JP2008088044A - Monolithic refractory and waste melting furnace - Google Patents

Monolithic refractory and waste melting furnace Download PDF

Info

Publication number
JP2008088044A
JP2008088044A JP2006298276A JP2006298276A JP2008088044A JP 2008088044 A JP2008088044 A JP 2008088044A JP 2006298276 A JP2006298276 A JP 2006298276A JP 2006298276 A JP2006298276 A JP 2006298276A JP 2008088044 A JP2008088044 A JP 2008088044A
Authority
JP
Japan
Prior art keywords
refractory
weight
waste melting
resistance
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006298276A
Other languages
Japanese (ja)
Other versions
JP4967605B2 (en
Inventor
Junichi Shigeta
純一 茂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA YOGYO FIRE BRICK
Yotai Refractories Co Ltd
Original Assignee
OSAKA YOGYO FIRE BRICK
Yotai Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA YOGYO FIRE BRICK, Yotai Refractories Co Ltd filed Critical OSAKA YOGYO FIRE BRICK
Priority to JP2006298276A priority Critical patent/JP4967605B2/en
Publication of JP2008088044A publication Critical patent/JP2008088044A/en
Application granted granted Critical
Publication of JP4967605B2 publication Critical patent/JP4967605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chromium-free monolithic refractory which has resistance against melting loss as good as a Cr<SB>2</SB>O<SB>3</SB>-containing refractory and a waste melting furnace using the refractory as the lining for a waste melting furnace. <P>SOLUTION: The erosion-resistant monolithic refractory is obtained by adding 1-85 wt.% of a raw material of an (Mg, Ni)O solid solution and 5-85 wt.% of the total of MgO and NiO to a refractory raw material containing Al<SB>2</SB>O<SB>3</SB>-based material and MgAl<SB>2</SB>O<SB>4</SB>. The refractory obtained is useful for a monolithic refractory for a waste melting furnace. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃棄物溶融炉に適したクロムフリー不定形耐火物及びこのクロムフリー不定形耐火物を使用した廃棄物溶融炉に関するものである。  The present invention relates to a chromium-free amorphous refractory suitable for a waste melting furnace and a waste melting furnace using the chromium-free amorphous refractory.

近年、都市ゴミや廃棄物の発生量が急増しており、その処理は大きな社会問題となっている。この対策として、溶融法すなわち廃棄物の減容化、無害化または再資源化が注目されている。溶融法は廃棄物中の無機物を溶融スラグとして取り出し、大幅に減容する方法である。  In recent years, the amount of municipal waste and waste generated has increased rapidly, and its disposal has become a major social problem. As a countermeasure, a melting method, that is, a volume reduction, detoxification, or recycling of waste is attracting attention. The melting method is a method of taking out inorganic substances in waste as molten slag and greatly reducing the volume.

溶融炉に使用される耐火物の侵食スピードは、投入される焼却灰、飛灰、下水汚泥等の組成及び溶融温度に大きく左右される。溶融スラグの組成は廃棄物の種類によって大きく変動するが、一般的には、SiO:15〜45重量%、Al:10〜20重量%、CaO:5〜45重量%、NaO1〜15重量%、KO1〜15重量%であり、塩基度(C/S)で0.5〜2.0程度と処理物により大きく変動する。この他、焼却灰や飛灰には、Cd、Pb、Zn、Cu、As、Cr、Hg等の有害な金属も多く含まれている。さらに揮発成分としてSやClも多く含まれ、溶融温度を1200〜1650℃の高温にする必要がある。また、温度変化の激しい溶融炉では熱衝撃による損傷もある。The erosion speed of the refractory used in the melting furnace greatly depends on the composition and melting temperature of incinerated ash, fly ash, sewage sludge and the like. Although the composition of the molten slag varies greatly depending on the type of waste, in general, SiO 2: 15 to 45 wt%, Al 2 O 3: 10~20 wt%, CaO: 5 to 45 wt%, Na 2 O1~15 wt%, a K 2 O1~15 wt%, varies greatly by treatment equivalent to about 0.5 to 2.0 in basicity (C / S). In addition, incinerated ash and fly ash contain many harmful metals such as Cd, Pb, Zn, Cu, As, Cr, and Hg. Further, a large amount of S and Cl are contained as volatile components, and the melting temperature must be set to a high temperature of 1200 to 1650 ° C. Further, in a melting furnace where the temperature changes drastically, there is damage due to thermal shock.

したがって現在は、耐食性の点からCrを含む耐火物としてAlとCrからなる耐火物が使用されている。Cr含有耐火物はC含有量が多いほど耐食性がよい(特許文献1参照)。しかし、Cr含有量が多くなると、耐熱衝撃性の低下や、耐火物中のCrが高温かつアルカリ共存雰囲気下で使用されると有害な六価クロムに変化するため、環境汚染問題を生じるおそれがある。またCr含有量が多いほど六価クロムの生成量も多い。Therefore currently, refractories consisting of Al 2 O 3 and Cr 2 O 3 as a refractory material containing Cr 2 O 3 from corrosion resistance point is used. The higher the C 2 O 3 content, the better the corrosion resistance of the Cr 2 O 3 -containing refractory (see Patent Document 1). However, when the Cr 2 O 3 content is increased, the thermal shock resistance is reduced, and when Cr 2 O 3 in the refractory is used in a high-temperature and alkali-existing atmosphere, it changes to harmful hexavalent chromium. May cause contamination problems. Further, the higher the Cr 2 O 3 content, the greater the amount of hexavalent chromium produced.

