JP2000288754A - Laser beam welding method excellent in low temp. toughness and electron beam welding method - Google Patents

Laser beam welding method excellent in low temp. toughness and electron beam welding method

Info

Publication number
JP2000288754A
JP2000288754A JP11100420A JP10042099A JP2000288754A JP 2000288754 A JP2000288754 A JP 2000288754A JP 11100420 A JP11100420 A JP 11100420A JP 10042099 A JP10042099 A JP 10042099A JP 2000288754 A JP2000288754 A JP 2000288754A
Authority
JP
Japan
Prior art keywords
weight
beam welding
welding method
laser beam
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11100420A
Other languages
Japanese (ja)
Other versions
JP4505076B2 (en
Inventor
Kazuhiro Kojima
一浩 児嶋
Shigeru Okita
茂 大北
Masao Fuji
雅雄 藤
Shuji Aihara
周二 粟飯原
Manabu Hoshino
学 星野
Naoki Saito
直樹 斎藤
Takeshi Tsuzuki
岳史 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10042099A priority Critical patent/JP4505076B2/en
Publication of JP2000288754A publication Critical patent/JP2000288754A/en
Application granted granted Critical
Publication of JP4505076B2 publication Critical patent/JP4505076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a welding method by stably making the micro structure of a weld metal an acicular ferrite and obtaining a high toughness weld metal in the case of welding by a laser beam or an electron beam. SOLUTION: In a laser beam or electron beam welding method to weld a steel material having a composition consisting of, by weight, 0.01-0.15% C, 0.01-1.5% Si, 0.2-2% Mn, <=0.03% P, <=0.03% S, 0.0005-0.1% Al, 0.001-0.1% Ti, and the balance Fe with inevitable impurities, further, satisfying a formula :0.05<(% C + % S + % Mn + % Cr + % Cr/20 + % Ni/60 + % Mo/15 + % V/10 + 5% B + % Cu/20)<0.2, at least one of welded faces facing at a welding part is a scale deposition face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高靭性溶接金属が
得られるレーザビーム溶接及び電子ビーム溶接に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to laser beam welding and electron beam welding for obtaining a high toughness weld metal.

【0002】[0002]

【従来の技術】溶接金属の低温靭性を改善する研究は古
くから行われ、靭性は金属組織に大きく依存することが
知られている。これらの知見によれば低温靭性が最も優
れている組織はアシキュラ−フェライトであることが多
くの研究報告例により示されている(例えば、溶接部の
組織と靭性堀井行彦第128回西山記念講座)。これら
の研究によれば、アシキュラ−フェライトの生成には、 適切な強度設計(約600〜700MPa程度)、
Ti酸化物の生成、という2つの条件が同時に満たされ
ることが必要である。
2. Description of the Related Art Research for improving the low-temperature toughness of weld metal has been carried out for a long time, and it is known that toughness largely depends on a metal structure. According to these findings, many research reports show that the structure having the best low-temperature toughness is acicular-ferrite (for example, the structure of the welded part and the toughness of Yukihiko Horii 128th Nishiyama Memorial Lecture). . According to these studies, appropriate strength design (about 600-700MPa),
It is necessary that the two conditions of formation of Ti oxide be simultaneously satisfied.

【0003】レーザビーム溶接あるいは電子ビーム溶接
においてこれらの条件を考えると、適切な強度設計は冷
却速度に応じて合金成分を調整することで対応できる。
しかしTi酸化物の生成に必要な酸素の供給は一般に困
難であった。これまでの知見では、レーザビーム溶接を
行う際にフィラーワイヤを用いて溶接金属にTi、Oの
添加を行うことで、溶接金属のミクロ組織をアシキュラ
ーフェライトとする方法がある(例えばIAJone
s:TWIJ,Vol4,No.3,(1995),P
427−485)。しかしこの方法では、フィラ−ワイ
ヤの成分は鋼板表面からしか供給されないので、板厚が
厚くなると板厚方向での均一な成分分布が確保できない
という問題が生じる。従って、フィラ−ワイヤを用いる
このような方法は厚板のレーザビーム溶接や電子ビーム
溶接には適さない。
[0003] Considering these conditions in laser beam welding or electron beam welding, an appropriate strength design can be coped with by adjusting the alloy components according to the cooling rate.
However, it was generally difficult to supply oxygen necessary for producing Ti oxide. According to the findings so far, there is a method in which the microstructure of the weld metal is made into an acicular ferrite by adding Ti and O to the weld metal using a filler wire when performing laser beam welding (for example, IAJone).
s: TWIJ, Vol4, No. 3, (1995), P
427-485). However, in this method, the component of the filler wire is supplied only from the surface of the steel sheet, so that when the thickness is large, there is a problem that a uniform component distribution in the thickness direction cannot be secured. Therefore, such a method using a filler wire is not suitable for laser beam welding or electron beam welding of a thick plate.

