these (A) ~ (C) is, ( A) An inorganic fine particle is an oxide containing one or more selected from titanium, zirconium, zinc, and aluminum, and has a particle diameter of 1 to 50 nm,
(B) Polymers (c) and (C) in which the organic substance forms a main skeleton by living radical polymerization starting from the modified molecule (a) having a molecular weight of less than 1000 and the initiator (b) introduced on the surface of the inorganic fine particles ) Transparent polymer is acrylic resin, phenoxy resin, polystyrene, polycarbonate, polycycloolefin, natural rubber, polyisoprene, poly-1,2-butadiene, polyisobutene, polybutene, poly-2-heptyl-1,3-butadiene, Poly-2-t-butyl-1,3-butadiene, poly-1,3-butadiene, polyoxyethylene, polyoxypropylene, polyvinyl ethyl ether, polyvinyl hexyl ether, polyvinyl butyl ether, polyvinyl acetate, polyvinyl propionate, polyurethane , Ethyl cellulose, poly Vinyl chloride, polyacrylonitrile, polymethacrylonitrile, polysulfone, polysulfide, ethylene vinyl acetate copolymer, modified ethylene-vinyl acetate copolymer, polyethylene, ethylene-propylene copolymer, ethylene-acrylic acid copolymer, ethylene -Acrylate ester copolymer, ethylene-acrylate copolymer, acrylic ester rubber, polyisobutylene, atactic polypropylene, polyvinyl butyral, acrylonitrile-butadiene copolymer, styrene-butadiene block copolymer, styrene- It is at least one selected from isoprene block copolymer, ethylene cellulose, polyamide, silicone rubber, polychloroprene, silicone, polyvinyl ether, and the molecular weight of the organic substance (B) is 10 The modified molecule (a) which is less than 0 is at least one selected from salts, phosphine oxides, acyl compounds, esters, phosphines, amine compounds or pyridines, and the organic substance (B) initiator (b) has The functional group that reacts with and binds to the hydroxyl group present on the surface of the inorganic fine particle is at least one selected from phosphoric acid, carboxylic acid, acid halide, acid anhydride, isocyanate, glycidyl group, chlorosilane group, and alkoxysilane group. And the resin composition whose haze when the said transparent composition (D) is formed in a thin film with a film thickness of 100-1000 nm on a transparent substrate is 1% or less by the measurement with a turbidimeter.
前記有機物(B)の開始剤(b)が2−ブロモプロピオン酸である、請求項1に記載の樹脂組成物。The resin composition of Claim 1 whose initiator (b) of the said organic substance (B) is 2-bromopropionic acid. 透明組成物(D)が、シリコンウエハー上で膜厚100〜1000nmの薄膜を形成したとき、400〜800nmの波長でのエリプソメーターによる測定で屈折率が1.60以上3.0以下、アッベ数が40以下である請求項1又は2記載の樹脂組成物When the transparent composition (D) forms a thin film having a thickness of 100 to 1000 nm on a silicon wafer, the refractive index is 1.60 to 3.0 and the Abbe number is measured by an ellipsometer at a wavelength of 400 to 800 nm. The resin composition according to claim 1 or 2 , wherein is 40 or less. 有機物(B)の高分子(c)のリビングラジカル重合が、原子移動ラジカル重合である請求項1〜のいずれかに記載の樹脂組成物The resin composition according to any one of claims 1 to 3 , wherein the living radical polymerization of the polymer (c) of the organic substance (B) is atom transfer radical polymerization. 透明組成物(D)が窒素雰囲気下摂600度30分間熱分解して得られる残渣が熱分解前の重量の30〜95%である請求項1〜のいずれかに記載の樹脂組成物Transparent composition (D) is a resin composition according to any one of claims 1-4 residue obtained by decomposing 600 degrees 30 minutes heat Celsius under a nitrogen atmosphere is 30 to 95% of the weight before pyrolysis . 請求項1〜5のいずれかに記載の樹脂組成物からなる成形品、フィルム又はコーティング剤。 A molded article, film or coating agent comprising the resin composition according to any one of claims 1 to 5 .
JP2006289868A 2006-10-25 2006-10-25 Resin composition and molded article, film or coating agent comprising resin composition Expired - Fee Related JP5186708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006289868A JP5186708B2 (en) 2006-10-25 2006-10-25 Resin composition and molded article, film or coating agent comprising resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006289868A JP5186708B2 (en) 2006-10-25 2006-10-25 Resin composition and molded article, film or coating agent comprising resin composition

Publications (2)

Publication Number Publication Date
JP2008106129A JP2008106129A (en) 2008-05-08
JP5186708B2 true JP5186708B2 (en) 2013-04-24

Family

ID=39439764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006289868A Expired - Fee Related JP5186708B2 (en) 2006-10-25 2006-10-25 Resin composition and molded article, film or coating agent comprising resin composition

Country Status (1)