また、Crを含有しない耐火物として、Al−ZrO質(特許文献2参照)、Al−MgO質(特許文献3参照)、Al−SiC(特許文献4参照)、Al−NiO(特許文献5参照)が知られているが、いずれも使用条件の厳しい溶融炉用耐火物として十分な耐用を示していない。
特開昭63−30363 特開2000−281455 特開2001−153321 特開2000−203952 特開2003−183082
Further, as refractories not containing Cr 2 O 3 , Al 2 O 3 —ZrO 2 (see Patent Document 2), Al 2 O 3 —MgO (see Patent Document 3), Al 2 O 3 —SiC (Patent) Reference 2 ) and Al 2 O 3 —NiO (see Patent Document 5) are known, but none of them shows sufficient durability as a refractory for melting furnaces with severe use conditions.
JP-A 63-30363 JP 2000-281455 A JP 2001-153321 A JP2000-203952 JP 2003-183082 A

従来のクロムフリー不定形耐火物は廃棄物溶融炉での使用において、その耐用は酸化クロム含有品に比べて大きく劣る。廃棄物溶融炉のスラグはアルカリ成分が多い為、Al−ZrO質、あるいはAl−MgO質はZrO、MgO成分がスラグ中に溶出し、耐溶損性に劣る。また、Al−SiC質は廃棄物溶融炉の酸化雰囲気では炭化珪素が酸化され、耐溶損性に劣る。Al−NiO質ではCr10%程度の耐溶損性しか得ることができない。Conventional chrome-free amorphous refractories are greatly inferior to chromium-containing products when used in a waste melting furnace. Since the slag of the waste melting furnace has many alkali components, Al 2 O 3 —ZrO 2 or Al 2 O 3 —MgO is eluted with ZrO 2 and MgO components in the slag, and is inferior in resistance to erosion. In addition, Al 2 O 3 —SiC is inferior in resistance to erosion because silicon carbide is oxidized in an oxidizing atmosphere of a waste melting furnace. In the case of Al 2 O 3 —NiO, it is possible to obtain only melt resistance of about 10% of Cr 2 O 3 .

本発明は廃棄物溶融炉の内張りとして、Cr含有品相当の優れた耐溶損性を有すクロムフリー不定形耐火物とこれを内張りに使用した廃棄物溶融炉を提供するものである。The present invention provides, as a lining of a waste melting furnace, a chromium-free amorphous refractory having an excellent erosion resistance equivalent to a Cr 2 O 3 containing product and a waste melting furnace using the same for the lining. .

(1)Al質原料を含む耐火性原料組成に結合剤及び分散剤を添加してなる不定形耐火物に、(Mg,Ni)Oの固溶体を1〜85重量%添加することにより、耐溶損性に優れたクロムフリー不定形耐火物を得た。これは廃棄物溶融炉用クロムフリー不定形耐火物として有用である。また、TiOやZrO等の他耐火性成分が含まれても同様の効果を示す。(1) By adding 1 to 85% by weight of a solid solution of (Mg, Ni) O to an amorphous refractory formed by adding a binder and a dispersant to a refractory raw material composition containing an Al 2 O 3 raw material As a result, a chromium-free amorphous refractory having excellent melt resistance was obtained. This is useful as a chromium-free amorphous refractory for waste melting furnaces. Moreover, even if other refractory components such as TiO 2 and ZrO 2 are included, the same effect is exhibited.

(2)MgAl質原料を含む耐火性原料組成に結合剤及び分散剤を添加してなる不定形耐火物に、(Mg,Ni)Oの固溶体を1〜85重量%添加することにより、耐溶損性に優れたクロムフリー不定形耐火物を得た。これは廃棄物溶融炉用クロムフリー不定形耐火物として有用である。また、TiOやZrO等の他耐火性成分が含まれても同様の効果を示す。(2) By adding 1 to 85% by weight of a solid solution of (Mg, Ni) O to an amorphous refractory obtained by adding a binder and a dispersant to a refractory raw material composition containing MgAl 2 O 4 material As a result, a chromium-free amorphous refractory having excellent melt resistance was obtained. This is useful as a chromium-free amorphous refractory for waste melting furnaces. Moreover, even if other refractory components such as TiO 2 and ZrO 2 are included, the same effect is exhibited.

(3)Al質原料を含む耐火性原料組成に結合剤及び分散剤を添加してなる不定形耐火物で全組成中にMgOとNiOの2成分を含み、その化学成分の合計量を5〜85重量%とすることにより、耐溶損性に優れたクロムフリー不定形耐火物を得た。これは廃棄物溶融炉用クロムフリー不定形耐火物として有用である。また、TiOやZr等の他耐火性成分が含まれても同様の効果を示す。(3) An amorphous refractory material obtained by adding a binder and a dispersant to a refractory raw material composition containing an Al 2 O 3 raw material, including the two components MgO and NiO in the total composition, and the total amount of the chemical components By making the content of 5 to 85% by weight, a chromium-free amorphous refractory having excellent melt resistance was obtained. This is useful as a chromium-free amorphous refractory for waste melting furnaces. Moreover, even if other refractory components such as TiO 2 and Zr 2 are included, the same effect is exhibited.