【0004】別の方法としては特開平8−141763
号公報に開示されているように、Tiを含有した鋼材を
レーザビーム溶接する際に、アシストガスに酸素や炭酸
ガスを含んだ混合ガスを用いてTi酸化物を生成させ、
これによりアシキュラーフェライトを生成させることで
溶接金属を高靭性化する方法がある。しかしこの方法が
適用できるのはレーザ出力が10kw程度までであり、
さらに高出力のレーザビーム溶接では著しく多量のプラ
ズマが発生し、溶け込み深さを劣化させるだけでなく、
溶接時に生成するキーホ−ルの安定性も損ない、ビード
形状が乱れるという問題を有している。また、この方法
は真空中で溶接を実施する電子ビーム溶接には適応する
ことは不可能である。
Another method is disclosed in Japanese Patent Application Laid-Open No. H08-141773.
As disclosed in Japanese Patent Application Publication, when laser beam welding a steel material containing Ti, a titanium oxide is generated using a mixed gas containing oxygen or carbon dioxide gas as an assist gas,
Thus, there is a method of increasing the toughness of the weld metal by generating acicular ferrite. However, this method is applicable only when the laser output is about 10 kW,
In addition, high-power laser beam welding generates a remarkably large amount of plasma, which not only deteriorates the penetration depth,
There is a problem that the stability of the keyhole generated at the time of welding is impaired and the bead shape is disturbed. Further, this method cannot be applied to electron beam welding in which welding is performed in a vacuum.

【0005】[0005]

【発明が解決しようとする課題】本発明は以上の背景を
鑑み、大出力のレーザビームや電子ビームで溶接する場
合において、安定して溶接金属のミクロ組織をアシキュ
ラーフェライトとし、高靭性な溶接金属を得ることので
きる溶接方法の提供を目的としている。
SUMMARY OF THE INVENTION In view of the above background, the present invention stably uses a high-power laser beam or electron beam to stably form a microstructure of a weld metal into an acicular ferrite, thereby achieving high toughness welding. It aims at providing a welding method capable of obtaining metal.

【0006】[0006]

【課題を解決するための手段】かかる課題を解決するた
めに、本発明者らは鋼材組成、溶接部に含まれるスケー
ル厚、溶接金属の組織及び靭性に関して研究を進めた結
果、これらの間に存在する諸関係を知見するに至り、本
発明を完成させたものであって、その要旨とするところ
は、下記(1)〜(4)のとおりである。
Means for Solving the Problems In order to solve these problems, the present inventors have conducted research on the steel composition, the scale thickness contained in the welded portion, the structure and the toughness of the weld metal. The present inventors have completed the present invention by finding out the various existing relationships, and have the following points (1) to (4).

【0007】(1)重量%で、C :0.01〜0.1
5%、Si:0.01〜1.5%、Mn:0.2〜2
%、P :0.03%以下、S :0.03%以下、A
l:0.0005〜0.1%、Ti:0.001〜0.
1%を含有し、残部がFe及び不可避不純物からなり、
かつ、下記式1の値が0.05〜0.2を満足する鋼材
を溶接する方法であって、溶接部分において相対する被
溶接面の少なくとも1つがスケール付着面であることを
特徴とするレーザビームもしくは電子ビーム溶接方法。 式1:0.05<([%C]+[%Si]/30+[%
Mn]/20+[%Cr]/20+[%Ni]/60+
[%Mo]/15+[%V]/10+5[%B]+[%
Cu]/20)<0.2 (2)鋼材が、重量%で、Cr:0.01〜3%、N
i:0.01〜7%、Mo:0.005〜2%、Cu:
0.01〜3%、Nb:0.001〜0.1%、V :
0.001〜1%、B :0.0001〜0.002%
の1種または2種以上を、さらに含有することを特徴と
する前記(1)に記載のレーザビームもしくは電子ビー
ム溶接方法。
(1) C: 0.01-0.1% by weight
5%, Si: 0.01 to 1.5%, Mn: 0.2 to 2
%, P: 0.03% or less, S: 0.03% or less, A
l: 0.0005 to 0.1%, Ti: 0.001 to 0.
1%, the balance being Fe and unavoidable impurities,
And a method of welding a steel material in which the value of the following formula 1 satisfies 0.05 to 0.2, wherein at least one of the opposed surfaces to be welded in the welded portion is a scale-adhered surface. Beam or electron beam welding method. Formula 1: 0.05 <([% C] + [% Si] / 30 + [%
Mn] / 20 + [% Cr] / 20 + [% Ni] / 60 +
[% Mo] / 15 + [% V] / 10 + 5 [% B] + [%
Cu] / 20) <0.2 (2) The steel material is, by weight%, Cr: 0.01 to 3%, N
i: 0.01 to 7%, Mo: 0.005 to 2%, Cu:
0.01 to 3%, Nb: 0.001 to 0.1%, V:
0.001-1%, B: 0.0001-0.002%
(1) The laser beam or electron beam welding method according to (1), further comprising one or more of the following.

【0008】(3)鋼材が、重量%で、Mg:0.00
01〜0.02、Ca:0.0001〜0.02、Z
r:0.001〜0.1%、REM:0.001〜0.
3%の1種または2種以上を、さらに含有することを特
徴とする前記(1)または(2)に記載のレーザビーム
もしくは電子ビーム溶接方法。
(3) The steel material is Mg: 0.00% by weight.
01-0.02, Ca: 0.0001-0.02, Z
r: 0.001 to 0.1%, REM: 0.001 to 0.
The laser beam or electron beam welding method according to the above (1) or (2), further comprising 3% of one or more kinds.

【0009】(4)溶接部分において相対する被溶接面
に付着しているスケール厚みが合計で、0.5〜80μ
mであることを特徴とする前記(1)〜(3)のいずれ
かに記載のレーザビームもしくは電子ビーム溶接方法。
(4) The total thickness of the scale adhering to the opposed surfaces to be welded in the welded portion is 0.5 to 80 μm.
m, the laser beam or electron beam welding method according to any one of the above (1) to (3).

【0010】[0010]

【発明の実施の形態】まず、溶接される鋼材に関して、
添加元素のの規定理由を説明する。 C:0.01重量%未満の極低C量では鋼板の強度が不
足し、また溶接金属においても凝固割れが発生する。逆
に、0.15重量%超のCでは溶接熱影響部及び溶接金
属の靭性が低下する。よって、Cは0.01重量%以
上、0.15重量%以下としたが、特に高靭性を確保す
る観点からはC量は低い方が好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, regarding the steel material to be welded,
The reason for defining the additional element will be described. C: At an extremely low C content of less than 0.01% by weight, the strength of the steel sheet is insufficient, and solidification cracking also occurs in the weld metal. Conversely, if C exceeds 0.15% by weight, the toughness of the weld heat affected zone and the weld metal decreases. Therefore, C is set to 0.01% by weight or more and 0.15% by weight or less, but from the viewpoint of securing high toughness, the lower the C amount, the more preferable.

【0011】Si:Siは脱酸剤及び強化元素として添
加されるが、0.01重量%未満ではその効果が十分で
はなく、一方1.5%超では圧延時にスケ−ル起因の傷
を多発するようになる。よって、Siは0.01重量%
以上、1.5重量%以下とした。 Mn:Mnは鋼板の強度を向上する有用な元素であるが
0.2重量%未満ではその効果が無く、逆に2重量%超
の添加は逆にブロ−ホ−ルの発生を助長することを知見
し、Mnは0.2重量%以上、2重量%以下とした。
Si: Si is added as a deoxidizing agent and a strengthening element, but if its content is less than 0.01% by weight, its effect is not sufficient, while if it exceeds 1.5%, scratches due to scale occur frequently during rolling. I will be. Therefore, Si is 0.01% by weight.
As described above, the content was 1.5% by weight or less. Mn: Mn is a useful element for improving the strength of a steel sheet. However, if its content is less than 0.2% by weight, it has no effect. Conversely, the addition of more than 2% by weight promotes the generation of blowhole. And found that Mn was 0.2% by weight or more and 2% by weight or less.

【0012】P及びS:P及びSの過剰な添加は鋼板及
び熱影響部の靭性を劣化させるので、0.03重量%以
下とした。 Al:Alは脱酸剤として重要な元素であるが、0.0
005重量%未満にすることは製鋼上の負荷が高く現実
的ではない。一方0.1%超では鋼板の衝撃靭性が劣化
する。よって、Alの添加量は0.0005重量%以上
0.1重量%以下とした。
P and S: Since excessive addition of P and S deteriorates the toughness of the steel sheet and the heat-affected zone, the content is set to 0.03% by weight or less. Al: Al is an important element as a deoxidizing agent.
When the content is less than 005% by weight, the load on steelmaking is high and is not practical. On the other hand, if it exceeds 0.1%, the impact toughness of the steel sheet deteriorates. Therefore, the addition amount of Al is set to 0.0005% by weight or more and 0.1% by weight or less.

【0013】Ti:Tiはアシキュラーフェライトの変
態核として重要な元素である。但し0.001重量%未
満ではその効果が十分ではなく、逆に0.1重量%超で
は鋼板の靭性が低下する。よって、Tiの添加量は0.
001重量%以上、0.1重量%以下とした。 Cu:Cuは強度補償のためにMnの一部に代えて添加
することができる。但しその添加量は0.01重量%未
満ではその効果が十分でなく、逆に3%超の場合には溶
接金属に凝固割れが発生する。従って、Cuの添加量は
0.01重量%以上、3重量%以下とした。
Ti: Ti is an important element as a transformation nucleus of acicular ferrite. However, if the content is less than 0.001% by weight, the effect is not sufficient, and if it exceeds 0.1% by weight, the toughness of the steel sheet decreases. Therefore, the addition amount of Ti is 0.1.
It was set to 001% by weight or more and 0.1% by weight or less. Cu: Cu can be added instead of part of Mn for strength compensation. However, if the amount is less than 0.01% by weight, the effect is not sufficient, and if it exceeds 3%, solidification cracks occur in the weld metal. Therefore, the addition amount of Cu is set to 0.01% by weight or more and 3% by weight or less.

【0014】Cr:Crは強度向上元素として添加する
ことができる。また、耐熱用鋼においては高温強度の確
保にも必要な元素であるが、0.01重量%未満ではそ
の効果が十分ではなく、逆に3重量%超の添加は鋼板の
靭性を損ねる。従って、Crの添加量は0.01重量%
以上、3重量%以下とした。 Ni:Niは鋼板の低温靭性を向上させる代表的な元素
であるが、0.01重量%未満ではその効果が十分でな
く、逆に7重量%超では溶接金属に凝固割れを生じる。
よってNiの添加量は0.01重量%以上、7重量%以
下とした。
Cr: Cr can be added as a strength improving element. Further, in heat-resistant steel, it is an element necessary for ensuring high-temperature strength. However, if its content is less than 0.01% by weight, its effect is not sufficient, and if it exceeds 3% by weight, the toughness of the steel sheet is impaired. Therefore, the addition amount of Cr is 0.01% by weight.
At least 3% by weight. Ni: Ni is a typical element for improving the low-temperature toughness of the steel sheet. However, if its content is less than 0.01% by weight, its effect is not sufficient, and if it exceeds 7% by weight, solidification cracks occur in the weld metal.
Therefore, the addition amount of Ni is set to 0.01% by weight or more and 7% by weight or less.

【0015】Mo:Moは溶接後熱処理(PWHT)脆
化を抑制する元素であり、Mnの代替として添加できる
が、0.005重量%未満ではその効果が十分ではな
く、逆に2重量%超では鋼板の靭性が低化する。よっ
て、Moの添加量は0.005重量%以上、2重量%以
下とした。 Nb:NbはTMCPプロセスにおいて、鋼板のミクロ
組織制御に重要な元素であるが、0.001重量%未満
ではその効果が十分ではなく、逆に過剰な添加は鋼板の
靭性を損ねる。よって、Nbの添加量は0.001重量
%以上、0.1重量%以下とした。
Mo: Mo is an element which suppresses post-weld heat treatment (PWHT) embrittlement and can be added as a substitute for Mn. However, if it is less than 0.005% by weight, its effect is not sufficient, and conversely, it exceeds 2% by weight. In this case, the toughness of the steel sheet decreases. Therefore, the amount of Mo added is set to 0.005% by weight or more and 2% by weight or less. Nb: Nb is an important element for controlling the microstructure of the steel sheet in the TMCP process, but if its content is less than 0.001% by weight, its effect is not sufficient, and conversely, excessive addition impairs the toughness of the steel sheet. Therefore, the addition amount of Nb is set to 0.001% by weight or more and 0.1% by weight or less.

【0016】V:VもTMCPプロセスにおいて、鋼板
のミクロ組織制御に重要な元素であり、また耐熱鋼にお
いては高温強度の確保にも必要な元素であが、0.00
1重量%未満ではその効果が十分ではなく、逆に過剰な
添加は鋼板の靭性を損ねる。従って、Vの添加量は0.
001重量%以上、1重量%以下とした。 B:Bも強度向上元素として添加することができるが、
0.0001重量%未満ではその効果が十分ではなく、
逆に0.002重量%超の添加は鋼板の靭性を低下させ
る。従って、Bの添加量は0.0001重量%以上、
0.002重量%以下とした。
V: V is also an important element for controlling the microstructure of the steel sheet in the TMCP process, and is also an element necessary for ensuring high-temperature strength in heat-resistant steel.
If the content is less than 1% by weight, the effect is not sufficient. On the contrary, the excessive addition impairs the toughness of the steel sheet. Therefore, the added amount of V is 0.1.
It was set to 001% by weight or more and 1% by weight or less. B: B can also be added as a strength improving element,
If less than 0.0001% by weight, the effect is not enough,
Conversely, the addition of more than 0.002% by weight lowers the toughness of the steel sheet. Therefore, the addition amount of B is 0.0001% by weight or more,
It was made 0.002% by weight or less.

【0017】Mg:Mgは脱酸元素として作用するの
で、添加しても差し支えない。但し0.0001重量%
未満ではその効果が十分ではなく、逆に0.02重量%
超の添加はレーザビームもしくは電子ビーム溶接時にキ
ーホール内で発生するプラズマの安定性を損なう。よっ
て、Mgの添加量は0.0001重量%以上、0.02
重量%以下とした。
Mg: Mg acts as a deoxidizing element and may be added. However, 0.0001% by weight
If it is less than 0.02% by weight, the effect is not sufficient.
Excessive addition impairs the stability of the plasma generated in the keyhole during laser beam or electron beam welding. Therefore, the added amount of Mg is 0.0001% by weight or more and 0.02% by weight or more.
% By weight or less.

【0018】Ca:Caも脱酸元素として作用するの
で、添加しても差し支えない。但し0.0001重量%
未満ではその効果が十分ではなく、逆に0.02重量%
超の添加はレーザビームもしくは電子ビーム溶接時にキ
ーホール内で発生するプラズマの安定性を損なう。よっ
て、Caの添加量は0.0001重量%以上、0.02
重量%以下とした。
Ca: Since Ca also acts as a deoxidizing element, it may be added. However, 0.0001% by weight
If it is less than 0.02% by weight, the effect is not sufficient.
Excessive addition impairs the stability of the plasma generated in the keyhole during laser beam or electron beam welding. Therefore, the addition amount of Ca is 0.0001% by weight or more and 0.02% by weight or more.
% By weight or less.

【0019】Zr:Zrも脱酸元素として作用するの
で、添加しても差し支えない。但し0.001重量%未
満ではその効果が十分ではなく、逆に0.1重量%超で
は鋼板の靭性が低下する。よって、Zrの添加量は0.
001重量%以上、0.1重量%以下とした。 REM:REMも脱酸元素として作用するので、添加し
ても差し支えない。但し0.001重量%未満ではその
効果が十分ではなく、逆に0.3重量%超の添加はレー
ザビームもしくは電子ビーム溶接時にキーホール内で発
生するプラズマの安定性を損なう。よって、REMの添
加量は0.001重量%以上、0.3重量%以下とし
た。
Zr: Since Zr also acts as a deoxidizing element, it may be added. However, if the content is less than 0.001% by weight, the effect is not sufficient, and if it exceeds 0.1% by weight, the toughness of the steel sheet decreases. Therefore, the addition amount of Zr is 0.1.
It was set to 001% by weight or more and 0.1% by weight or less. REM: Since REM also acts as a deoxidizing element, it may be added. However, if the content is less than 0.001% by weight, the effect is not sufficient, and if it exceeds 0.3% by weight, the stability of the plasma generated in the keyhole at the time of laser beam or electron beam welding is impaired. Therefore, the amount of REM added is set to 0.001% by weight or more and 0.3% by weight or less.

【0020】次ぎに式1の規定理由の述べる。これは適
切な強度設計に関連するものである。つまり、レーザビ
ーム溶接や電子ビーム溶接の溶接金属で靭性が低下する
原因は、冷却速度が非常に大きいために焼き入れ効果に
よって溶接金属組織がマルテンサイトとになることであ
った。そこで式1の値を種々変化させ、レーザビーム溶
接を行い溶接金属の硬度を調査した。その結果を表1お
よび表2に示す。
Next, the reason for defining Equation 1 will be described. This is related to proper strength design. That is, the cause of the decrease in toughness in the weld metal of laser beam welding or electron beam welding is that the weld metal structure becomes martensite due to the quenching effect due to the extremely high cooling rate. Therefore, the value of Equation 1 was changed variously, laser beam welding was performed, and the hardness of the weld metal was investigated. The results are shown in Tables 1 and 2.

【0021】表1および表2から明らかなように、式1
の値が0.05〜0.2である鋼材を溶接して作成され
た溶接金属のビッカ−ス硬度は170〜230であり、
アシキュラーフェライトの生成に適した硬度範囲といえ
る。一方、式1の値が本発明の規定範囲を逸脱する場合
はアシキュラーフェライトの生成には適さない硬度値で
ある。これらの結果より、アシキュラーフェライトの生
成には式1の値を特定することが有効であることが示唆
されている。
As is clear from Tables 1 and 2, Equation 1
The Vickers hardness of a weld metal created by welding steel having a value of 0.05 to 0.2 is 170 to 230,
It can be said that the hardness range is suitable for producing acicular ferrite. On the other hand, when the value of the formula 1 is out of the range specified in the present invention, the hardness value is not suitable for producing acicular ferrite. From these results, it is suggested that it is effective to specify the value of Equation 1 for the generation of acicular ferrite.

【0022】本発明におけるのスケールの作用について
説明する。本発明においてスケールは、鋼材に含有する
Tiを有効に酸化させ、Ti酸化物の生成させる。すな
わち、Ti酸化物を生成するのに必要な酸素は、溶接部
における相対する被溶接面の少なくとも1つに付着して
いるスケールより供給される。ここで述べるスケールと
は鉄の酸化物一般であるが、具体的にはレーザ切断端面
スケール、プラズマ切断端面スケ−ル、ガス切断端面ス
ケール、鋼板ミルスケール等が、図1および図2に示す
ように溶接部において相対する被溶接面の少なくとも1
つに付着していることが必要である。酸素供給源とし
て、特に有効に作用するのはレーザ切断面とプラズマ切
断面のスケールである。
The operation of the scale according to the present invention will be described. In the present invention, the scale effectively oxidizes Ti contained in the steel material to generate Ti oxide. That is, oxygen required to generate Ti oxide is supplied from a scale attached to at least one of the opposed surfaces to be welded in the welded portion. The scale described here is generally an oxide of iron, and specifically, a laser cut end scale, a plasma cut end scale, a gas cut end scale, a steel plate mill scale, and the like are shown in FIGS. 1 and 2. At least one of the opposed surfaces to be welded in the weld
It is necessary that they adhere to each other. Particularly effective as an oxygen source are the scale of the laser cut surface and the plasma cut surface.

【0023】種々の鋼種におけるレーザ切断端面スケー
ル、プラズマ切断端面スケール、ガス切断端面スケ−
ル、鋼板ミルスケ−ル等をX線回折で分析した結果、ス
ケールは主にFe2 3 で構成されており、これらのス
ケ−ルからもたらされる酸素供給量に関してはスケール
厚さのみを議論すればよいことが確認された。そこで、
相対する被溶接面のスケール厚の合計値を種々変化さ
せ、溶接金属の酸素量を調査した結果を図3に示す。
0.5μm以上あれば酸素供給源として十分に機能する
ことが確認された。Xの値が0.5μm 未満の場合は供
給される酸素が不足してアシキュラーフェライトが十分
に生成しない。逆に80μm 超の場合には過剰な酸素が
供給され靱性が損なわれるだけでなく、溶接時のキーホ
ール安定性も損なわれビード外観が劣化し、ブローホー
ル等の内質欠陥が発生する。よってスケールの合計厚は
0.5〜80μm 以下とした。
Laser cut end scale, plasma cut end scale, gas cut end scale for various steel types
As a result of X-ray diffraction analysis of steel scales and steel mill scales, the scale is mainly composed of Fe 2 O 3 , and only the thickness of the scale will be discussed with respect to the amount of oxygen supplied from these scales. It was confirmed that it was good. Therefore,
FIG. 3 shows the results of examining the oxygen content of the weld metal by variously changing the total value of the scale thickness of the opposed surfaces to be welded.
It has been confirmed that when it is 0.5 μm or more, it functions sufficiently as an oxygen supply source. When the value of X is less than 0.5 μm, the supplied oxygen is insufficient and the acicular ferrite is not sufficiently formed. On the other hand, if it exceeds 80 μm, excess oxygen is supplied and not only the toughness is impaired, but also the stability of the keyhole at the time of welding is impaired, the bead appearance is deteriorated, and internal defects such as blowholes are generated. Therefore, the total thickness of the scale is set to 0.5 to 80 μm or less.

【0024】[0024]

【実施例】以下、実施例に基づいて本発明の効果を説明
する。実験に用いた鋼板は転炉で溶製し連続鋳造で25
0mm厚のスラブとした。これを熱間圧延した後に機械
加工でミルスケールを研削して厚さ6mm、9mm、1
5mm、20mmの鋼板を準備した。鋼板の成分を表3
に示す。この鋼板をレーザ切断、プラズマ切断、ガス切
断して、切断端面にスケールが付着した供試鋼板を作成
した。切断端面のスケール厚は切断方法及び切断条件を
変化させて調整した。以上の鋼板を図3に示すI型突合
わせ形状でレーザビーム溶接及び電子ビ−ム溶接を実施
した。レーザビーム溶接の溶接条件を表4に、電子ビー
ム溶接の溶接条件を表5に示す。溶接後の鋼板には表6
の試験を実施し、その結果を表7、表8、表9、表10
に示す。表7、表8、表9、表10の中で、シャルピー
試験の吸収エネルギは各鋼板における最低値を記してあ
る。以上の結果より、本発明の溶接方法で作成された溶
接金属は全ての検査において合格したが、比較例として
検討した鋼板は不合格であった。
EXAMPLES The effects of the present invention will be described below based on examples. The steel plate used for the experiment was melted in a converter and cast continuously for 25 minutes.
The slab was 0 mm thick. After hot-rolling, the mill scale is ground by machining to obtain a thickness of 6 mm, 9 mm,
Steel plates of 5 mm and 20 mm were prepared. Table 3 shows the composition of the steel sheet.
Shown in This steel sheet was subjected to laser cutting, plasma cutting, and gas cutting to prepare a test steel sheet having a scale attached to the cut end surface. The scale thickness of the cut end face was adjusted by changing the cutting method and cutting conditions. The above steel sheets were subjected to laser beam welding and electron beam welding in an I-shaped butt shape shown in FIG. Table 4 shows the welding conditions for laser beam welding, and Table 5 shows the welding conditions for electron beam welding. Table 6 shows the steel sheet after welding.
Table 7, Table 8, Table 9, Table 10
Shown in In Table 7, Table 8, Table 9, and Table 10, the absorbed energy of the Charpy test indicates the lowest value in each steel sheet. From the above results, the weld metal prepared by the welding method of the present invention passed all the inspections, but the steel sheet examined as a comparative example failed.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【表6】 [Table 6]

【0031】[0031]

【表7】 [Table 7]

【0032】[0032]

【表8】 [Table 8]

【0033】[0033]

【表9】 [Table 9]

【0034】[0034]

【表10】 [Table 10]

【0035】[0035]

【発明の効果】以上に示したように、本発明の方法を用
いれば、レーザビーム溶接および電子ビーム溶接におい
て健全な溶接部と高靭性な溶接金属が確保されるので、
その効果は多大であるといえる。
As described above, by using the method of the present invention, a sound weld portion and a high toughness weld metal can be secured in laser beam welding and electron beam welding.
The effect can be said to be great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の溶接継手の一例(ギャップな
し)を示す断面模式図である。
FIG. 1 is a schematic sectional view showing an example (without a gap) of a welded joint according to the present invention.

【図2】図2は、本発明の溶接継手の一例(ギャップな
し)を示す断面模式図である。
FIG. 2 is a schematic cross-sectional view showing one example (without a gap) of the welded joint of the present invention.

【図3】図3は、スケール厚みと溶接金属の酸素量との
関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a scale thickness and an oxygen content of a weld metal.

【符号の説明】[Explanation of symbols]

1…レーザビームもしくは電子ビーム 2…鋼板 1: laser beam or electron beam 2: steel plate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 103:04 (72)発明者 藤 雅雄 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 粟飯原 周二 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 星野 学 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 (72)発明者 斎藤 直樹 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 (72)発明者 都築 岳史 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 Fターム(参考) 4E066 AB09 CA03 CA08 4E068 BA00 BE00 CA17 DB01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B23K 103: 04 (72) Inventor Masao Fuji 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Within the headquarters (72) Inventor Shuji Awaihara 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Inside the Technology Development Headquarters (72) Inventor Manabu Hoshino 5-3 Tokai-cho, Tokai-shi, Aichi Prefecture Nippon Steel Corporation Nagoya Works (72) Inventor Naoki Saito 5-3 Tokai-cho, Tokai City, Aichi Prefecture Nippon Steel Corporation Nagoya Works (72) Inventor Takeshi Tsuzuki 5-3 Tokai-cho, Tokai City, Aichi Prefecture Made in New Japan F-term in Nagoya Works (Reference) 4E066 AB09 CA03 CA08 4E068 BA00 BE00 CA17 DB01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.01〜0.15%、 Si:0.01〜1.5%、 Mn:0.2〜2%、 P :0.03%以下、 S :0.03%以下、 Al:0.0005〜0.1%、 Ti:0.001%〜0.1%を含有し、残部がFe及
び不可避不純物からなり、かつ、下記式1の値が0.0
5〜0.2を満足する鋼材を溶接する方法であって、溶
接部分において相対する被溶接面の少なくとも1つがス
ケール付着面であることを特徴とするレーザビームもし
くは電子ビーム溶接方法。 式1:[%C]+[%Si]/30+[%Mn]/20
+[%Cr]/20+[%Ni]/60+[%Mo]/
15+[%V]/10+5[%B]+[%Cu]/20
C: 0.01 to 0.15%, Si: 0.01 to 1.5%, Mn: 0.2 to 2%, P: 0.03% or less, S: 0.03% or less, Al: 0.0005 to 0.1%, Ti: 0.001% to 0.1%, the balance being Fe and unavoidable impurities, and the value of the following formula 1 is 0 .0
A laser beam or electron beam welding method for welding steel materials satisfying 5-0.2, wherein at least one of opposed surfaces to be welded in a welded portion is a scale-adhered surface. Formula 1: [% C] + [% Si] / 30 + [% Mn] / 20
+ [% Cr] / 20 + [% Ni] / 60 + [% Mo] /
15 + [% V] / 10 + 5 [% B] + [% Cu] / 20
【請求項2】 鋼材が、重量%で、 Cr:0.01〜3%、 Ni:0.01〜7%、 Mo:0.005〜2%、 Cu:0.01〜3%、 Nb:0.001〜0.1%、 V :0.001〜1%、 B :0.0001〜0.002%の1種または2種以
上を、さらに含有することを特徴とする請求項1に記載
のレーザビームもしくは電子ビーム溶接方法。
2. The steel material is expressed by weight: Cr: 0.01 to 3%, Ni: 0.01 to 7%, Mo: 0.005 to 2%, Cu: 0.01 to 3%, Nb: The composition according to claim 1, further comprising one or more of 0.001 to 0.1%, V: 0.001 to 1%, and B: 0.0001 to 0.002%. Laser or electron beam welding method.
【請求項3】 鋼材が、重量%で、 Mg:0.0001〜0.02%、 Ca:0.0001〜0.02%、 Zr:0.001〜0.1%、 REM:0.001〜0.3%の1種または2種以上
を、さらに含有することを特徴とする請求項1または2
に記載のレーザビームもしくは電子ビーム溶接方法。
3. The steel material is, by weight%, Mg: 0.0001 to 0.02%, Ca: 0.0001 to 0.02%, Zr: 0.001 to 0.1%, REM: 0.001. 3. The composition according to claim 1, further comprising at least one kind of at least 0.3%.
The laser beam or electron beam welding method described in 1.
【請求項4】 溶接部分において相対する被溶接面に付
着しているスケール厚みが合計で、0.5〜80μmで
あることを特徴とする請求項1〜3のいずれかに記載の
レーザビームもしくは電子ビーム溶接方法。
4. The laser beam or the laser beam according to claim 1, wherein a total thickness of scales attached to opposed surfaces to be welded in a welded portion is 0.5 to 80 μm. Electron beam welding method.
JP10042099A 1999-04-07 1999-04-07 Electron beam welding method for obtaining weld metal with excellent low temperature toughness Expired - Fee Related JP4505076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10042099A JP4505076B2 (en) 1999-04-07 1999-04-07 Electron beam welding method for obtaining weld metal with excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10042099A JP4505076B2 (en) 1999-04-07 1999-04-07 Electron beam welding method for obtaining weld metal with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JP2000288754A true JP2000288754A (en) 2000-10-17
JP4505076B2 JP4505076B2 (en) 2010-07-14

