JP2008087034A - Electron beam welded joint having excellent resistance to generation of brittle fracture - Google Patents
Electron beam welded joint having excellent resistance to generation of brittle fracture Download PDFInfo
- Publication number
- JP2008087034A JP2008087034A JP2006271074A JP2006271074A JP2008087034A JP 2008087034 A JP2008087034 A JP 2008087034A JP 2006271074 A JP2006271074 A JP 2006271074A JP 2006271074 A JP2006271074 A JP 2006271074A JP 2008087034 A JP2008087034 A JP 2008087034A
- Authority
- JP
- Japan
- Prior art keywords
- weld
- hardness
- weld metal
- electron beam
- joint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Welding Or Cutting Using Electron Beams (AREA)
Abstract
Description
本発明は、溶接構造体、特に、板厚50mm超の厚鋼板を電子ビームにより突合せ溶接して構成した溶接構造体の耐脆性破壊発生特性に優れた電子ビーム溶接継手に関する。 The present invention relates to an electron beam welded joint excellent in brittle fracture resistance of a welded structure, particularly a welded structure formed by butt welding a thick steel plate having a thickness of more than 50 mm with an electron beam.
石油等の化石エネルギーから脱却し、再生可能な自然エネルギーを利用しようとする社会的ニーズは極めて高まっており、大規模な風力発電も世界的に普及しつつある。
風力発電に最も適している地域は、絶えず強風を期待できる地域であり、洋上風力発電も世界的規模で実現されている。洋上に風力発電塔を建設するためには、海底の地盤に塔の基礎部分を打ち込む必要があり、海水面から風力発電のタービン翼の高さを十分確保するためには、基礎部分も十分な長さが必要である。
Social needs to move away from fossil energy such as oil and utilize renewable natural energy are extremely increasing, and large-scale wind power generation is also spreading worldwide.
The most suitable area for wind power generation is the area where strong winds can always be expected, and offshore wind power generation has also been realized on a global scale. In order to construct a wind power tower on the ocean, it is necessary to drive the foundation of the tower into the ground at the bottom of the sea, and in order to secure the height of the turbine blades of the wind power generation from the sea level, the foundation is also sufficient. Length is needed.
そのため、風力発電塔の基礎部分では、板厚が100mm程度で、直径が4m程度の大断面を有する管構造となり、塔の全体高さは80m以上にもなる。そのような巨大構造物を建設現場近くの海岸において、簡易に、しかも高能率で溶接組み立てすることが求められている。
そこで、上記のような板厚100mmにもおよぶ極厚鋼板を高能率で、しかもオンサイトで溶接するという、従来にないニーズが生じてきた。
For this reason, the basic portion of the wind power generation tower has a pipe structure having a large cross section with a plate thickness of about 100 mm and a diameter of about 4 m, and the overall height of the tower is 80 m or more. It is required to weld and assemble such a huge structure easily and efficiently on the coast near the construction site.
Therefore, an unprecedented need has arisen to weld an extremely thick steel plate having a thickness of 100 mm as described above with high efficiency and on-site welding.
一般に、電子ビーム溶接方法は、高密度・高エネルギービームにより厚鋼板を効率的に溶接できる溶接方法であるが、真空チャンバー内で高真空状態を維持して溶接する必要があるので、従来は、溶接できる鋼板の大きさが限られていた。 Generally, the electron beam welding method is a welding method that can efficiently weld a thick steel plate with a high-density, high-energy beam. However, since it is necessary to perform welding while maintaining a high vacuum state in a vacuum chamber, The size of the steel plate that can be welded was limited.
これに対して、近年、極厚鋼板を効率よく現地溶接できる溶接方法として、低真空下で施工が可能な電子ビーム溶接方法(RPEBW:Reduced Pressured Electron Beam Welding: 減圧電子ビーム溶接)が英国の溶接研究所で開発され、提案されている(例えば、特許文献1参照)。
このRPEBW法を用いることにより、風力発電塔のような大型構造物を溶接する場合にも、溶接する部分だけを局所的に真空にして、効率的に溶接ができることが期待される。
On the other hand, recently, an electron beam welding method (RPEBW: Reduced Pressure Electron Beam Welding) that can be applied under a low vacuum is a welding method that can be used to weld extra heavy steel plates efficiently in the field. It has been developed and proposed in a laboratory (see, for example, Patent Document 1).
By using this RPEBW method, even when welding a large structure such as a wind power tower, it is expected that only the part to be welded is locally evacuated and welding can be performed efficiently.
しかし、一方で、このRPEBW法では、真空チャンバー内で溶接する方法に比べて、真空度が低下した状態で溶接するために、電子ビームで溶融され、その後凝固する溶融金属部分(以下、溶接金属部と称する)の靭性確保が困難となるという、新たな課題が浮かび上がってきた。 However, on the other hand, in this RPEBW method, a molten metal portion (hereinafter referred to as a weld metal) that is melted by an electron beam and then solidified in order to perform welding in a state where the degree of vacuum is lowered as compared with a method of welding in a vacuum chamber. A new problem has emerged that it is difficult to ensure the toughness of the part.
このような課題に対し、従来、板状のNiなどのインサートメタルを溶接面に張付けて電子ビーム溶接することにより、溶接金属のNi含有量を0.1〜4.5%として、溶接金属のシャルピー衝撃値などの靭性を改善することが、特許文献2などで知られている。
しかし、RPEBW法を用いて溶接する際に、この方法では、インサートメタル中のNi等の元素が溶接熱影響部まで均一に拡散せず、溶接金属と溶接熱影響部(以下、HAZ部と称する)の硬さの差を増大させるため、かえってHAZ部の靭性が大きくばらつくという問題が明らかになってきた。
For such problems, conventionally, by inserting an insert metal such as plate-like Ni onto the welding surface and performing electron beam welding, the Ni content of the weld metal is set to 0.1 to 4.5%, and It is known in
However, when welding using the RPEBW method, in this method, elements such as Ni in the insert metal are not uniformly diffused to the weld heat affected zone, and the weld metal and the weld heat affected zone (hereinafter referred to as HAZ zone). However, the problem that the toughness of the HAZ part varies greatly has been clarified.
近年、溶接構造物の安全性を定量的に評価する指標として、CTOD(Crack Tip Opening Displacement:亀裂端開口変位)試験により求められる、破壊力学に基づいた破壊靭性値δcが重視されるようになってきている。従来のVノッチシャルピー衝撃試験のような小型の試験では良好な結果を示しても、大型構造物の溶接継手のCTOD試験では、必ずしも良好な破壊靭性値δcを示すとは限らない。
RPEBW法により溶接して得られる溶接継手は、上記のようなインサートメタルを使用する方法によってもHAZ部の靭性が大きくばらつくため、破壊靭性値δcを十分に確保することは困難であった。
In recent years, the fracture toughness value δc based on fracture mechanics, which is required by CTOD (Crack Tip Opening Displacement) test, has come to be emphasized as an index for quantitatively evaluating the safety of welded structures. It is coming. Even if a small test such as the conventional V-notch Charpy impact test shows a good result, the CTOD test of a welded joint of a large structure does not always show a good fracture toughness value δc.