(4)MgAl質原料を含む耐火性原料組成に結合剤及び分散剤を添加してなる不定形耐火物で全組成中にMgOとNiOの2成分を含み、その化学成分の合計量を5〜85重量%とすることにより、耐溶損性に優れたクロムフリー不定形耐火物を得た。これは廃棄物溶融炉用クロムフリー不定形耐火物として有用である。また、TiOやZrO等の他耐火性成分が含まれても同様の効果を示す。(4) An amorphous refractory material obtained by adding a binder and a dispersant to a refractory raw material composition containing MgAl 2 O 4 raw material, including two components of MgO and NiO in the total composition, and the total amount of the chemical components By making the content of 5 to 85% by weight, a chromium-free amorphous refractory having excellent melt resistance was obtained. This is useful as a chromium-free amorphous refractory for waste melting furnaces. Moreover, even if other refractory components such as TiO 2 and ZrO 2 are included, the same effect is exhibited.

前記(1)項ないし(4)項記載のいずれか1項に記載の廃棄物溶融炉用クロムフリー不定形耐火物を流し込み施工またはプレキャスト施工にて炉の少なくとも一部に使用した廃棄物溶融炉。  Waste melting furnace used for at least a part of the furnace by casting or precasting the chromium-free amorphous refractory for waste melting furnace according to any one of items (1) to (4) .

本発明の耐火物はCr成分を含まないクロムフリー不定形耐火物であり、廃棄物溶融炉特有の高アルカリスラグと高温操業という過酷な使用条件下で十分な耐溶損性を発揮する。その結果、本発明のクロムフリー不定形耐火物は耐火物寿命の延長による溶融炉稼働率及び耐火物原単位を向上させると共に、使用後に発生する六価クロムによる環境汚染問題を解決する。The refractory of the present invention is a chromium-free amorphous refractory that does not contain Cr 2 O 3 component, and exhibits sufficient resistance to erosion under severe use conditions such as high alkali slag and high temperature operation unique to waste melting furnaces. . As a result, the chromium-free amorphous refractory of the present invention improves the operating rate of the melting furnace and the refractory unit by extending the life of the refractory, and solves the environmental pollution problem caused by hexavalent chromium generated after use.

Al質原料を含む耐火性原料組成に結合剤及び分散剤を添加してなる不定形耐火物に(Mg,Ni)Oの固溶体を1〜85重量%添加することにより、Cr含有品相当の優れた耐食性を得ることができる。By adding 1 to 85% by weight of a solid solution of (Mg, Ni) O to an amorphous refractory obtained by adding a binder and a dispersant to a refractory raw material composition containing an Al 2 O 3 raw material, Cr 2 O Excellent corrosion resistance equivalent to 3 containing products can be obtained.

MgAl質原料を含む耐火性原料組成に結合剤及び分散剤を添加してなる不定形耐火物に(Mg,Ni)Oの固溶体を1〜85重量%添加することにより、Cr含有品相当の優れた耐食性を得ることができる。By adding 1 to 85% by weight of a solid solution of (Mg, Ni) O to an amorphous refractory obtained by adding a binder and a dispersant to a refractory raw material composition containing a MgAl 2 O 4 material, Cr 2 O Excellent corrosion resistance equivalent to 3 containing products can be obtained.

Al質原料を含む耐火性原料組成に結合剤及び分散剤を添加してなる不定形耐火物で全組成中にMgOとNiOの2成分を含み、その化学成分の合計量を5〜85重量%とすることにより、廃棄物溶融炉にて使用中に(Mg,Ni)Oの固溶体を生成することによって、Cr含有品相当の優れた耐食性を得ることができる。An amorphous refractory formed by adding a binder and a dispersant to a refractory raw material composition containing an Al 2 O 3 raw material, including two components of MgO and NiO in the entire composition, and the total amount of the chemical components is 5 to By setting it to 85% by weight, excellent corrosion resistance equivalent to a Cr 2 O 3 -containing product can be obtained by generating a solid solution of (Mg, Ni) O during use in a waste melting furnace.

MgAl質原料を含む耐火性原料組成に結合剤及び分散剤を添加してなる不定形耐火物で全組成中にMgOとNiOの2成分を含み、その化学成分の合計量を5〜85重量%とすることにより、廃棄物溶融炉にて使用中に(Mg,Ni)Oの固溶体を生成することによって、Cr含有品相当の優れた耐食性を得ることができる。An amorphous refractory material obtained by adding a binder and a dispersant to a refractory raw material composition containing MgAl 2 O 4 -based raw material, including two components of MgO and NiO in the entire composition, and the total amount of the chemical components is 5 to By setting it to 85% by weight, excellent corrosion resistance equivalent to a Cr 2 O 3 -containing product can be obtained by generating a solid solution of (Mg, Ni) O during use in a waste melting furnace.

本発明における(Mg,Ni)0固溶体中のNiOは10重量%以上が望ましい。NiO成分が10重量%未満になると優れた耐溶損性は期待できない。  The NiO in the (Mg, Ni) 0 solid solution in the present invention is preferably 10% by weight or more. When the NiO component is less than 10% by weight, excellent melt resistance cannot be expected.

