JP2008086897A - Solid-liquid separation method of sludge - Google Patents
Solid-liquid separation method of sludge Download PDFInfo
- Publication number
- JP2008086897A JP2008086897A JP2006270157A JP2006270157A JP2008086897A JP 2008086897 A JP2008086897 A JP 2008086897A JP 2006270157 A JP2006270157 A JP 2006270157A JP 2006270157 A JP2006270157 A JP 2006270157A JP 2008086897 A JP2008086897 A JP 2008086897A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- solid
- liquid separation
- hydrogen peroxide
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Treatment Of Sludge (AREA)
Abstract
Description
本発明は、有機性汚泥を固液分離、あるいは濃縮する方法に関するものである。 The present invention relates to a method for solid-liquid separation or concentration of organic sludge.
排水処理装置において、下水等の汚水を生物処理槽で活性汚泥と混合し、曝気・攪拌することで生物学的に浄化する際に発生する有機性汚泥は、沈殿槽などで固液分離されるのが一般的で、通常、重力によって汚泥は沈降固液分離される。しかし、この方法では、分離に相当の時間がかかるばかりでなく、上澄みの処理水(汚泥脱離液)に浮遊する懸濁物が多く、汚泥も十分に濃縮されないという問題があった。
また、汚泥を遠心分離機により固液分離あるいは濃縮する方法が知られているが、設備にかかるコストが高く、さらに処理を行う際に、凝集剤を添加する必要があり、経済的に負担がかかるという問題があった。
In wastewater treatment equipment, organic sludge generated when sewage such as sewage is mixed with activated sludge in a biological treatment tank and biologically purified by aeration and agitation is solid-liquid separated in a sedimentation tank. In general, sludge is separated into solid and liquid by gravity. However, this method has a problem that not only does it take a considerable time to separate, but also there are many suspended solids in the supernatant treated water (sludge desorption liquid), and the sludge is not sufficiently concentrated.
In addition, a method of solid-liquid separation or concentration of sludge by a centrifuge is known, but the cost for the equipment is high, and it is necessary to add a flocculant when processing further, which is economically burdensome. There was a problem that it took.
一方、汚泥に空気や炭酸ガス等のガスを導入し、汚泥中の固形成分に付着させ、見かけ比重を小さくして汚泥固形成分を浮上させ、上部に濃縮汚泥、下部に汚泥脱離液という状態に分離する浮上固液分離あるいは濃縮法があり、比較的高濃度汚泥を得ることができる。これには、加圧法、発酵法、化学反応法などが知られている。
加圧法では凝集剤や高い圧力を加えるための多くの電力を必要とし、ランニングコストがかかるばかりでなく、設備も複雑化・大型化する欠点があった。
On the other hand, gas such as air or carbon dioxide gas is introduced into the sludge, adheres to the solid components in the sludge, the apparent specific gravity is reduced to float the sludge solid components, the state of concentrated sludge at the top, sludge desorption liquid at the bottom There is a floating solid-liquid separation or concentration method, which can be separated into a relatively high concentration sludge. For this, a pressurization method, a fermentation method, a chemical reaction method and the like are known.
The pressurization method requires not only a flocculant and a large amount of electric power for applying a high pressure, but also has a drawback in that it requires not only running costs but also complicates and enlarges the equipment.
また、発酵法としては、嫌気性消化処理で消化汚泥中の溶存二酸化炭素濃度を増加させ、その後pHを低下させることによって放出される炭酸ガスを利用して、消化汚泥を浮上分離させる方法がある(特許文献1)。しかし、嫌気性消化処理に時間がかかるばかりでなく、pHおよび温度調整に手数がかかり、管理が難しいという欠点があった。 Further, as a fermentation method, there is a method in which digested sludge is floated and separated using carbon dioxide gas released by increasing the dissolved carbon dioxide concentration in digested sludge by anaerobic digestion and then lowering the pH. (Patent Document 1). However, not only does the anaerobic digestion process take time, but there is a disadvantage that it takes time and labor to adjust the pH and temperature, and is difficult to manage.
化学反応法は、薬剤の添加により化学反応を起こし、発生する気泡で物理的に汚泥を浮上分離する方法で、低設備費、省スペースで維持管理が容易である。これには、汚泥に炭酸塩と酸を添加し炭酸ガスを発生させ、汚泥を浮上分離する方法がある(特許文献2)。しかし、この方法では汚泥の分離が明瞭ではなく、汚泥脱離液中に懸濁物が混在することが多く、また薬剤費などでランニングコストがかかるという欠点があった。さらに、汚泥に過酸化水素を注入して、汚泥を浮上させ、その後浮上濃縮した汚泥を曝気処理する方法がある(特許文献3)。しかし、過酸化水素の注入のみでは、固液分離処理に時間がかかるばかりでなく、汚泥脱離液中に懸濁物が混在しやすい問題を抱え、処理水をそのまま放流することが難しかった。 The chemical reaction method is a method in which a chemical reaction is caused by the addition of a chemical agent, and sludge is physically floated and separated by the generated bubbles. In this method, carbonate and acid are added to sludge to generate carbon dioxide, and the sludge is floated and separated (Patent Document 2). However, in this method, the separation of the sludge is not clear, and there are many disadvantages that the suspended matter is often mixed in the sludge desorption liquid and that the running cost is high due to the chemical cost. Furthermore, there is a method in which hydrogen peroxide is injected into the sludge, the sludge is floated, and then the sludge that has been floated and concentrated is aerated (Patent Document 3). However, the injection of hydrogen peroxide alone not only takes time for the solid-liquid separation process, but also has a problem that suspensions are likely to be mixed in the sludge desorption liquid, and it is difficult to discharge the treated water as it is.
上記のような従来方法の問題点を解決すべく、本発明では、有機性汚泥を短時間で高濃度汚泥と懸濁物が少ない高水質脱離液に明瞭に分離し、低設備費、低運転費、省スペースとなる汚泥の固液分離方法を提供することを目的とする。 In order to solve the problems of the conventional methods as described above, the present invention clearly separates organic sludge into high-concentration sludge and high-water desorption liquid with less suspended matter in a short time, resulting in low equipment costs and low costs. The object is to provide a method for solid-liquid separation of sludge that saves operating costs and space.
上記目的を達成するため、本発明の汚泥の固液分離方法は、排水処理装置から発生する有機性汚泥に過酸化水素を添加し、該汚泥と過酸化水素分解反応を促進する触媒とを接触させて気泡を発生させ、該気泡の浮力で前記汚泥を浮上分離させることを特徴とする。
この汚泥の固液分離方法は、過酸化水素を添加し、無害でかつ微細な酸素ガスの気泡を触媒活性下で処理槽全体に発生させ、汚泥に付着せしめることによって物理的に浮上分離する方法である。本方法では固液分離速度の向上が図れるのみならず、懸濁物が少ない高水質脱離液を得られるという利点がある。さらに、基本的に薬剤の注入だけで良く、低設備、低運転費、省スペースで実施することができる。
In order to achieve the above object, the sludge solid-liquid separation method of the present invention adds hydrogen peroxide to organic sludge generated from a wastewater treatment apparatus, and contacts the sludge with a catalyst that accelerates the hydrogen peroxide decomposition reaction. And generating bubbles, and the sludge is levitated and separated by the buoyancy of the bubbles.
This sludge solid-liquid separation method is a method in which hydrogen peroxide is added, and air bubbles of harmless and fine oxygen gas are generated in the entire treatment tank under catalytic activity, and physically separated by adhering to the sludge. It is. This method has an advantage that not only the solid-liquid separation rate can be improved, but also a high water quality desorbed liquid with less suspension can be obtained. Furthermore, basically, it is only necessary to inject a medicine, and it can be carried out with low equipment, low operating cost, and space saving.
過酸化水素分解反応を促進する触媒として、酸化マンガンまたは活性炭を含む触媒を利用することができる。これにより、過酸化水素の分解反応が飛躍的に促進され、汚泥固液分離処理が短時間でかつ脱離液中の細かな懸濁物まで浮上分離させることができる。
さらに本発明では、有機性汚泥に過酸化水素とともに、少量の酸又は凝集剤を添加することができる。これにより、汚泥中の微粒子の凝集性が向上し、汚泥脱離液の水質をさらに向上させることができる。
As a catalyst for promoting the hydrogen peroxide decomposition reaction, a catalyst containing manganese oxide or activated carbon can be used. Thereby, the decomposition reaction of hydrogen peroxide is remarkably promoted, and the sludge solid-liquid separation process can be floated and separated to a fine suspension in the desorbed liquid in a short time.
Furthermore, in this invention, a small amount of acid or a flocculant can be added to organic sludge with hydrogen peroxide. Thereby, the cohesiveness of the fine particles in the sludge is improved, and the water quality of the sludge detachment liquid can be further improved.
以上のいずれの方法においても、有機性汚泥を40−100℃に加熱した状態で触媒と接触させることができる。これにより、汚泥中の微粒子の凝集性を向上させると同時に、過酸化水素の分解反応が飛躍的に促進され、高濃度汚泥と懸濁物が少ない高水質汚泥に極めて短時間で分離できる。 In any of the above methods, the organic sludge can be brought into contact with the catalyst while being heated to 40-100 ° C. As a result, the cohesiveness of the fine particles in the sludge is improved, and at the same time, the decomposition reaction of hydrogen peroxide is dramatically accelerated, so that the high-concentration sludge and the high-water sludge with few suspensions can be separated in a very short time.
本発明によれば、従来の場合と比して、有機性汚泥を短時間で明瞭に固液分離することが可能で、高濃度汚泥と懸濁物が少ない高水質脱離液を得ることができる。
また、本発明は基本的に微量の薬剤の注入だけで良く、排水処理設備の簡易化およびコストダウンが図られるという効果がある。しかも、本発明は特殊な装置等を必要としないため、汚泥処理量や適用場所の制約が緩和され、少量の有機性汚泥処理に際しても好適に使用することができるという効果がある。
According to the present invention, organic sludge can be clearly solid-liquid separated in a short time as compared with the conventional case, and a high water quality desorbed liquid with less high concentration sludge and suspended matter can be obtained. it can.
In addition, the present invention basically requires only a small amount of drug injection, and has the effect of simplifying the wastewater treatment facility and reducing the cost. In addition, since the present invention does not require a special device or the like, the sludge treatment amount and application place restrictions are alleviated, and there is an effect that it can be suitably used for a small amount of organic sludge treatment.
本発明者等は、有機性汚泥に薬剤を添加し、触媒によって促進的に発生するガスを利用して汚泥を物理的に浮上分離させる方法を発明したもので、その基本原理は、有機性汚泥に過酸化水素を添加し、該汚泥を過酸化水素分解反応を促進する触媒に接触させることで、添加した過酸化水素を酸素ガスと水に促進的に分解し、発生した酸素ガスの微細気泡を汚泥に付着させて、短時間にかつ明瞭に汚泥を浮上分離させるというものである。
以下、例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの例によりなんら限定されるものではない。
The inventors of the present invention invented a method of adding chemicals to organic sludge and physically levitating and separating the sludge using gas generated by the catalyst, and the basic principle is that organic sludge Hydrogen peroxide is added to the catalyst, and the sludge is brought into contact with a catalyst that promotes the decomposition reaction of hydrogen peroxide, so that the added hydrogen peroxide is decomposed into oxygen gas and water. Is attached to the sludge, and the sludge is floated and separated clearly in a short time.
EXAMPLES Hereinafter, although an example is given and this invention is demonstrated further in detail, this invention is not limited at all by these examples.
本発明による有機性汚泥は、汚泥の比重にもよるが汚泥濃度(MLSS)が100−30,000mg/L、含水率では96−99.9%、より好ましくは汚泥濃度1000−20,000mg/L、含水率97−99%のものが使用でき、通常の曝気槽内の汚泥および返送汚泥などを使用できる。本発明は、以上のように広範な濃度の汚泥について使用可能であり、排水処理工程において適用すれば、汚泥と良好な処理水を得ることができる。 The organic sludge according to the present invention has a sludge concentration (MLSS) of 100 to 30,000 mg / L, a moisture content of 96 to 99.9%, more preferably a sludge concentration of 1000 to 20,000 mg / L depending on the specific gravity of the sludge. L, those having a water content of 97-99% can be used, and sludge and return sludge in a normal aeration tank can be used. As described above, the present invention can be used for a wide range of sludge concentrations, and if applied in a wastewater treatment process, sludge and good treated water can be obtained.
本発明の固液分離により、汚泥は十分に濃縮され、汚泥濃度30,000mg/L以上あるいは含水率96%以上の高濃度汚泥と、汚泥濃度100mg/L以下の懸濁物をほとんど含まない高水質汚泥脱離液に分離できる。
本発明において注入・攪拌する過酸化水素量は、汚泥濃度にもよるが、有機性汚泥1Lあたり、過酸化水素を0.01−1molでよい。たとえば、汚泥濃度が約15,000 mg/L(含水率約98%)の有機性汚泥1Lあたり、過酸化水素0.1molほどの注入量で、明瞭な固液界面が形成され、上部に約3倍に濃縮された汚泥(汚泥濃度約45,000mg/L)と、下部に懸濁物が極めて少ない汚泥脱離液(汚泥濃度約100mg/L)に分離できる。過酸化水素注入量を多くしてもよいが、注入量に応じて処理速度が速くなる傾向はみられない。
本発明において、過酸化水素分解反応を促進する触媒については、例えば酸化マンガン、銅、アンチモン、スズやパラジウムなど金属化学物質や、活性炭、木炭、竹炭、薫炭、ゼオライトやハイタルクなど粗雑な固体表面をもつもの、あるいは、上記物質が混合された触媒を使用できる。触媒の形態は、過酸化水素との接触面積が広いことが好ましく、粉末、粒状あるいは塊状の触媒を使用できる。好ましい触媒とその形態としては、純粋な酸化マンガン粒(粒径1-5mm)および活性炭(粒径1-5mm)であり、これらを用いた場合、過酸化水素分解反応を飛躍的に促進できる。
By the solid-liquid separation of the present invention, the sludge is sufficiently concentrated, and the high concentration sludge having a sludge concentration of 30,000 mg / L or more or a water content of 96% or more and a suspension having a sludge concentration of 100 mg / L or less are hardly contained. Separation into water sludge desorption liquid.
In the present invention, the amount of hydrogen peroxide to be injected and stirred depends on the sludge concentration, but may be 0.01-1 mol of hydrogen peroxide per liter of organic sludge. For example, a clear solid-liquid interface is formed with an injection amount of about 0.1 mol of hydrogen peroxide per liter of organic sludge having a sludge concentration of about 15,000 mg / L (water content: about 98%). The sludge can be separated into sludge concentrated three times (sludge concentration of about 45,000 mg / L) and sludge desorbed liquid (sludge concentration of about 100 mg / L) with very little suspended matter at the bottom. Although the hydrogen peroxide injection amount may be increased, there is no tendency to increase the processing speed according to the injection amount.
In the present invention, the catalyst for promoting the decomposition reaction of hydrogen peroxide is, for example, a metal chemical such as manganese oxide, copper, antimony, tin or palladium, or a rough solid surface such as activated carbon, charcoal, bamboo charcoal, charcoal, zeolite, or high talc. Or a catalyst in which the above substances are mixed can be used. The catalyst form preferably has a wide contact area with hydrogen peroxide, and a powder, granular or massive catalyst can be used. Preferred catalysts and their forms are pure manganese oxide particles (particle size 1-5 mm) and activated carbon (particle size 1-5 mm). When these are used, the hydrogen peroxide decomposition reaction can be dramatically accelerated.
触媒の設置方法については、過酸化水素反応容器底部に均一に敷き詰めてあればよく、厚さ0.1−5cm、好ましくは厚さ1cmの触媒を底部に均一層状に敷き詰めてあればよい。均一にすることにより、処理槽底部全面から気泡が発生し、対流により上部の汚泥が崩れることなく明瞭な固液界面が形成され、汚泥を浮上固液分離させることができる。 About the installation method of a catalyst, what is necessary is just to spread | lay down uniformly on the hydrogen peroxide reaction container bottom part, and the catalyst of thickness 0.1-5cm, Preferably 1 cm of thickness should just be spread | laid on the bottom part in the uniform layer form. By making it uniform, bubbles are generated from the entire bottom surface of the processing tank, and a clear solid-liquid interface is formed without breaking the upper sludge by convection, so that the sludge can be floated and solid-liquid separated.
さらに本発明の実施において、少量の酸および/または凝集剤を添加することで、有機性汚泥中の微粒子が凝集し、固液分離後の汚泥脱離液中の懸濁物を極めて少なくできる。この場合の酸および/または凝集剤として、硫酸、塩酸、硝酸、酢酸、酢酸エチルなどの酸の他、ポリ硫酸鉄、塩化第二鉄、ポリ塩化アルミニウム、硫酸バンド、硫酸第二鉄、消石灰、酸化マグネシウム、炭酸マグネシウムなどの無機系凝集剤、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、マレイン酸共重合物などの陰イオン性有機系凝集剤、ポリエチレンイミン、水溶性アニリン樹脂、ポリチオ尿素、第4級アンモニウム塩などの陽イオン性有機系凝集剤、ポリアクリルアミド、ポリオキシエチレン、カセイ化でんぷんなどの非イオン性有機系凝集剤が使用できる。 Furthermore, in the practice of the present invention, by adding a small amount of acid and / or a flocculant, the fine particles in the organic sludge are aggregated, and the suspended matter in the sludge desorption liquid after solid-liquid separation can be extremely reduced. In this case, as acid and / or flocculant, in addition to acids such as sulfuric acid, hydrochloric acid, nitric acid, acetic acid and ethyl acetate, polyiron sulfate, ferric chloride, polyaluminum chloride, sulfate band, ferric sulfate, slaked lime, Inorganic flocculants such as magnesium oxide and magnesium carbonate, anionic organic flocculants such as sodium polyacrylate, sodium alginate and maleic acid copolymer, polyethyleneimine, water-soluble aniline resin, polythiourea, quaternary ammonium Cationic organic flocculants such as salts and nonionic organic flocculants such as polyacrylamide, polyoxyethylene, and catalyzed starch can be used.
本発明による汚泥固液分離法を一般的な活性汚泥処理フローに組み込んだ場合、有機性汚泥を本発明により固液分離後、得られた高濃度汚泥を、掻き寄せフレームや空気流によって掻き寄せ・搬送を行うことで、濃縮汚泥として回収することができる。回収された濃縮汚泥は、沈降分離により得られた汚泥に比較して、脱水、可溶化や嫌気消化などの処理を効率的に実施することができる。また、本発明による汚泥固液分離後の液相の脱離液は、懸濁物や環境負荷物質を含まないことから、排水処理系外に放流可能である。
更に、本発明による汚泥固液分離法は、特殊な装置を使用することなく、少量の有機性汚泥で再現性良く実施することができるため、実験室等において少量の汚泥を固液分離す
る際にも好適に使用できる。
When the sludge solid-liquid separation method according to the present invention is incorporated in a general activated sludge treatment flow, the organic sludge is solid-liquid separated according to the present invention, and the resulting high-concentration sludge is scraped by a scraping frame or air flow. -By carrying it, it can be collected as concentrated sludge. The recovered concentrated sludge can be more efficiently subjected to treatments such as dehydration, solubilization, and anaerobic digestion than sludge obtained by sedimentation separation. Moreover, since the liquid phase detachment liquid after the sludge solid-liquid separation according to the present invention does not contain suspensions or environmentally hazardous substances, it can be discharged out of the waste water treatment system.
Furthermore, the sludge solid-liquid separation method according to the present invention can be carried out with a small amount of organic sludge with good reproducibility without using a special apparatus. Moreover, it can be used conveniently.
以下に、過酸化水素分解触媒として酸化マンガンと活性炭を利用して、本発明による汚泥固液分離を行った実施例を示すが、本発明はこれらの例によりなんら限定されるものではない。 Hereinafter, examples in which sludge solid-liquid separation according to the present invention is performed using manganese oxide and activated carbon as a hydrogen peroxide decomposition catalyst will be described, but the present invention is not limited to these examples.
以下の実施例で使用した有機性汚泥は、いずれも汚泥濃度が13,330mg/Lのものを使用し、投入過酸化水素は三徳化学工業株式会社製30%過酸化水素を使用した。酸化マンガンはナカライテスク株式会社製(粒径1−5mm)のものを、活性炭はクラレケミカル株式会社製クラレコール(粒径1mm)を使用した。
汚泥の固液分離処理時間と、固液分離後の脱離液中の懸濁物量を評価するため脱離液濁度を測定した。固液分離処理時間の測定方法は、汚泥に過酸化水素を投入してから、目視にて上部に汚泥、下部に脱離液の状態で固液界面が明瞭に形成されたのを確認し、上部の汚泥が体積比にして、2倍および3倍に濃縮されるまでの時間とした。
汚泥脱離液の評価方法は、汚泥が上記のように目視にて汚泥界面が形成されたのを確認後、体積比にして汚泥が2倍および3倍に濃縮された時点の濁度を測定した。濁度は、透過光濁度として、石英ガラス製角形セル(光路長10mm)に脱離液試料700μL入れ、SHIMADZU社製UV−2450分光光度計にて波長660nmの吸光度を測定した。
The organic sludge used in the following examples was one having a sludge concentration of 13,330 mg / L, and the hydrogen peroxide used was 30% hydrogen peroxide manufactured by Santoku Chemical Industry Co., Ltd. Manganese oxide was manufactured by Nacalai Tesque Co., Ltd. (particle size: 1-5 mm), and activated carbon was Kuraray Coal Co., Ltd. (particle size: 1 mm).
The effluent turbidity was measured in order to evaluate the sludge solid-liquid separation treatment time and the amount of suspension in the effluent after solid-liquid separation. The method of measuring the solid-liquid separation treatment time was to confirm that a solid-liquid interface was clearly formed in the state of sludge on the upper part and sludge on the lower part after introducing hydrogen peroxide into the sludge. It was set as the time until the sludge on the upper side was concentrated 2 times and 3 times in volume ratio.
The sludge detachment liquid was evaluated by measuring the turbidity at the time when the sludge was concentrated 2 times and 3 times in volume ratio after confirming that the sludge was visually formed as described above. did. Turbidity was measured as the transmitted light turbidity by placing 700 μL of the desorbed liquid sample in a quartz glass square cell (optical path length: 10 mm) and measuring the absorbance at a wavelength of 660 nm with a UV-2450 spectrophotometer manufactured by SHIMADZU.
[実施例1]
300mLビーカーと100mLメスシリンダーを用意し、ビーカーには有機性汚泥(30℃;pH 7.02)を100mL入れた。100mLメスシリンダーには過酸化水素分解反応を促進する触媒として酸化マンガンを底部に均一に敷き詰め、触媒体積を1mLとした。上記ビーカーに30%過酸化水素水を1mL(H2O2約0.01mol)注入し、よく攪拌後、ただちにメスシリンダーに投入した。
メスシリンダーに投入後、汚泥の固液分離処理時間の測定を開始した。測定の方法として、メスシリンダーに酸化マンガン触媒を1mL含むことから、メスシリンダーの上部に浮遊した汚泥と汚泥脱離水の界面がメスシリンダーの51mLの目盛に達した時点を2倍濃縮、および界面がメスシリンダーの68mLの目盛に達した時点を3倍濃縮とみなし、それぞれに要した時間を固液分離処理時間として測定した。また、2倍および3倍濃縮時点の汚泥脱離液の濁度を測定した。
汚泥を2倍および3倍に濃縮するのに要した固液分離処理時間は、それぞれ4分30秒、12分30秒であった。さらに汚泥が2倍および3倍濃縮時点での汚泥脱離液の濁度は、それぞれ0.728、0.515であった。
[Example 1]
A 300 mL beaker and a 100 mL graduated cylinder were prepared, and 100 mL of organic sludge (30 ° C .; pH 7.02) was placed in the beaker. A 100 mL graduated cylinder was uniformly spread with manganese oxide at the bottom as a catalyst for promoting the hydrogen peroxide decomposition reaction, and the catalyst volume was set to 1 mL. 1 mL (about 0.01 mol of H 2 O 2 ) of 30% hydrogen peroxide was injected into the beaker, and after thorough stirring, was immediately put into a graduated cylinder.
After feeding into the graduated cylinder, measurement of sludge solid-liquid separation treatment time was started. As a measuring method, since 1 mL of manganese oxide catalyst is contained in the graduated cylinder, when the interface between the sludge suspended in the upper part of the graduated cylinder and the sludge desorption water reaches the 51 mL scale of the graduated cylinder, the concentration is doubled. The time when the graduated cylinder reached the 68 mL scale was regarded as 3-fold concentration, and the time required for each was measured as the solid-liquid separation processing time. Moreover, the turbidity of the sludge desorption liquid at the time of 2 times and 3 times concentration was measured.
The solid-liquid separation treatment time required to concentrate the sludge twice and three times was 4 minutes 30 seconds and 12 minutes 30 seconds, respectively. Further, the turbidity of the sludge detachment liquid at the time when the sludge was concentrated 2 times and 3 times was 0.728 and 0.515, respectively.
[実施例2]
上記実施例1と同様に、300mLビーカーに有機性汚泥を100mL入れたものを用意した。100mLメスシリンダーに過酸化水素分解触媒として活性炭を底部に均一に敷き詰め、触媒体積を1mLとした。上記ビーカーに30%過酸化水素水を1mL注入し、よく攪拌後、ただちにメスシリンダーに投入した。汚泥の固液分離処理時間の測定については実施例1の方法による。
汚泥を2倍および3倍に濃縮するのに要した固液分離処理時間は、それぞれ5分、13分45秒であった。さらに汚泥が2倍および3倍濃縮時点での汚泥脱離液の濁度は、それぞれ1.222、1.307であった。
[Example 2]
As in Example 1, a 300 mL beaker containing 100 mL of organic sludge was prepared. Activated carbon was uniformly spread on the bottom as a hydrogen peroxide decomposition catalyst in a 100 mL graduated cylinder, and the catalyst volume was 1 mL. 1 mL of 30% hydrogen peroxide solution was poured into the beaker, stirred well, and immediately put into a graduated cylinder. The sludge solid-liquid separation treatment time is measured by the method of Example 1.
The solid-liquid separation treatment time required to concentrate the sludge twice and three times was 5 minutes and 13 minutes and 45 seconds, respectively. Furthermore, the turbidity of the sludge detachment liquid at the time when the sludge was concentrated 2 times and 3 times was 1.222 and 1.307, respectively.
[比較例1]
300mLビーカーに有機性汚泥を100mL入れたものと、触媒を投入しない100mLメスシリンダーを用意した。上記ビーカーに30%過酸化水素水を1mL注入し、よく攪拌後、ただちにメスシリンダーに投入した。その結果、2倍濃縮に6分30秒、3倍濃縮に17分かかった。さらに汚泥が2倍および3倍濃縮時点での汚泥脱離液の濁度は、吸光度が非常に高かったため、希釈後補正することで、それぞれ4.032、3.377となった。
[Comparative Example 1]
A 300 mL beaker with 100 mL organic sludge and a 100 mL graduated cylinder without catalyst were prepared. 1 mL of 30% hydrogen peroxide solution was poured into the beaker, stirred well, and immediately put into a graduated cylinder. As a result, it took 6 minutes and 30 seconds to concentrate twice, and 17 minutes to concentrate three times. Further, the turbidity of the sludge desorbed liquid at the time when the sludge was concentrated 2 times and 3 times was 4.032 and 3.377 by correcting after dilution because the absorbance was very high.