The welded joint obtained by welding by the RPEBW method has a large variation in the toughness of the HAZ part even by the method using the insert metal as described above, and thus it has been difficult to sufficiently secure the fracture toughness value δc.
このような問題に対し、本発明者らは、降伏強度が355MPaクラス以上で、板厚が50mm超(好ましくは、50mm超〜100mm程度)の高強度厚鋼板をインサートメタルを使用して電子ビーム溶接した場合、溶接金属部の靭性を向上させるために使用したインサートメタルの存在により溶接金属部の強度や硬さが上昇し、母材の強度や硬さよりも著しく高くなっていることにより、溶接金属部とそれに接しているHAZ部との境界の溶融溶接線近傍(以下、FL部と称する)で局所的な応力が増大し、そのため、FL部の破壊靭性値δcが低下することを知見した。 In order to solve such a problem, the present inventors used an insert beam for a high-strength thick steel plate having a yield strength of 355 MPa class or more and a thickness of more than 50 mm (preferably more than about 50 mm to 100 mm) using an electron beam. When welding, the presence of the insert metal used to improve the toughness of the weld metal part increases the strength and hardness of the weld metal part, which is significantly higher than the strength and hardness of the base metal. It has been found that the local stress increases in the vicinity of the fusion weld line (hereinafter referred to as the FL portion) at the boundary between the metal portion and the HAZ portion in contact with the metal portion, and therefore the fracture toughness value δc of the FL portion decreases. .
そして、この知見に基づき、溶接金属部の硬さを母材部の硬さの220%以下となるように制御し、好ましくは、溶接金属部の硬さを母材部の硬さの110%以上220%以下、溶接金属部の幅を、母材板厚の20%以下とすることにより、母材部と溶接金属部の硬さのオーバーマッチングによる継手靭性の低下を防止できることを見出し、先に特許出願(特願2006−207261号)した。 And based on this knowledge, the hardness of the weld metal part is controlled to be 220% or less of the hardness of the base metal part, and preferably the hardness of the weld metal part is 110% of the hardness of the base metal part. It has been found that by reducing the width of the weld metal part to 220% or less and 20% or less of the base metal plate thickness, it is possible to prevent a decrease in joint toughness due to the overmatching of the hardness of the base metal part and the weld metal part. (Patent application No. 2006-207261).
ところで、より自然条件の厳しい場所で使用できるように、Niを2.5質量%以上含有し、より強度が高く低温での靭性が優れた鋼材が使用されるようになってきた。
そのようなNi含有量が高い鋼材を用いた溶接継手では、先の特許出願で提案した溶接金属部の硬さと母材の硬さの比を調整する手段によっても、良好な溶接継手の破壊靭性値δcを確保できない場合が生じた。
By the way, steel materials containing 2.5% by mass or more of Ni and having higher strength and excellent toughness at low temperatures have been used so that they can be used in places with more severe natural conditions.
In such a welded joint using a steel material having a high Ni content, the fracture toughness of the welded joint is also good by means of adjusting the ratio of the hardness of the weld metal part and the hardness of the base material proposed in the previous patent application. There was a case where the value δc could not be secured.
そこで、本発明は、Ni含有量が高い鋼材を用いた溶接構造体における電子ビーム溶接継手において、溶接金属部と局所的な応力が増大するFL部の両方の破壊靭性値δcを向上させ、溶接継手の破壊靭性を安定的に向上する方法を提供することを課題とする。 Therefore, the present invention improves the fracture toughness value δc of both the weld metal part and the FL part where local stress increases in an electron beam welded joint in a welded structure using a steel material having a high Ni content, It is an object to provide a method for stably improving the fracture toughness of a joint.
本発明者らは、Ni含有量が高い鋼材を、インサートメタルを突合せ部に配置して電子ビーム溶接する際、上述のような母材と溶接金属の硬さのオーバーマッチングによる継手靭性の低下を防止する観点から、FL部での局所応力を緩和して、高い破壊靭性値δcが得られる手段についてさらに検討を加えた。 When the present inventors perform electron beam welding of a steel material having a high Ni content by placing an insert metal at a butt portion, the joint toughness is reduced by overmatching the hardness of the base metal and the weld metal as described above. From the viewpoint of prevention, further investigation was made on means for relaxing the local stress in the FL portion and obtaining a high fracture toughness value δc.
その結果、溶接金属のNi濃度を特定範囲に調整したうえで、上述の溶接金属の硬さと母材の硬さの比を調整する手段を適用することにより、溶接継手の破壊靭性を安定的に向上することができることを見出した。 As a result, after adjusting the Ni concentration of the weld metal to a specified range, the fracture toughness of the welded joint can be stably improved by applying the above-mentioned means for adjusting the ratio of the hardness of the weld metal to the hardness of the base metal. It has been found that it can be improved.
また、FL部の局所応力は、溶接金属部の硬さの外に、さらに、溶接溶融線(FL)を間に挟んだ両側の狭い領域における強度の変化に影響を受け、その変化が小さければ、FL部の局所応力の集中を緩和できることを見出し、このようなFL前後の硬さ比と上述の溶接金属のNi濃度を調整することによっても、Ni含有量が高い鋼材の溶接継手の破壊靭性を安定的に向上することができることを見出した。 Further, the local stress in the FL part is influenced by the strength change in the narrow region on both sides sandwiching the weld melt line (FL) in addition to the hardness of the weld metal part, and if the change is small It is found that the concentration of local stress in the FL part can be alleviated, and by adjusting the hardness ratio before and after the FL and the Ni concentration of the above-mentioned weld metal, the fracture toughness of the welded joint of the steel material having a high Ni content is also obtained. Has been found to be able to improve stably.