本発明において、使用する(Mg,Ni)Oの固溶体として、MgOとNiOを焼成して得られる焼結(Mg,Ni)O固溶体と、MgOとNiOを溶融して得られる溶融(Mg,Ni)O固溶体がある。溶融(Mg,Ni)O固溶体を使用した場合、最も大きな効果が得られる。  In the present invention, as a solid solution of (Mg, Ni) O to be used, a sintered (Mg, Ni) O solid solution obtained by firing MgO and NiO, and a melt (Mg, Ni) obtained by melting MgO and NiO ) There is O solid solution. When a molten (Mg, Ni) O solid solution is used, the greatest effect is obtained.

本発明において、使用する(Mg,Ni)Oの固溶体は気孔率が5%以下のものが好ましい。  In the present invention, the solid solution of (Mg, Ni) O used preferably has a porosity of 5% or less.

本発明におけるNiO原料のNiO成分純度は99重量%以上が好ましい。  The NiO component purity of the NiO raw material in the present invention is preferably 99% by weight or more.

本発明におけるMgO原料のMgO成分純度は99重量%以上が好ましい。  The MgO component purity of the MgO raw material in the present invention is preferably 99% by weight or more.

NiO含有原料の粒度は平均粒径45μm以下の微粒子としての使用が好ましい。  The NiO-containing raw material is preferably used as fine particles having an average particle size of 45 μm or less.

本発明において、使用するMgAl質原料は理論組成であるMgO成分28%、Al成分72%に近いものが最も望ましいが、MgO成分とAl成分の成分比を変えたスピネル粒子を使用しても効果はある。In the present invention, MgO ingredient 28% MgAl 2 O 4 feedstocks used are theoretical composition, but close to Al 2 O 3 component 72% is most desirable, the component ratio of the MgO component and Al 2 O 3 component changed Use of spinel particles is also effective.

本発明において、使用するMgAl質原料として、AlとMgOを焼成して得られる焼結MgAl質原料と、AlとMgOを溶融して得られる溶融MgAl質原料がある。溶融MgAl質原料を使用した場合、最も大きな効果が得られる。In the present invention, as MgAl 2 O 4 feedstocks used, Al 2 O 3 and sintering MgAl 2 O 4 feedstocks obtained MgO was calcined, molten MgAl obtained by melting Al 2 O 3 and MgO There are 2 O 4 quality raw materials. When a molten MgAl 2 O 4 material is used, the greatest effect is obtained.

本発明における(Mg,Ni)O固溶体の添加量は50重量%程度で最も優れた耐溶損性を得ることができる。70重量%まで添加しても、50重量%添加品とでは、耐溶損性に変わりはない。70重量%を越えると70重量%添加品より耐溶損性は劣る結果となる。  In the present invention, the addition amount of the (Mg, Ni) O solid solution is about 50% by weight, and the most excellent resistance to erosion can be obtained. Even if it is added up to 70% by weight, it does not change the resistance to melting with the 50% by weight added product. When it exceeds 70% by weight, the resistance to melting loss is inferior to that of the 70% by weight added product.

本発明における不定形耐火物で全組成中にMgOとNiOの2成分を含み、その化学成分の合計量が50重量%程度で最も優れた耐溶損性を得ることができる。化学成分の合計量が70重量%までが優れた耐溶損性を得ることができる。化学成分の合計量が70重量%添加品と50重量%添加品とでは、耐溶損性に変わりはない。化学成分の合計量が70重量%を越えるとそのものより耐溶損性は劣る結果となる。  The amorphous refractory according to the present invention contains two components of MgO and NiO in the entire composition, and the most excellent resistance to erosion can be obtained when the total amount of the chemical components is about 50% by weight. Excellent resistance to erosion can be obtained when the total amount of chemical components is up to 70% by weight. In the case where the total amount of chemical components is 70% by weight and 50% by weight, there is no change in the resistance to melting. When the total amount of the chemical components exceeds 70% by weight, the melt resistance is inferior to that of itself.

本発明の効果を阻害しない範囲であれば耐火性原料として、さらにシリカ、ムライト、ドロマイト、カルシア、ジルコン、ジルコニア、チタニア、炭化珪素、炭素、イットリア等から選ばれる一種または二種以上使用してもよい。  As long as it does not inhibit the effect of the present invention, it may be used as a refractory raw material, further one or more selected from silica, mullite, dolomite, calcia, zircon, zirconia, titania, silicon carbide, carbon, yttria, etc. Good.

本発明の不定形耐火物は環境汚染防止のために、実質的にCrを含まない。ここで実質的に含まないとは、Crを含んでいても例えば0.1重量%以下の不純物あるいはMgO質原料の消化防止剤的な量とする。The amorphous refractory according to the present invention does not substantially contain Cr 2 O 3 in order to prevent environmental pollution. Here, the term “substantially free” means, for example, 0.1% by weight or less of impurities or MgO-based raw material as an anti-digestive amount even if Cr 2 O 3 is contained.

不定形耐火物の施工性のための技術常識として、結合剤及び分散剤が添加されろが、これらの材質、添加量は従来と特に変わりない。結合剤は、例えばアルミナセメント、マグネシアセメント、ポルトランドセメント、水硬性アルミナ、オキシカルボン酸アルミニウム、リン酸塩、ケイ酸塩、シリカゾル、フェノール樹脂等から選ばれる一種または二種以上使用してもよい。中でも施工体強度及び耐熱性を付与したアルミナセメントが好ましい。結合剤の添加は耐火原料組成100重量%に対する外掛けで、1〜15重量%が好ましい。  As a technical common sense for the workability of the amorphous refractory, a binder and a dispersant are added. However, these materials and addition amounts are not particularly different from conventional ones. The binder may be used alone or in combination of two or more selected from alumina cement, magnesia cement, Portland cement, hydraulic alumina, aluminum oxycarboxylate, phosphate, silicate, silica sol, phenol resin, and the like. Among these, alumina cement imparted with construction body strength and heat resistance is preferable. The addition of the binder is an outer coating with respect to 100% by weight of the refractory raw material composition, and preferably 1 to 15% by weight.

分散剤は不定形耐火物施工時の流動性を付与する効果を持つ。分散剤の材質は従来から様々のものが提案されている。本発明における分散剤の種類は限定されるものではないが、トリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、ウルトラポリリン酸ソーダ、クエン酸ソーダ、ホウ酸ソーダ、酒石酸ソーダ、カルボキシル基含有ポリエーテル、ポリアクリル酸ソーダ、ポリカルボン酸ソーダ、スルホン酸ソーダ、リグニンスルホン酸ソーダ等である。  The dispersant has the effect of imparting fluidity during construction of the irregular refractory. Various materials for the dispersant have been proposed. The type of the dispersant in the present invention is not limited, but includes sodium tripolyphosphate, sodium hexametaphosphate, acidic hexametaphosphate soda, ultrapolyphosphate soda, sodium citrate, sodium borate, sodium tartrate, carboxyl group-containing polyether Polyacrylic acid soda, polycarboxylic acid soda, sulfonic acid soda, lignin sulfonic acid soda, and the like.

分散剤の添加量は、耐火原料100重量%に対する外掛けで0.01〜1重量%が好ましい。  The addition amount of the dispersant is preferably 0.01 to 1% by weight as an outer coating with respect to 100% by weight of the refractory raw material.

本発明の不定形耐火物は以上の他にも必要によっては硬化調整剤、乳酸アルミニウム、有機繊維、金属、ガラス等を添加してもよい。これらの添加量は耐火原料組成100重量%に対する外掛けで5重量%以下が望ましい。  In addition to the above, the amorphous refractory of the present invention may contain a curing regulator, aluminum lactate, organic fiber, metal, glass and the like as necessary. These addition amounts are desirably 5% by weight or less as an outer coating with respect to 100% by weight of the refractory raw material composition.

施工には以上の配合組成物全体に対する外掛けで、水分2〜8重量%程度添加して混練して、型枠を用いて流し込み施工する。流し込みの際には振動を付与して充填を図る。施工後は養生・乾燥を行なう。この施工は炉に直接流し込み施工する他、別場所で型枠に流し込み施工して得たプレモールド品を用いたプレモールド法をもって内張りしても良い。  In the construction, about 2 to 8% by weight of water is added and kneaded with the outer coating for the entire blended composition described above, and cast using a mold. When pouring, filling is performed by applying vibration. Curing and drying after construction. This construction may be performed by pouring directly into the furnace, or may be lined by a pre-mold method using a pre-molded product obtained by pouring into a mold at another location.

表1と表2に使用した原料の化学成分を示した。  Tables 1 and 2 show the chemical components of the raw materials used.

表3から表7までに本発明の比較例を示し、さらに各例の試験結果を示す。  Tables 3 to 7 show comparative examples of the present invention, and further show the test results of each example.

表8から表16までに本発明の実施例を示し、さらに各例の試験結果を示す。  Tables 8 to 16 show examples of the present invention, and further show test results of the examples.

Figure 2008088044
Figure 2008088044

Figure 2008088044
Figure 2008088044

Figure 2008088044
Figure 2008088044

Figure 2008088044
Figure 2008088044

Figure 2008088044
Figure 2008088044

Figure 2008088044
Figure 2008088044

Figure 2008088044
Figure 2008088044

Figure 2008088044
Figure 2008088044

Figure 2008088044
Figure 2008088044

Figure 2008088044
Figure 2008088044

Figure 2008088044
Figure 2008088044

Figure 2008088044
Figure 2008088044

Figure 2008088044
Figure 2008088044

Figure 2008088044
Figure 2008088044

Figure 2008088044
Figure 2008088044

Figure 2008088044
Figure 2008088044

耐食性の評価方法は次のとおりである。  The evaluation method of corrosion resistance is as follows.

回転侵食ドラム法にて1500℃×24時間の侵食試験を塩基度1.0のスラグの条件で行い、双方の原寸より侵食量の合計数値(mm)を示した。  An erosion test at 1500 ° C. for 24 hours was performed by the rotary erosion drum method under the condition of a slag having a basicity of 1.0, and the total value (mm) of the erosion amount was shown from both original dimensions.

比較例1から比較例4は、酸化クロム含有品である比較例5と比較して耐溶損性が大きく劣る。  Comparative Example 1 to Comparative Example 4 are greatly inferior in resistance to melting as compared with Comparative Example 5 which is a chromium oxide-containing product.

比較例1に(Mg,Ni)O固溶体を添加した比較例6から9は大きな耐溶損性の向上は認められない。  In Comparative Examples 6 to 9 in which the (Mg, Ni) O solid solution is added to Comparative Example 1, no significant improvement in resistance to melting loss is observed.

比較例7に理論スピネルを1重量%添加した比較例10でも大きな耐溶損性の向上は認められない。  Even in Comparative Example 10 in which 1% by weight of theoretical spinel is added to Comparative Example 7, no significant improvement in the erosion resistance is observed.

実施例26から実施例30は(Mg,Ni)O固溶体の添加量を70重量%以上の添加品となるが、実施例にある(Mg,Ni)O固溶体の添加量を70重量%品の実施例5,実施例10,実施例20よりも耐溶損性は劣る結果となった。  In Examples 26 to 30, the added amount of the (Mg, Ni) O solid solution is 70% by weight or more, but the added amount of the (Mg, Ni) O solid solution in the example is 70% by weight. As a result, the melt resistance was inferior to that of Example 5, Example 10, and Example 20.

比較例11から比較例15は耐火物内に酸化マグネシウムと酸化ニッケルを含みその化学組成の合計量が5重量%以下のものであるが、比較例1と比較しても大きな耐溶損性の向上は認められない。  Comparative Example 11 to Comparative Example 15 contain magnesium oxide and nickel oxide in the refractory, and the total amount of the chemical composition is 5% by weight or less. It is not allowed.

実施例46から実施例50は耐火物内に酸化マグネシウムと酸化ニッケルを含みその化学組成の合計量が70重量%以上のものであるが、実施例にある耐火物内に酸化マグネシウムと酸化ニッケルを含みその化学組成の合計量が70重量%付近の実施例45,実施例55よりも耐溶損性は劣る結果となった。  Examples 46 to 50 include magnesium oxide and nickel oxide in the refractory and the total amount of the chemical composition is 70% by weight or more. Magnesium oxide and nickel oxide are contained in the refractory in the example. In addition, the corrosion resistance was inferior to those of Examples 45 and 55 in which the total amount of the chemical composition was about 70% by weight.

実施例1から実施例5は比較例1に(Mg,Ni)O−5を添加したものである。添加量が増えるに従い耐溶損性は向上する。添加量が50重量%付近で耐溶損性は最も優れ、添加量が70重量%までほぼ平行線である。  In Examples 1 to 5, (Mg, Ni) O-5 was added to Comparative Example 1. As the amount of addition increases, the resistance to erosion improves. When the addition amount is around 50% by weight, the corrosion resistance is the best, and the addition amount is almost parallel up to 70% by weight.

実施例6から実施例10は比較例1に(Mg,Ni)O−10cを添加したものである。添加量が増えるに従い耐溶損性は向上する。添加量が50重量%付近で耐溶損性は最も優れ、添加量が70重量%までほぼ平行線である。  Examples 6 to 10 are obtained by adding (Mg, Ni) O-10c to Comparative Example 1. As the amount of addition increases, the resistance to erosion improves. When the addition amount is around 50% by weight, the corrosion resistance is the best, and the addition amount is almost parallel up to 70% by weight.

実施例11から実施例15は実施例6から10の(Mg,Ni)O−10cを溶融品である(Mg,Ni)O−10bに変更したものである。同じ組成の(Mg,Ni)O固溶体でも溶融品の使用が最も優れた耐溶損性を示した。また、添加量が増えるに従い耐溶損性は向上する。添加量が50重量%付近で耐溶損性は最も優れ、添加量が70重量%までほぼ平行線である。  In Examples 11 to 15, (Mg, Ni) O-10c of Examples 6 to 10 is changed to (Mg, Ni) O-10b which is a molten product. Even when the (Mg, Ni) O solid solution having the same composition was used, the use of a molten product showed the most excellent resistance to erosion. In addition, as the amount added increases, the resistance to erosion improves. When the addition amount is around 50% by weight, the corrosion resistance is the best, and the addition amount is almost parallel up to 70% by weight.

実施例16から実施例20は比較例1に(Mg,Ni)O−20を添加したものである。添加量が増えるに従い耐溶損性は向上する。添加量が50重量%付近で耐溶損性は最も優れ、添加量が70重量%までほぼ平行線である。  Examples 16 to 20 are obtained by adding (Mg, Ni) O-20 to Comparative Example 1. As the amount of addition increases, the resistance to erosion improves. When the addition amount is around 50% by weight, the corrosion resistance is the best, and the addition amount is almost parallel up to 70% by weight.

実施例21から実施例25は比較例1にMgO−NiO−TiOを添加したものである。添加量が増えるに従い耐溶損性は向上する。添加量が50重量%付近で耐溶損性は最も優れ、添加量が70重量%までほぼ平行線である。実施例6から実施例10との違いは他耐火性成分としてTiOを含んでいることである。TiOを含むことによる耐溶損性の低下は認められない。In Examples 21 to 25, MgO—NiO—TiO 2 was added to Comparative Example 1. As the amount of addition increases, the resistance to erosion improves. When the addition amount is around 50% by weight, the corrosion resistance is the best, and the addition amount is almost parallel up to 70% by weight. The difference from Example 6 to Example 10 is that TiO 2 is included as another refractory component. The deterioration of the melt resistance due to the inclusion of TiO 2 is not recognized.

実施例7と実施例31では、添加している(Mg,Ni)O−10の気孔率が実施例7では3%であるのに対し、実施例31では気孔率が15%である。この差により実施例7の方が優れた耐溶損性を示した。このことより、添加する(Mg,Ni)O固溶体の気孔率は小さいほど好ましいことが解る。  In Example 7 and Example 31, the porosity of the added (Mg, Ni) O-10 is 3% in Example 7, whereas in Example 31, the porosity is 15%. Due to this difference, Example 7 showed better melt resistance. From this, it can be seen that the smaller the porosity of the (Mg, Ni) O solid solution added, the better.

実施例32から実施例35は実施例7に理論スピネルを添加したものである。理論スピネルの添加量が増えるに従い耐溶損性は向上する。  Examples 32 to 35 are obtained by adding theoretical spinel to Example 7. As the amount of theoretical spinel added increases, the erosion resistance improves.

実施例36と実施例37では、添加している酸化ニッケルの平均粒径が実施例36では45μm以下に対し、実施例37では45μmより大きい。この差により実施例36の方が優れた耐溶損性を示した。このことより、添加する酸化ニッケルの平均粒径は小さいほど好ましいことが解る。  In Example 36 and Example 37, the average particle diameter of the added nickel oxide is 45 μm or less in Example 36, whereas it is larger than 45 μm in Example 37. Due to this difference, Example 36 showed superior resistance to melting damage. From this, it is understood that the smaller the average particle diameter of the nickel oxide to be added, the better.

実施例41から実施例45は比較例1に酸化マグネシウムと酸化ニッケルの2成分の合計量を5重量%以上添加したものである。添加量が増えるに従い耐溶損性は向上する。添加量合計が50重量%付近で耐溶損性は最も優れ、添加量合計が70重量%までほぼ平行線である。  In Examples 41 to 45, the total amount of two components of magnesium oxide and nickel oxide is added to Comparative Example 1 in an amount of 5% by weight or more. As the amount of addition increases, the resistance to erosion improves. When the total addition amount is around 50% by weight, the resistance to erosion is most excellent, and the total addition amount is almost parallel to 70% by weight.

実施例43と実施例51では、添加している酸化ニッケルの平均粒径が実施例43では45μm以下に対し、実施例51では45μmより大きい。この差により実施例43の方が優れた耐溶損性を示した。このことより、添加する酸化ニッケルの平均粒径は小さいほど好ましいことが解る。  In Example 43 and Example 51, the average particle diameter of the added nickel oxide is 45 μm or less in Example 43, whereas it is larger than 45 μm in Example 51. Due to this difference, Example 43 showed better melt resistance. From this, it is understood that the smaller the average particle diameter of the nickel oxide to be added, the better.

実施例52から実施例54は実施例42から実施例44の溶融アルミナを理論スピネルに変更したものである。この結果より、溶融アルミナを理論スピネルに変更することが、さらなる耐溶損性の向上に繋がることがわかる。  In Examples 52 to 54, the molten alumina of Examples 42 to 44 is changed to a theoretical spinel. From this result, it can be seen that changing molten alumina to theoretical spinel leads to further improvement in resistance to melting.

いずれもMgOとNiO添加品は優れた結果を示した。中でもMgO+NiO量が35重量%以上になると酸化クロム20重量%品と同等ないしはそれ以上の耐スラグ溶損性を示した。  In both cases, MgO and NiO-added products showed excellent results. Above all, when the amount of MgO + NiO was 35% by weight or more, the slag erosion resistance was equal to or more than that of 20% by weight of chromium oxide.

実施例9に示した組成の不定形耐火物を飛灰溶融炉の湯口で使用したところ、比較例5で170日耐用のところ、180日以上の高耐用が得られた。  When the amorphous refractory having the composition shown in Example 9 was used at the gate of the fly ash melting furnace, 170 days in Comparative Example 5 yielded high durability of 180 days or more.

発明の効果The invention's effect

酸化マグネシウムと酸化ニッケルを併用したクロムフリー不定形耐火物は酸化マグネシウムと酸化ニッケル固溶体を作ることにより優れた耐スラグ溶損性を示した。また、すでには酸化マグネシウムと酸化ニッケル固溶体として作成した原料を添加しても同様の優れた耐スラグ溶損性を示す。このことにより、酸化クロム含有耐火物の使用を制限し、六価クロムの問題を軽減することができる。  Chromium-free amorphous refractories combined with magnesium oxide and nickel oxide showed excellent slag erosion resistance by making magnesium oxide and nickel oxide solid solution. Moreover, even if the raw materials already prepared as magnesium oxide and nickel oxide solid solution are added, the same excellent slag erosion resistance is exhibited. This limits the use of chromium oxide-containing refractories and can alleviate the problem of hexavalent chromium.

Claims (5)

耐火原料組成がAlとMgOとNiOの3種化学成分を主成分とすることを特長とする廃棄物溶融炉用クロムフリー不定形耐火物。A chrome-free amorphous refractory for a waste melting furnace, characterized in that the composition of the refractory material is mainly composed of three chemical components of Al 2 O 3 , MgO and NiO. 耐火原料組成中に(Mg,Ni)Oの固溶体を1〜85重量%含むことを特長とする廃棄物溶融炉用クロムフリー不定形耐火物。  A chromium-free amorphous refractory for a waste melting furnace characterized by containing 1 to 85% by weight of a solid solution of (Mg, Ni) O in the refractory raw material composition. 廃棄物溶融炉にて耐大物使用中に(Mg,Ni)O固溶体を生成することを特長とする廃棄物溶融炉用クロムフリー不定形耐火物。  A chrome-free amorphous refractory for waste melting furnaces that produces (Mg, Ni) O solid solution during use of large materials in waste melting furnaces. 耐火原料組成中にMgOとNiOの2成分を含み、その耐火物の化学成分合計量が5〜85重量%であることを特長とする廃棄物溶融炉用クロムフリー不定形耐火物。  A chromium-free amorphous refractory for a waste melting furnace, characterized in that the refractory raw material composition contains two components of MgO and NiO, and the total amount of chemical components of the refractory is 5 to 85% by weight. 請求項1ないし4項のいずれか1項に記載の廃棄物溶融炉用クロムフリー不定形耐火物を流し込み施工またはプレキャスト施工にて炉の少なくとも一部に使用した廃棄物溶融炉。  The waste melting furnace which used the chromium free amorphous refractory for waste melting furnaces of any one of Claims 1 thru | or 4 for at least one part of the furnace by pouring construction or precast construction.
JP2006298276A 2006-10-03 2006-10-03 Indefinite refractory and waste melting furnace Active JP4967605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298276A JP4967605B2 (en) 2006-10-03 2006-10-03 Indefinite refractory and waste melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298276A JP4967605B2 (en) 2006-10-03 2006-10-03 Indefinite refractory and waste melting furnace

Publications (2)

Publication Number Publication Date
JP2008088044A true JP2008088044A (en) 2008-04-17
JP4967605B2 JP4967605B2 (en) 2012-07-04

Family

ID=39372567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298276A Active JP4967605B2 (en) 2006-10-03 2006-10-03 Indefinite refractory and waste melting furnace

Country Status (1)

Country Link
JP (1) JP4967605B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208309A (en) * 1995-01-27 1996-08-13 Tokyo Yogyo Co Ltd Basic brick
JPH08208315A (en) * 1995-01-27 1996-08-13 Tokyo Yogyo Co Ltd Basic brick
JP2001182921A (en) * 1999-12-27 2001-07-06 Kurosaki Harima Corp A castable refractory for constructing waste fusing furnace with casting process and waste fusing furnace using the same
JP2004307277A (en) * 2003-04-08 2004-11-04 Mino Ceramic Co Ltd Castable molded article and method of manufacturing the same
JP2005213120A (en) * 2004-01-30 2005-08-11 Kurosaki Harima Corp Monolithic refractory for waste melting furnace and waste melting furnace using the same for lining

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208309A (en) * 1995-01-27 1996-08-13 Tokyo Yogyo Co Ltd Basic brick
JPH08208315A (en) * 1995-01-27 1996-08-13 Tokyo Yogyo Co Ltd Basic brick
JP2001182921A (en) * 1999-12-27 2001-07-06 Kurosaki Harima Corp A castable refractory for constructing waste fusing furnace with casting process and waste fusing furnace using the same
JP2004307277A (en) * 2003-04-08 2004-11-04 Mino Ceramic Co Ltd Castable molded article and method of manufacturing the same
JP2005213120A (en) * 2004-01-30 2005-08-11 Kurosaki Harima Corp Monolithic refractory for waste melting furnace and waste melting furnace using the same for lining

Also Published As

Publication number Publication date
JP4967605B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5280836B2 (en) Gasification reactor internal lining
JP6259643B2 (en) High chromia castable refractory, precast block using the same, and waste melting furnace lined with one or both of them
JP4796170B2 (en) Chromium castable refractories and precast blocks using the same
WO2013057756A1 (en) Burned magnesia brick
JP2002193681A (en) Castable refractory and waste melting furnace utilizing it
JP6527443B2 (en) Method for producing zirconia-based precast refractory for waste melting furnace
JP2009234830A (en) Chromium free monolithic refractory and waste melting furnace
JPWO2004087609A1 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this
JP4967605B2 (en) Indefinite refractory and waste melting furnace
JP4576367B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace using the same for lining
JP2006232653A (en) Refractory brick and waste material melting furnace
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
JP3327536B2 (en) Irregular refractories for waste melting furnace pouring and waste melting furnace using the same
JP4355486B2 (en) Unshaped refractory for waste melting furnace and waste melting furnace lined with it
JP2005314144A (en) Chromium-free monolithic refractory for waste material melting furnace and waste material melting furnace lined with the same
JP4404515B2 (en) Unshaped refractories for waste treatment furnaces
JP2980816B2 (en) Sintered clinker for refractories and method for producing the same
JP2005213120A (en) Monolithic refractory for waste melting furnace and waste melting furnace using the same for lining
JP4205926B2 (en) Unshaped refractory for waste melting furnace and waste melting furnace lined with it
JP5271239B2 (en) Furnace
JP4445256B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this
JPH09142946A (en) Prepared unshaped flowed-in refractories and their molding
JP3875054B2 (en) Refractory composition for ash melting furnace
JP2001182921A (en) A castable refractory for constructing waste fusing furnace with casting process and waste fusing furnace using the same
JPH05170523A (en) Sintered refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4967605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250