JP2008085135A - Mounting structure body, electrooptical device, and electronic apparatus - Google Patents

Mounting structure body, electrooptical device, and electronic apparatus Download PDF

Info

Publication number
JP2008085135A
JP2008085135A JP2006264489A JP2006264489A JP2008085135A JP 2008085135 A JP2008085135 A JP 2008085135A JP 2006264489 A JP2006264489 A JP 2006264489A JP 2006264489 A JP2006264489 A JP 2006264489A JP 2008085135 A JP2008085135 A JP 2008085135A
Authority
JP
Japan
Prior art keywords
opposite side
mounting
resin member
flow path
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006264489A
Other languages
Japanese (ja)
Inventor
Kazuaki Furuichi
一昭 古市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epson Imaging Devices Corp
Original Assignee
Epson Imaging Devices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epson Imaging Devices Corp filed Critical Epson Imaging Devices Corp
Priority to JP2006264489A priority Critical patent/JP2008085135A/en
Publication of JP2008085135A publication Critical patent/JP2008085135A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mounting structure body capable of restricting the enlargement of a resin member toward a circumference and securing electric reliability even in high-density mounting of an electronic component, and to provide an electrooptical device using the mounting structure body, and an electronic apparatus using the electrooptical device. <P>SOLUTION: A flexible substrate 3 includes through-holes 32 as flow passages for the resin member 31, which are arranged at the outer side of the mounting region C of an IC26 for a power source and attains communication from a mounting side surface 23a to the opposite side surface 23b. The through-holes 32 respectively include storage parts 33 for the resin member 31, which are arranged at the opposite side of the mounting side surface 23a and have a diameter larger than that of a mounting side inner diameter D. Consequently, the resin member 31 flowing out from the mounting region C is guided to the opposite side with the use of the through-holes 32 for storage. A liquid crystal device 1 is constituted to sufficiently store the resin member 31 and prevent it from flowing into the external side of the mounting region C so that the electronic component, etc., can be mounted with high-density. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、パーソナルコンピュータや携帯電話機に用いられる実装構造体、その実装構造体を用いた電気光学装置及びその電気光学装置を用いた電子機器に関する。   The present invention relates to a mounting structure used for a personal computer or a mobile phone, an electro-optical device using the mounting structure, and an electronic apparatus using the electro-optical device.

従来、パーソナルコンピュータや携帯電話機等の電子機器の表示装置として液晶装置等の電気光学装置があり、その液晶装置等に半導体ICチップが例えばフリップチップの実装方式により実装されている。   Conventionally, there is an electro-optical device such as a liquid crystal device as a display device of an electronic device such as a personal computer or a cellular phone, and a semiconductor IC chip is mounted on the liquid crystal device or the like by, for example, a flip chip mounting method.

しかし、例えば接着用樹脂を用いて半導体ICチップをプリント基板等に接着固定させる際に、当該接着用樹脂が押し広げられ、隣接する配線パターン等に付着してしまいその配線パターン等で導通不良が生じてしまうという問題が生じた。   However, for example, when a semiconductor IC chip is bonded and fixed to a printed circuit board or the like using an adhesive resin, the adhesive resin is spread and adheres to an adjacent wiring pattern or the like. There was a problem that it would occur.

そこで、半導体チップを実装するためのプリント配線板であって、当該半導体チップを実装する部分に形成された、該半導体チップを実装するための樹脂を流し込む溝部を具備することが提案されている(例えば、特許文献1参照。)。
特開2000−183237号公報(段落[0008]、図1)。
In view of this, it has been proposed that a printed wiring board for mounting a semiconductor chip has a groove formed in a portion for mounting the semiconductor chip into which a resin for mounting the semiconductor chip is poured ( For example, see Patent Document 1.)
JP 2000-183237 (paragraph [0008], FIG. 1).

しかしながら上述の方法により、半導体チップの外側に流れ出す樹脂をある程度は規制できるようになったが、当該溝部を形成する工程が必要になり製造コストを低減できないという点や当該溝部だけでは流れ出した樹脂を収容できる量に限界がありそれ以上流出すると、もはや規制できないという問題が考えられた。更に貫通穴もプリント配線板の裏面に流出させることを防ぐものであり、それ自体の樹脂収容量も限られることとなる。   However, although the resin flowing out to the outside of the semiconductor chip can be regulated to some extent by the above-described method, the step of forming the groove is required, and the manufacturing cost cannot be reduced. There was a problem that there was a limit to the amount that could be accommodated, and if it leaked more than that, it could no longer be regulated. Further, the through hole is also prevented from flowing out to the back surface of the printed wiring board, and its own resin capacity is limited.

本発明は、上述の課題に鑑みてなされるもので、周囲への樹脂部材の広がりを規制し、電子部品の高密度実装においても電気的信頼性を確保できる実装構造体、その実装構造体を用いた電気光学装置及びその電気光学装置を用いた電子機器を提供することを目的とする。   The present invention has been made in view of the above-described problems. A mounting structure that restricts the spread of a resin member to the surroundings and can ensure electrical reliability even in high-density mounting of electronic components, and the mounting structure. It is an object to provide an electro-optical device used and an electronic apparatus using the electro-optical device.

上記目的を達成するために、本発明の主たる観点に係る実装構造体は、第1の被接着部材と第2の被接着部材とが間に樹脂部材を介して接続されている実装構造体において、前記第1の被接着部材は、前記第2の被接着部材が接続される領域の外側に当該接続側面から反対側面まで連通する前記樹脂部材の流路を有し、前記流路は、前記反対側に前記接続側内径より径の大きい前記樹脂部材の収容部を有することを特徴とする。   In order to achieve the above object, a mounting structure according to a main aspect of the present invention is a mounting structure in which a first bonded member and a second bonded member are connected via a resin member. The first adherend member has a flow path of the resin member that communicates from the connection side surface to the opposite side surface outside the region to which the second adherend member is connected. It has the accommodating part of the said resin member larger in diameter than the said connection side internal diameter on the opposite side, It is characterized by the above-mentioned.

ここで、「第1の被接着部材」とは、例えば液晶パネルのガラス基板や回路基板のことであり、「第2の被接着部材」とは、例えば半導体装置等の電子部品等のことである。   Here, the “first adherend member” is, for example, a glass substrate or a circuit board of a liquid crystal panel, and the “second adherend member” is, for example, an electronic component such as a semiconductor device. is there.

本発明は、第1の被接着部材が、第2の被接着部材の接続される領域の外側に当該接続側面から反対側面まで連通する樹脂部材の流路を有し、その流路は、接続側面の反対側に接続側内径より径の大きい樹脂部材の収容部を有することとした。従って、接続領域から流出した樹脂部材を当該流路により反対側に導くことができると共に、当該反対側に十分樹脂部材を収容することが可能で、接続領域の外側への当該樹脂部材の流出を規制し、電子部品等のより高密度実装が可能となる。   In the present invention, the first adherend member has a flow path of the resin member that communicates from the connection side surface to the opposite side surface outside the region to which the second adherend member is connected. The housing portion for the resin member having a diameter larger than the inner diameter of the connection side is provided on the side opposite to the side surface. Therefore, the resin member that has flowed out of the connection region can be guided to the opposite side by the flow path, and the resin member can be sufficiently accommodated on the opposite side, so that the resin member flows out of the connection region. It is possible to regulate and mount electronic parts and the like with higher density.

本発明の一の形態によれば、前記流路は、前記第2の被接着部材の周囲に複数形成されていることを特徴とする。これにより、第2の被接着部材の周囲全体で樹脂部材の広がりを防ぐことができ、当該第2の被接着部材の周囲で他の電子部品をより高密度実装可能となる。また、複数の流路でより多くの樹脂部材を反対側の収容部に収容でき、接続側面での樹脂部材の広がりを確実に規制できる。   According to an aspect of the present invention, a plurality of the flow paths are formed around the second bonded member. Accordingly, the resin member can be prevented from spreading around the entire periphery of the second adherend member, and other electronic components can be mounted at a higher density around the second adherend member. Further, more resin members can be accommodated in the opposite accommodation portion by the plurality of flow paths, and the spread of the resin member on the connection side surface can be reliably regulated.

本発明の一の形態によれば、前記流路は、貫通孔であり、前記接続側面から前記反対側面に向かって前記第2の被接着部材から離れるように斜めに形成されていることを特徴とする。これにより、接続領域から外部に広がろうとする樹脂部材の流れの方向に当該流路が形成されているので、流路に流れ込みやすく、より迅速に接続側面上の樹脂部材を反対側に導くことができ、一時的に接続側面での流れ出し量が大きくなっても、十分対応できる。また、斜めに貫通孔が形成されているので、その流れ込み側の開口面積を増やすことができ、その分樹脂部材の流れ込みを増やすことが可能となり、接続側面における他の電子部品を高密度実装できる。   According to an aspect of the present invention, the flow path is a through hole, and is formed obliquely so as to be separated from the second bonded member from the connection side surface toward the opposite side surface. And As a result, since the flow path is formed in the direction of the flow of the resin member that tries to spread from the connection region to the outside, it is easy to flow into the flow path, and the resin member on the connection side surface is more quickly guided to the opposite side. Even if the amount of flow out of the connection side surface temporarily increases, it is possible to cope with it. In addition, since the through holes are formed obliquely, the opening area on the flow-in side can be increased, the flow of the resin member can be increased correspondingly, and other electronic components on the connection side surface can be mounted at high density. .

本発明の一の形態によれば、前記第1の被接着部材は、前記接続領域の外側に前記第2の被接着部材側から離れるに従って深くなると共に横幅が狭くなるように形成されている第1の溝を有し、前記流路は、前記第1の溝の前記第2の被接着部材側から最も離れた底に形成されていることを特徴とする。これにより、接続側面上を流れる樹脂部材をより多く流路に集めて反対側の収容部に収容でき、より接続領域外の当該樹脂部材の広がりを規制できる。   According to an embodiment of the present invention, the first adherend is formed on the outside of the connection region so that the first adherend becomes deeper and the lateral width becomes narrower as the distance from the second adherend is increased. 1 channel, and the channel is formed at the bottom of the first groove that is farthest from the second bonded member side. Thereby, more resin members that flow on the connection side surface can be collected in the flow path and accommodated in the accommodation portion on the opposite side, and the spread of the resin member outside the connection region can be more restricted.

本発明の一の形態によれば、前記収容部は、前記流路の内径が前記反対側面に向かって大きくなるように形成されていることを特徴とする。これにより、当該収容部内により多くの樹脂部材を収容し、接続側面での当該樹脂部材の広がりを規制することができる。   According to an aspect of the present invention, the accommodating portion is formed so that an inner diameter of the flow path increases toward the opposite side surface. Thereby, many resin members can be accommodated in the said accommodating part, and the expansion of the said resin member in a connection side surface can be controlled.

本発明の一の形態によれば、前記収容部は、前記流路により前記反対側面に複数露出する開口をつなぐ第2の溝により形成されていることを特徴とする。これにより、反対側面においても当該第2の溝の外側に樹脂部材が広がるのを防止でき、接続側面のみならず反対側面においても他の電子部品等の高密度実装が可能となる。   According to an aspect of the present invention, the accommodating portion is formed by a second groove that connects a plurality of openings exposed on the opposite side surface by the flow path. As a result, the resin member can be prevented from spreading outside the second groove on the opposite side surface, and high-density mounting of other electronic components and the like can be performed not only on the connection side surface but also on the opposite side surface.

本発明の一の形態によれば、前記収容部は、前記流路により前記反対側面に複数露出する開口を含むように前記反対側面に形成された凹部であることを特徴とする。これにより、より大量に樹脂部材を反対側に収容でき、接続側面での当該樹脂部材の広がりをより小さくすることができ、更に高密度実装が可能となる。   According to an aspect of the present invention, the accommodating portion is a recess formed on the opposite side surface so as to include a plurality of openings exposed on the opposite side surface by the flow path. Accordingly, a larger amount of the resin member can be accommodated on the opposite side, the spread of the resin member on the connection side surface can be further reduced, and further high-density mounting is possible.

本発明の一の形態によれば、前記第1の被接着部材は、積層構造を有し、前記凹部は、少なくとも前記積層構造のうちの前記反対側面である最外層に設けられた開口部であることを特徴とする。これにより、当該収容部の製造を容易にすることができ、製造コストを低減できる。   According to an aspect of the present invention, the first bonded member has a laminated structure, and the concave portion is an opening provided in an outermost layer that is at least the opposite side surface of the laminated structure. It is characterized by being. Thereby, manufacture of the said accommodating part can be made easy and manufacturing cost can be reduced.

本発明の他の観点に係る電気光学装置は、電気光学パネルと、前記電気光学パネルに接続された可撓性回路基板と、前記可撓性回路基板に樹脂部材を介して実装された電子部品を備えた電気光学装置であって、前記可撓性回路基板は、前記電子部品が実装される領域の外側に当該実装側面から反対側面まで連通する前記樹脂部材の流路を有し、前記流路は、前記反対側に前記実装側内径より径の大きい前記樹脂部材の収容部を有することを特徴とする。   An electro-optical device according to another aspect of the present invention includes an electro-optical panel, a flexible circuit board connected to the electro-optical panel, and an electronic component mounted on the flexible circuit board via a resin member The flexible circuit board includes a flow path of the resin member that communicates from the mounting side surface to the opposite side surface outside the region where the electronic component is mounted. The path has a housing part for the resin member having a diameter larger than the inner diameter on the mounting side on the opposite side.

本発明は、電気光学パネルに接続された可撓性回路基板が、電子部品の実装される領域の外側に当該実装側面から反対側面まで連通する樹脂部材の流路を有し、その流路は、実装側面の反対側に実装側内径より径の大きい樹脂部材の収容部を有することとした。従って、実装領域から流出した樹脂部材を当該流路により反対側に導くことができると共に、当該反対側に十分樹脂部材を収容することが可能で、実装領域の外側への当該樹脂部材の流出を規制し、電子部品等のより高密度実装が可能な電気光学装置を提供できる。   In the present invention, a flexible circuit board connected to an electro-optical panel has a flow path of a resin member that communicates from the mounting side surface to the opposite side surface outside the area where the electronic component is mounted. The housing part for the resin member having a diameter larger than the inner diameter on the mounting side is provided on the opposite side of the mounting side surface. Therefore, the resin member that has flowed out of the mounting area can be guided to the opposite side by the flow path, and the resin member can be sufficiently accommodated on the opposite side, so that the resin member flows out of the mounting area. It is possible to provide an electro-optical device that is regulated and capable of mounting electronic components or the like with higher density.

本発明の一の形態によれば、前記流路は、前記電子部品の周囲に複数形成されていることを特徴とする。これにより、電子部品の周囲全体で樹脂部材の広がりを防ぐことができ、当該電子部品の周囲で他の電子部品をより高密度実装可能となる。また、複数の流路でより多くの樹脂部材を反対側の収容部に収容でき、実装側面での樹脂部材の広がりを確実に規制できる。   According to an aspect of the present invention, a plurality of the flow paths are formed around the electronic component. Accordingly, the resin member can be prevented from spreading around the entire periphery of the electronic component, and other electronic components can be mounted at a higher density around the electronic component. In addition, more resin members can be accommodated in the opposite accommodation portion through the plurality of flow paths, and the spread of the resin member on the mounting side surface can be reliably regulated.

本発明の一の形態によれば、前記流路は、貫通孔であり、前記実装側面から前記反対側面に向かって前記電子部品から離れるように斜めに形成されていることを特徴とする。これにより、実装領域から外部に広がろうとする樹脂部材の流れの方向に当該流路が形成されているので、流路に流れ込みやすく、より迅速に実装側面上の樹脂部材を反対側に導くことができ、一時的に実装側面での流れ出し量が大きくなっても、十分対応できる。また、斜めに貫通孔が形成されているので、その流れ込み側の開口面積を増やすことができ、その分、樹脂部材の流れ込みを増やすことが可能となり、実装側面における他の電子部品を高密度実装できる。   According to an aspect of the present invention, the flow path is a through hole, and is formed obliquely so as to be separated from the electronic component from the mounting side surface toward the opposite side surface. As a result, the flow path is formed in the direction of the flow of the resin member that tends to spread from the mounting area to the outside, so that it is easy to flow into the flow path, and the resin member on the mounting side surface is more quickly guided to the opposite side. Even if the amount of flow out of the mounting side temporarily increases, it can cope with it. In addition, since the through-holes are formed diagonally, the opening area on the flow-in side can be increased, and the flow of resin material can be increased correspondingly, and other electronic components on the mounting side can be mounted at high density. it can.

本発明の一の形態によれば、前記収容部は、前記流路の内径が前記反対側面に向かって大きくなるように形成されていることを特徴とする。これにより、当該収容部内により多くの樹脂部材を収容し、実装側面での当該樹脂部材の広がりを規制することができる。   According to an aspect of the present invention, the accommodating portion is formed so that an inner diameter of the flow path increases toward the opposite side surface. Thereby, many resin members can be accommodated in the said accommodating part, and the breadth of the said resin member in a mounting side surface can be controlled.

本発明の一の形態によれば、前記収容部は、前記流路により前記反対側面に複数露出する開口をつなぐ溝により形成されていることを特徴とする。これにより、反対側面においても当該溝の外側に樹脂部材が広がるのを防止でき、実装側面のみならず反対側面においても他の電子部品等の高密度実装が可能となる。   According to an aspect of the present invention, the accommodating portion is formed by a groove that connects a plurality of openings exposed on the opposite side surface by the flow path. Accordingly, the resin member can be prevented from spreading outside the groove on the opposite side surface, and high-density mounting of other electronic components and the like can be performed not only on the mounting side surface but also on the opposite side surface.

本発明の一の形態によれば、前記収容部は、前記流路により前記反対側面に複数露出する開口を含むように前記反対側面に形成された凹部であることを特徴とする。これにより、当該凹部により多くの樹脂部材を収容でき、実装側面での当該樹脂部材の広がりをより小さくすることができ、更に高密度実装が可能となる。   According to an aspect of the present invention, the accommodating portion is a recess formed on the opposite side surface so as to include a plurality of openings exposed on the opposite side surface by the flow path. As a result, more resin members can be accommodated in the recesses, the spread of the resin members on the mounting side surface can be further reduced, and further high-density mounting is possible.

本発明の他の観点に係る電子機器は、上述の電気光学装置を備えたことを特徴とする。   An electronic apparatus according to another aspect of the invention includes the above-described electro-optical device.

本発明は、周囲への樹脂部材の広がりを規制し、電子部品の高密度実装においても電気的信頼性を確保できる電気光学装置を備えたので、電子機器の高機能、小型化及び薄型化を図りながら電気的信頼性を向上させることが可能となる。   Since the present invention includes an electro-optical device that regulates the spread of the resin member to the surroundings and can ensure electrical reliability even in high-density mounting of electronic components, the electronic device has high functionality, downsizing, and thinning. It is possible to improve the electrical reliability while attempting.

以下、本発明の実施形態を図面に基づき説明する。なお、以下実施形態を説明するにあたっては、実装構造体及び電気光学装置の例としてTFT(Thin Film Trannsistor)アクティブマトリックス型の液晶装置、またその液晶装置を用いた電子機器について説明するが、これに限られるものではない。また、以下の図面においては各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等が異なっている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the embodiments, a TFT (Thin Film Transistor) active matrix type liquid crystal device and an electronic apparatus using the liquid crystal device will be described as examples of the mounting structure and the electro-optical device. It is not limited. Moreover, in the following drawings, in order to make each structure easy to understand, the actual structure and the scale and number of each structure are different.

(第1の実施形態)   (First embodiment)

図1は本発明の第1の実施形態に係る液晶装置の概略斜視図、図2は図1のA−A線断面図(ドライバーIC及び電源用ICは切断していない。)、図3は図1のB−B線断面図(電源用ICは切断していない。)及び図4はフレキシブル基板の部分底面図である。   1 is a schematic perspective view of a liquid crystal device according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA of FIG. 1 (a driver IC and a power supply IC are not cut), and FIG. FIG. 1 is a partial bottom view of a flexible substrate, and FIG. 4 is a sectional view taken along line B-B in FIG. 1 (the power supply IC is not cut).

(液晶装置の構成)   (Configuration of liquid crystal device)

液晶装置1は、例えば図1に示すように電気光学パネルとしての液晶パネル2、当該液晶パネル2に接続された可撓性回路基板としてのフレキシブル基板3等を有する。ここで、液晶装置1には、フレキシブル基板3の他にも、バックライト等の照明装置やその他の付帯機構が必要に応じて付設される(図示しない)。   For example, as shown in FIG. 1, the liquid crystal device 1 includes a liquid crystal panel 2 as an electro-optical panel, a flexible substrate 3 as a flexible circuit board connected to the liquid crystal panel 2, and the like. Here, in addition to the flexible substrate 3, an illumination device such as a backlight and other incidental mechanisms are attached to the liquid crystal device 1 as necessary (not shown).

液晶パネル2は、図1及び図2に示すようにシール材4を介して貼り合わされた第1の基板5及び第2の基板6及び両基板の間隙に封入されたTN(Twisted Nematic)型の液晶7等を有する。   As shown in FIGS. 1 and 2, the liquid crystal panel 2 is a TN (Twisted Nematic) type sealed in a gap between the first substrate 5 and the second substrate 6 and the two substrates bonded together via a sealing material 4. The liquid crystal 7 is included.

第1及び第2の基板5,6は、例えばガラスといった透光性を有する板状部材からなる第1の基材5a及び第2の基材6aを有し、図2に示すように第1及び第2の基材5a,6aの外側には入射光を偏光させるための偏光板8,9が夫々貼着されている。   The first and second substrates 5 and 6 have a first base material 5a and a second base material 6a made of a light-transmitting plate member such as glass, for example, as shown in FIG. Polarizing plates 8 and 9 for polarizing incident light are attached to the outside of the second base materials 5a and 6a, respectively.

また、第1の基材5aはその内側(液晶側)に例えば図1及び図2に示すようにY軸方向に複数のソース配線10が並行して形成され、X軸方向に複数のゲート配線11が並行して形成されており、更にそのソース配線10及びゲート配線11等の液晶側には配向膜12が形成されている。ソース配線10及びゲート配線11は、例えばニッケル等から形成されており、図示しないTFTに電気的に接続されている。また、TFTはITO(インジウムスズ酸化物)等からなる画素電極13に電気的に接続されている。   In addition, the first substrate 5a has a plurality of source wirings 10 formed in parallel in the Y-axis direction as shown in FIGS. 1 and 2, for example, on the inner side (liquid crystal side), and a plurality of gate wirings in the X-axis direction. 11 are formed in parallel, and an alignment film 12 is formed on the liquid crystal side of the source wiring 10 and the gate wiring 11. The source wiring 10 and the gate wiring 11 are made of nickel or the like, for example, and are electrically connected to a TFT (not shown). The TFT is electrically connected to the pixel electrode 13 made of ITO (indium tin oxide) or the like.

すなわち、ソース配線10の一端はTFTの図示しないソース電極に、他端は後述する出力用接続端子14に夫々電気的に接続されている。更にゲート配線11の一端はTFTの図示しないゲート電極に、他端は後述する出力用接続端子14に夫々電気的に接続されている。   That is, one end of the source wiring 10 is electrically connected to a source electrode (not shown) of the TFT, and the other end is electrically connected to an output connection terminal 14 described later. Further, one end of the gate wiring 11 is electrically connected to a gate electrode (not shown) of the TFT, and the other end is electrically connected to an output connection terminal 14 to be described later.

これにより、ソース配線10及びゲート配線11は、ゲート電極に電圧を印加したときに図示しないソース電極から画素電極13にデータ信号を印加し、画素電極13は後述する共通電極とでその間に挟まれた液晶7に電圧を印加するものである。   As a result, the source wiring 10 and the gate wiring 11 apply a data signal from the source electrode (not shown) to the pixel electrode 13 when a voltage is applied to the gate electrode, and the pixel electrode 13 is sandwiched between the common electrode described later. A voltage is applied to the liquid crystal 7.

また、第1の基材5aは例えば図1及び図2に示すように第2の基材6aの外周縁から張出した張出し部15を有し、当該張出し部15には、液晶駆動用のドライバーIC16が実装されている。また、ソース配線10及びゲート配線11は、シール材4で囲まれる領域から当該張出し部15に延在されており、ドライバーIC16の実装領域に並設された出力用接続端子14に電気的に接続されている。   Further, the first base material 5a has, for example, a projecting portion 15 projecting from the outer peripheral edge of the second base material 6a as shown in FIGS. 1 and 2, and the projecting portion 15 includes a driver for driving a liquid crystal. IC16 is mounted. The source wiring 10 and the gate wiring 11 extend from the region surrounded by the seal material 4 to the overhanging portion 15 and are electrically connected to the output connection terminals 14 provided in parallel in the mounting region of the driver IC 16. Has been.

更に張出し部15は、例えば図2に示すようにフレキシブル基板3等からの電流をドライバーIC等に供給する入力用配線17を有し、当該入力用配線17は、一端が後述するフレキシブル基板3の配線パターンに電気的に接続される外部用接続端子18として形成されており、他端はドライバーIC16の実装領域に並設された入力用接続端子19に電気的に接続されている。   Further, the overhanging portion 15 has an input wiring 17 for supplying current from the flexible substrate 3 or the like to the driver IC or the like as shown in FIG. 2, for example, and the input wiring 17 has one end of the flexible substrate 3 described later. It is formed as an external connection terminal 18 electrically connected to the wiring pattern, and the other end is electrically connected to an input connection terminal 19 arranged in parallel in the mounting area of the driver IC 16.

ドライバーIC16は、例えば図2に示すようにその張出し部15に実装する実装面に複数並列されたバンプ20を有し、例えば図示しないACF(Anisotropic Conductive Film)を介して出力用接続端子14及び入力用接続端子19に電気的に接続されている。また、当該バンプ20は例えば略直方体に、ニッケル(Ni)、銅(Cu)、金(Au)等で形成されている。   The driver IC 16 has, for example, a plurality of bumps 20 arranged in parallel on the mounting surface to be mounted on the overhanging portion 15 as shown in FIG. 2, and the output connection terminal 14 and the input via the ACF (Anisotropic Conductive Film) (not shown), for example. The electrical connection terminal 19 is electrically connected. The bump 20 is formed in a substantially rectangular parallelepiped, for example, from nickel (Ni), copper (Cu), gold (Au), or the like.

一方、第2の基材6aは例えば図2に示すようにその内側(液晶側)に共通電極21が形成されており、その共通電極21は液晶側には配向膜22が形成されている。   On the other hand, as shown in FIG. 2, for example, the second substrate 6a has a common electrode 21 formed on the inner side (liquid crystal side), and the common electrode 21 has an alignment film 22 formed on the liquid crystal side.

尚、第1及び第2の基材5a,6aの液晶側には、図示しないが必要に応じて下地層、反射層、着色層及び光遮光層等が形成されている。   Although not shown, a base layer, a reflective layer, a colored layer, a light shielding layer, and the like are formed on the liquid crystal side of the first and second substrates 5a and 6a as necessary.

次に、フレキシブル基板3は例えば図1及び図2に示すようにベース基材23上に銅(Cu)等から形成された配線パターン24,25及び当該配線パターン24,25に電気的に接続された電子部品としての電源用IC26等が形成され実装されている。   Next, the flexible substrate 3 is electrically connected to the wiring patterns 24 and 25 formed of copper (Cu) or the like on the base substrate 23 and the wiring patterns 24 and 25, for example, as shown in FIGS. A power IC 26 as an electronic component is formed and mounted.

ここで、ベース基材23は可撓性を有するフイルム状の部材であり例えば複数枚の薄膜が積層され形成されている。また、配線パターン24は、例えば図1及び図2に示すようにその一端が張出し部の外部用接続端子18に電気的に接続された接続端子27に電気的に接続されており、他端が電源用IC26の実装領域C(図3及び図4中のC)に並設された出力用接続端子28として形成されている。尚、接続端子27は、電源用IC26が実装される実装側面23aと反対側面23bに設けられており、図示しないがスルーホールにより実装側面の配線パターン24に電気的に接続されている。   Here, the base substrate 23 is a flexible film-like member, and is formed by laminating a plurality of thin films, for example. Further, for example, as shown in FIGS. 1 and 2, the wiring pattern 24 has one end electrically connected to a connection terminal 27 electrically connected to the external connection terminal 18 of the overhang portion, and the other end is connected. It is formed as an output connection terminal 28 arranged in parallel in the mounting area C (C in FIGS. 3 and 4) of the power supply IC 26. The connection terminal 27 is provided on the side surface 23b opposite to the mounting side surface 23a on which the power supply IC 26 is mounted, and is electrically connected to the wiring pattern 24 on the mounting side surface through a through hole (not shown).

配線パターン25は、例えば図1及び図2に示すようにその一端が電源用IC26の実装領域Cに並設された入力用接続端子29として形成されており、他端には例えば図示しないコネクター用接続端子として形成されている。   As shown in FIGS. 1 and 2, for example, one end of the wiring pattern 25 is formed as an input connection terminal 29 arranged in parallel with the mounting region C of the power supply IC 26, and the other end is used for a connector (not shown), for example. It is formed as a connection terminal.

また、電源用IC26は例えばドライバーIC16に所定の電流を供給するものであり、その実装側面に出力用接続端子28及び入力用接続端子29に電気的に接続する複数並列された半田ボール30を有し、当該半田ボール30は例えば略球形に形成されている。更に電源用IC26は、樹脂部材31によりベース基材23に半田ボール30が出力用接続端子28及び入力用接続端子29に電気的に接続するように実装されている。   The power supply IC 26 supplies, for example, a predetermined current to the driver IC 16, and has a plurality of parallel solder balls 30 electrically connected to the output connection terminal 28 and the input connection terminal 29 on the mounting side surface. The solder ball 30 is formed in a substantially spherical shape, for example. Further, the power supply IC 26 is mounted on the base substrate 23 by the resin member 31 so that the solder ball 30 is electrically connected to the output connection terminal 28 and the input connection terminal 29.

一方、ベース基材23は例えば図3及び図4に示すように当該電源用IC26の周囲を取り囲むように複数の流路として実装側面23aから反対側面23bまで貫通する貫通孔32が形成されている。その貫通孔32は、実装側面23aと反対側に当該貫通孔32の内径D(図3中のD)が反対側面23bに向かって大きくなるように形成された空間からなる収容部33を有し、当該電源用IC26の実装後は当該収容部内に実装側面から流入した樹脂部材31が収容され保持されることとなる。ここで、貫通孔32の内径は例えば約0.1mmに形成されている。   On the other hand, as shown in FIGS. 3 and 4, for example, the base substrate 23 is formed with a through hole 32 that penetrates from the mounting side surface 23 a to the opposite side surface 23 b as a plurality of flow paths so as to surround the power supply IC 26. . The through-hole 32 has a housing portion 33 formed of a space formed so that the inner diameter D (D in FIG. 3) of the through-hole 32 increases toward the opposite side surface 23b on the side opposite to the mounting side surface 23a. After the power supply IC 26 is mounted, the resin member 31 flowing from the mounting side surface is accommodated and held in the accommodating portion. Here, the inner diameter of the through hole 32 is, for example, about 0.1 mm.

尚、樹脂部材31の実装領域Cからの流出量によって当該貫通孔32の数を調整し、或はそれと同時に収容部33の内部空間を大きくしたり小さくしたりして、実装側面の樹脂部材の広がり領域E(図4中のE)を最適な状態に調整でき、例えば図4に示すようにより近接して他の電子部品34を配置可能となる。   The number of the through holes 32 is adjusted according to the amount of outflow from the mounting region C of the resin member 31, or at the same time, the internal space of the housing portion 33 is increased or decreased so that the resin member on the mounting side surface The spread area E (E in FIG. 4) can be adjusted to an optimum state, and other electronic components 34 can be arranged closer to each other as shown in FIG. 4, for example.

(液晶装置の製造方法)   (Manufacturing method of liquid crystal device)

次に、以上のように構成された液晶装置1の製造方法について電源用ICの実装を中心に説明する。   Next, a method for manufacturing the liquid crystal device 1 configured as described above will be described focusing on mounting of a power supply IC.

図5は、電源用ICの実装工程を説明する説明図である。   FIG. 5 is an explanatory diagram for explaining a mounting process of the power supply IC.

例えば第1の基材5aの液晶側にTFT、ソース配線10、ゲート配線11、画素電極13等を形成し、その液晶側に配向膜12を形成してラビング処理を施して第1の基板5を製造する。また、第2の基材6aの液晶側に必要に応じて下地層や反射膜、着色層等を夫々形成すると共にその液晶側に共通電極21を形成し、更に配向膜22を形成してラビング処理を施して第2の基板6を製造する。   For example, a TFT, a source wiring 10, a gate wiring 11, a pixel electrode 13 and the like are formed on the liquid crystal side of the first base material 5a, an alignment film 12 is formed on the liquid crystal side, and a rubbing process is performed. Manufacturing. Further, if necessary, a base layer, a reflective film, a colored layer, etc. are formed on the liquid crystal side of the second substrate 6a, a common electrode 21 is formed on the liquid crystal side, and an alignment film 22 is further formed on the rubbing surface. Processing is performed to manufacture the second substrate 6.

そして、第2の基板上にギャップ材35をドライ散布等により散布し、シール材4を介して第1の基板5と第2の基板6とを貼り合わせる。その後、シール材4を図示しない注入口から液晶7を注入し、シール材4の注入口を紫外線硬化性樹脂等の封止材によって封止して当該液晶7を封入する。   Then, the gap material 35 is sprayed on the second substrate by dry spraying or the like, and the first substrate 5 and the second substrate 6 are bonded together via the seal material 4. Thereafter, the liquid crystal 7 is injected into the sealing material 4 from an injection port (not shown), and the injection port of the sealing material 4 is sealed with a sealing material such as an ultraviolet curable resin to enclose the liquid crystal 7.

更にドライバーIC16を図示しない圧着ヘッドにより出力用接続端子14や入力用接続端子19に例えばACFを介して所定の圧力で押圧し、約300℃に加熱して圧着し、第1の基板5に実装し、偏光板8,9を第1及び第2の基板5,6の各外面に貼着等して液晶パネル2が完成する。   Further, the driver IC 16 is pressed against the output connection terminal 14 and the input connection terminal 19 with a predetermined pressure through an ACF, for example, with a pressure head (not shown), heated to about 300 ° C., and then bonded to the first substrate 5. Then, the liquid crystal panel 2 is completed by sticking the polarizing plates 8 and 9 to the outer surfaces of the first and second substrates 5 and 6.

次に、例えばベース基材23を複数のフイルム状の薄膜を積層して形成し、その上に配線パターン24,25を出力用接続端子28や入力用接続端子29等と一緒に形成する。   Next, for example, the base substrate 23 is formed by laminating a plurality of film-like thin films, and the wiring patterns 24 and 25 are formed thereon together with the output connection terminals 28, the input connection terminals 29, and the like.

そして、例えば図5(a)に示すように電源用IC26を実装面に形成された半田ボール30をベース基材23上の出力用接続端子28や入力用接続端子29に位置合わせをして実装する。   Then, for example, as shown in FIG. 5A, the solder ball 30 formed with the power supply IC 26 on the mounting surface is aligned with the output connection terminal 28 or the input connection terminal 29 on the base substrate 23 and mounted. To do.

その後、例えば図5(b)に示すように電源用IC26とベース基材23との隙間の一方から樹脂部材(アンダーフィル剤)31、例えば一液性加熱硬化型のエポキシ樹脂を注入し、毛細管現象により当該電源用IC26のパッケージとベース基材23との隙間全体に浸透させる。この時、図5(b)に示すように実装領域Cから樹脂部材31が一部流出するが、図4に示すように当該樹脂部材31の流路としての貫通孔32が複数その実装領域の周囲を取り囲むように形成されているので、実装側面23aから当該貫通孔32に樹脂部材31が流入することとなる。   Thereafter, as shown in FIG. 5B, for example, a resin member (underfill agent) 31, for example, a one-component thermosetting epoxy resin is injected from one of the gaps between the power supply IC 26 and the base substrate 23, and the capillary tube Due to the phenomenon, the entire gap between the package of the power supply IC 26 and the base substrate 23 is infiltrated. At this time, as shown in FIG. 5B, a part of the resin member 31 flows out from the mounting region C. However, as shown in FIG. 4, there are a plurality of through holes 32 as flow paths of the resin member 31 in the mounting region. Since it is formed so as to surround the periphery, the resin member 31 flows into the through hole 32 from the mounting side surface 23a.

これにより、電源用IC26とベース基材23との隙間に完全に樹脂部材31が浸透したときにも、例えば図3及び図4に示すように実装領域Cからはみ出した樹脂部材31は、複数の貫通孔32を略外周とする広がり領域Eに留まる。すなわち、余分な樹脂部材31は全て貫通孔32に流れ込み、反対側に設けられたラッパ状の収容部33に保持され、広がり領域E以上に広がるのを防ぐことができる。   As a result, even when the resin member 31 completely penetrates into the gap between the power supply IC 26 and the base substrate 23, for example, as shown in FIGS. It remains in the spreading region E having the through hole 32 as a substantially outer periphery. That is, all of the excess resin member 31 flows into the through-hole 32 and is held in the trumpet-shaped accommodation portion 33 provided on the opposite side, and can be prevented from spreading beyond the spreading region E.

更に最終的に熱硬化が終了したときには、樹脂部材31は例えば図3及び図4に示すように複数の貫通孔32を略外周とする広がり領域Eに留まり、収容部33を含む貫通孔32内に略いっぱいになる程度に収容されることとなる。勿論、貫通孔32内にいっぱいに収容される必要はなく、要は実装側面23aで複数の貫通孔32を略外周とする広がり領域E内に樹脂部材が収まればよい。   Further, when the thermosetting is finally completed, the resin member 31 remains in the widened area E having a plurality of through holes 32 as a substantially outer periphery as shown in FIGS. It will be accommodated to the extent that it is almost full. Of course, the resin member does not need to be fully accommodated in the through hole 32. In short, it is only necessary that the resin member be accommodated in the widened area E having the plurality of through holes 32 as a substantially outer periphery on the mounting side surface 23a.

そして、当該フレキシブル基板3の配線パターン24の接続端子27を例えばACFを介して液晶パネル2の外部用接続端子18に電気的に接続する。   Then, the connection terminal 27 of the wiring pattern 24 of the flexible substrate 3 is electrically connected to the external connection terminal 18 of the liquid crystal panel 2 through, for example, an ACF.

最後、必要に応じてバックライト等の照明装置等を取り付けて、液晶装置1が完成する。   Finally, a lighting device such as a backlight is attached as necessary, and the liquid crystal device 1 is completed.

以上で液晶装置1の製造方法の説明を終了する。   Above, description of the manufacturing method of the liquid crystal device 1 is complete | finished.

このように本実施形態によれば、フレキシブル基板3が、電源用IC26の実装領域Cの外側に当該実装側面23aから反対側面23bまで連通する樹脂部材31の流路としての貫通孔32を有し、その貫通孔32は、実装側面23aの反対側に実装側内径Dより径の大きい樹脂部材31の収容部33を有することとした。従って、実装領域Cから流出した樹脂部材31を当該貫通孔32により反対側に導くことができると共に、当該反対側に十分樹脂部材31を収容することが可能で、実装領域Cの外側への当該樹脂部材31の流出を規制し、電子部品等のより高密度実装が可能な液晶装置1を提供できる。   As described above, according to the present embodiment, the flexible substrate 3 has the through hole 32 as the flow path of the resin member 31 communicating from the mounting side surface 23a to the opposite side surface 23b outside the mounting region C of the power supply IC 26. The through-hole 32 has an accommodating portion 33 for the resin member 31 having a diameter larger than the mounting-side inner diameter D on the opposite side of the mounting side surface 23a. Therefore, the resin member 31 that has flowed out of the mounting region C can be guided to the opposite side by the through hole 32, and the resin member 31 can be sufficiently accommodated on the opposite side, and the resin member 31 outside the mounting region C can be accommodated. It is possible to provide the liquid crystal device 1 that regulates the outflow of the resin member 31 and can mount electronic components or the like with higher density.

また、貫通孔32は、電子部品例えば電源用IC26の周囲に複数形成されていることとしたので、当該電源用IC26の周囲全体で樹脂部材31の広がりを防ぐことができ、当該電源用IC26の周囲で他の電子部品をより高密度実装可能となる。また、複数の貫通孔32でより多くの樹脂部材31を反対側の収容部33に収容でき、実装側面23aでの樹脂部材31の広がりを確実に規制できる。   Further, since a plurality of the through holes 32 are formed around the electronic component, for example, the power supply IC 26, the resin member 31 can be prevented from spreading around the power supply IC 26. Other electronic components can be mounted at higher density around. In addition, more resin members 31 can be accommodated in the accommodation portion 33 on the opposite side by the plurality of through holes 32, and the spread of the resin member 31 on the mounting side surface 23a can be reliably controlled.

更に収容部33は、貫通孔32の内径Dが反対側面23bに向かって大きくなるように形成されているので、当該収容部内により多くの樹脂部材31を収容可能で、実装側面23aでの当該樹脂部材31の広がりを防止し、液晶装置1の電気的信頼性を向上できる。   Further, since the accommodating portion 33 is formed so that the inner diameter D of the through hole 32 increases toward the opposite side surface 23b, more resin members 31 can be accommodated in the accommodating portion, and the resin on the mounting side surface 23a can be accommodated. The spread of the member 31 can be prevented and the electrical reliability of the liquid crystal device 1 can be improved.

また、貫通孔32の実装側面23aと反対側に向かって内径が大きく形成された形状は、樹脂部材31が反対側に流れるときは容易に流れ込むが、一端流れ込んだ樹脂部材31が実装側面23aに戻ろうとすると流れを妨げる方に働くこととなる。これにより、より確実に実装側面での樹脂部材31の広がりを小さくできることとなる。   Further, the shape in which the inner diameter is formed larger toward the side opposite to the mounting side surface 23a of the through-hole 32 easily flows when the resin member 31 flows to the opposite side, but the resin member 31 that has flowed into one end enters the mounting side surface 23a. If you try to return, you will work in the direction of obstructing the flow. Thereby, the spread of the resin member 31 on the mounting side surface can be reduced more reliably.

(変形例1)   (Modification 1)

次に本発明に係る液晶装置の変形例1について説明する。本変形例においては、フレキシブル基板に設けられた収容部の形状が第1の実施形態と異なるのでその点を中心に説明することとする。尚、以下の説明では第1の実施形態の構成要素と共通する構成要素については、第1の実施形態の構成要素と同一の符号を付しその説明を省略或は簡略化する。また、液晶装置の製造方法は第1の実施形態と略同様であるのでその説明を省略する。   Next, a first modification of the liquid crystal device according to the present invention will be described. In this modification, since the shape of the accommodating part provided in the flexible substrate is different from that of the first embodiment, this point will be mainly described. In the following description, the same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted or simplified. Further, since the manufacturing method of the liquid crystal device is substantially the same as that of the first embodiment, the description thereof is omitted.

図6は、本発明の変形例1に係る液晶装置の電源用ICの実装付近の概略断面図、図7は電源用IC付近のフレキシブル基板の底面図である。   6 is a schematic cross-sectional view of the vicinity of the mounting of the power supply IC of the liquid crystal device according to Modification 1 of the present invention, and FIG. 7 is a bottom view of the flexible substrate in the vicinity of the power supply IC.

例えば各貫通孔32はその収容部として、図6及び図7に示すように反対側面23bに露出する開口141をつなぐように形成された断面略矩形状の溝142を有する。   For example, each through-hole 32 has a groove 142 having a substantially rectangular cross section formed so as to connect the opening 141 exposed on the opposite side surface 23b as shown in FIGS.

当該溝142は、例えば図6に示すように流路としての貫通孔32の実装側面内径Dより径が大きく形成されており、断面空間の横幅F(図6中のFでX軸方向)はF>Dとなる。また、当該断面空間の反対側面23bからの深さG(図6中のG)は、樹脂部材31の流入量により当該溝142から樹脂部材31が溢れない程度に形成される。   For example, as shown in FIG. 6, the groove 142 has a diameter larger than the mounting side inner diameter D of the through-hole 32 as a flow path, and the lateral width F of the cross-sectional space (F in FIG. 6 is the X-axis direction) is F> D. Further, the depth G (G in FIG. 6) from the opposite side surface 23 b of the cross-sectional space is formed such that the resin member 31 does not overflow from the groove 142 due to the inflow amount of the resin member 31.

また、溝142は図7に示すように反対側面23bの各開口141をつなぐように略額縁状に形成さており、貫通孔32内と、当該溝142の外側内壁142aと内側内壁142bとの間に樹脂部材31が収容保持される。   Further, as shown in FIG. 7, the groove 142 is formed in a substantially frame shape so as to connect the openings 141 on the opposite side surface 23b, and between the inside of the through hole 32 and the outer inner wall 142a and the inner inner wall 142b of the groove 142. The resin member 31 is accommodated and held.

以上のように本変形例によれば、収容部を流路としての貫通孔32により反対側面32bに複数露出する開口141をつなぐ溝142により形成することとした。従って、反対側面23bにおいても当該溝142の外側(具体的には溝142の外側内壁142aより外側)に樹脂部材31が広がるのを防止でき、実装側面23aのみならず反対側面23bにおいても他の電子部品等の高密度実装が可能となる。   As described above, according to the present modification, the accommodating portion is formed by the groove 142 that connects the plurality of openings 141 exposed on the opposite side surface 32b by the through-hole 32 as the flow path. Accordingly, it is possible to prevent the resin member 31 from spreading outside the groove 142 (specifically, outside the outer inner wall 142a of the groove 142) on the opposite side surface 23b, and not only on the mounting side surface 23a but also on the opposite side surface 23b. High-density mounting of electronic components and the like is possible.

(変形例2)   (Modification 2)

次に本発明に係る液晶装置の変形例2について説明する。本変形例においては、フレキシブル基板に設けられた収容部が凹部である点で第1の実施形態及び変形例1と異なるのでその点を中心に説明する。   Next, a second modification of the liquid crystal device according to the present invention will be described. In this modification, since the accommodating part provided in the flexible substrate is a recessed part from 1st Embodiment and the modification 1, it demonstrates centering on the point.

図8は、本発明の変形例2に係る液晶装置の電源用ICの実装付近の概略断面図、図9は電源用IC付近のフレキシブル基板の底面図である。   FIG. 8 is a schematic cross-sectional view of the vicinity of the mounting of the power supply IC of the liquid crystal device according to Modification 2 of the present invention, and FIG. 9 is a bottom view of the flexible substrate near the power supply IC.

例えばフレキシブル基板3は、複数の薄膜が積層された積層構造を有し、その積層構造のうちの反対側面23bである最外層223aに収容部としての凹部251が形成されている。   For example, the flexible substrate 3 has a laminated structure in which a plurality of thin films are laminated, and a recess 251 is formed as an accommodating portion in the outermost layer 223a that is the opposite side surface 23b of the laminated structure.

当該凹部251は、例えば図8及び図9に示すように反対側面23bに露出する開口141を全て含むように最外層223aのみ貫通する略矩形状の開口部223bにより形成されている。   For example, as shown in FIGS. 8 and 9, the recess 251 is formed by a substantially rectangular opening 223b that penetrates only the outermost layer 223a so as to include all the openings 141 exposed on the opposite side surface 23b.

また、凹部251は例えば図8に示すように流路としての貫通孔32の実装側面内径Dより径が大きく形成されており、断面空間の横幅H(図8中のHでX軸方向)はH>Dとなる。また、当該断面空間の反対側面23bからの深さI(図8中のI)は、樹脂部材31の流出量により当該凹部251から樹脂部材31が溢れない程度に形成される。   Further, for example, as shown in FIG. 8, the recess 251 has a diameter larger than the mounting side inner diameter D of the through hole 32 as a flow path, and the lateral width H (H in FIG. 8 is the X axis direction) of the cross-sectional space H> D. Further, the depth I (I in FIG. 8) from the opposite side surface 23 b of the cross-sectional space is formed such that the resin member 31 does not overflow from the recess 251 due to the outflow amount of the resin member 31.

これにより、貫通孔32内と、当該凹部251の内壁251aで囲まれるスペースに樹脂部材31が収容保持される。   Thereby, the resin member 31 is accommodated and held in the space surrounded by the through hole 32 and the inner wall 251a of the recess 251.

尚、以上のように構成された液晶装置1の製造方法についてフレキシブル基板3の凹部251の製造を簡単に説明する。   The manufacturing method of the recess 251 of the flexible substrate 3 will be briefly described with respect to the manufacturing method of the liquid crystal device 1 configured as described above.

図10は、フレキシブル基板の凹部の製造工程を説明する説明図である。   FIG. 10 is an explanatory diagram for explaining a manufacturing process of the concave portion of the flexible substrate.

例えば、ベース基材23を構成する複数のフイルム状の薄膜のうち図10に示すように反対側面23bを構成する最外層223aに、電源用IC26の実装予定の周囲に複数形成する貫通孔32を内部に含められるように貫通する開口部223bを予め形成する。   For example, among the plurality of film-shaped thin films constituting the base substrate 23, a plurality of through holes 32 are formed in the outermost layer 223 a constituting the opposite side surface 23 b as shown in FIG. An opening 223b is formed in advance so as to be included in the interior.

そして、残りの薄膜を当該最外層223aの上に積層して積層構造を形成すると共に凹部251を形成する。その後、当該凹部251内の所定の位置、すなわち実装する電源用IC26の周囲に貫通孔32を形成する。   Then, the remaining thin film is laminated on the outermost layer 223a to form a laminated structure and to form a recess 251. Thereafter, a through hole 32 is formed at a predetermined position in the recess 251, that is, around the power supply IC 26 to be mounted.

これにより、積層構造体の最外層223aに完全に略矩形状に薄膜が取り除かれた収容部としての凹部251が形成されることとなる。   As a result, a recess 251 is formed in the outermost layer 223a of the laminated structure as a housing part from which the thin film is completely removed in a substantially rectangular shape.

以上のように本変形例によれば、流路としての貫通孔32による反対側面32bに複数露出する開口141を含むように凹部251を形成することとした。従って、反対側面23bにおいて当該凹部251に貫通孔32から流れこんだ樹脂部材31を大量に収容保持でき、樹脂部材31が予想以上に流出しても十分対応可能である。すなわち、確実に電気的信頼性を確保しながら電子部品等の高密度実装が可能となる。   As described above, according to the present modification, the recess 251 is formed so as to include a plurality of openings 141 exposed on the opposite side surface 32b of the through hole 32 as a flow path. Therefore, a large amount of the resin member 31 that has flowed into the recess 251 from the through-hole 32 can be accommodated and held on the opposite side surface 23b, and even if the resin member 31 flows out more than expected, it is possible to cope with it. That is, high-density mounting of electronic components and the like is possible while ensuring electrical reliability.

また、ベース基材23は積層構造を有し、凹部251が当該積層構造のうちの反対側面23bである最外層223aに設けられた開口部223bであることとした。従って、ベース基材23の最外層223aに予め開口部223bを設けることで、当該収容部である凹部251の製造が極めて容易になり、製造コストを低減できる。   The base substrate 23 has a laminated structure, and the recess 251 is an opening 223b provided in the outermost layer 223a which is the opposite side surface 23b of the laminated structure. Therefore, by providing the opening 223b in advance in the outermost layer 223a of the base substrate 23, it becomes very easy to manufacture the recess 251 that is the housing portion, and the manufacturing cost can be reduced.

更に凹部251の内壁251aにより、収容される樹脂部材31が当該内壁251aより外側に流れ出さないようにすることができ、反対側面23bでも樹脂部材31の広がりを防止し、電子部品の高密度実装が可能となる。   Furthermore, the inner wall 251a of the recess 251 can prevent the resin member 31 to be accommodated from flowing out of the inner wall 251a. The resin member 31 can be prevented from spreading on the opposite side surface 23b, and high-density mounting of electronic components can be prevented. Is possible.

(第2の実施形態)   (Second Embodiment)

次に本発明に係る液晶装置の第2の実施形態について説明する。本実施形態においては貫通孔が第1の実施形態や変形例と異なるのでその点を中心に説明する。尚、液晶装置の製造方法は第1の実施形態と略同様であるのでその説明を省略する。   Next, a second embodiment of the liquid crystal device according to the present invention will be described. In the present embodiment, since the through hole is different from the first embodiment and the modification, the description will be focused on that point. Note that the manufacturing method of the liquid crystal device is substantially the same as that of the first embodiment, and thus the description thereof is omitted.

図11は、本発明の第2の実施形態に係る液晶装置の電源用ICの実装付近の概略断面図である。   FIG. 11 is a schematic cross-sectional view of the vicinity of the power supply IC mounted in the liquid crystal device according to the second embodiment of the present invention.

図11に示すようにベース基材23は、電源用IC26の周囲を取り囲むように複数の流路として実装側面23aから反対側面23bまで貫通する貫通孔332が形成されている。   As shown in FIG. 11, the base substrate 23 is formed with through holes 332 penetrating from the mounting side surface 23 a to the opposite side surface 23 b as a plurality of flow paths so as to surround the power supply IC 26.

当該各貫通孔332は、実装側面23aから反対側面23bに向かって電源用IC26から離れるように斜めに形成されている。具体的には貫通孔332は、図11に示すようにその貫通方向が、実装側面23aに対し鈍角の内角θ1(図11中のθ1)を有するように形成されている。   Each through hole 332 is formed obliquely so as to be away from the power supply IC 26 from the mounting side surface 23a toward the opposite side surface 23b. Specifically, as shown in FIG. 11, the through-hole 332 is formed so that the penetration direction has an obtuse internal angle θ1 (θ1 in FIG. 11) with respect to the mounting side surface 23a.

また、貫通孔332は実装側面23aと反対側に当該貫通孔332の内径D(図11中のD)が反対側面23bに向かって大きくなるように形成された空間からなる収容部333を有し、当該電源用IC26の実装後(樹脂部材31の塗布後)は当該収容部内に実装側面から流入した樹脂部材31が収容保持されることとなる。   Further, the through hole 332 has a housing portion 333 formed of a space formed so that the inner diameter D (D in FIG. 11) of the through hole 332 increases toward the opposite side surface 23b on the side opposite to the mounting side surface 23a. After the power supply IC 26 is mounted (after the resin member 31 is applied), the resin member 31 flowing from the mounting side surface is accommodated and held in the accommodating portion.

更に貫通孔332の実装側面23aでの開口332aは、貫通孔332の貫通方向が当該実装側面23aに対し斜めに形成されているため、貫通孔332の円形断面を含む楕円形となり、その開口面積は当該貫通孔332の円形断面より大きくなる。   Further, the opening 332a on the mounting side surface 23a of the through hole 332 is formed in an elliptical shape including a circular cross section of the through hole 332 because the through direction of the through hole 332 is formed obliquely with respect to the mounting side surface 23a. Becomes larger than the circular cross section of the through-hole 332.

このように本実施形態によれば、貫通孔332は、実装側面23aから反対側面23bに向かって電源用IC26から離れるように斜めに形成することとした。従って、実装領域Cから外部に広がろうとする樹脂部材31の流れの方向に当該流路としての貫通孔332が形成されているので、貫通孔332に流れ込みやすく、より迅速に実装側面上の樹脂部材31を反対側に導くことができる。また、一時的に実装側面23aでの流れ出し量が大きくなっても、十分対応可能である。更に斜めに貫通孔332が形成されているので、その流れ込み側の開口面積を増やすことができ、その分樹脂部材31の流れ込みを増やすことが可能となる。これにより、樹脂部材31の広がりをより小さくでき、実装側面23aにおける他の電子部品の高密度実装が可能となる。   Thus, according to the present embodiment, the through-hole 332 is formed obliquely so as to be away from the power supply IC 26 from the mounting side surface 23a toward the opposite side surface 23b. Therefore, since the through hole 332 as the flow path is formed in the direction of the flow of the resin member 31 that is going to spread outside from the mounting region C, the resin on the side surface of the mounting is easily flowed into the through hole 332 more quickly. The member 31 can be guided to the opposite side. Moreover, even if the amount of flow out of the mounting side surface 23a temporarily increases, it is possible to cope sufficiently. Furthermore, since the through-hole 332 is formed obliquely, the opening area on the flow-in side can be increased, and the flow of the resin member 31 can be increased accordingly. Thereby, the spread of the resin member 31 can be further reduced, and high-density mounting of other electronic components on the mounting side surface 23a becomes possible.

(変形例3)   (Modification 3)

次に本発明に係る液晶装置の変形例3について説明する。本変形例においては、貫通孔の実装側面での形状が第1及び第2の実施形態や変形例1及び2と異なるのでその点を中心に説明する。尚、液晶装置の製造方法は第1の実施形態と略同様であるのでその説明を省略する。   Next, a third modification of the liquid crystal device according to the present invention will be described. In the present modification, the shape of the through hole on the mounting side surface is different from those of the first and second embodiments and Modifications 1 and 2, and this point will be mainly described. Note that the manufacturing method of the liquid crystal device is substantially the same as that of the first embodiment, and thus the description thereof is omitted.

図12は、本発明の変形例3に係る液晶装置の電源用ICの実装付近の概略断面図、図13は貫通孔の実装側面の概略拡大図である。   FIG. 12 is a schematic cross-sectional view of the vicinity of the mounting of the power supply IC of the liquid crystal device according to Modification 3 of the present invention, and FIG.

図12に示すようにベース基材23は、電源用IC26の周囲を取り囲むように複数の流路として実装側面23aから反対側面23bまで貫通する貫通孔32が形成されている。   As shown in FIG. 12, the base substrate 23 is formed with through holes 32 penetrating from the mounting side surface 23a to the opposite side surface 23b as a plurality of flow paths so as to surround the power supply IC 26.

また、ベース基材23は電源用IC26から離れるに従って実装側面からの深さが深くなると共にその横幅が狭くなるように形成された第1の溝としての溝461を有し、その溝461の当該電源用IC26から最も離れた底としての底面461aに当該貫通孔32の開口461bが夫々形成されている。   Further, the base substrate 23 has a groove 461 as a first groove formed so that the depth from the mounting side surface becomes deeper as the distance from the power supply IC 26 increases, and the lateral width thereof becomes narrower. Openings 461b of the through holes 32 are formed on the bottom surface 461a as the bottom most distant from the power supply IC 26, respectively.

溝461は、例えば図13に示すように平面的に見て半円形に形成されており、電源用IC26から離れるに従って実装側面23aからの深さが深さゼロから深さK(開口461bの中心での深さ)と深くなっている。また、溝461はその横幅が、やはり電源用IC26から離れるに従って最大L1(半円の直径)から横幅L2(開口461bの中心での横幅)と小さくなっている(L1>L2)。   For example, as shown in FIG. 13, the groove 461 is formed in a semicircular shape when seen in a plan view, and the depth from the mounting side surface 23a increases from zero to the depth K (the center of the opening 461b) as the distance from the power supply IC 26 increases. Depth). Further, the lateral width of the groove 461 decreases from the maximum L1 (diameter of a semicircle) to the lateral width L2 (lateral width at the center of the opening 461b) as the distance from the power supply IC 26 increases (L1> L2).

また、貫通孔32の底面461aでの開口461bは、底面461aが当該貫通孔32の貫通方向に対し斜めに形成されているため、貫通孔32の円形断面を含む楕円形となり、その開口面積は当該貫通孔32の円形断面より大きくなっている。これにより、樹脂部材31が貫通孔32に流れ込みやすくなっている。   In addition, the opening 461b at the bottom surface 461a of the through hole 32 has an elliptical shape including a circular cross section of the through hole 32 because the bottom surface 461a is formed obliquely with respect to the through direction of the through hole 32. The through hole 32 is larger than the circular cross section. Thereby, the resin member 31 is easy to flow into the through hole 32.

このように本変形例によれば、第1の被接着部材としてのフレキシブル基板3は、接続領域としての実装領域Cの外側に第2の被接着部材としての電源用IC26から離れるに従って深くなると共に横幅が狭くなるように形成されている溝461を有し、貫通孔32は、溝461の電源用IC26から最も離れた底面461aに形成されることとした。従って、接続側面上を流れる樹脂部材31をより多く貫通孔32に集めて反対側の収容部33に収容でき、より実装領域外の当該樹脂部材31の広がりを規制できる。   As described above, according to this modification, the flexible substrate 3 as the first adherend becomes deeper as the distance from the power supply IC 26 as the second adherend increases outside the mounting region C as the connection region. The groove 461 is formed so that the lateral width is narrow, and the through hole 32 is formed on the bottom surface 461a of the groove 461 farthest from the power supply IC 26. Therefore, more resin members 31 flowing on the connection side surface can be collected in the through holes 32 and accommodated in the accommodation portion 33 on the opposite side, and the spread of the resin member 31 outside the mounting area can be more restricted.

(第3実施形態・電子機器)   (Third embodiment: electronic device)

次に、上述した液晶装置1を備えた本発明の第3の実施形態に係る電子機器について説明する。   Next, an electronic apparatus according to the third embodiment of the present invention including the above-described liquid crystal device 1 will be described.

図14は本発明の第3の実施形態に係る携帯電話機の外観概略図及び図15はパーソナルコンピュータの外観概略図である。   FIG. 14 is a schematic external view of a mobile phone according to the third embodiment of the present invention, and FIG. 15 is a schematic external view of a personal computer.

例えば、携帯電話機500は、図14に示すように複数の操作ボタン571の他、受話口572、送話口573を有する外枠に例えば、液晶装置1を備えている。   For example, the mobile phone 500 includes, for example, the liquid crystal device 1 in an outer frame having a receiving mouth 572 and a sending mouth 573 in addition to a plurality of operation buttons 571 as shown in FIG.

また、パーソナルコンピュータ600は、図15に示すようにキーボード681を備えた本体部682と、液晶表示ユニット683とから構成されており、液晶表示ユニット683は外枠に例えば、液晶装置1を備えている。   As shown in FIG. 15, the personal computer 600 includes a main body 682 having a keyboard 681 and a liquid crystal display unit 683. The liquid crystal display unit 683 includes, for example, the liquid crystal device 1 on an outer frame. Yes.

これらの電子機器は、液晶装置1の他に図示しないが表示情報出力源、表示情報処理回路等の様々な回路及びそれらの回路に電力を供給する電源回路等からなる表示信号生成部等を含んで構成される。   In addition to the liquid crystal device 1, these electronic devices include various circuits such as a display information output source and a display information processing circuit, and a display signal generation unit including a power supply circuit that supplies power to these circuits, although not shown. Consists of.

更に液晶装置1には例えば、パーソナルコンピュータ600の場合にあってはキーボード681から入力された情報に基づき表示信号生成部によって生成された表示信号が供給されることによって、表示画像が液晶装置1に表示される。   Further, for example, in the case of the personal computer 600, the liquid crystal device 1 is supplied with a display signal generated by the display signal generation unit based on information input from the keyboard 681, so that a display image is supplied to the liquid crystal device 1. Is displayed.

本実施形態によれば、周囲への樹脂部材の広がりを規制し、電子部品の高密度実装においても電気的信頼性を確保できる液晶装置1を備えたので、電子機器の高機能、小型化及び薄型化を図りながら電気的信頼性を向上させることが可能となる。   According to this embodiment, since the liquid crystal device 1 that regulates the spread of the resin member to the surroundings and can ensure electrical reliability even in high-density mounting of electronic components, the electronic device has high functionality, downsizing, and It is possible to improve electrical reliability while reducing the thickness.

特に上述したような携帯可能な電子機器にあっては、装置の薄型化、小型化と共により高度な電気的信頼性が求められており、かかる電気信頼性を低コストに提供できる本発明の意義は大きいといえる。   In particular, portable electronic devices as described above are required to have higher electrical reliability as well as thinner and smaller devices, and the significance of the present invention that can provide such electrical reliability at low cost. Is big.

尚、電子機器としては、他に液晶装置が搭載されたタッチパネル、プロジェクタ、液晶テレビやビューファインダ型、モニタ直視型のビデオテープレコーダ、カーナビゲーション、ページャ、電子手帳、電卓等が挙げられる。そして、これらの各種電子機器の表示部として、上述した例えば液晶装置1が適用可能なのは言うまでもない。   In addition, examples of the electronic device include a touch panel equipped with a liquid crystal device, a projector, a liquid crystal television, a viewfinder type, a monitor direct view type video tape recorder, a car navigation, a pager, an electronic notebook, a calculator, and the like. And it cannot be overemphasized that the liquid crystal device 1 mentioned above is applicable as a display part of these various electronic devices, for example.

また、本発明は上述したいずれの実施形態、変形例にも限定されず、本発明の技術思想の範囲内で適宜変更して実施できる。また、本発明の要旨を逸脱しない範囲において、上述した各実施形態、変形例を組み合わせ得る。   The present invention is not limited to any of the above-described embodiments and modifications, and can be implemented with appropriate modifications within the scope of the technical idea of the present invention. Moreover, in the range which does not deviate from the summary of this invention, each embodiment mentioned above and a modification can be combined.

例えば上述した実施形態では、液晶装置の一例として薄膜トランジスタ素子アクティブマトリクス型の液晶装置について説明したがこれに限られるものではなく、例えば、薄膜ダイオード素子アクティブマトリクス型やパッシブマトリクス型の液晶装置であってもよい。これにより、多種多様な液晶装置についても、低コストに薄型化、小型化できると共により高度な電気的信頼性を図ることができる。   For example, in the above-described embodiments, the thin film transistor element active matrix type liquid crystal device has been described as an example of the liquid crystal device. However, the present invention is not limited to this. For example, the thin film diode element active matrix type or passive matrix type liquid crystal device may be used. Also good. As a result, a wide variety of liquid crystal devices can be reduced in thickness and size at a low cost, and higher electrical reliability can be achieved.

更に上述の説明では、第2の被接着部材や電子部品の例としてフレキシブル基板に実装された電源用IC26について説明したがこれに限定されるものではなく、例えば液晶パネル2のガラス基板に実装された液晶駆動用のドライバーIC16についてもその周囲に流路を形成し基板の裏側に樹脂部材の収容部を形成してもよい。これにより、より多種多様な液晶装置についても、高密度実装が可能となり、低コストに薄型化、小型化できると共により高度な電気的信頼性を図ることができる。   Further, in the above description, the power supply IC 26 mounted on a flexible substrate has been described as an example of the second adherend member or electronic component. However, the present invention is not limited to this. For example, the power supply IC 26 is mounted on the glass substrate of the liquid crystal panel 2. The liquid crystal driving driver IC 16 may also be formed with a flow path around it and a resin member housing portion formed on the back side of the substrate. As a result, a wider variety of liquid crystal devices can be mounted at a high density, and can be reduced in thickness and size at a low cost, and higher electrical reliability can be achieved.

また、上述の説明では樹脂部材31の収容部を実装側面の反対側に形成することとして説明したがこれに限定されるものではなく、例えば基板内部にスペースを設け収容部としてもよい。これにより、より多種多様な液晶装置についても、高密度実装が可能となり、低コストに薄型化、小型化できると共により高度な電気的信頼性を図ることができる。   In the above description, the housing portion for the resin member 31 is formed on the side opposite to the mounting side surface. However, the present invention is not limited to this. For example, a space may be provided inside the substrate to serve as the housing portion. As a result, a wider variety of liquid crystal devices can be mounted at a high density, and can be reduced in thickness and size at a low cost, and higher electrical reliability can be achieved.

第1の実施形態に係る液晶装置の概略斜視図である。1 is a schematic perspective view of a liquid crystal device according to a first embodiment. 図1のA−A線断面図(ドライバーIC等は切断していない。)である。It is the sectional view on the AA line of FIG. 1 (driver IC etc. are not cut | disconnected). 図1のB−B線断面図(電源用ICは切断していない。)である。FIG. 2 is a cross-sectional view taken along the line BB in FIG. 1 (the power supply IC is not cut). 第1の実施形態に係るフレキシブル基板の部分底面図である。It is a partial bottom view of the flexible substrate concerning a 1st embodiment. 第1の実施形態に係る電源用ICの実装工程の説明図である。It is explanatory drawing of the mounting process of power supply IC which concerns on 1st Embodiment. 変形例1に係る液晶装置の電源用ICの実装付近の概略断面図である。10 is a schematic cross-sectional view of the vicinity of mounting of a power supply IC of a liquid crystal device according to Modification 1. FIG. 変形例1に係る電源用IC付近のフレキシブル基板の底面図である。10 is a bottom view of a flexible substrate in the vicinity of a power supply IC according to Modification 1. FIG. 変形例2に係る液晶装置の電源用ICの実装付近の概略断面図である。12 is a schematic cross-sectional view of the vicinity of mounting of a power supply IC of a liquid crystal device according to Modification 2. FIG. 変形例2に係る電源用IC付近のフレキシブル基板の底面図である。10 is a bottom view of a flexible substrate in the vicinity of a power supply IC according to Modification 2. FIG. 変形例2に係るフレキシブル基板の凹部の製造工程の説明図である。10 is an explanatory diagram of a manufacturing process of a concave portion of a flexible substrate according to Modification 2. FIG. 第2の実施形態に係る液晶装置の電源用IC付近の概略断面図である。It is a schematic sectional drawing of power supply IC vicinity of the liquid crystal device which concerns on 2nd Embodiment. 変形例3に係る液晶装置の電源用ICの実装付近の概略断面図である。12 is a schematic cross-sectional view of the vicinity of mounting of a power supply IC of a liquid crystal device according to Modification 3. FIG. 変形例3に係る貫通孔の実装側面の概略拡大図であるIt is a schematic enlarged view of the mounting side surface of the through-hole which concerns on the modification 3. 第3の実施形態に係る携帯電話機の外観概略図である。It is the external appearance schematic of the mobile telephone which concerns on 3rd Embodiment. 第3の実施形態に係るパーソナルコンピュータの外観概略図である。FIG. 10 is a schematic external view of a personal computer according to a third embodiment.

符号の説明Explanation of symbols

1 液晶装置、 2 液晶パネル、 3 フレキシブル基板、 4 シール材、 5 第1の基板、 6 第2の基板、 7 液晶、 8,9 偏光板、 10 ソース配線、 11 ゲート配線、 12,22 配向膜、 13 画素電極、 14,28 出力用接続端子、 15 張出し部、 16 ドライバーIC、 17 入力用配線、 18 外部用接続端子、 19,29 入力用接続端子、 20 バンプ、 21 共通電極、 23 ベース基材、 24,25 配線パターン、 26 電源用IC、 27 接続端子、 30 半田ボール、 31 樹脂部材、 32,332 貫通孔、 33,333 収容部、 34 電子部品、 35 ギャップ材、 141,332a,461b 開口、 142,461 溝、 223a 最外層、 223b 開口部、 251 凹部、 251a 内壁、 461a 底面、 500 携帯電話機、 571 操作ボタン、 572 受話口、 573 送話口、 600 パーソナルコンピュータ、 681 キーボード、 682 本体部、 683 液晶表示ユニット、 C 実装領域、 E 広がり領域   DESCRIPTION OF SYMBOLS 1 Liquid crystal device, 2 Liquid crystal panel, 3 Flexible board, 4 Sealing material, 5 1st board | substrate, 6 2nd board | substrate, 7 Liquid crystal, 8, 9 Polarizing plate, 10 Source wiring, 11 Gate wiring, 12, 22 Orientation film , 13 pixel electrode, 14, 28 output connection terminal, 15 overhang, 16 driver IC, 17 input wiring, 18 external connection terminal, 19, 29 input connection terminal, 20 bump, 21 common electrode, 23 base base Material, 24, 25 Wiring pattern, 26 Power supply IC, 27 Connection terminal, 30 Solder ball, 31 Resin member, 32,332 Through hole, 33,333 Housing part, 34 Electronic component, 35 Gap material, 141, 332a, 461b Opening, 142,461 groove, 223a outermost layer, 223b opening, 25 DESCRIPTION OF SYMBOLS 1 Recessed part, 251a Inner wall, 461a Bottom face, 500 Mobile phone, 571 Operation button, 572 Earpiece, 573 Mouthpiece, 600 Personal computer, 681 Keyboard, 682 Main part, 683 Liquid crystal display unit, C mounting area, E Spreading area

Claims (15)

第1の被接着部材と第2の被接着部材とが間に樹脂部材を介して接続されている実装構造体において、
前記第1の被接着部材は、前記第2の被接着部材が接続される領域の外側に当該接続側面から反対側面まで連通する前記樹脂部材の流路を有し、
前記流路は、前記反対側に前記接続側内径より径の大きい前記樹脂部材の収容部を有することを特徴とする実装構造体。
In the mounting structure in which the first adherend member and the second adherend member are connected via the resin member,
The first bonded member has a flow path of the resin member that communicates from the connection side surface to the opposite side surface outside the region to which the second bonded member is connected,
The mounting structure according to claim 1, wherein the flow path includes a housing portion for the resin member having a diameter larger than the connection-side inner diameter on the opposite side.
前記流路は、前記第2の被接着部材の周囲に複数形成されていることを特徴とする請求項1に記載の実装構造体。   The mounting structure according to claim 1, wherein a plurality of the flow paths are formed around the second bonded member. 前記流路は、貫通孔であり、前記接続側面から前記反対側面に向かって前記第2の被接着部材から離れるように斜めに形成されていることを特徴とする請求項1又は請求項2に記載の実装構造体。   The said flow path is a through-hole, and is formed diagonally so that it may leave | separate from the said 2nd to-be-adhered member toward the said opposite side surface from the said connection side surface. The mounting structure described. 前記第1の被接着部材は、前記接続領域の外側に前記第2の被接着部材側から離れるに従って深くなると共に横幅が狭くなるように形成されている第1の溝を有し、
前記流路は、前記第1の溝の前記第2の被接着部材側から最も離れた底に形成されていることを特徴とする請求項1から請求項3のうちいずれか一項に記載の実装構造体。
The first adherend member has a first groove formed outside the connection region so as to become deeper as the distance from the second adherend member side increases and the lateral width becomes narrower.
The said flow path is formed in the bottom most distant from the said 2nd to-be-adhered member side of the said 1st groove | channel, The Claim 1 characterized by the above-mentioned. Mounting structure.
前記収容部は、前記流路の内径が前記反対側面に向かって大きくなるように形成されていることを特徴とする請求項1から請求項4のうちのいずれか一項に記載の実装構造体。   The mounting structure according to any one of claims 1 to 4, wherein the housing portion is formed so that an inner diameter of the flow path increases toward the opposite side surface. . 前記収容部は、前記流路により前記反対側面に複数露出する開口をつなぐ第2の溝により形成されていることを特徴とする請求項1から請求項4のうちいずれか一項に記載の実装構造体。   5. The mounting according to claim 1, wherein the housing portion is formed by a second groove that connects a plurality of openings exposed on the opposite side surface by the flow path. Structure. 前記収容部は、前記流路により前記反対側面に複数露出する開口を含むように前記反対側面に形成された凹部であることを特徴とする請求項1から請求項4のうちいずれか一項に記載の実装構造体。   The said accommodating part is a recessed part formed in the said opposite side surface so that multiple opening exposed to the said opposite side surface by the said flow path may be included, The Claim 1 characterized by the above-mentioned. The mounting structure described. 前記第1の被接着部材は、積層構造を有し、
前記凹部は、少なくとも前記積層構造のうちの前記反対側面である最外層に設けられた開口部であることを特徴とする請求項7に記載の実装構造体。
The first bonded member has a laminated structure,
The mounting structure according to claim 7, wherein the recess is an opening provided in an outermost layer that is at least the opposite side surface of the stacked structure.
電気光学パネルと、前記電気光学パネルに接続された可撓性回路基板と、前記可撓性回路基板に樹脂部材を介して実装された電子部品を備えた電気光学装置であって、
前記可撓性回路基板は、前記電子部品が実装される領域の外側に当該実装側面から反対側面まで連通する前記樹脂部材の流路を有し、
前記流路は、前記反対側に前記実装側内径より径の大きい前記樹脂部材の収容部を有することを特徴とする電気光学装置。
An electro-optical device comprising: an electro-optical panel; a flexible circuit board connected to the electro-optical panel; and an electronic component mounted on the flexible circuit board via a resin member,
The flexible circuit board has a flow path of the resin member that communicates from the mounting side surface to the opposite side surface outside the region where the electronic component is mounted,
2. The electro-optical device according to claim 1, wherein the flow path includes a housing portion for the resin member having a diameter larger than the mounting-side inner diameter on the opposite side.
前記流路は、前記電子部品の周囲に複数形成されていることを特徴とする請求項9に記載の電気光学装置。   The electro-optical device according to claim 9, wherein a plurality of the flow paths are formed around the electronic component. 前記流路は、貫通孔であり、前記実装側面から前記反対側面に向かって前記電子部品から離れるように斜めに形成されていることを特徴とする請求項9又は請求項10に記載の電気光学装置。   11. The electro-optic according to claim 9, wherein the flow path is a through hole, and is formed obliquely so as to be separated from the electronic component from the mounting side surface toward the opposite side surface. apparatus. 前記収容部は、前記流路の内径が前記反対側面に向かって大きくなるように形成されていることを特徴とする請求項9から請求項11のうちのいずれか一項に記載の電気光学装置。   The electro-optical device according to claim 9, wherein the accommodating portion is formed so that an inner diameter of the flow path increases toward the opposite side surface. . 前記収容部は、前記流路により前記反対側面に複数露出する開口をつなぐ溝により形成されていることを特徴とする請求項9から請求項11のうちのいずれか一項に記載の電気光学装置。   12. The electro-optical device according to claim 9, wherein the housing portion is formed by a groove that connects openings exposed on the opposite side surface by the flow path. . 前記収容部は、前記流路により前記反対側面に複数露出する開口を含むように前記反対側面に形成された凹部であることを特徴とする請求項9から請求項11のうちのいずれか一項に記載の電気光学装置。   The said accommodating part is a recessed part formed in the said opposite side surface so that multiple openings may be exposed to the said opposite side surface by the said flow path, The any one of Claims 9-11 characterized by the above-mentioned. The electro-optical device according to 1. 請求項9から請求項14のうちのいずれか一項に記載の電気光学装置を備えたことを特徴とする電子機器。   An electronic apparatus comprising the electro-optical device according to any one of claims 9 to 14.
JP2006264489A 2006-09-28 2006-09-28 Mounting structure body, electrooptical device, and electronic apparatus Withdrawn JP2008085135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264489A JP2008085135A (en) 2006-09-28 2006-09-28 Mounting structure body, electrooptical device, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264489A JP2008085135A (en) 2006-09-28 2006-09-28 Mounting structure body, electrooptical device, and electronic apparatus

Publications (1)

Publication Number Publication Date
JP2008085135A true JP2008085135A (en) 2008-04-10

Family

ID=39355663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264489A Withdrawn JP2008085135A (en) 2006-09-28 2006-09-28 Mounting structure body, electrooptical device, and electronic apparatus

Country Status (1)

Country Link
JP (1) JP2008085135A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295712A (en) * 2008-06-04 2009-12-17 Denso Corp Substrate and manufacturing method of electronic device
JP4489137B1 (en) * 2009-01-20 2010-06-23 パナソニック株式会社 Circuit module and electronic device
JP2020029827A (en) * 2018-08-23 2020-02-27 シチズンファインデバイス株式会社 Manufacturing method of fluid spray plate and fluid spray plate
WO2022224668A1 (en) * 2021-04-22 2022-10-27 株式会社オートネットワーク技術研究所 Wiring module and bus bar unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295712A (en) * 2008-06-04 2009-12-17 Denso Corp Substrate and manufacturing method of electronic device
JP4489137B1 (en) * 2009-01-20 2010-06-23 パナソニック株式会社 Circuit module and electronic device
JP2010171082A (en) * 2009-01-20 2010-08-05 Panasonic Corp Circuit module and electronic equipment
JP2020029827A (en) * 2018-08-23 2020-02-27 シチズンファインデバイス株式会社 Manufacturing method of fluid spray plate and fluid spray plate
JP7136630B2 (en) 2018-08-23 2022-09-13 シチズンファインデバイス株式会社 Manufacturing method of fluid spray plate
WO2022224668A1 (en) * 2021-04-22 2022-10-27 株式会社オートネットワーク技術研究所 Wiring module and bus bar unit

Similar Documents

Publication Publication Date Title
US6542374B1 (en) Circuit board, method for manufacturing the circuit board, and display device and electronic equipment employing the circuit board
KR101722292B1 (en) Displays with reduced driver circuit ledges
KR100473010B1 (en) Electro-optical device, inspection method therefor, and electronic equipment
TWI538074B (en) Flexible circuit board, method of fabricating the same, and semiconductor package
KR100393948B1 (en) Flexible wiring board, electrooptical device and electronic equipment
KR100899052B1 (en) Electro-optical device, method for manufacturing electro-optical device, and electronic apparatus
JP2000294896A (en) Circuit board, display device using the same and electronics
KR20020014995A (en) Electro-optic device and electronic apparatus
JP2008085135A (en) Mounting structure body, electrooptical device, and electronic apparatus
JP2004363171A (en) Wiring board and its manufacturing method, chip module, electro-optical device and its manufacturing method, and electronic apparatus
JP2009212329A (en) Circuit board, electro-optic device, and electronic equipment
US20040222272A1 (en) Solder printing mask, wiring board and production method thereof, electrooptical apparatus and production method thereof and electronic device and production method thereof
JP2004111808A (en) Wiring board, electro-optical device, and electronic apparatus
JP2004087940A (en) Electronic component mounted board, electro-optical device, method of manufacturing the same, and electronic apparatus
JP2009212328A (en) Circuit board, electro-optic device, and electronic equipment
JP2009081416A (en) Semiconductor device, semiconductor mounting structure, and electro-optical device
JP2000294895A (en) Circuit board, its manufacture, display device using the same board and electronics
JP2006278388A (en) Packaging structure, electro-optical device, and electronic apparatus
JP2002323865A (en) Electro-optical device and electronic equipment
JP2005142490A (en) Semiconductor device, electrooptic device, and electronic apparatus
JP2005108991A (en) Packaging structure, liquid crystal display, and electronic equipment
JP2004095995A (en) Packaging board for electronic part, manufacture therefor, electro-optical device, manufacture therefor, and electronic equipment
US11825600B2 (en) Printed circuit board, display device, and manufacturing method of display device
JP2004363172A (en) Wiring board, its manufacturing method, chip module, electro-optical device, its manufacturing method, and electronic apparatus
JP2008084598A (en) Lighting system, liquid crystal device, and electronic apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201