Country Link
JP (1) JP5186708B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5473340B2 (en) * 2009-01-22 2014-04-16 日揮触媒化成株式会社 INORGANIC OXIDE PARTICLES WITH POLYMERIZATION INITIAL GROUP, PROCESS FOR PRODUCING THE SAME, POLYMER-MODIFIED INORGANIC OXIDE PARTICLES OBTAINED BY USING THE INORGANIC OXIDE PARTICLE, AND PROCESS FOR PRODUCING THE SAME
JP2010254934A (en) * 2009-04-28 2010-11-11 Tokai Rika Co Ltd Metallic coating and metallic ink, metallic coated film, as well as producing method of them
JP5419081B2 (en) * 2009-08-07 2014-02-19 旭化成ケミカルズ株式会社 Thermoplastic composite material
CN102471521B (en) * 2009-08-12 2016-08-24 皇家飞利浦电子股份有限公司 Optics forms
JP5465525B2 (en) * 2009-12-28 2014-04-09 旭化成ケミカルズ株式会社 Organic-inorganic composite composition and method for producing the same
JP5540332B2 (en) * 2010-02-12 2014-07-02 国立大学法人東北大学 Polymer direct graft nanoparticles
JP5473874B2 (en) * 2010-11-22 2014-04-16 関西ペイント株式会社 Active energy ray-curable composition and method for producing the composition
JP5693944B2 (en) * 2010-12-22 2015-04-01 旭化成ケミカルズ株式会社 Organic-inorganic composite having film formability and method for producing the same
KR101787215B1 (en) 2011-03-14 2017-10-18 아사히 가세이 케미칼즈 가부시키가이샤 Organic/inorganic composite, manufacturing method therefor, organic/inorganic composite film, manufacturing method therefor, photonic crystal, coating material, thermoplastic composition, micro-structure, optical material, antireflection member, and optical lens
CN104968752A (en) 2013-01-25 2015-10-07 日本瑞翁株式会社 Adhesive composition for optical member, adhesive layer for optical member, and surface light source device
JP6670039B2 (en) * 2014-11-07 2020-03-18 日鉄ケミカル&マテリアル株式会社 Surface-modified inorganic oxide particles and resin composition
JP7059510B2 (en) * 2015-05-26 2022-04-26 エルジー ディスプレイ カンパニー リミテッド Transparent dielectric film, capacitive touch panel and flexible display
KR102490028B1 (en) 2017-02-24 2023-01-18 삼성전자주식회사 Organic-inorganic hybrid composition, and article and optical component including the same
JP2020200472A (en) * 2020-08-21 2020-12-17 エルジー ディスプレイ カンパニー リミテッド Transparent dielectric film, capacitive touch panel, and flexible display

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577481B2 (en) * 2003-12-22 2010-11-10 日清紡ホールディングス株式会社 Inorganic-organic composite functional composition
CN1950440A (en) * 2004-04-12 2007-04-18 日清纺织株式会社 Resin composition

Also Published As

Publication number Publication date
JP2008106129A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP5186708B2 (en) Resin composition and molded article, film or coating agent comprising resin composition
JP2007204739A (en) Transparent polymer composition and optical member using the same
US7897667B2 (en) Fluorinated POSS as alloying agents in nonfluorinated polymers
Ge et al. Preparation and characterization of PS‐PMMA/ZnO nanocomposite films with novel properties of high transparency and UV‐shielding capacity
Tang et al. Preparation of styrene polymer/ZnO nanocomposite latex via miniemulsion polymerization and its antibacterial property
US8658726B2 (en) Composites of polysiloxane polymers and inorganic nanoparticles
Monteil et al. Silica/polyethylene nanocomposite particles from catalytic emulsion polymerization
Chatterjee et al. Dispersion of functionalized silver nanoparticles in polymer matrices: Stability, characterization, and physical properties
Zhang et al. Preparation and characterization of polymer/silica nanocomposites via double in situ miniemulsion polymerization
Wang et al. Transparent aqueous Mg (OH) 2 nanodispersion for transparent and flexible polymer film with enhanced flame-retardant property
JP2000044226A (en) Silane-surface-treated siliceous fine particles, their production and organic resin composition containing same
Mallakpour et al. Fabrication of poly (vinyl alcohol) nanocomposites having different contents of modified SiO2 by vitamin B1 as biosafe and novel coupling agent to improve mechanical and thermal properties
JP2012206886A (en) Inorganic powder mixture and filler-containing composition
JP2012214554A (en) Thermoplastic resin composition
Gumfekar et al. Synthesis of CaCO3–P (MMA–BA) nanocomposite and its application in water based alkyd emulsion coating
Wang et al. Synthesis and characterization of nanosilica/polyacrylate composite latex
Pereira et al. Impact of fullerenes on the thermal stability of melt processed polystyrene and poly (methyl methacrylate) composites
Enomoto et al. Unique hydrophobization and hybridization via direct phase transfer of ZrO2 nanoparticles from water to toluene producing highly transparent polystyrene and poly (methyl methacrylate) hybrid bulk materials
WO2005010100A1 (en) Resin composition containing ultrafine particles
Wu et al. Synthesis and film performances of SiO2/P (MMA-BA) core–shell structural latex
JP2007197655A (en) Microparticle-containing composition and method for producing the composition
Castillo‐Pérez et al. Effect on thermo‐mechanical properties by in‐situ emulsion polymerization of polymer/clay nanocomposites
Yeh et al. Effect of incorporated CdS nanoparticles on the crystallinity and morphology of poly (styrene‐b‐ethylene oxide) diblock copolymers
JP2008075078A (en) Transparent polymer composition and optical member
TWI472567B (en) Masterbatch, method for fabricating the same and a film formed from the masterbatch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees