JP2008085155A - Chiller for superconductive device - Google Patents

Chiller for superconductive device Download PDF

Info

Publication number
JP2008085155A
JP2008085155A JP2006264827A JP2006264827A JP2008085155A JP 2008085155 A JP2008085155 A JP 2008085155A JP 2006264827 A JP2006264827 A JP 2006264827A JP 2006264827 A JP2006264827 A JP 2006264827A JP 2008085155 A JP2008085155 A JP 2008085155A
Authority
JP
Japan
Prior art keywords
cooling
substrate
superconducting
thermal conductivity
fixing surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006264827A
Other languages
Japanese (ja)
Inventor
Tatsuoki Nagaishi
竜起 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric System Solutions Co Ltd
Original Assignee
Sumitomo Electric System Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric System Solutions Co Ltd filed Critical Sumitomo Electric System Solutions Co Ltd
Priority to JP2006264827A priority Critical patent/JP2008085155A/en
Publication of JP2008085155A publication Critical patent/JP2008085155A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chiller for a superconductive device that keeps high cooling efficiency even if a material with low thermal conductivity such as glass epoxy resin and the like is used for a substrate. <P>SOLUTION: The chiller for the superconductive device 4 is provided with a substrate 1 for fixing the superconductive device 4. The substrate 1 has a device fixing surface 1a and a device cooling surface 1b on the opposite side of the device fixing surface, and cools the substrate 1 through the device cooling surface 1b, thereby transferring the superconductive device 4 to a superconductive state wherein the substrate 1 has a hole 2 open to the device cooling surface 1b. It is desirable that the hole 2 be formed so that the device fixing surface 1a side closes through a highly heat-conductive material 3a. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガラスエポキシ樹脂などの熱伝導性が低い材料を基板材料として用いた冷却装置であって、冷却能力に優れた超電導デバイスの冷却装置に関する。   The present invention relates to a cooling apparatus using a material having low thermal conductivity such as glass epoxy resin as a substrate material, and relates to a cooling apparatus for a superconducting device having excellent cooling ability.

超電導デバイスは、半導体デバイスと同様に、外部端子との電気接続を行なうため、ワイヤーボンディングを行なう。また、超電導デバイスは、外部からの機械的な圧力により容易に破壊され、特に高温超電導デバイスは、水分により劣化が生じるため、封止して使用される。封止材料は、超電導状態を実現する超低温で変形することがなく、極低温と室温との間での昇温と降温に伴なう熱履歴により劣化が生じないことが必要であり、このような観点から、封止材料には、ガラスエポキシ樹脂またはセラミックスなどの非磁性材料が一般に使用されている。   The superconducting device performs wire bonding in order to make an electrical connection with an external terminal, similarly to the semiconductor device. In addition, the superconducting device is easily broken by an external mechanical pressure, and the high-temperature superconducting device is deteriorated by moisture, and is used by being sealed. The sealing material must not be deformed at an ultra-low temperature that achieves a superconducting state, and must not be deteriorated due to the thermal history accompanying the temperature rise and fall between the cryogenic temperature and the room temperature. From such a viewpoint, a nonmagnetic material such as glass epoxy resin or ceramic is generally used as the sealing material.

セラミックスは、熱伝導性が良好である点で、超電導デバイスの封止材料として好ましいが、反面、高価であり、加工性が劣る点で、汎用的に使用するのには難点がある。一方、ガラスエポキシ樹脂は、プリント基板材料として多用されており、コスト面および加工面において優れているが、熱伝導性がセラミックスと比べて1桁劣るため、超電導デバイスの封止材料として不利である。したがって、ガラスエポキシ樹脂などの低熱伝導性材料を超電導デバイスの封止材料として使用するに当っては、適切な冷却装置が必要である。   Ceramics are preferable as a sealing material for a superconducting device because they have good thermal conductivity, but they are expensive and have poor workability, so that they are difficult to use for general purposes. On the other hand, glass epoxy resins are widely used as printed circuit board materials, and are excellent in cost and processing, but they are disadvantageous as sealing materials for superconducting devices because their thermal conductivity is inferior by one digit compared to ceramics. . Therefore, when using a low thermal conductivity material such as glass epoxy resin as a sealing material for a superconducting device, an appropriate cooling device is required.

半導体デバイスに従来より使用されている冷却装置を図2に例示する(特許文献1参照)。図2(a)には、ファン26で半導体デバイス27に風を当てることにより冷却する装置が示されている。図2(b)には、ヒートシンク28を半導体デバイス27に装着した装置が示されている。また、図2(c)には、冷却能力を増大させるため、半導体デバイス27にヒートシンク28を装着し、ファン26を組み合わせた冷却装置が示されている。この冷却装置は、冷却能力は大きいが、装置が大きくなるという欠点がある。図2(d)には、半導体デバイス27にヒートパイプ29を装着して誘導冷却する強制冷却装置が示されている。この装置は、ヒートパイプ29の内壁に軸方向に沿って溝を形成し、その溝に沿って毛細管現象により液体を移動させ、気化させることにより、半導体デバイス27の熱を奪い、パイプ中を移動してきた気体を冷やすことにより熱を放出し、液体に戻すものであるが、構造が複雑で、高価になるという欠点がある。また、動作にも限界があり、発熱が異常に大きくなった場合には毛細管内の液体が乾燥し、冷却能力が低下する。
特開平10−184566号公報
FIG. 2 illustrates a cooling device conventionally used for semiconductor devices (see Patent Document 1). FIG. 2A shows an apparatus that cools a semiconductor device 27 by blowing air with a fan 26. FIG. 2B shows an apparatus in which the heat sink 28 is attached to the semiconductor device 27. FIG. 2C shows a cooling device in which a heat sink 28 is attached to the semiconductor device 27 and the fan 26 is combined to increase the cooling capacity. Although this cooling device has a large cooling capacity, there is a drawback that the device becomes large. FIG. 2D shows a forced cooling device that performs induction cooling by attaching a heat pipe 29 to the semiconductor device 27. In this apparatus, a groove is formed along the axial direction on the inner wall of the heat pipe 29, and the liquid is moved and vaporized along the groove by capillary action, thereby depriving the semiconductor device 27 of heat and moving in the pipe. Heat is released by cooling the generated gas and returned to the liquid, but there is a disadvantage that the structure is complicated and expensive. Also, there is a limit to the operation, and when the heat generation becomes abnormally large, the liquid in the capillary tube is dried and the cooling capacity is reduced.
Japanese Patent Laid-Open No. 10-184666

ガラスエポキシ樹脂などの熱伝導性の低い材料を基板に使用しても、冷却効率が高い超電導デバイスの冷却装置を提供することを課題とする。   It is an object of the present invention to provide a cooling device for a superconducting device having high cooling efficiency even when a material having low thermal conductivity such as glass epoxy resin is used for a substrate.

超電導デバイスを固定する基板を備え、基板は、超電導デバイスを固定するデバイス固定面と、デバイス固定面の反対側にデバイス冷却面とを有し、デバイス冷却面を通して基板を冷却することにより超電導デバイスを超電導状態に転移させる超電導デバイスの冷却装置であって、基板は、デバイス冷却面に開口する空孔部を有する。空孔部は、デバイス固定面側が高熱伝導度材料により閉口する態様が好ましい。   The substrate includes a substrate for fixing the superconducting device, and the substrate has a device fixing surface for fixing the superconducting device and a device cooling surface on the opposite side of the device fixing surface. The substrate is cooled by cooling the substrate through the device cooling surface. A cooling apparatus for a superconducting device for transitioning to a superconducting state, wherein the substrate has a hole that opens in the device cooling surface. The air hole is preferably closed at the device fixing surface side with a high thermal conductivity material.

かかる冷却装置においては、基板の空孔部に高熱伝導度材料を埋設した態様が好ましい。また、基板が、超電導デバイスを封止する蓋をデバイス固定面上に備える態様が好適である。基板として、ガラスエポキシ樹脂製基板を使用することができ、基板を、液体窒素もしくは液体ヘリウムにより冷却し、または冷凍機の冷却ヘッドにより冷却する態様が好ましい。一方、超電導デバイスとして、たとえば、超電導量子干渉素子の冷却に使用することができる。   In such a cooling device, a mode in which a high thermal conductivity material is embedded in the hole portion of the substrate is preferable. Moreover, the aspect in which a board | substrate equips a device fixing surface with the lid | cover which seals a superconducting device is suitable. A glass epoxy resin substrate can be used as the substrate, and the substrate is preferably cooled by liquid nitrogen or liquid helium or cooled by a cooling head of a refrigerator. On the other hand, the superconducting device can be used, for example, for cooling a superconducting quantum interference device.

冷却装置用の基板および封止材料の熱伝導性を改善し、冷却効率の高い冷却装置を提供することができるため、冷却装置用の基板などにガラスエポキシ樹脂を使用することができる。ガラスエポキシ樹脂は、超電導状態における極低温でも変形がなく、極低温と室温との間での熱履歴による劣化がなく、加工性が良好であり、安価である。本発明の冷却装置は、冷却能力が高いため、基板などの材料としてガラスエポキシ樹脂を使用することができ、加工性および低コストなどのガラスエポキシ樹脂が有する有利な特性を得ることができる。   Since the thermal conductivity of the substrate for the cooling device and the sealing material can be improved and a cooling device with high cooling efficiency can be provided, a glass epoxy resin can be used for the substrate for the cooling device. The glass epoxy resin is not deformed even at an extremely low temperature in the superconducting state, is not deteriorated due to a thermal history between the extremely low temperature and the room temperature, has good workability, and is inexpensive. Since the cooling device of the present invention has a high cooling capacity, a glass epoxy resin can be used as a material for a substrate or the like, and advantageous properties of the glass epoxy resin such as workability and low cost can be obtained.

本発明の超電導デバイスの冷却装置は、図1に示すように、超電導デバイス4を固定する基板1を備え、基板1は、超電導デバイス4を固定するデバイス固定面1aと、デバイス固定面1aの反対側にデバイス冷却面1bを有する。基板1と超電導デバイス4は、たとえば、図1に示す例では、接着剤8により固定してある。基板1は、デバイス冷却面1bに開口する空孔部2を有する。空孔部2は、デバイス固定面1a側が高熱伝導度材料3aにより閉口されている態様が好ましい。   As shown in FIG. 1, the superconducting device cooling apparatus of the present invention includes a substrate 1 for fixing the superconducting device 4, and the substrate 1 is opposite to the device fixing surface 1a for fixing the superconducting device 4 and the device fixing surface 1a. A device cooling surface 1b is provided on the side. For example, in the example shown in FIG. 1, the substrate 1 and the superconducting device 4 are fixed by an adhesive 8. The board | substrate 1 has the void | hole part 2 opened to the device cooling surface 1b. The air hole 2 is preferably in a mode in which the device fixing surface 1a side is closed by the high thermal conductivity material 3a.

したがって、基板1として熱伝導性が低いガラスエポキシ樹脂製基板を使用する場合でも、デバイス冷却面1b側から、液体窒素または液体ヘリウムを用いて冷却すると、空孔部2により超電導デバイス4を効率よく冷却できる。また、基板のデバイス冷却面1bに冷凍機の冷却ヘッドを当接して冷却する場合、空孔部2を高熱伝導度材料で埋め尽くすことにより、高熱伝導度材料を直接、冷却ヘッドに接触させることができるので、超電導デバイス4の熱量の移動を促進し、冷却効率を高めることができる。ガラスエポキシ樹脂は、超電導状態を実現する極低温でも変形することがなく、極低温と室温との間の熱履歴による劣化がない非磁性材料であり、セラミックス材料に比べ、安価で加工性に優れている。本発明の冷却装置は、優れた冷却効果を有するため、ガラスエポキシ樹脂製基板を使用することができ、ガラスエポキシ樹脂が有する上記の優れた利点を生かすことができる。   Therefore, even when a glass epoxy resin substrate having low thermal conductivity is used as the substrate 1, the superconducting device 4 can be efficiently formed by the holes 2 when cooled using liquid nitrogen or liquid helium from the device cooling surface 1 b side. Can be cooled. When the cooling head of the refrigerator is brought into contact with the device cooling surface 1b of the substrate for cooling, the high thermal conductivity material is brought into direct contact with the cooling head by filling the air holes 2 with the high thermal conductivity material. Therefore, the movement of the heat quantity of the superconducting device 4 can be promoted, and the cooling efficiency can be increased. Glass epoxy resin is a non-magnetic material that does not deform even at extremely low temperatures to achieve a superconducting state and does not deteriorate due to thermal history between extremely low temperatures and room temperature. It is cheaper and has better workability than ceramic materials. ing. Since the cooling device of the present invention has an excellent cooling effect, a glass epoxy resin substrate can be used, and the above-described excellent advantages of the glass epoxy resin can be utilized.

超電導デバイスとしては、たとえば、超電導量子干渉素子(superconducting quantum interference device;以下、「SQUID」ともいう。)の冷却に使用することができ、高温型SQUIDと低温型SQUIDの双方に使用できる。また、空孔部のデバイス固定面側は、高熱伝導度材料により閉口するが、高熱伝導度材料としては、たとえば、Pb−Snなどからなる通常のハンダを使用することができる。また、超電導状態を実現する77°K以下の極温度で高い熱伝導性を示すAg、Al、Cuが好適である。   As the superconducting device, for example, it can be used for cooling a superconducting quantum interference device (hereinafter also referred to as “SQUID”), and it can be used for both high temperature type SQUID and low temperature type SQUID. Further, the device fixing surface side of the hole portion is closed with a high thermal conductivity material, and as the high thermal conductivity material, for example, normal solder made of Pb—Sn or the like can be used. In addition, Ag, Al, and Cu that exhibit high thermal conductivity at an extreme temperature of 77 ° K or less that realizes a superconducting state are preferable.

また、空孔部のデバイス固定面側が、高熱伝導度材料により閉口する態様は、超電導デバイスと基板とを、低熱伝導度の接着材で接着した場合でも、接着材が空孔部を埋めて冷却効率を低下させない点で好ましい。また、基板の空孔部に高熱伝導度材料を埋設した態様が好ましく、かかる態様は、冷凍機の冷却ヘッドをデバイス冷却面に当接して冷却するとき、デバイスの直接的な冷却が可能となり、冷却効率を高めることができる。   In addition, the device fixing surface side of the hole portion is closed by the high thermal conductivity material. Even when the superconducting device and the substrate are bonded with a low thermal conductivity adhesive, the adhesive fills the hole portion and cools. This is preferable in that the efficiency is not lowered. Further, a mode in which a high thermal conductivity material is embedded in the hole portion of the substrate is preferable, and this mode enables direct cooling of the device when the cooling head of the refrigerator is cooled against the device cooling surface, Cooling efficiency can be increased.

超電導デバイスは、機械的な外力により容易に破壊され、特に、高温超電導デバイスは、水分により劣化する傾向にある。したがって、超電導デバイスの冷却装置は、図1に示すように、基板1が、超電導デバイス4を封止する蓋9をデバイス固定面1a上に備える態様が好ましい。超電導デバイス4と基板1とは、金線7などを使用して、ワイヤボンディングされ、基板1からは、ハンダ付けされた信号線5が取り出され、外部に接続される。   Superconducting devices are easily broken by mechanical external forces, and in particular, high-temperature superconducting devices tend to deteriorate due to moisture. Therefore, as for the cooling device of a superconducting device, as shown in FIG. 1, the aspect in which the board | substrate 1 equips the device fixing surface 1a with the lid | cover 9 which seals the superconducting device 4 is preferable. The superconducting device 4 and the substrate 1 are wire-bonded using a gold wire 7 or the like, and the soldered signal line 5 is taken out from the substrate 1 and connected to the outside.

(実施例1)
本実施例における超電導デバイスの冷却装置の構造を図3に示す。図3(a)に示すように、厚さ1mmのガラスエポキシ樹脂製のプリント基板31にビアホール32を形成した。ビアホール32は、プリント基板31の10mm×10mm四方に、11個×11個の比率で形成し、1個のビアホールは、内径0.3mmとした。ビアホール32の形成後、各ビアホールにPb−Sn製の溶融ハンダを流し込み、ビアホール32のデバイス固定面側をハンダにより閉口した後、さらにハンダを加えて、各ビアホールにハンダ33を埋設した。
(Example 1)
The structure of the cooling device for the superconducting device in this embodiment is shown in FIG. As shown in FIG. 3A, a via hole 32 was formed in a printed board 31 made of glass epoxy resin having a thickness of 1 mm. The via holes 32 were formed in a 10 mm × 10 mm square of the printed circuit board 31 at a ratio of 11 × 11, and one via hole had an inner diameter of 0.3 mm. After the via holes 32 were formed, molten solder made of Pb—Sn was poured into each via hole, and the device fixing surface side of the via hole 32 was closed with solder, and further solder was added, and solder 33 was embedded in each via hole.

つぎに、プリント基板のデバイス固定面に、10mm×10mm角のSQUID34を樹脂接着剤により接着し、プリント基板31とSQUID34とを金線37によりワイヤーボンディングした。また、プリント基板31から、ハンダ付けされた信号線35を取り出し、外部と接続した。つぎに、SQUID34を固定したプリント基板31のデバイス冷却面を冷凍機の冷却ヘッド36上に樹脂接着剤により接着し、デバイス冷却面を通して基板31を冷却することにより、SQUID34を超電導状態に転移させた。   Next, a SQUID 34 of 10 mm × 10 mm square was bonded to the device fixing surface of the printed board with a resin adhesive, and the printed board 31 and the SQUID 34 were wire-bonded with a gold wire 37. Also, the soldered signal line 35 was taken out from the printed circuit board 31 and connected to the outside. Next, the device cooling surface of the printed circuit board 31 to which the SQUID 34 is fixed is bonded to the cooling head 36 of the refrigerator with a resin adhesive, and the substrate 31 is cooled through the device cooling surface, so that the SQUID 34 is transferred to the superconducting state. .

本実施例の態様と異なり、空孔部を形成していない同様の厚さのガラスエポキシ樹脂製のプリント基板を用い、冷凍機により従来のように冷却した場合、室温から77°Kにまで冷却するのに、5Wの冷凍機を使用して2時間を要していた。これに対して、本実施例の冷却装置を使用した場合、冷却時間が1時間に短縮し、効率的に冷却することができた。   Unlike the embodiment of this example, when using a printed circuit board made of glass epoxy resin having the same thickness with no pores and cooled by a refrigerator as before, it is cooled from room temperature to 77 ° K. It took 2 hours using a 5 W refrigerator. On the other hand, when the cooling device of this example was used, the cooling time was shortened to 1 hour, and the cooling could be performed efficiently.

(実施例2)
本実施例では、まず、図3(b)に示すように、厚さ1mmのガラスエポキシ樹脂製のプリント基板31にビアホール32を形成した。ビアホール32は、プリント基板31の5mm×5mm四方に、6個×6個の比率で形成し、1個のビアホールは、内径0.3mmとした。ビアホール32の形成後、各ビアホールにおけるデバイス固定面側をPb−Sn製の溶融ハンダにより、薄くハンダを溶触させるように閉口した結果、デバイス冷却面に開口する空孔部が得られた。
(Example 2)
In this embodiment, first, as shown in FIG. 3B, via holes 32 were formed in a printed board 31 made of glass epoxy resin having a thickness of 1 mm. The via holes 32 were formed in a ratio of 6 × 6 on a 5 mm × 5 mm square of the printed circuit board 31, and one via hole had an inner diameter of 0.3 mm. After the via hole 32 was formed, the device fixing surface side of each via hole was closed with Pb—Sn melting solder so that the solder was thinly welded. As a result, a hole portion opened to the device cooling surface was obtained.

つぎに、プリント基板のデバイス固定面に、10mm×10mm角のSQUID34を樹脂接着剤により接着し、プリント基板31とSQUID34とを金線37によりワイヤーボンディングした。また、外部と電気的に接続するため、ビアホールにピン38をハンダ付けし、SQUID34を封止するためにデバイス固定面上にガラスエポキシ樹脂製の蓋39を形成した。その後、プリント基板31のデバイス冷却面を液体窒素により冷却し、基板31を冷却することによりSQUID34を超電導状態に転移させた。   Next, a SQUID 34 of 10 mm × 10 mm square was bonded to the device fixing surface of the printed board with a resin adhesive, and the printed board 31 and the SQUID 34 were wire-bonded with a gold wire 37. Further, a pin 38 was soldered to the via hole for electrical connection with the outside, and a lid 39 made of glass epoxy resin was formed on the device fixing surface to seal the SQUID 34. Then, the device cooling surface of the printed circuit board 31 was cooled with liquid nitrogen, and the SQUID 34 was transferred to the superconducting state by cooling the circuit board 31.

本実施例の態様と異なり、空孔部を形成していない同様の厚さのガラスエポキシ樹脂製プリント基板を用いて従来のように液体窒素で冷却した場合、室温から77°Kまで冷却するのに、2分30秒を要していた。これに対して、本実施例の冷却装置を使用した場合、液体窒素がビアホール内に侵入し、効率的に冷却するため、冷却時間を1分間に短縮することができた。   Unlike the embodiment of this example, when cooling with liquid nitrogen using a glass epoxy resin printed circuit board having the same thickness with no pores as in the prior art, it is cooled from room temperature to 77 ° K. It took 2 minutes and 30 seconds. On the other hand, when the cooling device of this example was used, liquid nitrogen penetrated into the via hole and efficiently cooled, so the cooling time could be shortened to 1 minute.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

冷却装置の基板や封止材料として、ガラスエポキシ樹脂を使用することができる。また、冷却効率の高い超電導デバイスの冷却装置を提供することができる。   Glass epoxy resin can be used as a substrate or a sealing material for the cooling device. In addition, a cooling device for a superconducting device with high cooling efficiency can be provided.

本発明の超電導デバイスの冷却装置の基本構造を示す図である。It is a figure which shows the basic structure of the cooling device of the superconducting device of this invention. 半導体デバイスに従来より使用されている冷却装置を示す図である。It is a figure which shows the cooling device conventionally used for the semiconductor device. 本発明の実施例における超電導デバイスの冷却装置の構造を示す図である。It is a figure which shows the structure of the cooling device of the superconducting device in the Example of this invention.

符号の説明Explanation of symbols

1 基板、1a デバイス固定面、1b デバイス冷却面、2 空孔部、3a 高熱伝導度材料、4 超電導デバイス、5 信号線、7 金線、9 蓋。   1 substrate, 1a device fixing surface, 1b device cooling surface, 2 holes, 3a high thermal conductivity material, 4 superconducting device, 5 signal line, 7 gold wire, 9 lid.

Claims (7)

超電導デバイスを固定する基板を備え、該基板は、超電導デバイスを固定するデバイス固定面と、デバイス固定面の反対側にデバイス冷却面を有し、デバイス冷却面を通して基板を冷却することにより超電導デバイスを超電導状態に転移させる超電導デバイスの冷却装置であって、
前記基板は、デバイス冷却面に開口する空孔部を有することを特徴とする超電導デバイスの冷却装置。
A substrate for fixing the superconducting device is provided. The substrate has a device fixing surface for fixing the superconducting device, a device cooling surface opposite to the device fixing surface, and the substrate is cooled by cooling the substrate through the device cooling surface. A cooling device for a superconducting device for transition to a superconducting state,
The superconducting device cooling apparatus according to claim 1, wherein the substrate has a hole opening in a device cooling surface.
前記基板の空孔部は、デバイス固定面側が高熱伝導度材料により閉口する請求項1に記載の超電導デバイスの冷却装置。   The cooling device for a superconducting device according to claim 1, wherein the hole portion of the substrate is closed by a high thermal conductivity material on a device fixing surface side. 前記基板の空孔部に高熱伝導度材料を埋設した請求項1または2に記載の超電導デバイスの冷却装置。   The cooling device for a superconducting device according to claim 1, wherein a high thermal conductivity material is embedded in a hole portion of the substrate. 前記基板は、超電導デバイスを封止する蓋をデバイス固定面上に備える請求項1〜3のいずれかに記載の超電導デバイスの冷却装置。   The said board | substrate is provided with the cover which seals a superconducting device on a device fixing surface, The cooling device of the superconducting device in any one of Claims 1-3. 前記基板は、ガラスエポキシ樹脂製基板である請求項1〜4のいずれかに記載の超電導デバイスの冷却装置。   The said board | substrate is a board | substrate made from a glass epoxy resin, The cooling device of the superconducting device in any one of Claims 1-4. 前記基板は、液体窒素もしくは液体ヘリウムにより冷却され、または冷凍機の冷却ヘッドにより冷却される請求項1〜5のいずれかに記載の超電導デバイスの冷却装置。   The cooling device for a superconducting device according to claim 1, wherein the substrate is cooled by liquid nitrogen or liquid helium, or cooled by a cooling head of a refrigerator. 前記超電導デバイスは、超電導量子干渉素子である請求項1〜6のいずれかに記載の超電導デバイスの冷却装置。   The said superconducting device is a superconducting quantum interference element, The cooling device of the superconducting device in any one of Claims 1-6.
JP2006264827A 2006-09-28 2006-09-28 Chiller for superconductive device Withdrawn JP2008085155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264827A JP2008085155A (en) 2006-09-28 2006-09-28 Chiller for superconductive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264827A JP2008085155A (en) 2006-09-28 2006-09-28 Chiller for superconductive device

Publications (1)

Publication Number Publication Date
JP2008085155A true JP2008085155A (en) 2008-04-10

Family

ID=39355681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264827A Withdrawn JP2008085155A (en) 2006-09-28 2006-09-28 Chiller for superconductive device

Country Status (1)

Country Link
JP (1) JP2008085155A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164749A (en) * 2017-09-29 2020-05-15 国际商业机器公司 Under bump metallization structure comprising superconducting material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164749A (en) * 2017-09-29 2020-05-15 国际商业机器公司 Under bump metallization structure comprising superconducting material
JP2020535641A (en) * 2017-09-29 2020-12-03 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation How to form a structure containing an under-bump metallization structure, a system containing a device, and a device
CN111164749B (en) * 2017-09-29 2024-03-26 国际商业机器公司 Underbump metallization structure comprising superconducting material

Similar Documents

Publication Publication Date Title
CN104160523B (en) Mechanical superconducting switch
US8637980B1 (en) Adhesive applications using alkali silicate glass for electronics
US7301232B2 (en) Integrated circuit package with carbon nanotube array heat conductor
TWI308373B (en) Joining structure between ceramic substrate and power supply connector
US8384212B2 (en) Semiconductor equipment and method of manufacturing the same
JP2003193114A (en) Heat pipe and its manufacturing method
KR20070115766A (en) Electronic device and method of manufacturing electronic device
JP2008042041A (en) Semiconductor device
JP2008085155A (en) Chiller for superconductive device
JP2002237556A (en) Power semiconductor device
CN105047615B (en) The encapsulating structure and packaging method of MEMS sensor
JP4860695B2 (en) Semiconductor package
JP3509092B2 (en) Superconductor cooling device
JP2004152905A (en) Cooling element and heating element device using it
JP2008124390A (en) Semiconductor device
JP3648021B2 (en) Hermetic terminal and method for forming the same
CN107221566A (en) A kind of infrared detector chip stress discharge mechanism
Yan et al. Double-sided joining IGBT devices by pressureless sintering of nanosilver paste
CN209150122U (en) The refrigeration fixed structure and its refrigerating plant of thermally conductive equilibrium for TO encapsulation APD pipe
JP4337253B2 (en) Superconducting current lead
CN213546300U (en) Water-cooled airtight glass-metal sealing structure
CN101335250A (en) Wiring construction between low temperature cold platform and room temperature outer housing and method
JP2005079386A (en) Power semiconductor application apparatus
JP4851287B2 (en) Airtight terminals for semiconductor devices
US20040046249A1 (en) Electronic package with thermally-enhanced lid

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201