本発明は、以上のような知見に基づいてなされたものであり、その要旨は、以下のとおりである。
(1)Niを2.5質量%以上含有する鋼材を用いた溶接構造体の突合せ溶接継手であって、該溶接継手の溶接金属中に含まれるNiの含有量が質量%で4%超8%以下であり、溶接金属部の硬さが母材部の硬さの110%超220%以下であることを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) A butt weld joint of a welded structure using a steel material containing Ni of 2.5% by mass or more, wherein the content of Ni contained in the weld metal of the weld joint is more than 4% by
(2)Niを2.5質量%以上含有する鋼材を用いた溶接構造体の突合せ溶接継手であって、該溶接継手の溶接金属中に含まれるNiの含有量が質量%で4%超8%以下であり、溶接溶融線から0.5mm入った溶接金属部の硬さが、溶接溶融線から0.5mm入った母材部の硬さの100%以上180%以下であることを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。
(2) A butt weld joint of a welded structure using a steel material containing Ni of 2.5% by mass or more, wherein the content of Ni contained in the weld metal of the weld joint is more than 4% by
(3)Niを2.5質量%以上含有する鋼材を用いた溶接構造体の突合せ溶接継手であって、
該溶接継手の溶接金属中に含まれるNiの含有量が質量%で4%超8%以下であり、溶接金属部の硬さが母材部の硬さの110%超220%以下であり、かつ、溶接溶融線から0.5mm入った溶接金属部の硬さが溶接溶融線から0.5mm入った母材部の硬さの100%以上180%以下であることを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。
(4)前記溶接金属部の幅が前記鋼材の厚みの20%以下であることを特徴とする前記(1)〜(3)のいずれかに記載の耐脆性破壊発生特性に優れた電子ビーム溶接継手。
(5)前記溶接構造体の溶接継手が板厚50mm超の高強度鋼板を突合せ溶接したものであることを特徴とする前記(1)〜(4)のいずれかに記載の耐脆性破壊発生特性に優れた電子ビーム溶接継手。
(3) A butt weld joint of a welded structure using a steel material containing 2.5 mass% or more of Ni,
The content of Ni contained in the weld metal of the weld joint is more than 4% by mass and less than 8%, and the hardness of the weld metal part is more than 110% and less than 220% of the hardness of the base material part, The brittle fracture resistance is characterized in that the hardness of the weld metal part 0.5 mm from the weld melt line is 100% to 180% of the hardness of the base metal part 0.5 mm from the weld melt line. Electron beam welded joint with excellent generation characteristics.
(4) The electron beam welding having excellent brittle fracture resistance according to any one of (1) to (3), wherein the width of the weld metal portion is 20% or less of the thickness of the steel material. Fittings.
(5) The brittle fracture resistance according to any one of (1) to (4), wherein the weld joint of the welded structure is a butt weld of a high-strength steel plate having a thickness of more than 50 mm Excellent electron beam welded joint.
本発明によれば、Niを2.5質量%以上含有し降伏強度が420MPaクラス以上の高強度鋼板であって、板厚が50mm超の高強度鋼板を電子ビーム溶接して溶接構造体とする際、破壊靭性値δcが十分に高い溶接継手を形成することができる。 According to the present invention, a high-strength steel plate containing 2.5% by mass or more of Ni and having a yield strength of 420 MPa class or more and having a thickness of more than 50 mm is electron beam welded to obtain a welded structure. At this time, a welded joint having a sufficiently high fracture toughness value Δc can be formed.
一般の電子ビーム溶接継手では、母材の一部を溶融しそのまま再凝固して溶接金属が形成されるため、溶接金属部において所要の破壊靭性値δcを確保することは困難である。
このため、上述のように、電子ビーム溶接の際、突合せ部にニッケル箔などのインサートメタルを挿入し、溶接金属部の焼入れ性を向上させ、Niの添加との相乗効果により靭性を確保する方法が知られているが、この方法によっても、FL部の靭性が大きくばらつくため、破壊靭性値δc値を十分に確保することは困難であった。
In a general electron beam welded joint, a part of the base metal is melted and re-solidified to form a weld metal, so that it is difficult to secure a required fracture toughness value δc in the weld metal part.
Therefore, as described above, during electron beam welding, an insert metal such as nickel foil is inserted into the butt portion, the hardenability of the weld metal portion is improved, and toughness is ensured by a synergistic effect with the addition of Ni. However, even with this method, the toughness of the FL portion varies widely, so it was difficult to sufficiently secure the fracture toughness value δc.
これに対し、上述のように、溶接金属部の硬さを母材の硬さの110%以上220%以下として、母材と溶接金属部の硬さのオーバーマッチングによる継手靭性の低下を防止できることを先に提案したが、Ni含有量が高い鋼材を用いた溶接継手ではそのような手段によっても、良好な溶接継手の破壊靭性値を確保できない場合が生じた。 On the other hand, as described above, the hardness of the weld metal part is set to 110% or more and 220% or less of the hardness of the base material, and the deterioration of joint toughness due to the overmatching of the hardness of the base material and the weld metal part can be prevented. In the case of a welded joint using a steel material having a high Ni content, a fracture toughness value of a good welded joint cannot be ensured even by such means.
そこで、溶接金属のNi含有量の影響を調べるために、Niを3質量%含有する鋼板とNiを含有しない鋼板の2種類の鋼板を試作し、Ni含有量が異なる複数のFe−Ni合金あるいは純Niよりなるインサートメタル箔をそれぞれ溶接突合せ部に挿入して、電子ビーム溶接を実施した。そして、溶接後のそれぞれの溶接継手部から試験片を採取し、溶接金属部(WM)とFL部のHAZ側(FL,HAZ部)にノッチを設けてCTOD試験を実施して破壊靭性値δc(以下、単にCTOD値ともいう。)を測定するとともに、溶接金属部のNi濃度を測定した。 Therefore, in order to investigate the influence of the Ni content of the weld metal, two types of steel plates, namely, a steel plate containing 3% by mass of Ni and a steel plate not containing Ni, were manufactured, and a plurality of Fe-Ni alloys having different Ni contents or An insert metal foil made of pure Ni was inserted into each welding butt and electron beam welding was performed. Then, specimens are taken from each welded joint after welding, and a notch is provided on the HAZ side (FL, HAZ part) of the weld metal part (WM) and FL part, and a CTOD test is performed to obtain a fracture toughness value δc. (Hereinafter, also simply referred to as CTOD value) was measured, and the Ni concentration of the weld metal part was measured.
得られた測定結果に基づき、WM部とFL,HAZ部の破壊靭性値δcを溶接金属中のNi含有量に対してプロットした結果を図1に示す。
図1より、Ni含有量が3%の鋼板の場合、溶接金属(WM)のNi含有量が4%超〜8%の範囲にあるものは、WM部(○)及びFL,HAZ部(●)とも0.15mm以上のCTOD値を確保できるが、それ以外の範囲にあるものは、WM部あるいはFL,HAZ部のいずれかが0.15mm未満の低いCTOD値しか得られないことがわかる。
FIG. 1 shows a result of plotting the fracture toughness value δc of the WM part, FL, and HAZ part against the Ni content in the weld metal based on the obtained measurement results.
As shown in FIG. 1, in the case of a steel sheet with a Ni content of 3%, the weld metal (WM) with a Ni content in the range of more than 4% to 8% is shown in the WM part (◯) and FL, HAZ part (● ), A CTOD value of 0.15 mm or more can be ensured, but it can be seen that only a low CTOD value of less than 0.15 mm is obtained in either the WM part or FL, HAZ part in the other range.
また、Niを含有しない鋼板の場合は、WM部(△)及びFL,HAZ部(黒△)のいずれもが0.15mm以上のCTOD値を示すものは得られなかった。
なお、δc値は高いほど望ましいが、ノルウェー海事協会(DNV)等の規格では、設計温度にて0.1〜0.2mm程度の値が要求されていることを踏まえ、本発明において目標とするδc値は、0.15mm以上とした。
In the case of a steel sheet not containing Ni, none of the WM part (Δ) and FL, HAZ part (black Δ) showed a CTOD value of 0.15 mm or more.
The higher the δc value, the better. However, the Norwegian Maritime Association (DNV) and other standards require a value of about 0.1 to 0.2 mm at the design temperature. The δc value was set to 0.15 mm or more.
さらに、WM部及びFL,HAZ部とも0.15mm以上のCTOD値を確保できた例の、溶接金属部と母材部の硬さを測定したところ、溶接金属部の硬さが母材部の硬さの110%超220%以下の範囲に入っていることがわかった。
以上の結果より、Ni含有量の高い鋼材の電子ビーム溶接継手では、FL部での局所応力を緩和するとともに、溶接金属のNi含有量を4%超〜8%とすることが、CTOD値の確保にとって有効であることがわかった。
Furthermore, when the hardness of the weld metal part and the base metal part of the example in which the CTOD value of 0.15 mm or more was secured in both the WM part and the FL, HAZ part was measured, the hardness of the weld metal part was that of the base metal part. It was found that the hardness was in the range of more than 110% and 220% or less.
From the above results, in the electron beam welded joint of steel material having a high Ni content, it is possible to relieve local stress in the FL portion and to make the Ni content of the weld metal more than 4% to 8%. It proved effective for securing.
つぎに、本発明者らは、インサートメタルを使用して電子ビーム溶接した場合のFL部での局所応力をさらに緩和して、より高い破壊靭性値δcが得られる手段について検討した。
その結果、FL部の局所応力は、溶接金属部の硬さの外に、さらに、溶接溶融線(FL)を間に挟んだ両側の狭い領域における強度の変化にも影響を受け、その変化が小さければ、FL部の局所応力の集中を緩和できることを、次のような実験によって見出した。
Next, the present inventors examined a means for further relaxing the local stress in the FL portion when electron beam welding is performed using an insert metal, and obtaining a higher fracture toughness value δc.
As a result, the local stress in the FL part is influenced by the strength change in the narrow area on both sides of the weld metal line (FL) in addition to the hardness of the weld metal part. It was found by the following experiment that the concentration of local stress in the FL portion can be relaxed if it is small.
表1に示す硬度分布の異なる2つの電子ビーム溶接継手AとBを用意し、FL部でのCTOD試験を実施して破壊靭性値δcを測定したところ、Hv(WM平均)/Hv(HAZ平均)の値の大きいB継手の方が、表1に示すようにFL部のδc値が高かった。HL近傍のHvの分布を調べたところ、図2に示すように、B継手の方がFL近傍での硬さ分布の勾配は小さく、強度マッチングにより生じる局所応力の増加代は、継手Bの方が継手Aよりも小さいことが判明した。 Two electron beam welded joints A and B having different hardness distributions shown in Table 1 were prepared, and the fracture toughness value δc was measured by conducting a CTOD test in the FL part. Hv (WM average) / Hv (HAZ average) As shown in Table 1, the δc value of the FL part was higher in the B joint having a larger value of). The Hv distribution in the vicinity of HL was examined. As shown in FIG. 2, the B joint has a smaller hardness distribution gradient in the vicinity of the FL, and the increase in local stress caused by the strength matching is that of the joint B. Was found to be smaller than the joint A.
このように、FL部近傍の硬度の変化が小さい方が破壊靭性値δcが高くなる理由は次のように考えられる。
一般に、溶接金属となる領域では、母材との境界部から凝固が始まり、内部に進行する。凝固の際、合金元素によっては、固相と液相で溶解度が異なるため液相に濃縮するものがある。そのような元素の存在によって、凝固の初期と後期では溶接金属の化学成分が異なる場合が生じ、結果として溶接金属の硬さにばらつきが生じることがあり、そのばらつきの大きい場合に硬度の変化が大きくなり破壊靭性値δcが低下するものと考えられる。
As described above, the reason why the fracture toughness value δc is higher when the change in hardness near the FL portion is smaller is considered as follows.
In general, in a region that becomes a weld metal, solidification starts from the boundary with the base material and proceeds to the inside. During solidification, some alloy elements concentrate in the liquid phase because the solubility differs between the solid phase and the liquid phase. Due to the presence of such elements, the chemical composition of the weld metal may differ between the early and late stages of solidification, and as a result, the weld metal may vary in hardness. It is considered that the fracture toughness value δc decreases as the value increases.
したがって、溶接金属と母材との境界、即ちFLに接する溶接金属側の降伏強度が、FLに接するHAZ部側での局所応力の決定にとって重要な要件となってくる。そのため、その降伏強度を表現しうる指標として、FLに接する溶接金属側の硬さが重要となる。
そして、FLに亀裂が存在する場合、その亀裂先端に影響を与える領域は、±0.5mmの範囲であるから、溶接溶融線からHAZ側に0.5mm入った位置(FL+0.5)と、溶接溶融線から溶接金属側へ0.5mm入った位置(FL−0.5)での硬さHvによってFL部の局所応力が決定される。
Therefore, the boundary between the weld metal and the base metal, that is, the yield strength on the weld metal side in contact with the FL, is an important requirement for determining the local stress on the HAZ part side in contact with the FL. Therefore, the hardness of the weld metal side in contact with FL is important as an index that can express the yield strength.
And when there is a crack in FL, the region that affects the crack tip is in the range of ± 0.5 mm, so the position (FL + 0.5) that is 0.5 mm from the weld melt line to the HAZ side, The local stress of the FL portion is determined by the hardness Hv at a position (FL-0.5) 0.5 mm from the weld melt line to the weld metal side.
図3に、有限要素法(FEM)により求めたFL部の局所応力σyy(縦軸)と溶接金属(WM)の硬さHv(横軸)の関係を示すが、FL−0.5mmの位置(●)でのHvとσyyの間の相関関係が最もよいことが示されている。WM部の1/2の位置(○)やFL−1mmの位置(△)でもHvとσyyの間に一応の相関関係は認められるが、そのばらつきは大きく、(FL±0.5)の位置での硬さが局部応力の大きさを表していることがわかる。 FIG. 3 shows the relationship between the local stress σ yy (vertical axis) of the FL part obtained by the finite element method (FEM) and the hardness Hv (horizontal axis) of the weld metal (WM). It is shown that the correlation between Hv and σ yy at the position (●) is the best. Although there is a temporary correlation between Hv and σ yy even at the position ½ of the WM portion (◯) and the position FL of 1 mm (Δ), the variation is large, and (FL ± 0.5) It can be seen that the hardness at the position represents the magnitude of the local stress.
本発明者らの調査の結果、溶接溶融線から0.5mm入った溶接金属部の硬さHv(FL−0.5)が、溶接溶融線から0.5mm入った母材部(HAZ部)の硬さHv(FL+0.5)の100%以上180%以下であれば、FL部の局所応力を緩和して、破壊靭性値δcが十分に高い溶接継手を形成するこができることがわかった。 As a result of our investigation, the hardness Hv (FL-0.5) of the weld metal part 0.5 mm from the weld melt line is 0.5 mm from the weld melt line (HAZ part). It was found that if the hardness Hv (FL + 0.5) of the steel is 100% or more and 180% or less, the local stress in the FL portion can be relaxed and a weld joint having a sufficiently high fracture toughness value δc can be formed.
そして、上述したように、Niを2.5質量%以上含有する鋼材を電子ビーム溶接により突合せ溶接する際、該溶接継手の溶接金属中に含まれるNiの含有量が質量%で4%超8%以下となるように溶接するとともに、溶接溶融線から0.5mm入った溶接金属部の硬さが、溶接溶融線から0.5mm入った母材部の硬さの100%以上180%以下となるように溶接することにより、FL部の局所応力を緩和して、破壊靭性値δcが十分に高い溶接継手を形成することができる。
As described above, when a steel material containing 2.5% by mass or more of Ni is butt welded by electron beam welding, the content of Ni contained in the weld metal of the welded joint is more than 4% by
以上の知見に基づく本発明について、以下順次説明する。
本発明は、溶接構造体を形成する鋼材としてNiを2.5質量%以上含有する高強度鋼材を対象とする。使用する高強度鋼板としては、公知の成分組成の溶接用構造用鋼から製造したものでよい。
例えば、質量%で、C:0.02〜0.20%、Si:0.01〜1.0%、Mn:0.3〜2.0%、Al:0.001〜0.20%、N:0.02%以下、P:0.01%以下、S:0.01%以下、Ni:2.50〜9.0%を基本成分とし、母材強度や継手靭性の向上等、要求される性質に応じて、Cr、Mo、Cu、W、Co、V、Nb、Ti、Zr、Ta、Hf、REM、Y、Ca、Mg、Te、Se、Bの内の1種又は2種以上を合計8%以下で含有する鋼が使用できる。
The present invention based on the above findings will be sequentially described below.
The present invention is directed to a high-strength steel material containing 2.5% by mass or more of Ni as a steel material forming a welded structure. The high-strength steel plate to be used may be one manufactured from a structural steel for welding having a known component composition.
For example, in mass%, C: 0.02 to 0.20%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%, Al: 0.001 to 0.20%, N: 0.02% or less, P: 0.01% or less, S: 0.01% or less, Ni: 2.50 to 9.0% as basic components, requirements such as improvement of base metal strength and joint toughness One or two of Cr, Mo, Cu, W, Co, V, Nb, Ti, Zr, Ta, Hf, REM, Y, Ca, Mg, Te, Se, B Steel containing the above in a total of 8% or less can be used.
鋼板の板厚は特に限定されないが、上記のような課題が顕在化するのは、板厚が50mm超の高強度鋼板である。 The plate thickness of the steel plate is not particularly limited, but it is a high-strength steel plate having a plate thickness of more than 50 mm that reveals the above-described problems.
また、溶接の際、突合せ部にNiよりなるインサートメタルを配置する。本発明では、溶接継手の溶接金属中にNiが4%超〜8%(質量%)含有するように溶接する必要がある。インサートメタルとしては、純Niよりなる箔を使用するのが簡便である。
母材となる鋼材のNi含有量、目標とする溶接金属中のNi含有量、及び鋼材の寸法から、目標のNi含有量とするのに必要な純Ni箔の厚さを計算し、そのような厚さの箔を準備するか、薄い箔を必要な厚さになるように複数枚重ねることによりインサートメタルを準備する。
Further, during welding, an insert metal made of Ni is disposed at the butt portion. In this invention, it is necessary to weld so that Ni may contain more than 4%-8% (mass%) in the weld metal of a welded joint. As the insert metal, it is easy to use a foil made of pure Ni.
Calculate the thickness of the pure Ni foil necessary to achieve the target Ni content from the Ni content of the steel material used as the base material, the Ni content in the target weld metal, and the dimensions of the steel material, and so on. An insert metal is prepared by preparing a foil having a proper thickness or by stacking a plurality of thin foils to a required thickness.
本発明は、先の出願(特願2006−207261号)で開示したように、溶接金属部の硬さが母材部の硬さの110%超220%以下になるようにする。溶接金属部は、焼入れ性を確保して粗大なフェライトが生成しないようにするためには、ある程度の硬さが必要であり、溶接金属部の硬さを母材の硬さの110%超とする必要がある。しかし、硬すぎると局所的な応力の増大による破壊靭性値δcの低下を招くので、220%以下に抑制する。 In the present invention, as disclosed in the previous application (Japanese Patent Application No. 2006-207261), the hardness of the weld metal part is set to be more than 110% and less than or equal to 220% of the hardness of the base material part. The weld metal part needs to have a certain degree of hardness in order to ensure hardenability and prevent the formation of coarse ferrite. The hardness of the weld metal part is more than 110% of the hardness of the base metal. There is a need to. However, if it is too hard, the fracture toughness value δc is lowered due to an increase in local stress, so it is suppressed to 220% or less.
そして、硬度をそのように調整したうえでさらに、溶接継手の溶接金属中に含まれるNiの含有量を質量%で4%超8%以下になるようにする。電子ビームにより溶融した領域が再凝固した際、その領域で結晶粒径の粗大化や酸化物の減少が生じた場合であっても、安定して靭性を確保できる組織にするためには、Niを4%を超えて含有させる必要がある。また、Niを8質量%を超えて含有させると溶接金属部の硬さが増加しすぎて、溶接金属部と母材部の硬さの比の220%以下を満たすことが困難になる。 Then, after adjusting the hardness in such a manner, the content of Ni contained in the weld metal of the welded joint is more than 4% and not more than 8% by mass%. When a region melted by an electron beam is re-solidified, even in the case where the crystal grain size is coarsened or the oxide is reduced in the region, in order to obtain a structure that can stably secure toughness, Ni It is necessary to contain more than 4%. Further, if Ni is contained in excess of 8% by mass, the hardness of the weld metal part increases excessively, and it becomes difficult to satisfy 220% or less of the hardness ratio of the weld metal part to the base material part.
なお、上記のような硬度の差は、溶接金属のNi含有量を本発明の条件を満たすようにした上で、さらに、母材となる鋼材とインサートメタルを使用して形成した溶接金属との成分間のバランスを適切に調整することや溶接後の冷却速度を調整することで、溶接金属の硬度が高くなり過ぎないようにすることにより達成される。 The difference in hardness as described above is that the Ni content of the weld metal satisfies the conditions of the present invention, and further, between the steel material used as the base material and the weld metal formed using the insert metal. This is achieved by appropriately adjusting the balance between the components and adjusting the cooling rate after welding so that the hardness of the weld metal does not become too high.
また、本発明では、さらに、溶接溶融線から0.5mm入った溶接金属部の硬さが、溶接溶融線から0.5mm入った母材部(HAZ部)の硬さの100%以上180%以下とすることにより、FL部での局所応力をさらに緩和して、より高い破壊靭性値δcが得られるようにする。
上記硬さの比が100%未満では、初析フェライト組織などが生成し、局所的に柔らかい組織が混在することが多いため、そこが破壊の起点となることがあり、必要な強度が確保できず、また、180%を超えると硬度の変化が大きすぎてFL部の局所応力が増大しすぎる。
In the present invention, the hardness of the weld metal part 0.5 mm from the weld melt line is more than 100% and 180% of the hardness of the base metal part (HAZ part) 0.5 mm from the weld melt line. By making the following, the local stress in the FL portion is further relaxed so that a higher fracture toughness value δc can be obtained.
If the hardness ratio is less than 100%, a pro-eutectoid ferrite structure or the like is generated, and a soft structure is often mixed locally, which may be the starting point of fracture, and the necessary strength can be secured. Moreover, when it exceeds 180%, the change in hardness is too large, and the local stress in the FL portion increases too much.
このようなHAZ側から溶接金属側への緩やかな硬度の変化は、上述の硬度差の場合と同様に、溶接金属のNi含有量を本発明の条件を満たすようにした上で、さらに、母材となる鋼材とインサートメタルを使用して形成した溶接金属との成分間のバランスを適切に調整するなどにより達成される。 Such a gradual change in hardness from the HAZ side to the weld metal side is the same as in the case of the above-described difference in hardness, and the Ni content of the weld metal is made to satisfy the conditions of the present invention. This is achieved by appropriately adjusting the balance between the components of the steel material used as the material and the weld metal formed using the insert metal.
本発明では、電子ビーム溶接の条件を特に限定するものではないが、通常、例えば、板厚80mmの場合、電圧175V、電流120mA、溶接速度125mm/分程度の条件で行なわれる。また、電子ビーム溶接は、通常、10−3mbar以下の高真空下で溶接が行われるが、上述のRPEBW法のような低真空度、例えば、1mbar程度の真空下で溶接した継手であっても、本発明は適用することができる。 In the present invention, the conditions for electron beam welding are not particularly limited. For example, in the case of a plate thickness of 80 mm, the conditions are a voltage of 175 V, a current of 120 mA, and a welding speed of about 125 mm / min. Electron beam welding is usually performed under a high vacuum of 10 −3 mbar or less, and is a joint welded under a low vacuum, for example, about 1 mbar, as in the above-described RPEBW method. In addition, the present invention can be applied.
また、電子ビーム溶接時に電子ビームの照射領域が大きくなると、鋼板に与える入熱量が過大となり、FL部の組織が粗大化してしまい、安定してFL部の破壊靭性値δcを確保する上で好ましくない。
また、RPEBW溶接を用いて電子ビーム溶接継手を作製する場合は、真空チャンバー内で、高真空状態で電子ビーム溶接(EBW溶接)により作製した溶接継手に比べ、溶接金属の幅が増大する傾向にある。
このため、本発明では、RPEBW溶接を用いた場合でも、電子ビーム溶接継手の破壊靭性値δcを安定して確保するために、溶接金属部の幅を、母材部の板厚の20%以下とするのが好ましい。
Further, when the electron beam irradiation area becomes large during electron beam welding, the amount of heat input to the steel sheet becomes excessive, the structure of the FL part becomes coarse, and it is preferable for stably securing the fracture toughness value δc of the FL part. Absent.
Moreover, when producing an electron beam welded joint using RPEBW welding, the width of the weld metal tends to increase compared to a welded joint produced by electron beam welding (EBW welding) in a high vacuum state in a vacuum chamber. is there.
For this reason, in the present invention, even when RPEBW welding is used, in order to stably secure the fracture toughness value δc of the electron beam welded joint, the width of the weld metal portion is 20% or less of the thickness of the base metal portion. Is preferable.
次に、本発明を、実施例に基いて説明するが、実施例における条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、該一条件例に限定されるものではない。
本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件ないし条件の組合せを採用し得るものである。
Next, the present invention will be described based on examples. The conditions in the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention. It is not limited to examples.
The present invention can adopt various conditions or combinations of conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
表2に示す成分を含有し残部Feおよび不可避的不純物よりなる、板厚50〜100mmの厚鋼板を準備し、開先部に、表3に示す成分よりなるNiインサートメタル(NA)あるいはNi−Fe合金インサートメタル(NB、NC)を挿入して、電子ビーム溶接によって突合せ溶接した後、形成された溶接継手の特徴及び性能を試験し、調査した。 A thick steel plate having a thickness of 50 to 100 mm containing the components shown in Table 2 and the balance Fe and unavoidable impurities is prepared, and Ni insert metal (NA) or Ni- Fe alloy insert metal (NB, NC) was inserted and butt welded by electron beam welding, and then the characteristics and performance of the formed welded joint were tested and investigated.
試験の結果を、溶接継手の条件などとともに表4に示す。
なお、Hv(BM)は、10kgの圧痕により測定した母材の板厚方向における硬さの平均値である。Hv(WM)は、溶接金属部の板厚中央部において、10kgの圧痕により測定した硬さの値である。
また、Hv(FL+0.5)は、溶接溶融線からHAZ側に0.5mm入った位置でのかたさの値であり、Hv(FL−0.5)は、溶接溶融線から溶接金属側へ0.5mm入った位置での硬さの値である。
The results of the test are shown in Table 4 together with the weld joint conditions.
Hv (BM) is an average value of the hardness in the thickness direction of the base material measured with an indentation of 10 kg. Hv (WM) is a hardness value measured with a 10 kg indentation at the center of the plate thickness of the weld metal part.
Hv (FL + 0.5) is a hardness value at a position 0.5 mm from the weld melt line to the HAZ side, and Hv (FL-0.5) is 0.5 mm from the weld melt line to the weld metal side. It is the hardness value at the position where it enters.
溶接継手の性能に関し、δc(mm)は、CTOD試験において、−10℃の試験温度で求めた値である。
継手引張強度(MPa)は、NKU1号試験片を作製して、継手引張試験を行った結果であり、破断した強度を示すものである。
Regarding the performance of the welded joint, δc (mm) is a value obtained at a test temperature of −10 ° C. in the CTOD test.
The joint tensile strength (MPa) is a result of producing a NKU No. 1 test piece and conducting a joint tensile test, and indicates a fracture strength.
表4に示すように、本発明例のNo.1〜17は、各種条件が本発明で規定する範囲内にあるものであり、δc値が溶接金属部及びFL,HAZ部とも十分な値を示している。
そのうち、本発明例の16、17は、鋼材厚みに対するビード幅の値が本発明で規定する好ましい範囲を超えているため、δc値が溶接金属部及びFL,HAZ部とも低めの値となっている。
As shown in Table 4, No. of the present invention example. Nos. 1 to 17 have various conditions within the range defined by the present invention, and the δc value shows a sufficient value for the weld metal part and the FL and HAZ parts.
Among them, in Examples 16 and 17 of the present invention, the value of the bead width with respect to the thickness of the steel material exceeds the preferable range defined in the present invention. Yes.
これに対して、比較例18、20、22、23では、溶接金属中のNi含有量が8%以上と高いため、Hv(WM)/Hv(BM)の値が220%以上であり、Hv(FL−0.5)/Hv(FL+0.5)の値も180%以上となっている。その結果、溶接金属のδcは十分高い値となっているが、FL,HAZ部のδcはきわめて低い値となっている。
比較例19、21は、溶接金属中のNi含有量が4%以下のため、Hv(WM)/Hv(BM)及びHv(FL−0.5)/Hv(FL+0.5)とも、本発明の規定する範囲内の値であるが、溶接金属のδcが不十分な値となっている。
比較例24は、鋼材のNi含有量が2.5%未満であり、溶接金属中のNi含有量、Hv(WM)/Hv(BM)、Hv(FL−0.5)/Hv(FL+0.5)はいずれも本発明の範囲内の値であるが、溶接金属及びFL,HAZ部ともδcが不十分な値となっている。
On the other hand, in Comparative Examples 18, 20, 22, and 23, since the Ni content in the weld metal is as high as 8% or more, the value of Hv (WM) / Hv (BM) is 220% or more, and Hv The value of (FL−0.5) / Hv (FL + 0.5) is also 180% or more. As a result, δc of the weld metal is a sufficiently high value, but δc of the FL and HAZ portions is extremely low.
In Comparative Examples 19 and 21, since the Ni content in the weld metal is 4% or less, both Hv (WM) / Hv (BM) and Hv (FL−0.5) / Hv (FL + 0.5) are present in the present invention. However, the δc of the weld metal is an insufficient value.
In Comparative Example 24, the Ni content of the steel material is less than 2.5%, and the Ni content in the weld metal is Hv (WM) / Hv (BM), Hv (FL−0.5) / Hv (FL + 0. 5) is a value within the range of the present invention, but δc is insufficient for both the weld metal and the FL and HAZ parts.
本発明によれば、高強度でかつ板厚の大きい高強度鋼板の電子ビーム溶接継手において、万一、溶接欠陥が存在したり、疲労亀裂が発生、成長しても、脆性破壊が発生し難いので、溶接構造体が破壊するような致命的な損傷、損壊を防止することができる。
よって、本発明は、溶接構造体の安全性を顕著に高めるという顕著な効果を奏し、産業上の利用価値の高い発明である。
According to the present invention, in an electron beam welded joint of a high-strength steel plate having a high strength and a large plate thickness, even if a weld defect exists or a fatigue crack is generated or grows, brittle fracture is unlikely to occur. Therefore, it is possible to prevent a fatal damage or damage that causes the welded structure to break.
Therefore, the present invention has a remarkable effect of significantly increasing the safety of the welded structure, and is an invention having high industrial utility value.
Claims (5)
該溶接継手の溶接金属中に含まれるNiの含有量が質量%で4%超8%以下であり、溶接金属部の硬さが母材部の硬さの110%超220%以下であることを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。 A butt weld joint of a welded structure using a steel material containing Ni of 2.5% by mass or more,
The content of Ni contained in the weld metal of the weld joint is more than 4% and less than 8% by mass%, and the hardness of the weld metal part is more than 110% and less than 220% of the hardness of the base metal part. An electron beam welded joint with excellent brittle fracture resistance.
該溶接継手の溶接金属中に含まれるNiの含有量が質量%で4%超8%以下であり、溶接溶融線から0.5mm入った溶接金属部の硬さが、溶接溶融線から0.5mm入った母材部の硬さの100%以上180%以下であることを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。 A butt weld joint of a welded structure using a steel material containing Ni of 2.5% by mass or more,
The content of Ni contained in the weld metal of the weld joint is greater than 4% and less than 8% by mass, and the hardness of the weld metal part 0.5 mm from the weld melt line is 0. 0 from the weld melt line. An electron beam welded joint excellent in brittle fracture resistance, characterized in that the hardness of the base metal part containing 5 mm is 100% or more and 180% or less.
該溶接継手の溶接金属中に含まれるNiの含有量が質量%で4%超8%以下であり、溶接金属部の硬さが母材部の硬さの110%超220%以下であり、かつ、溶接溶融線から0.5mm入った溶接金属部の硬さが溶接溶融線から0.5mm入った母材部の硬さの100%以上180%以下であることを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。 A butt weld joint of a welded structure using a steel material containing Ni of 2.5% by mass or more,
The content of Ni contained in the weld metal of the weld joint is more than 4% by mass and less than 8%, and the hardness of the weld metal part is more than 110% and less than 220% of the hardness of the base material part, The brittle fracture resistance is characterized in that the hardness of the weld metal part 0.5 mm from the weld melt line is 100% to 180% of the hardness of the base metal part 0.5 mm from the weld melt line. Electron beam welded joint with excellent generation characteristics.
Priority Applications (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006271074A JP4719118B2 (en) | 2006-10-02 | 2006-10-02 | Electron beam welded joint with excellent brittle fracture resistance |
ES07707042.3T ES2442867T3 (en) | 2006-10-02 | 2007-01-12 | Joint welded by electron beam with excellent fragile fracture resistance |
US12/442,665 US8114528B2 (en) | 2006-10-02 | 2007-01-12 | Electron beam welded joint excellent in brittle fracture resistance |
DK07707042.3T DK2070631T3 (en) | 2006-10-02 | 2007-01-12 | ASSEMBLY WELDED WITH ELECTRON Beam WITH SPECIAL NON-SENSITIVITY FOR CROSS-BREAKING |
EP07707042.3A EP2070631B1 (en) | 2006-10-02 | 2007-01-12 | Joint welded by electron beam with excellent unsusceptibility to brittle fracture |
BRPI0719795-0A BRPI0719795B1 (en) | 2006-10-02 | 2007-01-12 | WELDED JOINT BY EXCELLENT ELECTRONIC BEAM IN RESISTANCE TO FRAGILE FRACTURE |
KR1020097005190A KR101192815B1 (en) | 2006-10-02 | 2007-01-12 | Joint welded by electron beam with excellent unsusceptibility to brittle fracture |
EP11189659.3A EP2422912B1 (en) | 2006-10-02 | 2007-01-12 | Electron beam welded joint excellent in brittle fracture resistance |
DK11189659.3T DK2422912T3 (en) | 2006-10-02 | 2007-01-12 | ELECTRON RADIATION WELDING WITH VERY GOOD CROSS-BREAKING RESISTANCE |
PCT/JP2007/050738 WO2008041372A1 (en) | 2006-10-02 | 2007-01-12 | Joint welded by electron beam with excellent unsusceptibility to brittle fracture |
EP11189660.1A EP2422913B1 (en) | 2006-10-02 | 2007-01-12 | Electron beam welded joint excellent in brittle fracture resistance |
ES11189659.3T ES2444784T3 (en) | 2006-10-02 | 2007-01-12 | Joint welded by electron beam with excellent fragile fracture resistance |
ES11189660.1T ES2444507T3 (en) | 2006-10-02 | 2007-01-12 | Joint welded by electron beam with excellent fragile fracture resistance |
DK11189660.1T DK2422913T3 (en) | 2006-10-02 | 2007-01-12 | ELECTRON RADIATION WELDING WITH VERY GOOD CROSS-BREAKING RESISTANCE |
NO20091123A NO336433B1 (en) | 2006-10-02 | 2009-03-16 | Electron beam welded (weld seam) with excellent crack resistance |
NO20150121A NO339550B1 (en) | 2006-10-02 | 2015-01-27 | Electron beam welded joint (weld seam) with excellent crack resistance |
NO20150120A NO339549B1 (en) | 2006-10-02 | 2015-01-27 | Electron beam welded (weld seam) with excellent crack resistance. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006271074A JP4719118B2 (en) | 2006-10-02 | 2006-10-02 | Electron beam welded joint with excellent brittle fracture resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008087034A true JP2008087034A (en) | 2008-04-17 |
JP4719118B2 JP4719118B2 (en) | 2011-07-06 |
Family
ID=39371735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006271074A Active JP4719118B2 (en) | 2006-10-02 | 2006-10-02 | Electron beam welded joint with excellent brittle fracture resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4719118B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011068216A1 (en) * | 2009-12-04 | 2011-06-09 | 新日本製鐵株式会社 | Butt-welded joint formed using high-energy-density beam |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61249688A (en) * | 1985-04-26 | 1986-11-06 | Mitsubishi Heavy Ind Ltd | Electron beam welding method for tempered extra-high tensile steel |
JPH02282446A (en) * | 1989-04-21 | 1990-11-20 | Nippon Steel Corp | High toughness and high tensile strength steel of 60kgf/mm2 class yield strength having excellent electron beam weldability |
JPH05148582A (en) * | 1991-11-28 | 1993-06-15 | Nippon Steel Corp | High tensile strength steel plate for electron beam welding |
JPH05161983A (en) * | 1991-10-25 | 1993-06-29 | Hitachi Metals Ltd | Electron beam welding method for different kinds of metals |
JPH0716763A (en) * | 1993-06-29 | 1995-01-20 | Nippon Steel Corp | Electron beam welding method of steel plate |
JPH08155658A (en) * | 1994-12-08 | 1996-06-18 | Sumitomo Metal Ind Ltd | Welding method for low alloy high tensile steel |
JPH08155659A (en) * | 1994-12-08 | 1996-06-18 | Sumitomo Metal Ind Ltd | Welding method for low alloy high tensile steel |
JP2000288754A (en) * | 1999-04-07 | 2000-10-17 | Nippon Steel Corp | Laser beam welding method excellent in low temp. toughness and electron beam welding method |
JP2002003984A (en) * | 2000-06-19 | 2002-01-09 | Nippon Steel Corp | Structure having laser or electron beam welded joint excellent in fatigue strength, and its manufacturing method |
JP2003041346A (en) * | 2001-07-30 | 2003-02-13 | Mitsubishi Heavy Ind Ltd | Two-phase stainless steel for radioactive material storage container and method for manufacturing radioactive material storage container |
-
2006
- 2006-10-02 JP JP2006271074A patent/JP4719118B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61249688A (en) * | 1985-04-26 | 1986-11-06 | Mitsubishi Heavy Ind Ltd | Electron beam welding method for tempered extra-high tensile steel |
JPH02282446A (en) * | 1989-04-21 | 1990-11-20 | Nippon Steel Corp | High toughness and high tensile strength steel of 60kgf/mm2 class yield strength having excellent electron beam weldability |
JPH05161983A (en) * | 1991-10-25 | 1993-06-29 | Hitachi Metals Ltd | Electron beam welding method for different kinds of metals |
JPH05148582A (en) * | 1991-11-28 | 1993-06-15 | Nippon Steel Corp | High tensile strength steel plate for electron beam welding |
JPH0716763A (en) * | 1993-06-29 | 1995-01-20 | Nippon Steel Corp | Electron beam welding method of steel plate |
JPH08155658A (en) * | 1994-12-08 | 1996-06-18 | Sumitomo Metal Ind Ltd | Welding method for low alloy high tensile steel |
JPH08155659A (en) * | 1994-12-08 | 1996-06-18 | Sumitomo Metal Ind Ltd | Welding method for low alloy high tensile steel |
JP2000288754A (en) * | 1999-04-07 | 2000-10-17 | Nippon Steel Corp | Laser beam welding method excellent in low temp. toughness and electron beam welding method |
JP2002003984A (en) * | 2000-06-19 | 2002-01-09 | Nippon Steel Corp | Structure having laser or electron beam welded joint excellent in fatigue strength, and its manufacturing method |
JP2003041346A (en) * | 2001-07-30 | 2003-02-13 | Mitsubishi Heavy Ind Ltd | Two-phase stainless steel for radioactive material storage container and method for manufacturing radioactive material storage container |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011068216A1 (en) * | 2009-12-04 | 2011-06-09 | 新日本製鐵株式会社 | Butt-welded joint formed using high-energy-density beam |
JP2012102405A (en) * | 2009-12-04 | 2012-05-31 | Nippon Steel Corp | Butt-welded joint formed using beam with high-energy-density |
JP4970620B2 (en) * | 2009-12-04 | 2012-07-11 | 新日本製鐵株式会社 | Butt weld joint using high energy density beam |
US9352424B2 (en) | 2009-12-04 | 2016-05-31 | Nippon Steel & Sumitomo Metal Corporation | Butt welding joint using high-energy density beam |
Also Published As
Publication number | Publication date |
---|---|
JP4719118B2 (en) | 2011-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101192815B1 (en) | Joint welded by electron beam with excellent unsusceptibility to brittle fracture | |
JP4828667B2 (en) | Butt welded joint of welded structure and method of manufacturing the same | |
JP5000784B2 (en) | Butt weld joint using high energy density beam | |
JP5171007B2 (en) | Electron beam welded joint with excellent brittle fracture resistance | |
JP5098139B2 (en) | Electron beam welded joint with excellent brittle fracture resistance | |
JP2011246805A (en) | Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor | |
JP2011246804A (en) | Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor | |
EP2594657B1 (en) | Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof | |
JP2011246806A (en) | Electron beam welded joint, electron beam welding steel material, and manufacturing method therefor | |
JP4719118B2 (en) | Electron beam welded joint with excellent brittle fracture resistance | |
EP2644732B1 (en) | Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor | |
WO2013179461A1 (en) | Beam-welded joint and beam welding method | |
JP2008087030A (en) | Electron beam welded joint having excellent resistance to generation of brittle fracture | |
JP5472342B2 (en) | Electron beam welded joint with excellent brittle fracture resistance | |
JP5273301B2 (en) | Electron beam welding joint and steel for electron beam welding | |
JP2011246803A (en) | Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor | |
JP2011246807A (en) | Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor | |
JP2011246808A (en) | Electron beam welded joint, electron beam welding steel material, and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110322 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110401 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4719118 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |