JP2008086949A - Volume reduction method of excess sludge - Google Patents

Volume reduction method of excess sludge Download PDF

Info

Publication number
JP2008086949A
JP2008086949A JP2006272723A JP2006272723A JP2008086949A JP 2008086949 A JP2008086949 A JP 2008086949A JP 2006272723 A JP2006272723 A JP 2006272723A JP 2006272723 A JP2006272723 A JP 2006272723A JP 2008086949 A JP2008086949 A JP 2008086949A
Authority
JP
Japan
Prior art keywords
activated sludge
sludge
slurry
trichloroisocyanuric acid
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006272723A
Other languages
Japanese (ja)
Inventor
Akio Tamada
昭夫 玉田
Toshio Ide
寿男 井出
Tamotsu Yamamoto
保 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Chemicals Corp
Original Assignee
Shikoku Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Chemicals Corp filed Critical Shikoku Chemicals Corp
Priority to JP2006272723A priority Critical patent/JP2008086949A/en
Publication of JP2008086949A publication Critical patent/JP2008086949A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply reducing a volume of excess sludge. <P>SOLUTION: In a treatment tank for bringing organic sewage and activated sludge into contact with each other to biologically treat them, the activated sludge slurry drawn out of the treatment tank is passed through a dissolving vessel filled with a trichloroisocyanuric acid molded material, the packed bed of the trichloroisocyanuric acid molded material is brought into contact with activated sludge to kill the activated sludge in the slurry at a ratio of 50-100% and the slurry is returned to the treatment tank to adjust a volume reduction ratio of the excess sludge to a range of 10-60%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃水処理施設における余剰汚泥の減量化方法に関する。   The present invention relates to a method for reducing excess sludge in a wastewater treatment facility.

廃水処理施設においては、下水、し尿や有機性物質を含む有機性汚水(以下、汚水と云う)の微生物処理方法として、活性汚泥法が広く採用されている。この方法は、一般に汚水と微生物の集合体である活性汚泥とを接触させて汚水を浄化する曝気操作と、処理水と活性汚泥を分離する沈殿操作から成っているが、負荷をかけて処理効率を高めているために、微生物が増殖して曝気槽内に収容できる以上の活性汚泥、即ち余剰汚泥が発生する。   In wastewater treatment facilities, the activated sludge method is widely adopted as a microorganism treatment method for organic sewage containing sewage, human waste and organic substances (hereinafter referred to as sewage). This method generally consists of an aeration operation that purifies sewage by bringing sewage into contact with activated sludge, which is an aggregate of microorganisms, and a precipitation operation that separates the treated water and activated sludge. Therefore, activated sludge more than can be accommodated in the aeration tank, that is, excess sludge is generated.

なお前記の活性汚泥法には、曝気操作と沈殿操作を1つの処理槽で行う回分式活性汚泥法と、曝気操作と沈殿操作の2つの操作を各々の処理槽(曝気槽および沈殿槽)で行う連続式活性汚泥法が知られている。
前者の方法は、装置が簡単であり、設備コストが安く維持管理も容易であるという利点があり、小規模の処理施設に適している。後者は処理操作が複雑であり、しかも設備コストや維持コストがかかるが、大量の汚水を連続的に処理することが可能であり、且つ処理効率が高いという特徴を有するので大規模処理施設に適している。
In the activated sludge method, the batch activated sludge method in which the aeration operation and the precipitation operation are performed in one treatment tank, and the two operations of the aeration operation and the precipitation operation in each treatment tank (aeration tank and precipitation tank). A continuous activated sludge process is known.
The former method is advantageous in that the apparatus is simple, the equipment cost is low, and the maintenance is easy, and is suitable for small-scale processing facilities. The latter is complicated in treatment operation and requires equipment and maintenance costs, but it is suitable for large-scale treatment facilities because it can treat a large amount of sewage continuously and has high treatment efficiency. ing.

ところで、この余剰汚泥の処理には、脱水、保管、運搬、焼却などに多大なコストがかかるので、該汚泥の減量化や再利用が求められおり、環境に負荷をかけない処理方法が切望されている。   By the way, the treatment of surplus sludge requires great costs for dehydration, storage, transportation, incineration, etc., so reduction and reuse of the sludge is required, and a treatment method that does not burden the environment is eagerly desired. ing.

このような余剰汚泥を減量化する方法として、種々の方法が検討されているが、例えば特許文献1には、連続式活性汚泥法において、曝気槽から活性汚泥スラリーを抜き出し、該スラリーに次亜塩素酸ナトリウムや次亜塩素酸カルシウムなどの次亜塩素酸塩を添加して、微生物が消化可能な状態に有機物化し、次いで微生物処理を行うことを特徴とする余剰汚泥の減量化方法が提案されている。   As a method for reducing the amount of such excess sludge, various methods have been studied. For example, in Patent Document 1, in a continuous activated sludge method, activated sludge slurry is extracted from an aeration tank, and hypochlorite is added to the slurry. A method for reducing excess sludge has been proposed, characterized by adding hypochlorite such as sodium chlorate and calcium hypochlorite to organic matter that can be digested by microorganisms and then treating the microorganisms. ing.

しかしながら、次亜塩素酸ナトリウムは水溶液であるため、供給量が制御可能な液体の供給装置が必要であったり、次亜塩素酸ナトリウム専用の保管タンクを要するなど設備コストが嵩むと云う難点がある。また次亜塩素酸カルシウムは固形であるので、取り扱い易いと云う利点はあるものの、水に対する溶解性が高いために、曝気槽から抜き取った活性汚泥スラリーに接触させた場合には速やかに溶解してしまい、溶解量の制御が困難であったり、その結果過剰の活性塩素が発生してしまうという問題があった。   However, since sodium hypochlorite is an aqueous solution, there is a difficulty in that the equipment cost increases because a liquid supply device whose supply amount can be controlled is necessary or a storage tank dedicated to sodium hypochlorite is required. . Although calcium hypochlorite is solid, it has the advantage of being easy to handle, but because of its high solubility in water, it dissolves quickly when brought into contact with the activated sludge slurry extracted from the aeration tank. Therefore, there is a problem that it is difficult to control the amount of dissolution, and as a result, excessive active chlorine is generated.

なお、特許文献2には、活性汚泥のバルキングを防止するために、活性汚泥スラリーと塩素化イソシアヌル酸を接触させる方法が開示されているが、(a)溶解性が低いトリクロロイソシアヌル酸よりも溶解性が高いジクロロイソシアヌル酸ナトリウムや同カリウムが好ましく使用される点、(b)活性汚泥を殺傷させることなく、バルキングの原因となる糸状性細菌のみを殺傷させるために、活性塩素の発生を低濃度に制御しなければならない点、しかも、(c)余剰汚泥の減量化に関して一切記述されていない点から、本願発明とは技術思想を全く異にするものである。   Patent Document 2 discloses a method of bringing activated sludge slurry into contact with chlorinated isocyanuric acid in order to prevent bulking of activated sludge, but (a) it is more soluble than trichloroisocyanuric acid having low solubility. Highly active sodium dichloroisocyanurate and potassium are preferably used. (B) Low concentration of active chlorine is generated to kill only filamentous bacteria that cause bulking without killing activated sludge. The present invention is completely different from the present invention in that it has to be controlled, and (c) there is no description regarding reduction of excess sludge.

特開2002−126795号公報Japanese Patent Laid-Open No. 2002-126895 特開平4−126593号公報JP-A-4-126593

本発明は前記の事情に鑑みてなされたものであり、簡便に余剰汚泥を減量化する方法を提供することにある。   This invention is made | formed in view of the said situation, and it is providing the method of reducing excess sludge simply.

本発明者等は、前記の課題を解決するために鋭意試験研究を行った結果、有機性汚水と活性汚泥を接触させて微生物処理を行う処理槽において、処理槽から抜き取った活性汚泥スラリーをトリクロロイソシアヌル酸成形物を充填した溶解器内を通過させることにより、トリクロロイソシアヌル酸成形物の充填層と活性汚泥を接触させた後、該スラリーを処理槽に返送することにより、所期の目的を達成することを見出し本発明を完遂するに至ったものである。   As a result of earnest test research to solve the above-mentioned problems, the present inventors have found that the activated sludge slurry extracted from the treatment tank is trichloro-treated in a treatment tank in which organic sewage and activated sludge are brought into contact with each other. By passing through a dissolver filled with isocyanuric acid molded product, the packed bed of trichloroisocyanuric acid molded product and activated sludge are brought into contact, and then the slurry is returned to the treatment tank to achieve the intended purpose. As a result, the present invention has been completed.

本発明においては、殺菌剤として、活性塩素を放出するトリクロロイソシアヌル酸成形物を使用し、トリクロロイソシアヌル酸の添加方法を活性汚泥をトリクロロイソシアヌル酸成形物の充填層と接触させる手段としたので、従来に比べて簡便に余剰汚泥の発生を減量化することができる(第1の発明)。
また、活性汚泥の殺傷率を50〜100%とし、余剰汚泥の減量化率を10〜60%の範囲に調整することにより、処理水の水質を悪化させることなく、余剰汚泥の減量化を達成することができる(第2の発明)。更に、トリクロロイソシアヌル酸の成形物の長径を5〜100mmとすることにより、活性汚泥とトリクロロイソシアヌル酸成形物との接触を効率良く行わせることができる(第3の発明)。
In the present invention, a trichloroisocyanuric acid molded product that releases active chlorine is used as a disinfectant, and the method of adding trichloroisocyanuric acid is a means for bringing activated sludge into contact with the packed layer of the trichloroisocyanuric acid molded product. The amount of excess sludge generated can be reduced more easily than the first (first invention).
Moreover, by reducing the kill rate of activated sludge to 50 to 100% and adjusting the reduction rate of excess sludge to a range of 10 to 60%, reduction of excess sludge is achieved without deteriorating the quality of treated water. (Second invention). Furthermore, by making the major axis of the molded product of trichloroisocyanuric acid 5 to 100 mm, the activated sludge and the trichloroisocyanuric acid molded product can be efficiently contacted (third invention).

以下に、本発明を実施するための最良の形態を説明する。なお、本願の明細書中に表れる記号は、以下のとおりである。
・BOD(Biochemical
Oxygen Demand):生物化学的酸素要求量
・MLSS(Mixed
Liquor Suspended Solids):活性汚泥スラリー中の活性汚泥濃度
The best mode for carrying out the present invention will be described below. Symbols appearing in the specification of the present application are as follows.
・ BOD (Biochemical
Oxygen Demand): Biochemical oxygen demand / MLSS (Mixed
Liquor Suspended Solids): Activated sludge concentration in activated sludge slurry

図1は、本発明を回分式活性汚泥法に適用した場合の処理工程の概略フロー図を示すものであり、処理槽1において、曝気操作と沈殿操作が行われる。まず、処理槽1には汚水2が流入し活性汚泥と混合され、活性汚泥スラリー3が調製される。また、空気ブロワー11から供給された空気が処理槽1の底部に設けられた散気管12から噴出され活性汚泥スラリーを曝気する。このような好気性の条件下において、活性汚泥は汚水中に含まれる有機物を消化する。
この際、処理槽1からは、活性汚泥スラリー3がポンプ13により連続的に抜き取られ、トリクロロイソシアヌル酸成形物を充填した溶解器20に供給される。そして、活性汚泥がトリクロロイソシアヌル酸成形物を充填した充填層に接触し殺傷され、微生物が消化可能な状態に有機物化される。次いで、殺傷処理を経た活性汚泥スラリーは処理槽1へ返送される。
FIG. 1 shows a schematic flow diagram of a treatment process when the present invention is applied to a batch activated sludge method. In a treatment tank 1, an aeration operation and a precipitation operation are performed. First, the sewage 2 flows into the treatment tank 1 and is mixed with the activated sludge, whereby the activated sludge slurry 3 is prepared. Moreover, the air supplied from the air blower 11 is ejected from the diffuser pipe 12 provided at the bottom of the treatment tank 1 to aerate the activated sludge slurry. Under such aerobic conditions, activated sludge digests organic matter contained in the sewage.
At this time, the activated sludge slurry 3 is continuously extracted from the treatment tank 1 by the pump 13 and supplied to the dissolver 20 filled with the trichloroisocyanuric acid molded product. Then, the activated sludge comes into contact with the packed bed filled with the trichloroisocyanuric acid molded product and is killed, and the microorganisms are converted to an organic material in a digestible state. Next, the activated sludge slurry that has been killed is returned to the treatment tank 1.

汚水の浄化が終了した後、曝気操作および殺傷処理を停止し、活性汚泥スラリーを静置して上澄み水と濃縮汚泥を分離する沈殿操作が行われる。なお、沈殿操作中であっても必要に応じて殺傷処理を行っても構わない。沈殿操作の終了後、前記上澄み水は処理水4として系外へ排出される。   After the purification of the sewage is completed, the aeration operation and the killing process are stopped, and the sedimentation operation is performed in which the activated sludge slurry is allowed to stand and the supernatant water and the concentrated sludge are separated. In addition, even if it is during precipitation operation, you may perform a killing process as needed. After completion of the precipitation operation, the supernatant water is discharged out of the system as treated water 4.

図2は、本発明を連続式活性汚泥法に適用した場合の処理工程の概略フロー図を示すものであり、曝気槽5には汚水2が連続的に流入し活性汚泥と混合され、活性汚泥スラリー3が調製されている。また、空気ブロワー11から供給された空気が曝気槽5の底部に設けられた散気管12から噴出され活性汚泥スラリー3を曝気する。このような好気性の条件下において、活性汚泥は汚水中に含まれる有機物を消化する。
この曝気槽5からは活性汚泥スラリー3が連続的に抜き取られ沈殿槽6に供給される。沈殿槽6においては、活性汚泥スラリー3が静置されることにより、処理水4(上澄み水)と濃縮汚泥スラリー7に分離されて処理水4は系外へ、また濃縮汚泥スラリー7はポンプ13により抜き取られ、一部が余剰汚泥スラリー9として系外へ排出され、残りは返送汚泥スラリー8としてトリクロロイソシアヌル酸成形物を充填した溶解器20へ供給される。そして、該汚泥がトリクロロイソシアヌル酸成形物の充填層と接触することにより殺傷され、微生物が消化可能な状態に有機物化される。次いで、殺傷処理を経た返送汚泥は曝気槽5へ返送される。
このような連続式活性汚泥法においては、殺傷処理が継続され、汚水処理の運転が定常状態になった時点で、沈殿槽で生成する濃縮汚泥の量が減少し、系外へ排出される余剰汚泥も減量化されている。
FIG. 2 shows a schematic flow diagram of a treatment process when the present invention is applied to a continuous activated sludge method. Sewage 2 continuously flows into the aeration tank 5 and is mixed with the activated sludge. Slurry 3 has been prepared. Further, the air supplied from the air blower 11 is ejected from the air diffuser 12 provided at the bottom of the aeration tank 5 to aerate the activated sludge slurry 3. Under such aerobic conditions, activated sludge digests organic matter contained in the sewage.
The activated sludge slurry 3 is continuously extracted from the aeration tank 5 and supplied to the precipitation tank 6. In the sedimentation tank 6, the activated sludge slurry 3 is allowed to stand, so that it is separated into treated water 4 (supernatant water) and concentrated sludge slurry 7. The treated water 4 is out of the system, and the concentrated sludge slurry 7 is pumped 13. A part is discharged out of the system as surplus sludge slurry 9, and the rest is supplied as return sludge slurry 8 to a dissolver 20 filled with a trichloroisocyanuric acid molded product. The sludge is killed by contact with the packed bed of the trichloroisocyanuric acid molded product, and microorganisms are converted to an organic material that can be digested. Next, the returned sludge after the killing process is returned to the aeration tank 5.
In such a continuous activated sludge method, when the killing process is continued and the operation of the sewage treatment reaches a steady state, the amount of concentrated sludge generated in the settling tank decreases, and the excess discharged to the outside of the system Sludge has also been reduced.

トリクロロイソシアヌル酸成形物を溶解器に充填して形成される充填層は、隣り合う成形物同士が互いに接触する程度に充填された状態であれば、該充填層の形状に制限はない。しかしながら、接触効率のバラツキを出来る限り少なくするためには、図3の(A)または(B)に示されるように、活性汚泥スラリーの流れ方向に対して、入側と出側の間の間隔を一定とした溶解器に、トリクロロイソシアヌル酸成形物を出来るだけ隙間なく充填することが好ましい。   The shape of the packed layer is not limited as long as the packed layer formed by filling the trichloroisocyanuric acid molded product into the dissolver is filled to the extent that adjacent molded products are in contact with each other. However, in order to reduce the variation in contact efficiency as much as possible, as shown in FIG. 3 (A) or (B), the distance between the inlet side and the outlet side with respect to the flow direction of the activated sludge slurry. It is preferable to fill a trichloroisocyanuric acid molded product with as little gap as possible in a dissolver having a constant.

図1および図2においては、トリクロロイソシアヌル酸成形物を充填した溶解器を活性汚泥スラリーの返送ラインに設けたが、簡便な方法としては、返送ラインに通常設置されている計量升(不図示)の内部を仕切る堰と堰の間にトリクロロイソシアヌル酸成形物を投入して充填層を形成することも可能である。また、処理槽1または曝気槽5水面の上部に設置した返送ラインの最終落ち口(不図示)にトリクロロイソシアヌル酸成形物を充填した籠または網状の袋を吊り下げる方法等が挙げられる。   In FIG. 1 and FIG. 2, the dissolver filled with the trichloroisocyanuric acid molded product is provided in the return line of the activated sludge slurry, but as a simple method, a measuring rod (not shown) usually installed in the return line It is also possible to form a packed bed by introducing a trichloroisocyanuric acid molded product between the weirs that divide the interior of the container. Moreover, the method etc. which hang | suspended the cage | basket or net-like bag filled with the trichloroisocyanuric-acid molded product at the final drop (not shown) of the return line installed in the upper part of the water surface of the processing tank 1 or the aeration tank 5 are mentioned.

トリクロロイソシアヌル酸は、塩素化イソシアヌル酸化合物に分類される化合物であるが、この塩素化イソシアヌル酸化合物は化学的に安定な固体の化合物であって、その取り扱いが容易であり、また水中に溶解させた場合には、加水分解して殺菌性を有する活性塩素を放出し、且つその活性塩素の安定性が優れ殺菌効果が長時間に渡って持続するところから、プール水や汚水、し尿処理装置(施設)からの放流水の殺菌消毒剤、また機械装置の冷却水等の殺藻や防藻剤として広く使用されている。   Trichloroisocyanuric acid is a compound classified as a chlorinated isocyanuric acid compound, but this chlorinated isocyanuric acid compound is a chemically stable solid compound that can be easily handled and dissolved in water. In this case, hydrolyzed active chlorine having a bactericidal property is released, and the stability of the active chlorine is excellent, and the bactericidal effect lasts for a long time. It is widely used as a disinfectant and disinfectant for effluent water from facilities, as well as algae and anti-algae agents such as cooling water for machinery.

なお、前記の塩素化イソシアヌル酸化合物としては、トリクロロイソシアヌル酸以外にジクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム及びその水和物、ジクロロイソシアヌル酸カリウム等が挙げられる。   Examples of the chlorinated isocyanuric acid compound include trichloroisocyanuric acid, dichloroisocyanuric acid, sodium dichloroisocyanurate and its hydrate, potassium dichloroisocyanurate, and the like.

ところで、トリクロロイソシアヌル酸は、塩素化イソシアヌル酸化合物の中でも有効塩素含有量が約90%と最も高く、水に対する溶解度が1.2gと低く溶解速度も遅いので、長期間に渡って少量の活性塩素を供給させる用途に使用されており、本発明の実施においては好適に使用される。
一方、ジクロロイシシアヌル酸のナトリウム塩やカリウム塩は、有効塩素含有量が約60%と低いものの、水に対する溶解度が約25gと大きく溶解速度も速いので、高濃度の活性塩素を供給する用途に使用されているが、連続的に活性汚泥と接触させる本発明の実施においては、活性汚泥スラリーへの活性塩素供給量が過多になり、薬剤コストが嵩むので適さない。
他方、次亜塩素酸カルシウムも水に溶解して活性塩素を発生することができ、有効塩素含有量が60%以上のものは高度さらし粉と呼ばれており、塩素化イソシアヌル酸と同様な用途に広く使用されている。しかしながら、この次亜塩素酸カルシウムも、水に対する溶解度が約21gであり溶解速度も速いので、前記と同様の理由により本願発明の実施においては適さない。
By the way, trichloroisocyanuric acid has the highest effective chlorine content of about 90% among chlorinated isocyanuric acid compounds, and its solubility in water is as low as 1.2 g and its dissolution rate is slow. Therefore, a small amount of active chlorine over a long period of time. Is preferably used in the practice of the present invention.
On the other hand, the sodium salt and potassium salt of dichloroisocyanuric acid have a low effective chlorine content of about 60%, but the solubility in water is about 25 g and the dissolution rate is fast, so that it is used for supplying high concentration active chlorine. Although it is used, in the practice of the present invention in which the activated sludge is continuously contacted, the amount of active chlorine supplied to the activated sludge slurry becomes excessive and the chemical cost increases, which is not suitable.
On the other hand, calcium hypochlorite can also dissolve in water to generate active chlorine, and those with an effective chlorine content of 60% or more are called advanced bleaching powders and are used for the same applications as chlorinated isocyanuric acid. Widely used. However, this calcium hypochlorite is also not suitable for practicing the present invention for the same reason as described above, because it has a solubility in water of about 21 g and a high dissolution rate.

本発明に使用されるトリクロロイソシアヌル酸成形物は、その形状に制限はなく、成形時および実用上の不都合を生じない限り任意の形状で構わないが、例えば円柱状の錠剤の場合には、粉末状または顆粒状のトリクロロイソシアヌル酸を通常の打錠機を使用して500〜1500kg/cm程度の打錠圧下で成形することができ、またブリケットの場合には、2軸ロール方式の造粒機を使用して、ロール圧力(静圧力)4〜5tのプレス圧下で成形することができる。
また、トリクロロイソシアヌル酸成形物のサイズは、長径が5〜100mm(重量が5〜1000g)であることが好ましい。5mmより小さい場合には、活性汚泥スラリーがトリクロロイソシアヌル酸成形物の充填層を通過する際に、充填層が目詰まりを起こす虞があり、100mmより大きい場合には、前記充填層中の空隙部分が大きくなり、接触効率が低下し、汚泥の殺傷が十分に行えない虞がある。
The shape of the trichloroisocyanuric acid molded product used in the present invention is not limited, and may be any shape as long as it does not cause inconvenience during molding and practical use. For example, in the case of a cylindrical tablet, a powder Or granular trichloroisocyanuric acid can be molded under a tableting pressure of about 500 to 1500 kg / cm 2 using a normal tableting machine. In the case of briquettes, granulation of a biaxial roll method Using a machine, it can be molded under a press pressure of roll pressure (static pressure) of 4 to 5 t.
Moreover, it is preferable that the major axis of the trichloroisocyanuric acid molded product is 5 to 100 mm (weight is 5 to 1000 g). If it is smaller than 5 mm, the activated sludge slurry may clog when passing through the packed bed of the trichloroisocyanuric acid molded product. If it is larger than 100 mm, the void portion in the packed layer may be clogged. The contact efficiency decreases, and there is a risk that sludge cannot be killed sufficiently.

本発明を活性汚泥法を利用した一般的な廃水処理に適用した場合には、処理水の水質を悪化させない範囲で、余剰汚泥の発生を10〜60%の割合で減量化することが出来る。   When the present invention is applied to general wastewater treatment using the activated sludge method, the generation of excess sludge can be reduced at a rate of 10 to 60% within a range that does not deteriorate the quality of the treated water.

以下、本発明を実施例および比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例および比較例において実施した活性汚泥の殺傷率および余剰汚泥の減量化率の分析方法は、以下のとおりである。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these. In addition, the analysis method of the killing rate of activated sludge and the reduction rate of excess sludge implemented in the Example and the comparative example is as follows.

[活性汚泥の殺傷率]
トリクロロイソシアヌル酸に接触させる前の活性汚泥の酸素利用速度(A)と、同じく接触させた後の活性汚泥の酸素利用速度(B)を各々測定し、これらの測定値の比から次式により活性汚泥の殺傷率(重量%)を算出した。
殺傷率(重量%)=〔1−(酸素利用速度(B)/酸素利用速度(A))〕×100
なお、酸素利用速度は、「下水試験方法、(社)日本下水道協会、1997年版」に記載の方法に準拠して測定した。
[Destruction rate of activated sludge]
Measure the oxygen utilization rate (A) of the activated sludge before contact with trichloroisocyanuric acid and the oxygen utilization rate (B) of the activated sludge after the contact with each other. The sludge kill rate (% by weight) was calculated.
Killing rate (% by weight) = [1- (oxygen utilization rate (B) / oxygen utilization rate (A))] × 100
The oxygen utilization rate was measured in accordance with the method described in “Sewage Test Method, Japan Sewerage Association, 1997 Edition”.

[余剰汚泥の減量化率]
試験区の殺傷処理後のMLSS濃度を測定し、殺傷処理前のMLSS濃度との差から試験区の余剰汚泥の発生量を算出した。同様に、対照区の余剰汚泥の発生量を求め、試験区と対照区との余剰汚泥の発生量の差から、余剰汚泥の減量化率(重量%)を算出した。
[Reduction rate of excess sludge]
The MLSS concentration after killing treatment in the test zone was measured, and the amount of excess sludge generated in the test zone was calculated from the difference from the MLSS concentration before killing treatment. Similarly, the amount of excess sludge generated in the control plot was determined, and the reduction rate (% by weight) of the excess sludge was calculated from the difference in the amount of surplus sludge generated between the test plot and the control plot.

〔参考例1〕
予備試験として、トリクロロイソシアヌル酸の供給量と、活性汚泥の殺傷率との関係を調査した。
トリクロロイソシアヌル酸(四国化成工業社製、商品名「ネオクロール90」、粉末品、有効塩素含有量90%)の粉末を活性汚泥スラリーに所定量添加して2時間撹拌した後、該スラリーの一部を採取して、活性汚泥の殺傷率を求めた。得られた試験データは、図4の折れ線グラフに示したとおりであり、活性汚泥スラリーへのトリクロロイソシアヌル酸の添加量が増加するにつれて、活性汚泥の殺傷率も増加した。なお、横軸に示したトリクロロイソシアヌル酸の添加量は、活性汚泥スラリー中の活性汚泥量(乾燥重量)に対するトリクロロイシシアヌル酸の添加量(有効塩素換算重量)の割合(%)である。
本発明の実施においては、活性汚泥に対するトリクロロイソシアヌル酸の供給量が、活性汚泥の殺傷率が100%に達するトリクロロイソシアヌル酸の必要量(最小量)を上回ることは好ましくない。
殺傷率が100%に達してもなお、過剰のトリクロロイソシアヌル酸を供給すると、トリクロロイソシアヌル酸の使用量が増え、薬剤コストが嵩むばかりか、曝気槽に返送した場合に、曝気槽中に活性塩素が残留し、汚水の微生物処理そのものに悪影響を及ぼす虞がある。
[Reference Example 1]
As a preliminary test, the relationship between the supply amount of trichloroisocyanuric acid and the kill rate of activated sludge was investigated.
A predetermined amount of trichloroisocyanuric acid (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name “Neochlor 90”, powder product, effective chlorine content 90%) is added to the activated sludge slurry and stirred for 2 hours. Part was collected and the kill rate of activated sludge was determined. The obtained test data is as shown in the line graph of FIG. 4, and the kill rate of activated sludge increased as the amount of trichloroisocyanuric acid added to the activated sludge slurry increased. The addition amount of trichloroisocyanuric acid shown on the horizontal axis is the ratio (%) of the addition amount (effective chlorine equivalent weight) of trichloroisocyanuric acid to the activated sludge amount (dry weight) in the activated sludge slurry.
In the practice of the present invention, it is not preferable that the supply amount of trichloroisocyanuric acid to the activated sludge exceeds the necessary amount (minimum amount) of trichloroisocyanuric acid at which the kill rate of the activated sludge reaches 100%.
Even if the killing rate reaches 100%, if excessive trichloroisocyanuric acid is supplied, the amount of trichloroisocyanuric acid used increases, the chemical cost increases, and when it is returned to the aeration tank, it is activated chlorine in the aeration tank. May remain and adversely affect the microbial treatment of sewage.

〔実施例1〕
図1のフローに示される試験用の廃水処理試験装置を、試験区用および対照区用として、某下水処理場内に2基設置して、余剰汚泥の減量化試験を実施した。
同処理場の曝気槽から採取して、MLSS濃度を5000mg/Lに調整した活性汚泥スラリー50Lを処理槽に投入した。次いで、ブロアーで曝気を行いながら、定量ポンプで活性汚泥スラリーを抜き取り、該スラリーをトリクロロイソシアヌル酸の錠剤(四国化成工業社製、商品名「ネオクロールミニ」、直径15mm、重さ2.5g、有効塩素含有量90%)を充填した円筒型溶解器(φ10cm×高さ15cm)内を通過させて、トリクロロイソシアヌル酸錠剤の充填層と活性汚泥を接触させた後、処理槽に返送した。
なお、ブランク試験として、対照区用の試験装置の溶解器には、トリクロロイソシアヌル酸の錠剤を充填せず空の状態のままで、試験区用の場合と同様の条件で減量化試験を実施した。これらの試験における廃水処理条件は表1に示したとおりである。
[Example 1]
Two wastewater treatment test apparatuses for the test shown in the flow of FIG. 1 were installed in the dredged sewage treatment plant for the test zone and the control zone, and an excess sludge reduction test was conducted.
The activated sludge slurry 50L which was extract | collected from the aeration tank of the processing place and MLSS density | concentration was adjusted to 5000 mg / L was thrown into the processing tank. Next, while aeration with a blower, the activated sludge slurry was extracted with a metering pump, and the slurry was trichloroisocyanuric acid tablet (trade name “Neochlor Mini”, diameter 15 mm, weight 2.5 g, manufactured by Shikoku Kasei Kogyo Co., Ltd.) After passing through a cylindrical dissolver (φ10 cm × height 15 cm) filled with an effective chlorine content of 90% to bring the packed bed of trichloroisocyanuric acid tablets into contact with activated sludge, the solution was returned to the treatment tank.
In addition, as a blank test, the dissolution apparatus of the test device for the control group was not filled with the trichloroisocyanuric acid tablet and was left empty, and a weight reduction test was performed under the same conditions as in the test group. . The wastewater treatment conditions in these tests are as shown in Table 1.

Figure 2008086949
Figure 2008086949

溶解器通過後の活性汚泥の殺傷率が100%になるように定量ポンプの吐出量を最小に設定し、次いで、タイマーで殺傷処理時間を調整し一日当たりの処理汚泥量を4L(処理率:8%/日)とした。これらの条件で、試験装置を5日間運転した後、運転終了後の余剰汚泥の発生量と処理水(曝気停止2時間後の上澄水)のBODを測定した。
得られた試験結果は、表2に示したとおりであった。
The discharge rate of the metering pump is set to the minimum so that the kill rate of the activated sludge after passing through the dissolver is 100%, and then the kill treatment time is adjusted with a timer to set the amount of treated sludge per day to 4 L (treatment rate: 8% / day). Under these conditions, the test apparatus was operated for 5 days, and then the amount of excess sludge generated after the operation was completed and the BOD of treated water (supernatant water after 2 hours of aeration stop) were measured.
The test results obtained were as shown in Table 2.

〔実施例2〕
新たに汚泥を入れ替え、一日当たりの処理汚泥量を8L(処理率:16%/日)に設定した以外は、実施例1と同様にして余剰汚泥の減量化試験を実施した。
得られた試験結果は、表2に示したとおりであった。
[Example 2]
Excess sludge reduction test was carried out in the same manner as in Example 1 except that the sludge was newly replaced and the amount of treated sludge per day was set to 8 L (treatment rate: 16% / day).
The test results obtained were as shown in Table 2.

〔実施例3〜4〕
溶解器通過前後の汚泥の殺傷率が80%になるように定量ポンプの吐出量を調整し、一日当たりの処理汚泥量を4L(処理率:8%/日)または8L(処理率:16%/日)に設定した以外は、実施例1と同様にして余剰汚泥の減量化試験を実施した。
得られた試験結果は、表2に示したとおりであった。
[Examples 3 to 4]
Adjust the discharge rate of the metering pump so that the sludge kill rate before and after passing through the dissolver is 80%, and the amount of treated sludge per day is 4L (treatment rate: 8% / day) or 8L (treatment rate: 16%) Excess sludge reduction test was carried out in the same manner as in Example 1 except that it was set to / day).
The test results obtained were as shown in Table 2.

〔実施例5〜6〕
溶解器通過前後の汚泥の殺傷率が60%になるように定量ポンプの吐出量を調整し、一日当たりの処理汚泥量を4L(処理率:8%/日)または8L(処理率:16%/日)に設定した以外は、実施例1と同様にして余剰汚泥の減量化試験を実施した。
得られた試験結果は、表2に示したとおりであった。
[Examples 5 to 6]
Adjust the discharge rate of the metering pump so that the sludge kill rate before and after passing through the dissolver is 60%, and the amount of treated sludge per day is 4L (treatment rate: 8% / day) or 8L (treatment rate: 16%) Excess sludge reduction test was carried out in the same manner as in Example 1 except that it was set to / day).
The test results obtained were as shown in Table 2.

〔比較例1〕
トリクロロイソシアヌル酸の錠剤の代わりにジクロロイソシアヌル酸ナトリウム錠剤(四国化成工業社製、商品名「ネオクロールT−20S」、直径30mm、重さ20g、有効塩素含有量60%)を使用した以外は、実施例1と同様にして余剰汚泥の減量化試験を実施した。
但し、この試験においては、ジクロロイソシアヌル酸ナトリウムの錠剤が、トリクロロイソシアヌル酸の錠剤に比べて溶解速度が速いために、定量ポンプの吐出量を制御可能な最下限値に設定したが、それでもなお、溶解器通過後の活性汚泥の殺傷率は100%であった。
得られた試験結果は、表2に示したとおりであった。なお、溶解器通過後の活性汚泥スラリー中には、活性塩素(有効塩素換算)が平均約1100ppmの濃度で残留していた。
[Comparative Example 1]
Except for using dichloroisocyanuric acid sodium tablets (made by Shikoku Kasei Kogyo Co., Ltd., trade name “Neochlor T-20S”, diameter 30 mm, weight 20 g, effective chlorine content 60%) instead of trichloroisocyanuric acid tablets, The excess sludge reduction test was carried out in the same manner as in Example 1.
However, in this test, since the tablet of sodium dichloroisocyanurate has a higher dissolution rate than the tablet of trichloroisocyanurate, the discharge amount of the metering pump was set to the lowest controllable value, but still, The kill rate of the activated sludge after passing through the dissolver was 100%.
The test results obtained were as shown in Table 2. In the activated sludge slurry after passing through the dissolver, active chlorine (effective chlorine equivalent) remained at an average concentration of about 1100 ppm.

〔比較例2〕
ジクロロイソシアヌル酸ナトリウムの錠剤の代わりに次亜塩素酸カルシウム錠剤(南海化学社製、商品名「南海クリアー」、直径30mm、重さ20g、有効塩素含有量70%)を使用した以外は、比較例1と同様にして余剰汚泥の減量化試験を実施した。
但し、この試験においても、次亜塩素酸カルシウムの錠剤が、トリクロロイソシアヌル酸の錠剤に比べて溶解速度が速いために、定量ポンプの吐出量を制御可能な最下限値に設定したが、それでもなお、溶解器通過後の活性汚泥の殺傷率は100%であった。
得られた試験結果は、表2に示したとおりであった。なお、溶解器通過後の活性汚泥スラリー中には、活性塩素(有効塩素換算)が平均約900ppmの濃度で残留していた。
[Comparative Example 2]
A comparative example except that calcium hypochlorite tablets (made by Nankai Chemical Co., Ltd., trade name “Nankai Clear”, diameter 30 mm, weight 20 g, effective chlorine content 70%) were used instead of sodium dichloroisocyanurate tablets. The excess sludge reduction test was conducted in the same manner as in 1.
However, in this test, the calcium hypochlorite tablet had a faster dissolution rate than the trichloroisocyanuric acid tablet, so the discharge rate of the metering pump was set to the lowest controllable value. The kill rate of the activated sludge after passing through the dissolver was 100%.
The test results obtained were as shown in Table 2. In the activated sludge slurry after passing through the dissolver, active chlorine (effective chlorine equivalent) remained at an average concentration of about 900 ppm.

Figure 2008086949
Figure 2008086949

表2に示された試験結果によれば、活性汚泥の殺傷率が高いほど、また殺傷処理の処理率の割合が高いほど、余剰汚泥の減量化率も高くなった。しかしながら、余剰汚泥の減量化率が約70%に達した場合(実施例2)には、処理水が白濁し、BOD値も高くなり水質が悪化した。一方、ジクロロイソシアヌル酸ナトリウムと次亜塩素酸カルシムを使用した場合(比較例1および2)には、それらが過剰に溶解した結果、前記と同様に処理水が白濁し、BOD値も高くなり水質が悪化した。従って、余剰汚泥の減量化率を10〜60%の範囲に調整して、殺傷処理を実施することが好ましい。   According to the test results shown in Table 2, the higher the kill rate of activated sludge and the higher the rate of killing treatment rate, the higher the excess sludge reduction rate. However, when the reduction rate of excess sludge reached about 70% (Example 2), the treated water became cloudy, the BOD value increased, and the water quality deteriorated. On the other hand, when sodium dichloroisocyanurate and calcium chlorite are used (Comparative Examples 1 and 2), as a result of excessive dissolution, the treated water becomes cloudy and the BOD value increases as described above. Worsened. Therefore, it is preferable to carry out the killing treatment by adjusting the reduction rate of excess sludge to a range of 10 to 60%.

本発明を回分式活性汚泥法に適用した場合の処理工程の概略フロー図である。It is a schematic flowchart of the process process at the time of applying this invention to a batch type activated sludge process. 本発明を連続式活性汚泥法に適用した場合の処理工程の概略フロー図である。It is a schematic flowchart of the process process at the time of applying this invention to a continuous activated sludge process. 活性汚泥スラリーがトリクロロイソシアヌル酸成形物を充填した溶解器を通過する様子を表す概念図である。It is a conceptual diagram showing a mode that an activated sludge slurry passes the dissolver filled with the trichloroisocyanuric acid molded object. トリクロロイソシアヌル酸の供給量と、活性汚泥の殺傷率との関係を示す折れ線グラフである。It is a line graph which shows the relationship between the supply amount of trichloroisocyanuric acid, and the killing rate of activated sludge.

符号の説明Explanation of symbols

1 処理槽
2 汚水
3 活性汚泥スラリー
4 処理水
5 曝気槽
6 沈殿槽
7 濃縮汚泥スラリー
8 返送汚泥スラリー
9 余剰汚泥スラリー
11 空気ブロワー
12 散気管
13 ポンプ
20 トリクロロイソシアヌル酸成形物を充填した溶解器
DESCRIPTION OF SYMBOLS 1 Treatment tank 2 Sewage 3 Activated sludge slurry 4 Treated water 5 Aeration tank 6 Settling tank 7 Concentrated sludge slurry 8 Return sludge slurry 9 Excess sludge slurry 11 Air blower 12 Air diffuser 13 Pump 20 Dissolver filled with trichloroisocyanuric acid molding

Claims (3)

有機性汚水と活性汚泥を接触させて微生物処理を行う処理槽において、処理槽から抜き取った活性汚泥スラリーをトリクロロイソシアヌル酸成形物を充填した溶解器内を通過させることにより、トリクロロイソシアヌル酸成形物の充填層と活性汚泥を接触させた後、該スラリーを処理槽に返送することを特徴とする余剰汚泥の減量化方法。   In a treatment tank in which organic sludge and activated sludge are brought into contact with each other to perform microbial treatment, the activated sludge slurry extracted from the treatment tank is passed through a dissolver filled with the trichloroisocyanuric acid molded article, thereby forming the trichloroisocyanuric acid molded article. A method for reducing surplus sludge, wherein the slurry is returned to a treatment tank after contacting the packed bed with activated sludge. 有機性汚水と活性汚泥を接触させて生物処理を行う処理槽において、処理槽から抜き取った活性汚泥スラリーをトリクロロイソシアヌル酸成形物を充填した溶解器内を通過させることにより、トリクロロイソシアヌル酸成形物の充填層と活性汚泥を接触させて、該スラリー中の活性汚泥を50〜100%の割合で殺傷し、該スラリーを処理槽に返送して、余剰汚泥の減量化率を10〜60%の範囲内に調整することを特徴とする余剰汚泥の減量化方法。   In a treatment tank in which organic sludge and activated sludge are brought into contact with each other for biological treatment, the activated sludge slurry extracted from the treatment tank is passed through a dissolver filled with the trichloroisocyanuric acid molded article, thereby forming the trichloroisocyanuric acid molded article. The activated sludge in the slurry is killed at a rate of 50 to 100% by bringing the packed bed into contact with the activated sludge, the slurry is returned to the treatment tank, and the reduction rate of excess sludge is in the range of 10 to 60%. A method for reducing excess sludge, which is characterized by adjusting to the inside. トリクロロイソシアヌル酸成形物の長径が5〜100mmであることを特徴とする請求項1または請求項2記載の余剰汚泥の減量化方法。
3. The method for reducing excess sludge according to claim 1 or 2, wherein a major axis of the trichloroisocyanuric acid molded product is 5 to 100 mm.
JP2006272723A 2006-10-04 2006-10-04 Volume reduction method of excess sludge Pending JP2008086949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272723A JP2008086949A (en) 2006-10-04 2006-10-04 Volume reduction method of excess sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272723A JP2008086949A (en) 2006-10-04 2006-10-04 Volume reduction method of excess sludge

Publications (1)

Publication Number Publication Date
JP2008086949A true JP2008086949A (en) 2008-04-17

Family

ID=39371656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272723A Pending JP2008086949A (en) 2006-10-04 2006-10-04 Volume reduction method of excess sludge

Country Status (1)

Country Link
JP (1) JP2008086949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220378A (en) * 2012-04-16 2013-10-28 Shikoku Chem Corp Volume reduction method for excess sludge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231314A (en) * 1995-02-24 1996-09-10 Nippon Soda Co Ltd Chlorinated isocyanuric acid molding
JP2000061488A (en) * 1998-06-10 2000-02-29 Kankyo Eng Co Ltd Treatment of organic wastewater and chemical agent used therein
JP2000176500A (en) * 1998-12-14 2000-06-27 Diafloc Kk Elution preventing method of phosphorus in sludge and elution preventive of phosphorus in the sludge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231314A (en) * 1995-02-24 1996-09-10 Nippon Soda Co Ltd Chlorinated isocyanuric acid molding
JP2000061488A (en) * 1998-06-10 2000-02-29 Kankyo Eng Co Ltd Treatment of organic wastewater and chemical agent used therein
JP2000176500A (en) * 1998-12-14 2000-06-27 Diafloc Kk Elution preventing method of phosphorus in sludge and elution preventive of phosphorus in the sludge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220378A (en) * 2012-04-16 2013-10-28 Shikoku Chem Corp Volume reduction method for excess sludge

Similar Documents

Publication Publication Date Title
TW453979B (en) Method and apparatus for wastewater treatment
CN104649524B (en) A kind of livestock and poultry cultivation sewage water treatment method
US3773659A (en) System for processing wastes
RU2259959C2 (en) Water solution cleaning method (versions)
US5232584A (en) Method and apparatus for purifying and compacting solid wastes
JPH1190483A (en) Method and apparatus for treating waste water
WO2004052794A1 (en) Environmentally-friendly microbiocidal control in aqueous systems with the aid of a feeder
AU2002234828B2 (en) Stabilised hypobromous acid solutions
JP2010110666A (en) Method of suppressing production of odor of sludge dehydrated cake
JP2009186437A (en) Radioactive nitrate waste liquid treating apparatus
JP5776343B2 (en) Ship ballast water treatment system
JP2008086949A (en) Volume reduction method of excess sludge
JP2007275846A (en) Wastewater treatment system and wastewater treatment method
WO2016051402A1 (en) Animal farming wastewater treatment
DK1361198T3 (en) A method for water treatment and processing facility
JP4346721B2 (en) Phosphorus removing sterilizing solid agent, sewage treatment method using the same, and sewage septic tank
US20200361800A1 (en) Composition for water treatment and methods of manufacture
JP2006272258A (en) Suppressing method of filamentoss bulking
JP6622432B1 (en) Disinfecting apparatus and disinfecting method for waste water containing ammonia nitrogen
JP2005052735A (en) Wastewater disinfection system and wastewater disinfection method
JP5990706B2 (en) Method for suppressing hydrogen sulfide generation in sludge treatment process
US4442007A (en) Activated seawater wastewater treatment system
JP2007283254A (en) Volume reduction method for sludge and volume reduction agent for sludge
WO2005121028A1 (en) Apparatus for removing phosphorus
JP2000229297A (en) Biological water treating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110418