[実施例3]
300mLビーカーにて初期汚泥の温度を50℃に昇温後、その他の操作は室温下で上記実施例1と同様に行い、固液分離処理時間および汚泥脱離液の濁度を測定した。その結果、汚泥を2倍および3倍に濃縮するのに要した固液分離処理時間は、それぞれ3分15秒および8分30秒であった。さらに汚泥が2倍および3倍濃縮時点での汚泥脱離液の濁度は、それぞれ0.826、0.687であった。
[Example 3]
After raising the temperature of the initial sludge to 50 ° C. in a 300 mL beaker, other operations were performed at room temperature in the same manner as in Example 1 above, and the solid-liquid separation treatment time and the turbidity of the sludge desorbed liquid were measured. As a result, the solid-liquid separation processing time required to concentrate the sludge twice and three times was 3 minutes 15 seconds and 8 minutes 30 seconds, respectively. Further, the turbidity of the sludge detachment liquid at the time when the sludge was concentrated 2 times and 3 times was 0.826 and 0.687, respectively.
[実施例4]
300mLビーカーにて初期汚泥の温度を50℃に昇温後、その他の操作は室温下で上記実施例2と同様に行い、固液分離処理時間および汚泥脱離液の濁度を測定した。その結果、汚泥を2倍および3倍に濃縮するのに要した固液分離処理時間は、それぞれ4分および10分であった。さらに汚泥が2倍および3倍濃縮時点での汚泥脱離液の濁度は、それぞれ1.655、1.971であった。
[比較例2]
300mLビーカーにて初期汚泥の温度を50℃に昇温後、その他の実験経過は室温下で上記比較例1と同様に行い、固液分離処理時間および汚泥脱離液の濁度を測定した。その結果、汚泥を2倍および3倍に濃縮するのに要した固液分離処理時間は、それぞれ5分および11分であった。さらに汚泥が2倍および3倍濃縮時点での汚泥脱離液の濁度は、それぞれ6.322、4.789であった。
[Example 4]
After raising the temperature of the initial sludge to 50 ° C. in a 300 mL beaker, other operations were performed at room temperature in the same manner as in Example 2 above, and the solid-liquid separation treatment time and the turbidity of the sludge desorbed liquid were measured. As a result, the solid-liquid separation treatment time required to concentrate the sludge twice and three times was 4 minutes and 10 minutes, respectively. Furthermore, the turbidity of the sludge detachment liquid at the time when the sludge was concentrated 2 times and 3 times was 1.655 and 1.971, respectively.
[Comparative Example 2]
After the temperature of the initial sludge was raised to 50 ° C. in a 300 mL beaker, the other experimental progress was performed at room temperature in the same manner as in Comparative Example 1 above, and the solid-liquid separation processing time and the turbidity of the sludge desorbed liquid were measured. As a result, the solid-liquid separation treatment time required to concentrate the sludge twice and three times was 5 minutes and 11 minutes, respectively. Furthermore, the turbidity of the sludge desorbed liquid at the time when the sludge was concentrated 2 times and 3 times was 6.322 and 4.789, respectively.
上記実施例および比較例の固液分離処理時間および汚泥脱離液の濁度の測定値を、それぞれ図1および図2に示す。
図1について、触媒を使用することで、固液分離処理時間が飛躍的に短縮されることは明らかである。さらに汚泥を昇温後、触媒を利用して固液分離させることで、相乗的に処理時間を短縮できることが示された。
The measured values of the solid-liquid separation treatment time and the turbidity of the sludge detachment liquid in the above examples and comparative examples are shown in FIGS. 1 and 2, respectively.
About FIG. 1, it is clear that the solid-liquid separation processing time is drastically shortened by using the catalyst. Furthermore, it was shown that the treatment time can be synergistically shortened by raising the temperature of the sludge and then separating the solid and liquid using a catalyst.
図2から、汚泥が2倍および3倍濃縮時点でのそれぞれの汚泥脱離液の濁度は、触媒を利用した方が極めて低い値を示す。すなわち、触媒の使用によって、汚泥脱離液中に懸濁物をほとんど含まない高水質処理水を得られることが示された。図示されていないが、気泡の発生が終了した時点でも、汚泥脱離液の濁度は触媒を利用したほうが低い結果となった。 From FIG. 2, the turbidity of each sludge desorption liquid at the time when the sludge is concentrated 2 times and 3 times shows a very low value when the catalyst is used. That is, it was shown that high-quality treated water containing almost no suspension in the sludge desorption liquid can be obtained by using the catalyst. Although not shown, even when the generation of bubbles was finished, the turbidity of the sludge desorption liquid was lower when the catalyst was used.
比較例2は、汚泥を昇温後、触媒なしで固液分離させた結果で、比較例1より固液分離処理時間の短縮がみられる。一方、比較例2の脱離液中の濁度は、非常に高い値となったことから、昇温のみで処理時間の短縮は可能であるが、懸濁物を含まない高水質な処理水は得られない。 Comparative Example 2 is a result of solid-liquid separation without a catalyst after raising the temperature of the sludge, and the solid-liquid separation processing time is shortened compared to Comparative Example 1. On the other hand, since the turbidity in the desorbed liquid of Comparative Example 2 was a very high value, the treatment time can be shortened only by raising the temperature, but high-quality treated water that does not contain suspensions. Cannot be obtained.
[試用試験]
有機性汚泥(汚泥濃度約15,000mg/L)について、10L、100Lで本発明による固液分離を行った。その結果、触媒なしでは明瞭な汚泥固液界面が形成されず十分に固液分離できなかったが、触媒、特に酸化マンガンおよび活性炭を反応容器底部に均一に敷いて固液分離させることで、明瞭な固液界面が形成され、約3倍に濃縮された汚泥と、懸濁物が極めて少ない良好な水質の汚泥脱離液が得られた。
[Trial test]
For organic sludge (sludge concentration of about 15,000 mg / L), solid-liquid separation according to the present invention was performed at 10 L and 100 L. As a result, a clear sludge solid-liquid interface was not formed without a catalyst, and sufficient solid-liquid separation could not be achieved.However, by separating the catalyst, especially manganese oxide and activated carbon, evenly on the bottom of the reaction vessel, solid-liquid separation was achieved. As a result, a sludge concentrated to about three times and a sludge desorbed liquid having a good water quality with very few suspensions were obtained.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006270157A JP2008086897A (en) | 2006-09-30 | 2006-09-30 | Solid-liquid separation method of sludge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006270157A JP2008086897A (en) | 2006-09-30 | 2006-09-30 | Solid-liquid separation method of sludge |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008086897A true JP2008086897A (en) | 2008-04-17 |
Family
ID=39371608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006270157A Pending JP2008086897A (en) | 2006-09-30 | 2006-09-30 | Solid-liquid separation method of sludge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008086897A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017020073A (en) * | 2015-07-10 | 2017-01-26 | Jfeスチール株式会社 | Method for producing iron source raw material using oil-containing dust sludge, and processing method for oil-containing dust sludge |
JP2021188834A (en) * | 2020-05-29 | 2021-12-13 | 信六 西山 | Air cleaner |
-
2006
- 2006-09-30 JP JP2006270157A patent/JP2008086897A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017020073A (en) * | 2015-07-10 | 2017-01-26 | Jfeスチール株式会社 | Method for producing iron source raw material using oil-containing dust sludge, and processing method for oil-containing dust sludge |
JP2021188834A (en) * | 2020-05-29 | 2021-12-13 | 信六 西山 | Air cleaner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100301754B1 (en) | How to Treat Highly Colored Wastewater | |
TWI379810B (en) | ||
TWI516454B (en) | Treatment for molasses spent wash and other wastewaters | |
WO2017161640A1 (en) | Method for treating and recycling organic wastewater and apparatus | |
CN100494098C (en) | Fenton and air-float integral water treating method | |
IN2014DN08961A (en) | ||
Xing et al. | Treatment of antibiotic fermentation‐based pharmaceutical wastewater using anaerobic and aerobic moving bed biofilm reactors combined with ozone/hydrogen peroxide process | |
CN105016589B (en) | A kind of method of iron cement recycling | |
CN102139995A (en) | Treatment method of high-chroma chemical waste water | |
JP4625508B2 (en) | Nitrate waste liquid treatment method and apparatus | |
US10059610B2 (en) | Reduction of the amount of sulphur compounds in a sulphur compounds contaminated wastewater stream using a granular sludge treatment system | |
TW524778B (en) | Waste water treatment method and waste water treatment apparatus | |
CN101781064A (en) | Process for advanced treatment of gas wastewater | |
WO2009099208A1 (en) | Method and apparatus for treating radioactive nitrate waste liquid | |
JP2008086862A (en) | Anaerobic treatment method and arrangement | |
JP4655974B2 (en) | Waste water treatment method and treatment apparatus | |
JP2010227876A (en) | Composite treatment method for wastewater and organic residue | |
JP2008086897A (en) | Solid-liquid separation method of sludge | |
CN100572296C (en) | A kind of method of yeast wastewater advanced treatment | |
CN104163518B (en) | A kind of processing method of cyanide wastewater of printing and dyeing | |
CN105692800B (en) | A kind of wastewater treatment equipment and method | |
CN106045124B (en) | A method of residual organic matter in removal bio-reaction system water outlet | |
JP2005224686A (en) | Arsenic removal method | |
JP2005185967A (en) | Treatment method and treatment apparatus for organic waste water | |
JP2004074088A (en) | Treatment method for waste liquid containing chemical polishing liquid |