Family

ID=14273495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10042099A Expired - Fee Related JP4505076B2 (en) 1999-04-07 1999-04-07 Electron beam welding method for obtaining weld metal with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP4505076B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889471A1 (en) * 2005-08-02 2007-02-09 Peugeot Citroen Automobiles Sa Assembly of a steel component and an iron component by laser beam welding using an iron-nickel alloy insert, notably for components for motor vehicles
JP2008087034A (en) * 2006-10-02 2008-04-17 Nippon Steel Corp Electron beam welded joint having excellent resistance to generation of brittle fracture
JP7485936B2 (en) 2020-07-08 2024-05-17 日本製鉄株式会社 Manufacturing method for welded joints using low-temperature Ni steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889471A1 (en) * 2005-08-02 2007-02-09 Peugeot Citroen Automobiles Sa Assembly of a steel component and an iron component by laser beam welding using an iron-nickel alloy insert, notably for components for motor vehicles
JP2008087034A (en) * 2006-10-02 2008-04-17 Nippon Steel Corp Electron beam welded joint having excellent resistance to generation of brittle fracture
JP7485936B2 (en) 2020-07-08 2024-05-17 日本製鉄株式会社 Manufacturing method for welded joints using low-temperature Ni steel

Also Published As

Publication number Publication date
JP4505076B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
TWI478785B (en) High heat input welding steel
JP6226542B2 (en) Steel with excellent toughness in weld heat affected zone
EP2422913B1 (en) Electron beam welded joint excellent in brittle fracture resistance
Guo et al. Laser welding of high strength steels (S960 and S700) with medium thickness
KR20190042052A (en) METHOD FOR MANUFACTURING WELDING STRUCTURE OF FERRITE STEEL HEAVY DUTY STRIP
WO2018047881A1 (en) Flux cored wire for gas shield arc welding and welding metal
EP2594657B1 (en) Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
JP6448844B1 (en) Welding method
EP4265367A1 (en) Welded member having excellent fatigue strength of welded portion and method for manufacturing same
JP2000288754A (en) Laser beam welding method excellent in low temp. toughness and electron beam welding method
JP3939563B2 (en) Cored wire and solid wire for laser welding of steel
JP2005125348A (en) Large heat input butt welded joint superior in brittle fracture characteristic resistance
JP2018039024A (en) Flux-cored wire for gas shield arc welding, and weld metal
JP4492028B2 (en) Laser beam welded joint and method for manufacturing laser beam welded joint
JP4374104B2 (en) Joints and structures made of ultra-fine steel with excellent brittle crack propagation stopping characteristics
JPH10193173A (en) Welding filler wire for damping alloy, and welding method
JP4213830B2 (en) Laser welding steel
JP3351139B2 (en) Welding method for low alloy high strength steel
JP2004011008A (en) Steel member and structure excellent in weld zone toughness
JP6515287B2 (en) Method of manufacturing welded joint
JP2008087031A (en) Welded joint having excellent resistance to generation of brittle fracture
TWI846149B (en) Manufacturing method of laser-arc hybrid welding joint
JP2007262518A (en) Fatigue crack resistant steel sheet for welding having excellent joint fatigue strength
WO2000075388A1 (en) High-tension steel material with excellent suitability for welding with high-energy-density heat source and welded structure thereof
JP2001279324A (en) Method for producing steel for laser welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees